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Summary 

 Bayesian ‘occupancy’ models (BOM) are a powerful tool that have recently been adapted to 

deal with ‘opportunistic’ species data (i.e. biological records). 

 Individual species trends from any models can be aggregated to produce habitat indicators; 

here this is demonstrated for BOMs and Frescalo (Hill, 2012) using two examples. 

 Example one demonstrates the production of habitat-specific trends using NPMS indicator 

species and subsets of 1 x 1 km grid cells predicted to contain the habitat of interest from 

Land Cover Mapping. Decisions around whether to include subsets of habitat-containing 

cells, or all cells within a political boundary, will be important for trend interpretation: 

habitat subsets of cells may lead to biases depending on true habitat change over time. 

 Example two compares BOMs to the Frescalo method, as well as investigating the impacts of 

decisions for indicator production (e.g. weighting or not weighting by a species national 

frequency) on the trends produced. In this example weighted trends for 18 Sphagnum 

species typical of blanket bog were much more similar than unweighted trends.   

 In the case of contradictory habitat (or species) trends it will not normally be possible to 

know which model is correct (at least in the absence of an unbiased dataset to which to 

refer). Given that BOMs, as currently used, may contain significant bias, a prudent approach 

would be to compare the outputs of several methods before making decisions. 

Introduction 

Hierarchical Bayesian modelling (HBM) is an important technique in the modern ecologist’s toolbox 

(Hilborn & Mangel 1997; McCarthy 2007; Kéry & Royle 2016). HBM provides the opportunity to 

specify complex models that are unavailable using more standard statistical interfaces, and is 

considered by some to be transforming the practice of ecology (Gimenez et al. 2014; Hooten & 

Hobbs 2015). Bayesian occupancy models (BOM), a particular type of HBM developed within 

ecology, are one example of this trend. BOM were developed in order to account for the typically 

imperfect detectability of species during surveys (Royle & Dorazio 2008); in their simplest form they 

separate the human process of detection from the ecological quantity of interest, the presence or 

absence of a species for example. This statistical separation can be crucial for the accurate discovery 

of ecological pattern; for example, Marc Kéry and colleagues (2010a; 2010, 2011) have repeatedly 

drawn attention to the biases that imperfect detection can potentially bring to the elucidation of 

ecological relationships. 

Bayesian occupancy modelling as currently applied to ‘opportunistic’ biological records data involves 

several additional assumptions and modifications to standard occupancy models (Kéry et al. 

2010a,b, van Strien et al. 2010, 2013). In addition to the assumption of fixed detectability during a 

survey (or ‘closure’) period, models of opportunistic data use survey-level information to help 

account for variation in detectability estimates. To date, the most successful of these Bayesian 

approaches (as assessed against simulated data) has been an extended detectability model which 

includes ‘list length’ (i.e. the number of taxa observed on a given day visit to a grid cell) as a 

surrogate for recorder effort (Isaac et al. 2014). Non-Bayesian methods have also been used to 
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account for certain types of bias in biological records; for example the method of Hill (2012) is based 

on the premise that, at large scales (e.g. large clusters of 10 x 10 km grid cells), relative frequency 

curves across species show common patterns, and that the frequency of the commonest n species 

within this curve will provide information on survey effort with which to adjust the relative 

frequencies of other species. 

Within what follows, it is important to keep in mind that analyses of unstructured (or semi-

structured; Pescott et al. 2015) data that attempt to adjust for the various kinds of biases contained 

within biological records (Powney & Isaac 2015) will inevitably make assumptions about the 

structure of the data modelled; whether or not a model captures the actual structure of the data 

well will be a key determinant of its success. The use of multiple models may therefore be useful in 

corroborating conclusions—if common conclusions are reached using different models, then we may 

be more confident that any particular conclusion is reliable. Note, however, that if models result in 

contradictory conclusions, it will not normally be possible to tell conclusively which model is at fault 

(at least in the absence of a ‘gold standard’ of high quality, unbiased data). As is elaborated below, it 

may also be the case that patterns elucidated at different scales conflict—this can be the case even 

in the absence of bias (Wiens 1989). 

In the current report we explore the potential for BOM to be used to model trends in species that 

are characteristic of certain habitats, with the aim of producing habitat quality indicators. In general, 

habitat ‘quality’ cannot be defined without reference to some standard of high quality against which 

habitat patches are to be assessed (JNCC 2004). In this paper, however, we report on the potential 

for BOM to produce trends based on lists of species representative of particular habitats; this 

approach, or similar, could be applied to lists of species endorsed by habitat experts as being 

appropriate for the aim of indicating the quality of national stocks of any particular habitat. We do 

not investigate the issue of the most appropriate list of species for any particular habitat here. We 

do note the existence of species indicators of habitat quality within the Common Standards 

Monitoring approach to condition assessment for Sites of Special Scientific Interest (SSSIs; JNCC 

2004), the lists of habitat indicators used by the new National Plant Monitoring Scheme (Walker et 

al. 2015), and the lists of ‘axiophytes’ or ‘worthy plants’ developed by the Botanical Society for 

Britain and Ireland (BSBI) (see http://bsbi.org/axiophytes; in addition, an axiophyte dataset compiled 

by Dr K.J. Walker, Head of Science, BSBI, will be available soon at http://eidc.ceh.ac.uk). Other 

potential indicator lists may be available, and can be easily be incorporated using the framework 

outlined below. 

