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Abstract The thermal evolution of melt ponds on Arctic sea ice was investigated through a combination
of autonomous observations and two-dimensional high-resolution fluid dynamics simulations. We observed
one relatively fresh pond and one saline pond on the same ice floe, with similar depth. The comparison of
observations and simulations indicates that thermal convection dominates in relatively fresh ponds, but
conductive heat transfer dominates in salt-stratified ponds. Using a parameterized surface energy balance,
we estimate that the heat flux to the ice is larger under the saline pond than the freshwater pond when
averaged over the observational period. The deviation is sensitive to assumed wind, varying between 3 and
14 W/m2 for winds from 0 to 5 m/s. If this effect persists as conditions evolve through the melt season, our
results suggest that this imbalance potentially has a climatologically significant impact on sea-ice evolution.

Plain Language Summary Sea ice provides key feedbacks on polar and global climate, with melt
ponds being particularly significant. Melt ponds darken the ice surface, thereby increasing the absorption
of sunlight and accelerating ice melt. This study provides a new perspective on melt-pond salinity, its
previously unrecognized significance in controlling the thermal properties of ponds, and the potential impact
on ice melting as we transition toward a younger sea ice cover. Many state-of-the-art sea ice models
represent melt ponds as a freshwater layer with a surface temperature of 0 °C, consistent with a past Arctic
ocean dominated by desalinated perennial ice and relatively fresh ponds. However, perennial ice has
diminished in recent decades, with increasing prevalence of young saline ice. This leads to ponds with a
wider range of salinities and temperatures. We show that salinity strongly impacts pond temperatures, using
observations of adjacent freshwater and saline melt ponds on Arctic sea ice. Combining this data with model
simulations, we find that melt-pond salinity impacts heat transfer to the ice below and the resulting
melting rate. Our study reveals that melt-pond salinity and salt stratification are key variables influencing heat
transfer in melt ponds, which need to be considered in future model development.

1. Introduction

One of the most dramatic winter-to-summer transformations of Arctic sea ice is the formation and progres-
sion of melt ponds on the ice surface. Melt ponds, which can cover a significant fraction of the ice surface in
summer (Divine et al., 2015; Fetterer & Untersteiner, 1998; Perovich, Tucker III, et al., 2002; Polashenski et al.,
2012), lower the surface albedo and increase the absorption of shortwave radiation and transmission through
ice into the underlying ocean (e.g., Curry et al., 1995; Frey et al., 2011; Hanesiak et al., 2001; Hudson et al., 2013;
Nicolaus et al., 2012; Perovich, Grenfell, et al., 2002; Perovich et al., 2007; Perovich & Polashenski, 2012). Heat
fluxes in ponds and their role in the ice-albedo feedback form a major component of the sea-ice energy bal-
ance and considerably intensify summer melt (Stroeve et al., 2014).

A simple treatment of ponds in sea-ice models parameterizes the albedo as a function of the mean depth,
available water, and areal fraction of ponds (Ebert & Curry, 1993), assuming uniform pond temperature.
Thus, melt ponds only affect the surface albedo in the energy flux balance. Taylor and Feltham (2004; here-
after TF04) included a radiative transfer model for shortwave radiance in the pond-ice system, and potentially
turbulent heat fluxes in the pond interior (internal heating by the absorption of shortwave radiation can lead
to convective instability inside a freshwater pond). In TF04, weak buoyancy forcing results in sensible heat
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fluxes through the pond from conduction, while strong buoyancy forcing is described through a scaling law
for turbulent convective boundary layers at the top and bottom of the pond. These parameterizations may
provide a better treatment of the surface energy flux balance in climate models. However, their treatment
of the thermal characteristics of the pond interior have not been validated against in situ observations.
Particularly, melt ponds occur in a range of salinities, 0–29 parts per thousand (Lee et al., 2011; Perovich
et al., 2009), which may affect the stratification of the ponds and the consequent surface energy balance.

