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The outer atmosphere of the Sun 
envelops near-Earth space and is 
the ultimate control on the large-

scale electrical currents that permeate our 
terrestrial plasma environment. These 
currents drive interactions both within 
and between the coupled ionosphere–
magnetosphere system, which have 
wide-ranging impacts on Earth (Beggan 
et al. 2013, Knipp 2015, Pulkkinen et al. 
2017). Studying these phenomena is of both 
fundamental and practical interest.

The magnetosphere covers a huge 
spatial scale and as a result it remains 
strongly undersampled. This issue of data 
coverage is circumvented in part by the 
tendency for magnetospheric dynamics 
to map along magnetic field lines and into 
the ionosphere. Thus we can think of the 
ionosphere acting as a projection surface 
for electrodynamics occurring throughout 
the magnetosphere (Merkin et al. 2016). In 
this way, the climatology of the large-scale 
electric current distribution is relatively 
well sampled, for instance by low Earth 

orbit satellites (Anderson et al. 2000, Friis-
Christensen et al. 2006), and networks of 
ground-based magnetometers (Gjerloev 
2009) and radars (Chisham et al. 2007).

The climatology of the ionospheric elec-
tric currents is well understood in terms of 
coupling to the magnetosphere, through 
the Dungey cycle (Dungey 1961) and the 
expanding/contracting polar cap paradigm 
(Lockwood et. al. 1990, Lockwood & Cow-
ley 1991). Yet the dynamic variability of the 
currents has been difficult to measure and 
model simultaneously in all regions. This 
is now changing, as a result of improved 
access to large networks of measurement 
stations, combined with advances in 
linear and nonlinear system-scale analytic 
techniques. Space physics is undergoing 
a rapid improvement in the description of 
magnetosphere–ionosphere system vari-
ability. Here I report a novel combination of 
variance characterization techniques, with 
benefits for resolving the polar ionospheric 
magnetic fields in non-averaged terms.

Making Earth’s rotation do the work
The SuperMAG archive (Gjerloev 2009, 
2012) comprises decades of 1 min magnetic 
vector data from hundreds of contribut-
ing stations, distributed globally. The 
SuperMAG geographic coverage over 
the northern polar region is shown in 
figure 1a, while figure 1b shows the same 
distribution of stations in quasi-dipole 
coordinates (Richmond 1995, Emmert et 

al. 2010, Laundal & Gjerloev 2014). Here, 
the ionospheric magnetic fields (and their 
equivalent currents) are ordered in mag-
netic latitude and magnetic local time. In 
this Sun-synchronous frame, the regions 
of unsampled ionospheric variations are 
clear from the many grey patches. Yet over 
the course of a month, the rotation of the 
Earth will precess the network of stations 
underneath the ionosphere, leading to an 
overall good coverage, shown in figure 1c. 
Estimating the Sun-synchronous magnetic 
field climatology from these data is trivial: 
we simply compute their mean. I describe 
below how the method of empirical orthog-
onal functions (EOF) can meet the greater 
challenge of estimating the dynamic vari-
ability of the ionosphere in every epoch, 
while retaining complete spatial coverage.

EOF is a general technique; its applica-
tion to geophysical fields is described 
mathematically in Preisendorfer and Mob-
ley (1988), Bjornsson and Venegas (1997), 
Jolliffe (2002) and Storch and Zwiers (2002). 
The application of EOFs to SuperMAG data 
is described in detail by Shore et al. (2017, 
2018). EOF uses spatial and temporal cor-
relations within a dataset to define uncor-
related spatial and temporal “basis-vector” 
patterns. Each independent pattern defines 
the spatial regions – and their associated 
temporal amplitudes – which contribute 
the most to the total SuperMAG variabil-
ity. When the patterns are ranked by their 
contribution to the variance, this hierarchy 
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1 (a) Northern-polar geographic distribution of SuperMAG stations (black dots) which contributed measurements during February 2001. (b) The same stations at 
midnight on 1 February 2001, shown in quasi-dipole latitude and magnetic local time. The colours are the quasi-dipole θ component contribution on the scale 
shown from each station closest to the centroid of the bin it is located in, after removal of the Gjerloev (2012) long-period “year” baseline. Empty bins are grey. 
(c) In each locality, the percentage of 5-minute epochs to which SuperMAG contributed data over the course of the month. (Panel b from Shore et al. 2018)
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shows, at a glance, the regions that are most 
important for describing the geomagnetic 
field. The sum of the EOF patterns fully 
describes the original data.

Each EOF basis pattern is defined across 
the entire spatial and temporal extent of 
the dataset. This means that the variations 
from a given pattern can be used to infer 
what the network would have measured 
in each of its data gaps, as if there had been 
a station there at that time. This approach 
is called data interpolating EOFs, and is 
described by Beckers and Rixen (2003) and 
Beckers et al. (2006). It is this technique that 
allows us to estimate the dynamic variabil-
ity of the ionospheric magnetic fields with-
out loss of spatial or temporal precision.

