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ABSTRACT 22 

Oxygen and carbon (C) isotope, growth rate and trace element data are reported for a 23 

U-Th dated, annually-laminated stalagmite, GM1 from Goda Mea Cave, Ethiopia. The 24 

stalagmite grew intermittently around the last interglacial. The proxy records are used to 25 
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develop a conceptual growth model of the stalagmite and to assess its potential for revealing 26 

a climate signal in this climatically sensitive northeastern African region during an important 27 

period in the evolution of Homo sapiens and dispersal of Anatomically Modern Humans out 28 

of Africa. Speleothem deposition is of short-duration occurring at ~129 ka, ~120 ka, in an 29 

undated growth phase, and at ~108 ka; probably due to tectonic activity. 18 composition is 30 

very stable within growth phases (1 variability < 0.76‰), as are Mg/Ca, Sr/Ca and Ba/Ca, 31 

all indicative of well‐mixed source-waters. A shift to positive 18 values and increased 32 

variability in Mg/Ca, Sr/Ca and Ba/Ca prior to growth hiatuses is observed, indicating a loss 33 

of the well-mixed water source prior to growth cessation. Mean 18 composition (–3.82 to –34 

7.77‰) is lower than published modern and Holocene stalagmites from the region. 35 

Geochemical data, statistical analyses, and a conceptual model of stalagmite growth, 36 

demonstrate that climatic conditions recorded by GM1 were wetter than the Holocene. The 37 

~129 ka growth phase particularly presents an annual record of the relative Intertropical 38 

Convergence Zone (ITCZ) position. The GM1 record, the oldest high-resolution continental 39 

climate record from Ethiopia so far published, presents evidence that any early human 40 

migrations which occurred during MIS 5 are likely to have occurred during a wet event in 41 

northeast Africa. 42 

 43 

Key words: Last interglacial; Northeast Africa; speleothem; oxygen isotopes; paleoclimate 44 

 45 

1. Introduction 46 

In Ethiopia, stalagmites provide high-resolution records of past climate and environment 47 

(Asrat et al., 2007; Baker et al., 2007; 2010). Fast-growing, annually-laminated stalagmites 48 

are ubiquitous, due to the strong seasonality of rainfall and the water balance in Ethiopia. 49 

Regular laminae, visible in hand section, can provide precise annual chronology. Annual 50 
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growth rates of these stalagmites, determined from the thickness of an annual lamina, is at the 51 

upper range of those observed in stalagmites (typically ~0.5 mm/yr). This is due to the 52 

optimal climatic conditions (high temperature and rainfall) for limestone dissolution and re-53 

precipitation. This rapid growth facilitates the high-resolution sampling of stalagmite calcite.  54 

In Ethiopia, the real advantage of using speleothems to provide a paleoclimate proxy 55 

record is that they contain information on past rainfall variability in the region. Several major 56 

air streams and convergence zones influence the current climate pattern in northeast Africa, 57 

whose effects are often compounded by such regional factors as topography and the 58 

proximity to the oceans (e.g., Nicholson, 1996). The relatively dry north-easterly and south-59 

easterly monsoons and the humid and moisture-laden (rainfall generating), westerly and 60 

south-westerly air flow of the Congo air stream, generally dominate the regional wind and 61 

pressure patterns. The Intertropical Convergence Zone (ITCZ) and the Congo Air Boundary 62 

(CAB) separate these major air streams. The passage of the ITCZ (Fig. 1a) dominantly 63 

determines the rainy seasons in Ethiopia, while the topography (highland barriers separated 64 

by a rift zone) modulates the local rainfall distribution. Accordingly, Ethiopian climate has 65 

two rainy seasons, one from the northward passage of the ITCZ, called locally the ‘big rains’ 66 

(between June and September), which is reliable and whose maxima migrates with the 67 

position of the ITCZ. A second rainy season, the ‘small rains’, is less consistent and occurs 68 

between March and May with maxima in April. Dryland farming, including subsistence 69 

farming, leads to a high dependency on rains in both seasons. Failure of the ‘small’ rains is 70 

common and has occurred in recent years in 2013/2014 and 2015/2016, particularly in the 71 

southeastern Ethiopian lowlands bordering the current study area. The climate dynamical 72 

cause of the failure of the ‘small’ rains, and how this varies over time, is still poorly 73 

understood.  74 
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In addition, reliable, high-resolution climate records beyond the Holocene are scarce in 75 

the northeastern African region, one of the major candidates for the origin of Homo sapiens 76 

and a gateway to the “out of Africa” migration of our species during the late Pleistocene. The 77 

influence of climate on the dispersal of Anatomically Modern Humans from northeastern 78 