This study investigated whether the salinity of ponds modifies their thermal evolution, with subsequent
impacts on net heat fluxes. We describe in situ measurements (section 2) of shortwave radiation and vertical
temperature profiles within two adjacent ponds of differing salinity, over 3 weeks in August 2015. The evol-
ving temperature profiles are compared to numerical simulations of fluid flow and heat transfer in a model
pond (section 3). This comparison is consistent with a radiative-convective balance in a relatively fresh pond
and a radiative-conductive balance in a saline stratified pond. We estimate that the changing heat fluxes may
provide a climatologically significant modification of the sea-ice energy budget (section 4).

2. Observations
2.1. Deployment

On 12 August 2015, an ice station was established (80.4°N, 172.4°E) north of the East Siberian Sea
(Figure 1a). The chosen floe was located well away from the ice edge, contained numerous melt ponds,
and composed of both first-year ice (FYI) and multiyear ice (MYI) (Figure 1b). An ice mass balance buoy
with radiometers (IMB-R) was installed in one relatively fresh pond of 2.3 g/kg bottom salinity and
1.1 g/kg near-surface salinity (measured by salinometer YSI Model 30, Accuracy of ±2%). We refer to this
as a freshwater pond hereafter. Another IMB-R was deployed in a separate more saline pond of 20 g/kg
bottom salinity and 14 g/kg near-surface salinity (Figures 1c–1d). This IMB-R updates the system described
by Jackson et al. (2013) with 0.0078 K resolution thermistors (ADT7320, Analog Devices). The IMB-Rs were
equipped with shortwave radiometers: two in air (SP-230, Apogee) and one below the ice (SP-110).
Among the hourly measurements, incident downward shortwave fluxes are presented here. In addition,
webcam photographs taken every 6 hr document the evolution of the pond and weather. Thermistor
chains were suspended vertically from a wire extended across the pond (Figure 1d), down through a
5-cm wide borehole drilled through the ice beneath the pond. The ponds showed no detectable drainage
through the hole, indicating that they were at sea level. Hourly vertical temperature profiles were mea-
sured at 2-cm intervals through the air above, the pond, the underlying borehole, and into the ocean
below. Our analysis focuses on the water temperature in the pond interior.

Upon deployment (12 August), the freshwater pond was 23 cm deep at the deployment point, with light-blue
color and a thin layer of ice on the surface (Figures 1b–1c). The surface ice cover around the IMB-R was broken
and removed during deployment. The saline pond was 22 cm deep at the deployment point, with dark-blue
color and no surface ice (Figures 1b–1c). The ice thickness below the freshwater pond was 219 cm, and
100 cm under the saline pond. This suggests that the freshwater pond was formed on thicker multiyear
ice, with the saline pond on thinner FYI. The difference in ice thickness affected the pond bottom albedo;
the albedo of the saline pond (on thinner ice) was much lower than that of the freshwater pond.
Temperature profiles were measured until a polar bear damaged the IMB-R in the freshwater pond. We there-
fore focus on the common observation period from 13 to 29 August.

2.2. Meteorological Conditions

The air temperature above the ponds was calculated by averaging the top 10 thermistors in air (Figure 2a).
The two IMB-Rs recorded almost identical variations in air temperature, which is to be expected given their
short separation (~70 m; Figure 1b).

We identify three main periods P1–P3 reflecting different meteorological conditions based on the air tem-
peratures, incident shortwave radiative fluxes (Figures 2a–2b), and webcam photographs (supporting infor-
mation Figure S1 and Movie S1). These are the following:

1. P1 (14–19 August): Air temperature hovered around freezing during an overcast period. There was a weak
diurnal cycle in pond temperature, which was slightly enhanced on 16–17 August due to nighttime reduc-
tion of cloud cover.
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2. P2 (19–25 August): Clear skies prevailed. This resulted in a significantly enhanced diurnal signal and lower
atmospheric temperatures, consistent with the loss of cloud cover and strong nighttime infrared cooling.
The photographs (Figure S1 and Movie S1) show signs of nighttime snowfall on 22 August.

3. P3 (25–29 August): The clouds returned with several snowfall events between 27–29 August and tempera-
tures below freezing (Figure 2a).