Within this report we demonstrate two approaches to creating habitat quality metrics using 

Bayesian Occupancy Models. For one of these cases we also compare the BOM trends to those 

produced by a separate, modelling process with different assumptions (Frescalo; Hill 2012). 
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Example 1: Vascular plants in habitat-specific grid cells 

Introduction 
In this example we focus on species associated with certain habitat types by using the habitat 
indicators as defined by the National Plant Monitoring Scheme (NPMS; http://www.npms.org.uk); 
indicator species within habitats for this scheme were originally chosen by randomly sampling those 
species that were abundant and/or frequent in the synoptic tables of associated UK National 
Vegetation Classification habitats (Rodwell 1991 et seq.), followed by expert review. Species were 
also filtered on their national (i.e. British) frequency at the 2 x 2 km scale, and the ease with which 
they can typically be identified by naturalists (based on verification rules originally produced by 
expert botanists for the National Biodiversity Network). Here we focus on NPMS habitat types that 
can be linked to existing land-cover maps (Appendix 2). The aim is to produce a separate indicator 
for each habitat type.  Lowland heathland and broadleaved woodland are the candidate habitat 
types used to explore the potential of this approach here. 
 
The example examined here is an indicator of habitat quality in the sense that trends in species 
typical of a particular habitat are likely to reflect a trend in habitat quality at the scale of the data 
(assuming that ‘quality’ is defined as having some relation to the identity of the species present in a 
habitat).  For example, we assume that a decline in woodland quality would result in a decline in the 
occupancy (i.e. the frequency of occurrence in 1 x 1 km grid cells) of woodland species in woodland 
habitats.  This approach is distinct from monitoring activity conducted at finer scales (e.g. quadrats 
in woodlands, where data would typically be collected at 10 x 10 m or similar depending on the focal 
vegetation stratum). The proposed approach to a BOM-based indicator therefore embodies a trade-
off: a large body of data, collected in a relatively unstructured manner by both professional and 
amateur botanists, at a relatively large scale (1 x 1 km), is used to draw inferences concerning the 
occupancy of species at that scale.  We expand on the validity of the assumptions embodied by this 
approach in the discussion section below. 
 
Methods 
Data 
Occurrence records of vascular plants within 1 x 1 km grid cells in the UK were extracted from the 
BSBI Distribution Database (http://bsbidb.org.uk).  The time-period used for the indicators was 1987 
to 2013, as this represents a core period of recording for these taxa in the UK (Preston et al. 2002). 
In this example, we use only those grid cells that contain what is expected to be a significant 
proportion of the given habitat type, based on recent remote-sensing data (Morton et al. 2011).  
Woodland grid cells were selected as those cells containing greater than 50% coverage of 
broadleaved woodland (n = 1722), while the selection criteria for lowland heathland cells chose 
those with greater than 25% coverage of heather and heather grassland combined, and which were 
less than 300 m in mean altitude (n = 14076) (see Appendix 2 for further details on the selection and 
definition of these habitats). These subsets were chosen as they retained a considerable proportion 
of the target-habitat containing 1 km grid cells, whilst also ensuring that trends in associated species 
are likely to be from the habitat of interest (rather than other habitats contained within a selected 
grid cell). The spatial distribution of the 1 x 1 km grid cells (hereafter called ‘monads’) included in the 
analysis for each habitat type is shown in Figure 1. It may be that, given the highly fragmented state 
of heathland in lowland England, a lower percentage cover threshold is required for heathland 
monads, currently there appears to be an under-representation of lowland heath in this area (cf. for 
example the map in Lake et al. 2014).  
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a)       b) 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. The distribution and density of monads from which the trend estimates were derived for the two 
habitat indicators: a) lowland heath; and, b) broadleaved woodland.  The shading represents the number of 
unique monads within each 10 x 10 km grid cell included in the analysis (10 x 10 km cells are used for 
visualisation reasons only). 

 
 
Analysis 
We ran BOMs for two sets of approximately 30 species, one for each habitat type (see Appendix 1 
for the full species lists).  These species were derived from the NPMS list of species indicative of dry 
heathland and deciduous woodland (Appendix 2). We used the Bayesian indicator workflow 
described in the development of the UK Biodiversity Indicators Technical Background Document 
(Isaac et al. 2015) to produce the indicators and generate species-specific credible interval trends for 
each habitat type. The procedure of Isaac et al. (2015) calculates growth rates on the log odds scale, 
and uses the posterior distribution (i.e. uncertainty) of these rates to calculate confidence intervals; 
see the discussion section of Example 2 below for more discussion on the choice of method for 
summarising across species. 
 