An interpretable parameter space
Unlike methods such as Fourier or spheri-
cal harmonic analyses, the form of the EOF 
patterns is unknown prior to the analy-
sis. Indeed, discovering the morphology 
of these patterns is a core motivation in 
applying EOF to SuperMAG. Individual 
EOF basis patterns are defined to maximize 
their description of the variance of the data, 
so the patterns reveal directly the variance 
structures that make up the total dataset.

When creating a model from a given 
dataset, the model coefficients are typically 
non-unique. Because of this, we must be 
careful when suggesting that an inspection 
of the parameter space (in this case, via the 
EOF patterns) allows an unbiased interpre-
tation of the underlying physical system. 
Campbell (2004) offers a spirited discussion 
of whether altering the coordinate frame of 
a spherical harmonic analysis, in order to 
better fit the underlying data, either assists 
or impedes physical interpretability. To be 
clear, the EOF patterns are orthogonal com-
ponents of variability of the data; they are 
not necessarily individually representative 
of a single underlying physical phenom-
enon. Yet the patterns represent parts of 
the data that are important in terms of their 
contributing spatial regions and epochs. 
With the aforementioned shortcomings in 
mind, we can indeed use EOF patterns for 
physical interpretation.

In figure 2a, I show the EOF pattern that 
contributed the most to the total variance 
in July 2001, which resembles the two-cell 
ionospheric convection. The pattern is 
shown as a normalized map of equivalent 
current vectors, and its associated time 
series of amplitudes is shown in figure 2c. 
These amplitudes describe the contribution 
of the specific pattern shown in figure 2a to 
every epoch in the full dataset. In figure 2b, 
I show the EOF pattern that has the second 
highest contribution to the data variance, 
and its associated amplitudes in figure 2d. 
The patterns in figures 2a and 2b coexist 
in the full SuperMAG EOF decomposition. 

There are many more EOF patterns in this 
month alone (not shown here).

While each individual EOF pattern is a 
linear representation of just one part of the 
geomagnetic field, their sum returns the 
full nonlinear behaviour of the data. So, 
the sum of the patterns in figures 2a and 
2b, with different relative amplitudes and 
signs, will create a dynamic variation in the 
map of geomagnetic perturbations. This is 
demonstrated in figures 2e and 2f. Here, the 
pattern in figure 2a is scaled with a fixed 
amplitude of +200 nT, to which is added 
the pattern in figure 2b after scaling either 
with an amplitude of –100 nT (to produce 
figure 2e) or +250 nT (to produce figure 2f). 
The result is a distortion of the two-cell 
convection to produce the “banana” and 
“orange” cell patterns associated (Tenfjord 
et al. 2015) with the east–west component 
(By) of the interplanetary magnetic field 
(IMF). Indeed, the time series in figure 2d 
has a correlation of 0.75 with the IMF By 
measurements.

A practical motivation for using EOF is 

that it can provide a compact representa-
tion of data, requiring few basis vectors to 
represent the geomagnetic field dynamics. 
If we were to use nonlinear basis vectors, 
such as those employed in machine learn-
ing, then the description would be even 
more compact and accurate, but we would 
be unable to interpret the individual basis 
vectors physically. The focus of my recent 
work has been to combine the benefits 
of EOF with other data representation 
techniques, in order to give a fuller picture 
of the spatial and temporal scales of the 
geomagnetic field variability.

Characterizing variability in space and time
Grocott and Milan (2014) have shown that 
time series of individual spherical har-
monic coefficient amplitudes can be used 
to infer the effect of the IMF on ionospheric 
convection. Shore et al. (2017) showed that 
the EOF decomposition produces patterns 
that represent the solar wind driving more 
directly than individual spherical harmon-
ics do – as expected, because the IMF has 

2 (a) A map of spatial amplitudes for the EOF pattern that contributed the most variance over the 
span of July 2001 (“mode 1” in the terminology of Shore et al. 2017, 2018). The vectors are the horizontal 
component rotated by 90° clockwise to indicate the direction and relative strength of the equivalent 
currents. The background colours are those of the quasi-dipole magnetic θ component. (b) The 
EOF pattern that contributed the second-most amount to the total July 2001 variance (“mode 2”). 
(c) Temporal amplitudes of the normalized pattern in (a). The mean was removed from each spatial cell 
prior to the EOF analysis, so the time series has zero mean. (d) Temporal amplitudes of the normalized 
pattern in (b). (e) Sum of (a) and (b) when they are scaled by +200 nT and –100 nT, respectively. (f) Sum of 
(a) and (b) when they are scaled by +200 nT and +250 nT respectively. (Using data from Shore et al. 2018)
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a strong control on ionospheric variability 
(figure 2). But the extent to which the EOF 
patterns describe the same solar wind driv-
ing varies between different monthly EOF 
analyses. As I show below, the information 
selectively represented by EOF can also 
offer insight into solar–terrestrial coupling. 
To characterize the information content – 
and deficit – of EOF analyses 
over a complete solar cycle, 
Shore et al. (2018) developed 
a combination of EOF with 
network analysis (Caldarelli 
2007) and linear correlation.