Africa particularly during the period ~120 to ~50 ka has been a subject of intense discussion 79 

(e.g., Tierney et al., 2017 and references therein; Lamb et al., 2018). Recent discovery of 80 

Homo sapiens fossils dated to 177 to 194 ka in the Misliya cave in Israel (Hershkovitz et al., 81 

2018) indicates that the “out of Africa” migration episodes have started earlier than the 82 

previously thought period of migration (~120-50 ka). Discussions on influence of climate on 83 

human dispersal often rely on marine climate records from the Indian Ocean and 84 

Mediterranean Sea. The recently published Lake Tana record from the northwestern 85 

Ethiopian highland, largely covering the last ~150 ka (Lamb et al., 2018) is the only 86 

continental record available. In this paper, we present a high-resolution continental climate 87 

record from an Ethiopian stalagmite (GM1) that grew intermittently around the last 88 

interglacial, which is very pertinent to this discussion. Though it is not a continuous record 89 

over the whole period of the last interglacial, the growth phases of GM1 are dated at 90 

particularly important periods of the MIS 5. The GM1 record, the oldest high-resolution 91 

climate record so far published from Ethiopia and continental eastern Africa, is therefore very 92 

significant in an area where any kind of reliable continental climate records from this period 93 

are scarce. 94 

These annual-resolution records of 18O, 13C, trace elements and growth rate are from 95 

the Goda Mea Cave in Ethiopia (Fig. 1b). A combination of U-Th dates and lamina counting 96 

are used to identify the timing of the growth phases. Samples milled at annual resolution were 97 

analysed for 18O and 13C, and at decadal resolution for trace elements. Variogram, 98 

autocorrelation and spectral analyses of the geochemical and growth rate time series are used 99 
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to develop a conceptual model for the hydrology of the waters feeding the speleothem. The 100 

time series of 18O, 13C, trace elements and annual growth rate are then interpreted, with 101 

comparison to the published modern and Holocene stalagmites from the region and globally. 102 

Such high resolution, multi-proxy approach has been proved useful in reconstructing annual, 103 

in some cases seasonal, rainfall (e.g., Johnson et al., 2006). 104 

 105 

2. Methodology 106 

2.1. Site Description 107 

Goda Mea Cave was explored and surveyed in 2007 and a full description can be found in 108 

Gunn et al. (2009). The cave is entered from a collapse doline and after about 30 m there is a 109 

large flowstone deposit that almost fills the passage. A crawl beneath opens into a NE-SW 110 

oriented rift passage that is initially some 5 m wide by 1 m high but increases downstream to 111 

10-15 m by 7 m. The cave ends in a 90 m x 40 m x 20 m high chamber formed by upwards 112 

stoping as evidenced by abundant breakdown. Above the chamber there is ~25 m of sandy 113 

limestone intercalated with some thin marl and mudstone layers towards the top, overlain by 114 

a ~20 m thick calcareous sandstone, silt, carbonate rich shale and marl intercalation, which 115 

extends to ~1 m of soil at the surface. The limestone and sandstone-shale-marl units above 116 

the cave form a continuous hydrogeological unit, connected by network of fractures. 117 

There are numerous speleothems in the chamber including stalactites, stalagmites and a 118 

central column that is over 10 m high and 6 m diameter. The speleothems are mostly relict 119 

with some evidence of re-solution and many of the stalagmites are fractured, most likely by 120 

tectonic activity (Fig. 1c and d). Speleothem growth is generally focused along some aligned 121 

zones below major fracture systems/brecciated fault traces crossing the hydrogeological unit 122 

all the way up to the surface.  123 
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Some modern monitoring data (e.g., drip water chemistry) for the cave is presented in 124 