The incident shortwave fluxes show similar temporal variation for both ponds during cloudy conditions (P1
and P3 in Figure 2b), but diverge during P2 when the ponds receive high insolation. The photographs sug-
gest that the radiometer in the saline pond tilted over several days (Figure S1 and Movie S1), which likely
explains the bias in fluxes on days with clear sky and strong incident solar radiance. Thus, the upright sensor
at the freshwater pond provides the better measure of varying incident shortwave radiation.

2.3. Pond Water Temperature

The changing meteorological forcing drives thermal variability, with significant differences between the
ponds (Figures 2c–2f vs. 2g–2j). The water temperature at the base of both ponds approaches their sali-
nity-determined freezing point (Perovich et al., 2009); about 0 °C for the freshwater pond, and around
�1.1 °C for the saline pond of 20 g/kg salinity. The mean temperature of the saline pond was typically 0.5

Figure 1. (a) Map of the Ice Mass Balance Buoy (IMB-R) drifting track with mean AMSR2 sea-ice concentration (%) during 13–29 August 2015, (b) aerial photo of the
ice campwith the locations of ponds, (c) photos of two IMB-Rs on 13 August, and (d) schematic of instrument deployment with sensors including a vertical thermistor
chain through air, pond, ice, and upper ocean, along with shortwave radiometers (SW Rad.).
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Figure 2. (a) Air temperature and (b) incoming shortwave radiation measured at the saline pond (blue) and the freshwater pond (red). The three periods P1–P3 are
indicated by dashed vertical lines, with blue bars in (a) indicating snowfall events determined from the photographs. (c) Hourly evolution of vertical temperature
profiles measured in the saline pond and (d)–(f) individual profiles at the universal coordinated time 02:00 UTC (close to the time of maximum water temperature)
for three periods. (g)–(j) Same as (c)–(f) except for the freshwater pond. Note the isoline of freezing temperature of the saline pond of 20 g/kg salinity at�1.1 °C in (d)–(f),
and the different temperature scale in (h). In (c) and (g), the initiation of continuous surface freezing and snow accumulation is estimated based on the photographs.
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to 1.2 °C colder than the freshwater pond, likely partly due to the difference in freezing point at the lower
boundary. In addition, the higher shortwave reflection at the bottom of the freshwater pond (Figure 1b)
potentially enhances the radiative heating of that pond compared to the darker saline pond. The saline pond
was likely interconnected (through a network of ponds) to the ocean (Figure 1b), which may allow lateral
exchange with colder seawater. As the ice thins the freeboard lowers, allowing for flooding of shallow inter-
connected ponds (Polashenski et al., 2012). FYI, being thinner, will be more susceptible to this process.

The temperature profiles of both ponds exhibit a significant diurnal response to daytime shortwave heating
and nighttime surface cooling (see Figures 2c, 2g, and anomaly plots in Figure S2), but show notably different
thermal structures, indicating differing efficiencies of heat transfer.

During the warm and cloudy period P1, the saline pond shows a strong thermal gradient (Figure 2d) and evi-
dence of a phase lag in the propagation of heat downward through the pond (15–17 August in Figure 2c).
The salinity measurements suggest strong stratification within the saline pond, like previous observations
from other saline ponds (Perovich et al., 2009), indicating relatively inefficient diffusive heat transfer. By con-
trast, the freshwater pond displays a vertical temperature curve with minima at top and bottom (a reversed
C-shape; Figure 2h) and a more synchronous temporal response with depth, indicating efficient thermal
transfer (Figure 2g). We hypothesize that the different thermal structures result from a
radiative-conductive balance in a salt-stratified pond, and more efficient turbulent convective mixing in
the freshwater pond, as explored in section 3.

The first half of P2 (up to 22 August) was cold with clear skies, and a significant middepth temperature max-
imum develops in both ponds (Figures 2e and 2i). This is consistent with heating by radiative absorption,
accompanied by strong net surface heat losses due to reduced downwelling longwave in the absence of
clouds. In the second half of P2, the surface of both ponds froze and accumulated snow (Figure S1). The diur-
nal variability diminished, despite large daytime incoming shortwave fluxes comparable to the first half of P2.
The ice and snow layer on the ponds significantly reduces transmission of shortwave radiation into the pond,
muting the diurnal cycle of heating and cooling (Figures 2c, 2i, and S2c–2d).