Results 
The lowland heath and deciduous woodland indicators are based on 23 and 21 species respectively 
(Appendix 1 - note that several species failed the inclusion criteria).  Not all species contribute to all 
years (see No. spp. column in Table 1) due to the species:year inclusion criteria laid out in Isaac et al. 



v1.4  3rd October 2016 

 

(2015).  Both indicators tended to be stable across the entire study period of 1987 to 2013 (Figure 
2).  More specifically, the smoothed trend for woodland shows a steady increase in occupancy until 
2005, after which the trend levels off.  Both indicators have relatively wide credible intervals, with a 
maximum width of approximately 150 (where the index = 100% in year 1), representing high 
uncertainty in our annual index estimates.  The proportion of species showing long-term increases 
and decreases were roughly equal for both habitat types (see Figures 3a-d below), a result which 
was reflected in the stable indicator plots.  In contrast, over the short-term, a larger proportion of 
heathland species were increasing than declining (Figure 3b), while the reverse was true for the 
woodland species (Figure 3d, i.e. a greater proportion have suffered declines than increases). 
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a) 

 
b) 

 
Figure 2. Change in the log-odds of occupancy between 1987 and 2013 for a) heathland and b) woodland 
indicator species.  The shaded region represents the 90% credible intervals for the annual index estimates.  
The red line illustrates a smoothed trend estimated from a GAM fitted to the rescaled indicator values.)  
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a) b) 

  
c) d) 

  
Figure 3. The proportion of dry heath (a, b) and deciduous woodland (c, d) indicator species in each trend 
category based on mean change in occupancy over both a, c) the long-term (all years) and b, d) the short term 
(the most recent five years). 
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Table 1. Change in occupancy between 1987 and 2013 for a) lowland heathland and b) woodland indicator 
species.  The indicator values per year are presented alongside their uncertainty (upper and lower 90% CI), and 
the number of species contributing to the annual index value.  The number of species contributing has been 
split into those with an interpolated estimate and those with an actual occupancy estimate. 

a) 

Year Indicator Lower CI Upper CI Smoothed 
indicator 

No. spp. 
estimated 

No. spp. 
interpolated 

1987 100 100 100 87.26 22 0 

1988 78.97 49.34 118.85 92.23 21 1 

1989 72.68 45.28 108.26 96.65 20 2 

1990 121.63 73.68 179.08 99.26 22 1 

1991 117.69 73.01 172.74 98.79 22 1 

1992 87.38 55.34 130.09 95.88 23 0 

1993 90.65 54.94 138.77 94.26 21 2 

1994 86.03 53.02 131.73 99.30 21 2 

1995 126.86 80.02 188.28 113.98 22 1 

1996 89.96 56.27 132.76 135.33 21 2 

1997 202.04 127.58 301.80 154.63 23 0 

1998 170.56 104.10 254.82 162.35 21 2 

1999 158.00 99.56 230.91 154.48 21 2 

2000 128.97 81.17 192.08 135.59 20 3 

2001 86.17 55.47 129.09 115.87 22 1 

2002 113.06 73.31 166.03 104.26 23 0 

2003 118.12 74.63 170.56 102.75 22 1 

2004 107.34 69.80 159.96 106.22 23 0 

2005 99.59 64.84 143.41 107.59 23 0 

2006 101.31 66.52 149.75 103.88 23 0 

2007 98.77 64.96 142.81 98.26 21 2 

2008 109.76 71.78 153.18 96.72 22 1 

2009 88.58 57.86 126.32 102.53 23 0 

2010 112.22 75.18 157.06 113.49 22 1 

2011 125.39 84.13 180.07 124.11 23 0 

2012 140.02 92.64 203.98 130.49 23 0 

2013 127.65 85.83 181.43 133.24 23 0 
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b)  