Much in the same way that EOF analysis 
uses spatiotemporal covariance to resolve 
independent yet coexistent patterns in a 
dataset, network analysis identifies inde-
pendent coexistent groups, based on some 
Euclidian distance measure of similarity 
within a dataset. These techniques are nat-
urally complementary: EOF is used to iden-
tify uncorrelated patterns within a given 
month, then network analysis identifies 
correlated similarities in the EOF pattern 
hierarchy between independent months. 
Shore et al. (2018) performed 144 monthly 
EOF analyses spanning 1997.0 – 2009.0, 

and subsequently used network analysis 
to identify spatially similar clusters of EOF 
patterns. Here, the distance measure was 
spatial correlation of the EOF patterns 
(described in full in Shore et al. 2018).

In figure 3a, I show one of the coexist-
ent groups identified by Shore et al. (2018). 
Each dot is an EOF pattern of shared spatial 

similarity. The mean spatial 
pattern from these months 
is shown in figure 3b, and is 
similar (after a sign change) 
to the pattern shown in figure 
2b. Likewise for figure 2d, the 

correlation between IMF By, and of each of 
the monthly time series indicated by the 
dots in figure 3a is consistently good (maxi-
mum 0.82, mean 0.63). From this result, and 
from established theory (Friis-Christensen 
& Wilhjelm 1975, Tenfjord et al. 2015) the 
group shown in figure 3a is considered to 
represent the IMF By input to the iono-
sphere. We see that the group is dominant 
in summer solstice and at solar maximum, 
and that its constituent EOF patterns tend 
to decrease in their relative contribution 
to the total variance away from summer 
solstice. This is indicated by the variance 

ranking of the group’s constituent patterns 
slipping from second (at solstice) to third, 
fourth or fifth place. The IMF By driving is 
absent in winter. 

The aim of this example is to show how 
the importance of this pattern (and, hence, 
the IMF By driving) waxes and wanes with 
time at a monthly granularity. On finer 
scales, the five-minute resolution of the 
EOF patterns, which make up this group, 
quantifies the relative importance of the 
IMF By driving at every epoch. In this 
way, the combination of EOF and network 
analysis, with linear correlation, allows the 
dynamic contribution from a specific class 
of solar wind driving to be quantified at a 
high temporal resolution, and also in terms 
of its spatial distribution.

In addition to the group described above, 
Shore et al. (2018) defined groups that iden-
tify the ionospheric response to positive 
and negative IMF Bz, substorms, and the 
expansion and contraction of the polar cap. 
Collectively, this information approaches 
a full description of the polar geomagnetic 
variability. The quantification of the rela-
tive importance of all these aspects, both in 
space and time, is a step towards accurately 
representing the full ionospheric response 
to the solar wind.

Conclusion
Space physics and solar–terrestrial 
science is increasingly “data driven” 
in response to the ever-increasing 
quantity of easily available, high-quality 
network data. To make best use of these 
datasets, we need new techniques for 
the description and understanding of 
near-Earth electromagnetic processes. 
One such technique is a combination of 
empirical orthogonal functions, network 
analysis and linear regression, described 
above. In combination, these methods 
allow a meaningful interpretation of the 
“structures” of variability that characterize 
how the ionosphere and magnetosphere 
interact on a broad range of spatial and 
temporal scales. This new overview 
provides the information required to 
improve the nowcasting, forecasting and 
hindcasting of solar–terrestrial coupling. ●

3 (a) Clustering (in time and ranked variance) of a group of EOF patterns with similar morphology, 
identified by Shore et al. (2018). The angle around the circle indicates the year and monthly analysis date. 
Each coloured dot indicates an EOF pattern from a given monthly analysis. The dot’s placement on the 
dashed concentric circles indicates that pattern’s contribution to the total variance (also indicated by 
colour) – the sixth most important pattern is innermost. The outermost (solid) circle shows all dots for 
the group, such that their temporal dependence is more easily visible. The grey lines indicate patterns 
that share a high spatial similarity (correlation coefficient ≥0.835). (b) The mean spatial pattern of all dots 
in (a), shown in the same format as in figure 2a and 2b. (Modified from Shore et al. 2018)
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