During the cold and cloudy period P3, there is a weak thermal response (Figures 2f and 2j), with air tempera-
tures below freezing maintaining an ice lid. The photographs (Figure S1) suggest an optically reflective snow
cover accumulated on the freshwater pond. Snow accumulation is more limited on the saline pond (possibly
due to brine on the ice surface dissolving newly fallen snow).

3. Idealized Model of Heat Transfer in a Melt Pond
3.1. Model Configuration

To build insight into the physical mechanisms controlling the observed pond temperatures, we calculate sen-
sible and radiative heat transfer through the interior of modeled ponds of differing salinity. Model details are
described in §S2, with key features summarized here. We focus on the period before surface freezing, and
model temperature T in a shallow pond of uniform depth H and wide extent in a horizontally periodic
domain. The absorption of shortwave radiation leads to internal heating Q(z) that depends on height z above
the pond base (Figure 3a), approximated using the two-stream radiation model described in Skyllingstad and
Paulson (2007; SP07 hereafter). The pond base is at the salinity-dependent melting temperature Tm. The
energy flux conducted to the upper pond surface balances the sum of longwave, sensible, and latent heat
fluxes, which crucially depend on the surface temperature Ts. Following Hitchen and Wells (2016), we linear-
ize this surface boundary condition

k
∂T
∂z

¼ �F0 � γ Ts � Tmð Þ at z ¼ Hð Þ; (1)

where k is the thermal conductivity of water, F0 is the net flux at temperature T = Tm (positive upward), and
the constant γ characterizes the sensitivity of net outgoing fluxes to Ts. To characterize the relative effects of
the surface heat loss versus interior heating, we define the ratio f = F0/Q0H, where Q0H is the flux due to
depth-integrated radiative absorption. The value of f varies diurnally and with the meteorological conditions.
Based on our observed fluxes and those from the SHEBA campaign (Stramler, 2006), we often expect f to be
smaller in warm and cloudy conditions (where significant downwelling longwave fluxes lead to a low net
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surface flux) than under clear skies (where the surface energy budget is dominated by large longwave
emissions). For example, Figures 3.34–3.35 and 3.32 in Stramler (2006) illustrate small net longwave fluxes
approaching zero (of order ±20 W/m2) during cloudy summer days, versus larger net longwave losses of
order 20–80 W/m2 under clear skies. Using the SP07 radiative model, the shortwave fluxes in Figure 2b
and from SHEBA yield diurnal maxima of order Q0H~100 � 300 W/m2 with synoptic variability mostly
within 50% of the diurnal peak value. Seasonally varying pond depth H also impacts f.

When the entire pond is stably stratified, sensible heat transfer occurs via conduction. We solve the heat
equation with internal source Q(z) (see §S2a). In ponds with a convectively unstable density stratification,
we solve for heat transfer by turbulent convection using direct numerical simulations of the two-dimensional
Boussinesq Navier-Stokes equations and heat transfer by advection, diffusion, and imposed internal heating
(see §S2b). We compare a freshwater pond and saline pond of uniform 20 g/kg salinity. The density ρ(T) is
calculated using a nonlinear equation of state (McDougall & Barker, 2011); see Figures 3b–3c. A stress-free
upper surface corresponds to negligible wind, and we impose no-slip at the pond-ice boundary. The simula-
tions use the Dedalus spectral code (Burns et al., 2016). Our configuration shares several similarities with the
pioneering work of SP07, with the key differences being the present use of a direct numerical simulation
without a turbulence closure, a horizontally periodic domain, and the temperature-dependent surface flux
balance (1). SP07 also considered strong winds, which act to nearly homogenize the pond close to the melt-
ing temperature. Our observations show significant internal variation of pond temperature and no evidence