Asrat et al. (2008). Drip water Ca2+ and Mg2+ concentrations in all analysed drip water 125 

samples from this cave are 2.57±0.65 mmol/L and 1.54±1.12 mmol/L, respectively. The drip 126 

water Ca2+ concentration in this cave is high as compared to the range of Ca2+ in the Mechara 127 

caves (2.63±2.36 mmol/L) and falls within the range of values expected for “open system” 128 

evolution (Baker et al., 2016). The high Ca2+ concentration can be attributed to the open 129 

system calcareous sandstone/shale, marl and limestone hydrogeological unit, with the calcite-130 

cemented sandstones, carbonate rich shale, marl and limestone all contributing Ca2+ ions to 131 

the drip waters.  132 

 133 

2.2. Sample description 134 

GM1 is a large broken stalagmite found in the cave chamber. The 591 mm long 135 

stalagmite was sectioned into two halves, and one half polished for lamina counting (Fig. 2). 136 

The polished half shows continuous laminations, alternating between dense and porous/white 137 

calcite, as well as visually recognizable growth hiatuses, marked by shifts in growth axis and 138 

the stalagmite morphology. The other half of GM1 was milled using a hand held dental driller 139 

for oxygen and carbon isotopes at ~0.6 mm resolution (966 samples), and trace element 140 

analysis at ~5.5 mm resolution (103 samples). 38 samples for U-Th dating were similarly 141 

drilled using a dental driller, with samples located either side of possible growth hiatuses, and 142 

regularly spaced within growth phases. 143 

 144 

2.3. Geochemical analyses 145 

U-Th analyses were undertaken by ICP-MS at the University of Melbourne, Australia, 146 

following the method of Hellstrom (2003). Samples were dissolved in concentrated HNO3 147 

and equilibrated with a mixed 229Th–233U–236U tracer. U and Th were extracted in a single 148 
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solution using Eichrom TRU resin before introduction to a Nu Plasma multi-collector ICP-149 

MS, where isotope ratios of both elements were measured simultaneously. The decay 150 

constants of Cheng et al. (2013) were used, and detritally-corrected ages calculated using eqn. 151 

1 of Hellstrom (2006) with an assumed initial [230Th/232Th] of 1.5 ± 1.5. Age-depth modelling 152 

combined floating annual laminae chronologies and U-Th analyses were as described in 153 

section 3.1. 154 

Oxygen and carbon isotopes were analysed at the Stable Isotope Laboratory (SILLA), 155 

University of Birmingham, UK. The calcite samples were reacted with phosphoric acid and 156 

analysed using an Isoprime continuous flow mass spectrometer. By comparison with a 157 

laboratory marble standard, the sample 18O/16O and 13C/12C ratios are reported as 18O and 158 

13C values in per mil (‰) versus VPDB. Analytical precisions are 0.07‰ for 18O and 159 

0.04‰ for 13C on the standard marble (KCM). 160 

Trace elements powders were analysed at University of New South Wales, Sydney. 161 

Samples of approximately 0.05 g each were weighed directly into polypropylene vials. One 162 

mL of 1-1 hydrochloric acid was added to each vial. The samples were sonicated for 15 163 

minutes to ensure complete dissolution. The solutions were diluted to 10.0 mL with ASTM® 164 

Type I water (Millipore® filtration system, Millipore® Corporation, Billerica, Massachusetts, 165 

USA).  166 

Diluted samples were analysed for Ca (317.933 nm) and Mg (285.213 nm) using the 167 

PerkinElmer Optima™ 7300DV ICP-OES (PerkinElmer, Shelton, USA).  Ba and Sr were 168 

analysed by PerkinElmer NexION 300D ICP-MS (PerkinElmer, Shelton, USA). Both 169 

instruments were coupled with an ESI SC4 FAST sample introduction system (Elemental 170 

Scientific, Inc., Omaha, USA) to minimise sample carryover. 171 

The ICP-OES and ICP-MS were calibrated using certified multi-element standards in a 172 

matrix of 2% HCl.  Wavelength and analytical mass selection took into consideration spectral 173 
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interferences as well as sensitivities. Internal standards were added on-line via injection valve 174 

to correct for physical interferences. Quality control check standards were run at selected 175 

intervals in an unattended automatic analysis run, to ensure that the instrument performance 176 

remained consistent over the length of analysis. 177 

 178 

2.4. Time series analysis 179 

Statistical analysis on the annual growth rate time series followed the approach of 180 