Year Indicator Lower CI Upper CI Smoothed 
indicator 

No. spp. 
estimated 

No. spp. 
interpolated 

1987 100 100 100 75.36 21 0 
1988 41.76 30.32 54.96 76.81 21 0 
1989 101.49 69.40 141.31 78.30 15 6 
1990 107.03 70.20 152.43 79.89 14 7 
1991 64.98 41.65 94.59 81.73 14 7 
1992 50.71 33.39 73.37 83.96 12 9 
1993 71.87 47.81 101.32 86.67 19 2 
1994 85.35 57.12 123.64 89.84 20 1 
1995 101.49 68.26 144.01 93.37 19 2 
1996 91.52 65.03 127.01 97.07 20 1 
1997 142.60 104.10 190.20 100.76 21 0 
1998 98.32 71.05 132.76 104.38 21 0 
1999 113.31 81.91 148.00 107.95 21 0 
2000 71.42 52.17 93.49 111.53 21 0 
2001 100.69 72.68 134.44 115.16 21 0 
2002 108.27 76.79 146.06 118.72 20 1 
2003 149.16 105.79 201.29 121.97 21 0 
2004 140.23 104.87 182.68 124.65 21 0 
2005 146.00 105.60 189.31 126.58 21 0 
2006 152.30 110.14 205.38 127.70 21 0 
2007 118.46 87.42 155.51 128.14 21 0 
2008 119.93 88.89 155.13 128.07 21 0 
2009 108.72 81.18 139.67 127.63 21 0 
2010 136.01 100.72 180.06 126.92 21 0 
2011 126.54 94.84 162.95 125.96 21 0 
2012 138.60 102.53 179.83 124.82 20 1 
2013 100.76 75.14 128.46 123.59 21 0 
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Discussion 
The indicators presented here focus on subsets of 1 x 1 km cells where the habitats of interest are 
estimated to be at high cover. However, grid cells meeting a particular criterion of habitat cover may 
change over time (woodland may be planted or grubbed-out; heathland may be destroyed or 
restored etc.). Trends are presented here between 1987 and 2013, but the selection of grid cells for 
modelling uses habitat cover values estimated around 2007 (i.e. the use of the CEH 2007 Land Cover 
Map). This means that cells that had already experienced severe habitat degradation or destruction 
by 2007 are not likely to be included in the indicator. This may bias the trend in the indicator 
upwards. Conversely, habitat newly created or restored post-2007 are also absent from the 2007-
2013 component of the trend, biasing the indicator downwards. It is not possible to know which of 
these biases, if either, dominates the trends graphed here. 
 
One way of coping with these potential, but very hard to quantify, biases would be to randomly 
select monads for inclusion in the indicator (or to simply include all British or UK monads for every 
subset of species), however, both these approaches would also increase the variance in the 
indicator, and could potentially introduce more noise from the occurrence of some of the species in 
the indicator lists outside of target habitats (e.g. many ‘look-a-like’, non-native infraspecific taxa are 
planted in gardens and escape into peripheral habitats, particularly for the woodland indicator 
species; Sell 2006). An alternative strategy for coping with the potential biases caused by habitat grid 
cell choices would be to combine land cover information from a wider selection of datasets; for 
example, all three CEH Land Cover Maps (1990, 2000, 2007) could be combined, with any cell having 
>X% of land cover Y included. This would help to cope with temporal biases in grid cell selection, 
although it should also be remembered that remote sensing technology and classification 
approaches will have changed between maps, and therefore for some land cover types, particularly 
those subject to high classification error, such union sets over time may still contain inappropriate 
grid cells.  Given that our approach selects the majority of the British stock of a particular habitat by 
selecting 1 x 1 km cells from the 2007 CEH Land Cover Map, we expect that, at least in the short to 
medium term, these locations will be the most suitable for monitoring changes in habitat quality (as 
judged by occupancy trends of indicator species). 
 
The estimated trends, even with the statistical adjustments introduced by the Bayesian occupancy 
modelling approach, are likely to still contain bias; furthermore, patterns of 1 x 1 km cell occupancy 
are unlikely to match dynamics at the plot scale, particularly for widespread species. For example, 
national evidence for declines in the light-loving element of the woodland ground flora of Britain 
(Kirby et al. 2005) may not be reflected in trends at a larger scale, for the simple reason that 
botanists collecting data for distribution-focused projects will generally cover more ground whilst 
surveying, meaning that a larger variety of habitats are searched. Species that may have declined 
inside of woodlands (e.g. where coppicing or other management has ceased), may survive on 
woodland rides or edges, or where localised disturbance has opened canopy gaps. It should 
therefore be noted that trends established at different scales may not be congruous: this does not 
mean that one trend is incorrect and another correct, it is merely an instance of differing scale-
dependent patterns. For this reason, ecological and other contextual knowledge should always be 
brought to bear on the interpretation of indicators. 
 
Changes in habitat ‘quality’, defined as the presence or absence of indicator species, could be 
attributable to increases or decreases in area of habitat within a 1 x 1 km cell, if a standard species-
area relationship tends to hold in habitat fragments in the UK. In addition, plant indicators of high-
quality habitat (Kimberley et al. 2013) tend to be slow at dispersing to new habitats, due to 
particular trait combinations (e.g. large seeds, vegetative spread), therefore over the time periods 
relevant to this indicator we expect that the loss of species at the 1 x 1 km cell level will indicate 
habitat loss (or a degradation in quality, which we take to be equivalent), while increases are likely 
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to be either from restoration efforts (whether reintroductions or management that restores suitable 
conditions for a species present in a seed bank), or from marginal gains at the edges of 1 x 1 km cells. 
Increases could of course also be attributable to under-recording in the past, although the Bayesian 
occupancy model was used to partially address this issue where enough data exist within a year to 
estimate detectability. Another related issue that will need addressing in future versions of 
indicators of this type is the exclusion of data relating to non-native infraspecific taxa nested within 
the species used as indicators: e.g. the inclusion of records of Lamiastrum galeobdolon ssp. 
argentatum within the trend estimated for L. galeobdolon (Yellow Archangel) is likely to be 
responsible for the increase in occupancy: this non-native subspecies is generally considered to be 
increasing in urban and sub-urban woodlands, and may also be increasingly better recorded by 
botanists due to gradual changes in the recording culture resulting in greater attention being paid to 
garden escapes and other non-natives. 
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Example 2: Bryophytes at the national level 