Figure 3. Modeled heat transfer in freshwater and saline ponds for a nominal pond depth H = 0.1 m. (a) Scaled shape of heating profile predicted from the two-
stream radiation model of SP07. A nonlinear equation of state predicts the variation of density with temperature for (b) a freshwater pond and (c) a pond of uni-
form salinity 20 g/kg. Snapshots of simulated temperature for a convective flow with a nominal heating rate Q0H = 20 W/m2 and f = 0.5 are illustrated for ponds with
(d) freshwater and (f) uniform salinity. Panel (e) shows that the horizontally and temporally averaged temperature profile T(z) increases with shortwave flux in the
pond interior, consistent with a diurnal cycle, where the internal heating rate Q0H corresponds to 42% of the incident shortwave flux for the assumed heating
model. Panel (g) compares the averaged T(z) predicted for convective heat transfer when the pond has uniform salinity 20 g/kg(solid curve) and conductive heat
transfer for a pond with a stable salt stratification (dashed curves) across a range of surface cooling factors f = F0/Q0H, with Q0H = 20 W/m2.
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of wind-driven waves/ripples in the webcam images (Figure S1). Wind speedmeasurements on Araon at 23m
above sea level and distance 0.1–740 km while leaving the ice camp ranged between 2 and 8 m/s for 5 days
during P1. Comparison to climatology from the ERA-Interim reanalysis shows that this range of wind speeds
are frequently observed during the summer melt-pond season (June–August), although August 2015 had
slightly lower winds (Figure S3). We therefore focus on conditions with low winds, neglecting wind stress.

The available observational data do not fully constrain the model forcing, preventing an exact comparison.
Hence, we instead explore the sensitivity of pond temperature to absorption of incoming shortwave
fluxes Q0H and outgoing baseline surface fluxes F0 in illustrative case studies of different dynamical regimes.
While diurnal variations are relevant in general, we build initial insight by focusing on statistically steady
states. As illustrated in §S2, convective ponds adjust on a convective timescale of order 100 s that is fast com-
pared to a diurnal period, and so we expect to observe a quasi-steady state for given forcing. For stably stra-
tified ponds, the higher-order corrections for dirunally-forced diffusion superimpose vertical propagation of
the heating pulse onto the quasi-steady state (Figure S5).

3.2. Model Results

For ponds without salt stratification, the internal heating drives convection within the pond, with contrasts
between freshwater and saline ponds (Figures 3d–3f) due to the nonlinear equation of state. Below 4 °C,
the density of freshwater increases with temperature, and so colder buoyant plumes detach from the lower
boundary layer and rise through the warmer pond interior (Figure 3d and Movie S2). Due to surface cooling,
the upper boundary layer below the surface is convectively stable (with colder lighter fluid above the warmer
denser interior) and intermittently eroded by rising plumes. The turbulent heat transport occurs via a funda-
mentally asymmetric mode of convection.

Averaged temperature profiles for the freshwater pond (Figure 3e) show that both the interior and free surface
temperature increase with absorbed shortwave flux. The simulations of thermal convection qualitatively cap-
ture key features of the thermal structure seen in daytime observations (Figures 2h and S2b) with an internal
temperaturemaximum, significantmixingof absorbedheat through thewarmpond interior, and colder upper
and lower boundary layers. Moving into the cold period (Figure 2i), the simulation still produces an interior
maximum although the observed curvature of T(z) is more pronounced. The current simulation of convection
is no longer validwhen surface temperatures drop below freezing and an ice lid forms.While the present simu-
lations of convection do not incorporate a diurnal cycle, or knowledge of the spectral quality of the shortwave
radiation, it is encouraging that they capture the qualitative vertical structure. The observed temperatures are
also similar in magnitude to the range of T(z) seen as the absorbed shortwave flux is varied in simulations (e.g.,
Figure 3e shows ~0.4 °C warming for a freshwater pond with incoming shortwave flux of order 100 W/m2).

Interestingly, the saline pond shows different thermal variation (Figures 3f–3g) compared to the freshwater
pond. A leading-order difference arises because the lower ice boundary is at the salinity-dependent melting
point (�1.1 °C at 20 g/kg salinity). Internal heating causes temperature variation relative to this baseline. For a
pond of uniform 20 g/kg salinity, the illustrated heating rate produces similar convective dynamics to the
freshwater pond. However, for larger heating, the temperature range crosses the density maximum in
Figure 3c, and generates convection from the top down (Movie S3).