Mariethoz et al. (2012), which included the analysis of the first derivative of growth rate 181 

(growth acceleration) to determine the flickering parameter (f), which is the magnitude of the 182 

anti-correlation at lag 1. Flickering ranges between –0.5 and 0, the more negative f values 183 

indicating stronger flickering. Negative values of f are indicative of a karst store filling and 184 

draining, as opposed to a climate forcing, and helps identify climatically sensitive 185 

speleothems. In addition, variogram analysis of the growth rate time series permits the 186 

derivation of the information content (IC) and range (r) in the growth rate data, which helps 187 

identify the signal: noise ratio in the data and the time over which useful information might 188 

be expected. Stable isotope and annual growth rate time series data were also analysed for 189 

their autocorrelation and spectral properties. As the data was evenly spaced in time, spectral 190 

analysis was performed using discrete Fourier transforms, using the FFTW library within 191 

Microcal Origin. Five windows were used (Bartlett, Hanning, Rectangular, Welsh and 192 

Triangular) in order to investigate the extent of signal leakage.  193 

 194 

3. Results 195 

 196 

3.1. GM-1 Chronology 197 

3.1.1. Lamina 198 
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Lamina were counted (in duplicate) and a total of 1356 lamina were identified with a 199 

mean lamina thickness of 0.44±0.14 mm (ranging between 0.19 and 1.12 mm). This lamina 200 

thickness compares well to those reported for stalagmites in previous studies in the region 201 

(Ach-1, mean = 0.53±0.26 mm, Bero-1 = 0.45±0.23 mm, Asfa-3 = 0.32±0.11 mm; Merc-1 = 202 

0.29±0.04 mm; Asrat et al., 2007; Baker et al., 2007; Baker et al., 2010). In these stalagmites, 203 

the visible laminae have been demonstrated to be annual by comparison to the radiometric 204 

dates. The GM1 laminae are similar in their appearance and thickness to these other 205 

stalagmites. Examination of thick sections of GM1 at various levels of the growth phases 206 

(Fig. 2) show continuous and regular visible laminae with alternating brownish calcite (Dark 207 

Compact Laminae, DCL) and thinner white calcite (White Porous Laminae, WPL) as defined 208 

by Genty & Quinif (1996) and Genty et al. (1997). The presence of fine sediments on the 209 

white porous calcite, and some dissolution features at the top of the DCL, suggests some 210 

seasonal infiltration variability (cf. Borsato et al., 2007). Overall, the regularly alternating 211 

DCL/WPL laminae sequence, even without more obvious structures from infiltration 212 

variability, indicate deposition under a seasonal hydroclimate regime (e.g. changes in drip 213 

water supersaturation or cave air CO2 concentration), where recharge was sufficient to 214 

maintain continuous dripping to the stalagmite. 215 

 216 

3.1.2. Growth hiatuses 217 

There are three major growth hiatuses based on the U-Th chronology (see below), and 218 

other possible minor growth hiatuses have been recognized by changes in the growth axis 219 

within the growth phases (Fig. 2). Visual examination of the three major growth hiatuses on 220 

the polished stalagmite and the thick sections show that the hiatuses between the four major 221 

growth phases are all marked by accumulation of fine detritus and brownish material on the 222 
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top 2 mm sections, with no indications of dissolution. Such textural features are typical of the 223 

ceasing of growth due to cessation of the drip source (Railsback et al., 2013).   224 

 225 

3.1.3. Stalagmite morphology 226 

The morphology of the stalagmite changes from candle stick shaped, with regular nearly 227 

horizontal lamina on and off the growth axis for most of the first growth phase to upwards-228 

thinning, laterally less extensive layers with laminae rapidly changing to sub-vertical angle, 229 

off the growth axis, just below the first hiatus (Fig. 2). The second growth phase above the 230 

first hiatus then gets broader at its axis with rapid flowing/dripping down the sides of the 231 

stalagmite forming nearly vertical lamina. The third growth phase shows similar morphology 232 

to the second though it rapidly thins towards the top below the third major hiatus. The last 233 

growth phase has relatively broader shape with significant deposition along its axis. The 234 

morphology of the stalagmite changing with the hiatus position is a clear demonstration of 235 

the changing amount and concentration of calcite in the dripping water. It shows a general 236 

drying out of the drip source towards the tops of the three older growth phases, while the last 237 

growth phase is marked by an increased drip rate throughout the growth period. 238 