Introduction 

In this example national biological records data for bryophytes (Blockeel et al. 2014) are used to 

investigate the congruence between BOM and the Frescalo method (Hill 2012). The choice of 

bryophytes is dictated by the recent availability of a large and spatially extensive quality-assured 

dataset (Blockeel et al. 2014); this dataset has also been analysed in detail using Frescalo, a 

methodology designed to cope with variable recording intensity (Hill & Preston 2014), but not so far 

subject to BOM (with the exception of 7 ‘priority’ bryophyte species included in the JNCC 2015 

Priority species indicator C4b; http://jncc.defra.gov.uk/page-6850). 

 

In this example we use data in our BOMs at a marginally coarser scale than for vascular plants, the 2 

x 2 km grid cell (hereafter referred to as a ‘tetrad’). This is due to the fact that considerable amounts 

of bryophyte data are collected at this resolution, particularly in recent years (Preston & Rorke 

2014). Note that bryophyte surveyors may still make records at finer resolutions, but that this will 

frequently be in the context of sampling a tetrad (Preston et al. 2012). Using a finer scale for BOM, 

such as the 1 × 1 km grid cell, may mean that the covariable ‘list length’ does not truly represent the 

effort expended during a recording session; for example, a recorder may record all the species that 

they can find in a single monad and then visit the other three monads in a tetrad only briefly in order 

to add additional species. In this case species yielded by visits into neighbouring monads may be 

associated with short lists at the monad level (although this of course depends on local beta diversity 

at the scale of the vegetation community, and on the effort expended by the surveyor in these 

monads). 

 

The Frescalo trends presented here are calculated using the same dataset as the BOM models, for 

the same 5-year time periods; however, the trends are produced at the 10 x 10 km (hectad) scale. 

Although trends can be scale-dependent (Keil et al. 2011), the recent use of Frescalo at the hectad 

scale in a national atlas (Hill & Preston 2014) makes it desirable to compare these two approaches at 

the scale at which they are likely to be applied. Note that the use of longer time periods, and coarser 

spatial grain, must increase the number of replicated site visits within a closure period: this should 

result in better estimates of detectability (Kéry & Royle, 2016). 

 

Finally, this example also examines the use of weights in the production of trends (van Strien et al. 

2012).  

 

Methods 

Data 

Data were extracted from the database of the British Bryological Society (held at the Biological 

Records Centre, CEH Wallingford; also see https://data.nbn.org.uk/Datasets/GA000144). Data were 

summarised to tetrad or hectad presences for 5-year periods as detailed above; the periods used 

were: 1985-89; 1990-94; 1995-1999; 2000-04; 2005-09; and 2010-2013. Annual indices were not 

produced due to the fact that bryophyte recorders are unlikely to revisit the same grid cell within a 

single year; using 5-year closure periods is more likely to result in meaningful detectability (and 

occupancy) estimates due to an increased opportunity for repeat visits (under the assumption that 

species occupancy is relatively stable within a 5-year window). For some groups of taxa species 

aggregates were used; this ensures that changes in taxonomic focus across the time period modelled 

does not produce false trends (Jansen & Dengler 2010; Hill & Preston 2014, 2015). 
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In the example presented here, 18 Sphagnum species given a frequency class score of 3 (“[a] normal 

habitat or substrate for the species”) for blanket bog (EUNIS class D1) in the bryophyte attributes 

database ‘BRYOATT’ were used (Hill et al. 2007). These species are listed in Table 2 below. 

 
Table 2. Sphagnum species and species aggregates for which blanket bog (EUNIS class D1) is a normal habitat. 

For aggregate definitions see Hill et al. (2007). 

Sphagnum balticum Sphagnum majus 

Sphagnum capillifolium Sphagnum molle 

Sphagnum cuspidatum Sphagnum palustre 

Sphagnum denticulatum s.l. Sphagnum papillosum 

Sphagnum fuscum Sphagnum pulchrum 

Sphagnum girgensohnii Sphagnum recurvum s.l. 

Sphagnum imbricatum s.l. Sphagnum riparium 

Sphagnum lindbergii Sphagnum strictum 

Sphagnum magellanicum Sphagnum tenellum 

 

Due to the issues discussed above in Example 1, and also due to the desire to produce results 

comparable with the analyses of Hill & Preston (2014), grid cells were not restricted to habitat 

subsets in this example: all grid cells, at the resolution modelled, sampled during the period 1985-

2013 were used. 