The average temperature profile for convection in a uniform-salinity pond (solid line in Figure 3g) has similar
vertical structure to the freshwater pond, and is not qualitatively consistent with the observed strong thermal
gradient in the saline pond during the warm cloudy period P1 (Figure 2d). We contrast this with ponds with a
strong stabilizing salt stratification and sensible heat transfer dominated by conduction (dashed lines in
Figure 3g for three values of f). For sufficiently weak net surface fluxes (e.g., f = 0.25), the profiles have strong
interior thermal gradient with a shallow cool surface boundary layer. This echoes the observed strong tem-
perature gradients seen in the saline pond during the warm cloudy period P1 (Figure 2d), where significant
downwelling longwave fluxes likely lead to a small value of f. For larger f, a greater fraction of heat is lost from
the top boundary, and the surface boundary layer has greater depth. This qualitatively resembles the more
pronounced curvature of T(z) observed on clear days in P2 (Figure 2e), where the surface energy budget is
dominated by large longwave emissions leading to larger f. Hence, while we lack sufficient observational con-
straints on the fluxes for an exact comparison, our parameter exploration recovers states consistent with con-
vective heat transfer in the freshwater pond, and conduction in a salt-stratified pond.
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4. Discussion

Our field measurements show temperature variation in late summer melt ponds in the range
�1.1 °C < T < 1.5 °C, with diurnal and synoptic variability, and significant differences between freshwater
and saline ponds. This thermal variation is indicative of subtle but significant changes to pond heat trans-
fer. When averaged over long timescales during periods without continuous surface ice cover, the change
in heat storage in the pond is small compared to the incoming and outgoing fluxes. In a statistically steady
state, the absorbed shortwave flux Q0H must balance the sum of outgoing fluxes F0 + γ(Ts � Tm) from (1),
and the flux conducted down into the ice below the pond. Hence, changing pond surface temperature
directly correlates with a net change to the heat flux down into the ice that contributes to ice melt.
Any persistent model bias in Ts will lead to persistent bias in the predicted fluxes into the ice.
Accounting for longwave emissions alone (i.e., negligible wind), the observed variability of
�1.1 °C < Ts < 0.9 °C (±0.07 °C standard deviation of uncertainty; see §S3) provides a corresponding
net flux perturbation of order �5 W m�2 ≤ ΔF ≤ 4 W/m2 (±0.3 W/m2 propagated uncertainty) compared
to assuming Ts = 0 °C. This may be augmented substantially by the impact of sensible heat fluxes on γ,
which could increase the magnitude of ΔF by a factor of approximately 6 for a 10-m wind speed of
5 m/s (see §S2a).

The flux difference between freshwater and saline ponds is of particular interest. We estimate differences in
outgoing fluxes (ΔFs) over a 7-day period before continuous surface freezing, using (1) and the observed Ts
(see §S3). Note that this difference depends on the impact of sensible heat fluxes on γ, which is undercon-
strained by the observations. Accounting for longwave emissions alone yields a time-averaged difference
ΔFs = 2.2 ± 0.3 W/m2 for outgoing fluxes with temporal standard deviation 1.0 W/m2 and range
�0.3 ≤ ΔFs ≤ 6.5 W/m2. With 5 m/s winds, the above estimates increase by a factor of 5.7 (see §S2a) yielding
a mean ΔFs = 12.5 ± 1.8 W/m2. The lower surface heat loss in the saline pond combines with declining
pond heat storage (equivalent to an average flux 1.114 ± 0.005 W/m2 difference; see §S3) to yield a signif-
icant additional heat flux down into the ice under saline ponds versus freshwater ponds (estimated average
difference of 3.3 ± 0.3 W/m2 for zero wind, rising to 13.6 ± 1.8 W/m2 at 5 m/s winds). This will drive faster
melt under the saline pond. These estimates have similar order of magnitude to an illustrative example
from the time-averaged simulation results (Figure 3) with f = 0.5 and modest heating Q0H = 20 W/m2.
With this forcing, the ice under the saline pond receives 2.5 W/m2 additional heat flux compared to the
ice under the freshwater pond, in otherwise identical conditions with perfectly matching incoming radia-
tive fluxes, atmospheric conditions, pond geometry, and basal albedo. These surface temperatures, heat
fluxes into the ice, and their difference between freshwater and salt-stratified ponds will vary with the for-
cing conditions including incoming radiative fluxes and surface fluxes (e.g., see Figures 3e and 3g), as well
as with pond depth and basal albedo. While the above figures need to be weighed against temporal varia-
bility and areal coverage of ponds, they are potentially significant in magnitude compared to the net flux
imbalance of only 1 W/m2 needed to thin the ice cover by approximately 1 m per decade (Kwok &
Untersteiner, 2011). Importantly, while there are larger individual incoming and outgoing flux components
in the energy balance, such fluxes are subject to compensation by the longwave feedback (Moon &
Wettlaufer, 2011), while the above flux perturbation from internal pond dynamics is a net anomaly after
accounting for longwave feedbacks.