 239 

3.1.4. U-Th dates and annual growth rate 240 

The 38 U-Th dates on the sample (Fig. 3, Table 1) demonstrate 4 periods of growth and 241 

confirm the presence of 3 hiatuses. Several age inversions are present, and one short growth 242 

phase containing 37 laminae was undated.  243 

The U-Th ages were used to constrain a chronology based on the annual laminae. Firstly, 244 

the longest phase of speleothem growth (from ~127 mm from the top, to the base at 591 mm) 245 

contained 29 very similar U-Th ages (a mean and standard deviation of 130.0 ± 3.5 ka, with 246 

an average uncertainty on individual analyses of 1.3 ka), providing further evidence that the 247 
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1087 laminae present in this growth phase are likely to be annual. Secondly, following 248 

established methods (Asrat et al., 2007; Dominguez-Villars et al., 2012; Baker et al., 2015), 249 

we compared two approaches to tie the lamina chronology to the U-Th ages. The first 250 

approach was as follows: within each growth phase, each U-Th age was adjusted by using its 251 

relative laminae age to obtain an equivalent U-Th age for the date of the start of each growth 252 

phase. Taking the mean and standard deviation, this yielded growth phases starting at 253 

129.3±2.7 ka, 120.7±1.7 ka, and 108.3±0.2 ka. We compared this approach to that calculated 254 

from linear regression applied to conventional age-depth plots. In this case, we used only the 255 

U-Th ages with a [230Th/232Th]>1000, presuming they would be the most accurate. This 256 

approach yielded a date for the start of deposition for two of the four growth phases of 257 

129.2±1.7 ka and 120.6±0.3 ka. The two approaches therefore give consistent dates for the 258 

start of deposition that agree with the analytical error of individual analyses.  259 

GM1 deposition periods are therefore ascribed to four phases: 1087 years commencing 260 

129.3±2.7 ka, 54 years of deposition at 120.7±1.7 ka, a 37-yr long undated growth phase, and 261 

176 years of deposition from 108.4±0.3 ka. The ~129.3 ka growth phase occurs, within 262 

dating uncertainty, at Termination II or the early part of the last interglacial (Cheng et al., 263 

2009), and the 120.7 ka deposition immediately post-dates the full interglacial. The growth 264 

phase at 108.5-108.3 ka falls within the isotope stage 5c interglacial. 265 

The annual growth rate for GM1, determined from the annual lamina thickness, is 266 

presented in Figure 4. Mean growth rate does not vary between growth phases: 0.43±0.14 267 

mm/yr (129.3 ka), 0.41±0.17 mm/yr (120.7 ka), 0.53±0.15 (undated), and 0.47±0.14 mm/yr 268 

(108.4 ka).  269 

 270 

3.2. Oxygen and carbon isotopes  271 
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The oxygen and carbon isotope (18O and 13C) data were ascribed to an annual lamina 272 

and are presented in Figures 4. Scatter plots of 18O and 13C, including the analysis of the 273 

isotopes along a lamina (the ‘Hendy test’) are shown in Figure S1.  274 

18O varies significantly between growth phases (–7.77±0.57‰ (129.3 ka), –275 

3.82±0.61‰ (120.7 ka), –6.05±0.76‰ (undated), and –6.31±0.59‰ (108.4 ka). Within each 276 

growth phase, 18O can be described as having long periods of relatively invariant 277 

composition (e.g., ±0.33‰ for the first 1000 years of the 129.3 ka deposition period, and 278 

±0.23‰ in the first 150 years of the 108.4 ka deposition period), as well as periods of rapid 279 

change. For example, 18O increased from –7.8‰ to –5.3‰ in four years (and to –4.5‰ after 280 

13 years) at the end of the 129.3 ka growth phase, and from –6.2‰ to –4.4‰ in nine years at 281 

the end of the 108.4 ka growth period.  282 

13C is characterised by low inter-sample variability, with the presence of long-term 283 

trends. For example, in the 129.3 ka growth phase, the standard deviation of 13C over any 284 