 

Analysis 

We used the Bayesian occupancy model described in the development of the UK Biodiversity 

Indicators Technical Background Document (Isaac et al. 2015) to produce the indicators and 

generate species-specific trends for each habitat type, with the exception that the logistic regression 

for detectability was specified as: 

 
logit(pivt) = at + β1.LLvt +  β2.Datevt + β3.Date

2
vt + εv 

 

Where pivt is the probability of species i being detected on visit v within time period t; at is a (5 

year) time period-specific random effect; LLvt is the list length from visit v within time period t; 

Datevt and Date2vt are the Julian date of visit v within time period t and its second order 

polynomial; and εv is a random error term. That is, we posit that detectability is influenced by the 

time of year and by recorder effort. 

 

Frescalo analyses followed the approach outlined in Hill & Preston (2014). 

 

Indicator production followed standard advice for the taking of the geometric mean (geomean) 

across individual species’ trends (van Strien et al. 2012). Either the median of the posterior 

distribution (BOM) or the Frescalo relative frequency measure for the time period 1985-90 was 

taken as the starting point for the indicators; subsequent measures were re-scaled relative to this 

initial value. For the purpose of this test, measures of uncertainty around these point estimates from 

both model types were ignored, as has often been the case in indicator production (Gregory et al. 

2005). The implications of this are discussed below. 

 

For weighted geomeans, the weights were specified as: 
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wi = Ni/Nmax 

 

Where, the species weight wi is calculated as the number of hectads in which a species was recorded 

during 1985-2013 (Ni), divided by the number of hectads occupied during this period by the most 

widespread species considered in the indicator (Nmax), here Sphagnum palustre. Van Strien et al. 

(2012) provide the formula for the calculation of weighted geomeans. 

 

Results 

The different approaches produce quite different indicators, as can clearly be seen in Figure 4 below. 

The discrepancy between approaches is greater for the unweighted than the weighted geomean. 

The two modelling approaches (BOM, Frescalo) give quite different pictures of change using the 

unweighted geomean, whereas with weighted geomeans they are likely to be indistinguishable, 

particularly if one considers the uncertainty associated with individual species’ trends (typically 

assessing using bootstrapping, but not presented here). 

 

 

 

 
Figure 4. Experimental indicators for Sphagnum species associated with blanket bog; produced either using 

Bayesian Occupancy Models (BOM) or Frescalo (Hill, 2012), and with and without species weights. Trend lines 
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are Gaussian family local polynomial regression (‘loess’) fits calculated in R using the loess.smooth function 

with default settings (span = 0.75, degree = 2). 

Discussion 

The development of appropriate biodiversity indicators is not trivial, and there is no shortage of 

discussion in the literature concerning approaches (e.g. Buckland et al. 2005; Gregory et al. 2005; 

Nielsen et al. 2007; Lamb et al. 2009; van Strien et al. 2012). The approach used in this example is a 

standard one based on the geomean (van Strien et al. 2012). 

 

The increased variability in the indicator trends produced using the geomean is not unexpected, 

given that the practice of rescaling species abundance or occupancy values to the first year of a time 

series can produce large index values in some years for rare species, because these species may 

show large relative change even for small distributional increases. This effect of the geomean is in 

general desirable, and has been one of the reasons for its selection when producing trends from 

abundance data: relative changes are often considered to be more biologically relevant, and can be 

related to population growth rates (Isaac et al. 2015). However, it also means that rare species exert 

the same influence as commoner ones; this may be less desirable for indicators produced using 

opportunistic data, because rare species may be more likely to violate model assumptions, or to lack 

data. A weighted geomean may help with this issue (van Strien et al. 2012), and means that, whilst 

relative change in the distributions of rare species is taken into account, change for the commonest 

species dominates the index. This may be desirable if the ‘condition’ (sensu Common Standards 

Monitoring) of widespread habitats is under consideration; for other purposes, monitoring 

improvements in populations of rare species may be a key focus for an indicator. The simple 

weighting used here means that common species, particularly if the method is applied across large 

areas, will dominate the index; note however, that many other weighting schemes are possible, for 

example, the relative index of occupancy used here could be logged, producing a much less variable 

set of weights. 

 

Finally, note that the example presented here is considerably simpler than that used in example 1 

(described in Isaac et al. 2015), but that the Bayesian approach used there to construct confidence 

intervals is just as applicable to the geometric mean as it is to the change in log odds approach. The 

choice between the change in log odds approach and the geometric mean approach deserves 

further consideration. Due to the non-linear shape of the logit curve, approaches using the change in 

the log odds of occupancy between time periods mean that species occupying intermediate 

proportions of the area modelled will exert less influence on the indicator than both the rarer and 

the commoner species. This is because a greater change in occupancy is required around 0.5 to 

produce a given change in the log odds, relative to occupancies closer to 0 and 1; for example, a 

change from 0.5 to 0.6 on the log odds scale is 0.41, whereas the change from 0.01 to 0.1 is 2.41. 

This may be desirable for some applications, but the impacts of this decision on indicator production 

deserves to be further explored, particularly in combination with the influences of species’ weights.
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Conclusions 

The recent past has seen a considerable expansion in the approaches available for indicator 

development. This report has attempted to review and demonstrate some of the possibilities and 

challenges of these methods. Whilst Bayesian occupancy modelling is now considered to be a 

reliable method for constructing trends from ‘opportunistic’ biological records data (Kéry et al. 