Of particular significance is that many melt-pond parameterizations in climate models assume Ts = 0 °C (e.g.,
schemes based on Ebert & Curry, 1993; Hunke et al., 2015; Pedersen et al., 2009). This leads to a persistent
overestimation of heat fluxes into the ice for freshwater ponds with Ts > 0 °C, and either an over or under-
estimation of such fluxes for saline ponds depending on the internal heating. More sophisticated models
use parameterizations of turbulent heat fluxes across upper and lower convective boundary layers (TF04;
Flocco et al., 2010). This offers a valuable framework for accounting for turbulent fluxes in ponds, but our
simulations reveal that any convection is fundamentally asymmetric with an upper stable layer in relatively
fresh ponds. Indeed, the TF04 parameterization of convective heat transfer predicts Ts = 0 °C when f = 0.5,
as a result of the assumed symmetry of convective dynamics between the upper and lower boundary layers,
while our simulations predict nonzero Ts. Our results illustrate the importance of accurately accounting for
pond salinity and internally heated convection in the next generation of melt-pond parameterizations, to
reduce the uncertainty associated with sea-ice projections.
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Our estimates come with the caveat that they are based on a moderate observational duration in late sum-
mer. While similar physical processes operate throughout the pond season, the strength of environmental
forcing varies. In particular, the spectral composition of shortwave fluxes impacts depth-dependent heat
absorption, pond depth and salinity vary, and changing meteorological conditions impact surface fluxes. It
also remains a curiosity that the observed thermal structure could be recreated in the absence of wind-driven
mixing, which acts to homogenize pond temperature (SP07). Pond surfaces have short fetch and low eleva-
tion, and we speculate that they may experience lower stress than the surrounding ice. Investigating these
and other factors presents interesting avenues for future work.

5. Conclusions

We have observed significant thermal variability in melt ponds on Arctic sea-ice in late summer, with a diurnal
cycle and variation between days with cloudy or clear skies. Thermal variation is reduced after a surface ice lid
forms and is covered by reflective snow. Temperature profiles also differ between relatively fresh and saline
ponds on the same ice floe, despite similar depth and insolation, yielding a larger pond-ice heat flux under
the saline pond. The comparison to model simulations is consistent with a radiative-convective balance oper-
ating in freshwater ponds, and a radiative-conductive balance in ponds with strong salt-stratification.

The resulting variations of pond surface temperature Ts perturb the pond energy budget significantly com-
pared to the flux needed to thin the ice cover by 1 m per decade. Hence, the internal redistribution and emis-
sion of heat from a melt pond augments the usual ice-albedo feedback, and is of potential climatological
significance. This feedback from internal heat transfer is not fully accounted for in typical parameterizations
of melt pond processes. The melt pond salinity and salt-stratification are key variables influencing the pond
energy budget that are important to constrain in future observations and models. This is particularly impor-
tant as saline ponds preferentially form on first year ice (Lee et al., 2011), and may increase in prominence as
the Arctic transitions to a more seasonal ice cover.
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