2010a; Isaac et al. 2014), a greater understanding of the implications of unmet model assumptions 

would strengthen the claim of the approach to be the ‘gold standard’. For example, if little real 

information on detectability exists in a dataset (i.e. if the detectability logistic regression explains 

little of the variation in the data), then the variance in occupancy probabilities may be considerable. 

In addition, both Royle (2006) and Kéry & Royle (2016) point out that “unmodelled site-specific 

heterogeneity in detection will lead to underestimates of occupancy” (Kéry & Royle, 2016, pp. 560-

561). Likewise, if the relationship between detectability and its covariables is biased in some way 

(e.g. rare species are often recorded in short lists), then occupancy probabilities will also be biased. 

Kéry & Royle (2016, p. 559) provide the following example: “if multiple surveys [i.e. replicates within 

a temporal closure period] are only undertaken at the “better” sites, where density and therefore 

detection probability (p) may be higher on average, the resulting estimate of p will be biased high 

with respect to all sites and therefore the occupancy estimator will be biased low”. A similar logic 

pertains to the example where rare species are disproportionately recorded on short lists: for 

example, if the information in observation data suggests that there is a negative relationship 

between list length and a species being observed (because it has been the target of special, focused, 

surveys), then detectability will be biased upwards for short lists, biasing the occupancy estimator 

downwards, despite that fact that, all else being equal, a ‘random search’ model of recording implies 

that rare species should have low detectability. 

In addition to these issues of model reliability, greater discussion around the appropriateness of 

different approaches to indicator construction would be beneficial (cf. van Strien et al. 2012); 

different approaches emphasise different aspects of the underlying species trends, and an approach 

that is fit for purpose in one situation may be less appropriate in a second. Comparisons between 

approaches are also likely to be useful, particularly if independent experts are recruited to ‘sense-

check’ both species’ and aggregated trends.
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Appendix 1. The list of species included in the two habitat indicators.  * = Species that failed the inclusion 
criteria, therefore do not contribute to the indicator. The Change Index (Telfer et al., 2002) for each species 
from the New Atlas (Preston et al., 2002) is included for reference. Additionally, species were grouped into one 
of five categories based on their long-term trend in occupancy, strongly negative (--), negative (-), no change 
(NC), positive (+), strongly positive (++).  Note that the New Atlas Change Indices were calculated across all 
British 10 x 10 km cells, rather than a set of habitat-specific 1 x 1 km cells. 

Woodland species New Atlas 
Trend 

Long-term 
trend 

Lowland heath species New Atlas 
trend 

Long-term 
trend 

Allium ursinum 0.24 + Calluna vulgaris -0.64 - 

Campanula latifolia*   Cerastium fontanum 1.40 + 

Campanula trachelium 0.14 -- Cuscuta epithymum*   

Carex sylvatica 0.05 + Dactylorhiza maculata -0.42 NC 

Ceratocapnos claviculata 0.57 NC Deschampsia flexuosa -0.22 + 

Corylus avellana -0.54 - Digitalis purpurea 0.72 ++ 

Cynoglossum officinale*   Empetrum nigrum -0.29 + 

Daphne laureola 0.10 ++ Erica cinerea -0.94 + 

Euphorbia amygdaloides -0.22 NC Galium saxatile -0.15 + 

Galium odoratum -0.62 NC Genista anglica -1.09 -- 

Geum urbanum -0.53 ++ Hypochaeris radicata 0.61 ++ 

Ilex aquifolium -0.16 ++ Jasione montana*   

Lamiastrum galeobdolon 1.07 NC Linum catharticum -0.44 -- 

Neottia ovata -0.54 NC Lotus corniculatus 1.09 NC 

Melica uniflora -0.04 - Nardus stricta -0.68 - 

Mercurialis perennis -0.65 NC Pedicularis sylvatica -1.28 NC 

Milium effusum 0.31 - Plantago coronopus 0.16 NC 

Moehringia trinervia*   Platanthera bifolia -1.67 -- 

Mycelis muralis*   Polygala serpyllifolia -0.50 -- 

Ruscus aculeatus 0.74 ++ Polygala vulgaris*   

Sanicula europaea -0.98 -- Sedum anglicum -0.21 - 

Silene dioica -0.44 + Serratula tinctoria -0.21 + 

Teucrium scorodonia -0.69 NC Stachys officinalis*   

Veronica montana 0.48 - Thymus pulegioides*   

Viola riviniana 1.07 -- Thymus polytrichus -0.64 - 

Viola reichenbachiana*   Ulex minor 0.20 ++ 
 

  Ulex gallii 0.20 - 

    Vaccinium myrtillus -0.61 + 
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Appendix 2. 

a. Broadleaved woodland 

NPMS guidance definition 

(http://www.npms.org.uk/sites/www.npms.org.uk/files/PDF/NPMS%20Guidance%2

0Notes_WEB_0.pdf):  

“Dry deciduous woodland:  includes natural or semi-natural woodlands with 

canopies made up of one or more of the following native broad-leaved deciduous 

species: Birch, Beech, Ash, Aspen, Pedunculate/Sessile Oak, Rowan, Large/Small-

leaved Lime, and Wych Elm.” 

 

NVC definition used to create Indicator level species list within the NPMS (expert-

reviewed): 

NVC code NPMS habitat Weight* 

W10 Dry deciduous woodland 1 

W11 Dry deciduous woodland 1 

W12 Dry deciduous woodland 1 

W13 Dry deciduous woodland 1 

W14 Dry deciduous woodland 1 

W15 Dry deciduous woodland 1 

W16 Dry deciduous woodland 1 

W17 Dry deciduous woodland 1 

W8 Dry deciduous woodland 1 

W9 Dry deciduous woodland 1 

 

*A weight of 1 indicates that the constituent NVC community is not split between NPMS habitats. Here, 

all the NVC constituent communities only contribute to the NPMS habitat ‘Dry deciduous woodland’. 

 

b. Lowland heathland 

NPMS guidance definition 

(http://www.npms.org.uk/sites/www.npms.org.uk/files/PDF/NPMS%20Guidance%2

0Notes_WEB_0.pdf):  

“Dry heathland: occurs on dry, sandy soil and is dominated by Heather and Bell 

Heather, usually with Common or Western Gorse. Typically dry heathland occurs in 

the lowlands often near to the coast, in south west, south east and eastern England 

and Wales (Gower, Pembrokeshire and Anglesey) as well as on sand dunes in 

Scotland. It is also found in a mosaic of coastal habitats in Northern Ireland (e.g. 

Galboly, Co. Antrim) and alongside lowland blanket bog habitats (e.g. Slieve Beagh. 

Co. Fermanagh). Dry heathland can extend into milder and wetter upland regions of 

northern England and Scotland where it is more commonly called ‘moorland’ or 

‘grouse moor’. As well as Heather and other dwarf-shrubs, characteristic species 

include Heath Bedstraw, Tormentil and Heath Milkwort.” 

NVC definition used to create Indicator level species list within the NPMS (expert-

reviewed): 

NVC code NPMS habitat Weight* 
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H1 Dry heathland 1 

H11 Dry heathland 1 

H2 Dry heathland 1 

H3 Dry heathland 1 

H4 Dry heathland 0.5 

H5 Dry heathland 1 

H6 Dry heathland 1 

H7 Dry heathland 0.5 

H8 Dry heathland 0.5 

* Here, some of the NVC constituent communities also contributed to the definition of other NPMS 

habitat categories (e.g. H4, H7 and H8). 

 

Link habitat types to CEH Land Cover Map. 

a. The NPMS ‘Dry deciduous woodland’ category may simply be linked across to the CEH 

Land Cover Map 2007 ‘Broadleaved woodland’ category in the first instance. Note that 

the Land Cover Map Broadleaved woodland category includes much woodland planted 

for amenity or forestry; the selection of 1 x 1 km cells could be further restricted through 

the use of the Natural England Ancient Woodland Inventory. 

b. The NPMS habitat ‘Dry heathland’ is more challenging to match to the CEH Land Cover 

Map 2007. The NPMS habitat definition includes three NVC communities that can also 

contribute to other NPMS categories, as shown below (NVC communities that occur 

within other NPMS habitats highlighted): 

NVC code NPMS habitat Weight 

H1 Dry heathland 1 

H11 Dry heathland 1 

H2 Dry heathland 1 

H3 Dry heathland 1 

H4 Upland heathland 0.5 

H4 Dry heathland 0.5 

H5 Dry heathland 1 

H6 Dry heathland 1 

H7 Dry heathland 0.5 

H7 Maritime cliffs and slopes 0.5 

H8 Dry heathland 0.5 

H8 Upland heathland 0.5 

 

This is inevitable, given the existence of gradual transitions between, or mosaics within, habitat 

types in the real world. However, the CEH Land Cover Map category ‘Heather’ contains the following 

sub-categories, Heather & dwarf shrub; Burnt heather; Gorse; Dry heath; in addition to ‘Heather’, 

‘Heather grassland’ contains areas of lower density heather that are likely to be areas of degraded 

heathland. ‘Heather’ and ‘Heather grassland’ were separated from wet heath and bog by the use of 

a peat depth variable during the production of the LCM (see 

http://www.ceh.ac.uk/documents/lcm2007datasetdocumentation.pdf). Montane habitats are also 

separated out by altitude in the LCM, hence, the equivalence of the NPMS category ‘Dry heathland’ 

and the CEH LCM categories ‘Heather’ + ‘Heather grassland’ should be a reasonable approximation. 
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Given the above, the 1 x 1 km cells that have a high coverage of the LCM categories ‘Broadleaved 
woodland’ and ‘Heather’ + ‘Heather grassland’ should, respectively, be appropriate locations for 
monitoring the biodiversity of these habitats at a relatively large scale. 
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