50-year period is between 0.1‰ and 0.3‰, but over the whole 1087 years of deposition, 13C 285 

trends from –1‰ to –4‰. This 3‰ change in 13C with the growth phase is as great as the 286 

variability between growth phases. 287 

Figure S1 shows the relationship between 18O and 13C, both throughout the time series 288 

as well as along growth layers (‘Hendy tests’). The Hendy tests suggest a 1‰ increase or 289 

decrease in isotope composition is possible along a growth layer, which is greater than the 290 

inter-annual variability of 13C and 18O. For stalagmite GM1, there is no evidence for near-291 

equilibrium deposition: modern and Holocene stalagmites demonstrate isotope fractionation 292 

of 1-2‰ (Asrat et al., 2007; Baker et al., 2007; 2010), and similar deposition conditions 293 

appear to apply to stalagmite GM1. Based on these works, we have quantified these 294 

fractionation processes and confirmed that they operate in the same direction as the climate 295 

forcing, which has also been observed by other works (e.g., Dorale and Liu, 2009).  296 
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 297 

3.3. Trace elements 298 

Ba/Ca, Mg/Ca and Sr/Ca show similar patterns to 13C and 18O, although sampled at a 299 

lower temporal resolution. A long-term trend to lower ratios in the 129.3 ka growth phase 300 

matches that observed in 13C. Significant short-term changes in trace element composition 301 

occurs at the same time as the increases in 18O and 13C at the end of the 129.3 ka growth 302 

phase, and within the 120.7 ka growth period. At the end of the 129.3 ka growth phase, a 303 

change in gradient of Mg/Ca, Sr/Ca and Ba/Ca lasted for ~170 years, indicative of a drying 304 

trend. This was followed by the 18O increase of 2.2‰ that occurred over 4 years, and then 305 

an increased variability in Sr/Ca, Mg/Ca and Ba/Ca (Mg/Ca increases, Mg/Ca and Ba/Ca 306 

decrease) until growth stops 28 years later. In contrast, the trace element response at the time 307 

of a 2‰ increase in 18O at the end of the 108.4 ka growth phase is muted and trends to lower 308 

values. The greatest range in trace elements occurs in the 120.7 ka growth phase, where Sr/Ca 309 

increases, and Mg/Ca and Ba/Ca have opposing increasing and decreasing trends. 310 

 311 

3.4. Time series analysis on stable isotope and growth rate time-series 312 

Following Mariethoz et al. (2012), and as described in section 2.4, the growth rate time 313 

series variogram properties was investigated. Due to the short duration of several of the 314 

growth phases, only the longest time series at 129.3 ka was analysed. The results are plotted 315 

in Figure 5a, where variogram analysis on stalagmite GM1 is compared to previous published 316 

stalagmite statistics on growth rate series. The autocorrelation and spectral properties of the 317 

growth rate, 18O and 13C series were also investigated (Figs 5b and c). 318 

Stalagmite GM1 growth at 129.3 ka has evidence of ‘flickering’ (f=–0.33), that is a 319 

growth acceleration that flickers around a mean value (Mariethoz et al., 2012). ‘Flickering’ 320 

has been explained as growth rate sensitivity to the filling and draining of a karst store, which 321 



14 
 

is trying to reach a dynamic equilibrium, with reported values between –0.24 (low flickering, 322 

potential climate signal) and –0.39 (high flickering, potential karst hydrology signal).  323 

Variogram analysis shows that the stalagmite has low range (r, 20.5 years) in the growth 324 

rate record. Growth rate therefore has no ‘memory’ of previous growth rates longer than this 325 

timescale, indicative that the karst store(s) that feed the stalagmite are relatively small. The 326 

GM1 range is the lowest reported to date for an annually laminated speleothem. The 327 

Information Content (IC) of growth rate, which is the balance of the signal in the variogram 328 

and the noise, is 56%, indicating that the stalagmite growth rate record contains a greater 329 

proportion of signal than noise. In comparison to previously published records (Fig. 5a), 330 

stalagmite growth rate statistical properties lie in region A, with stalagmites that have a high 331 

information content, relatively low flickering and range, and where growth rate has proven 332 

useful in paleoclimate reconstruction. 333 

Autocorrelation of growth rate, 13C and 18O time series are presented in Figure 5b for 334 

the three longest growth phases (~129, ~120 and ~108 ka). Significant autocorrelation can be 335 

observed for 13C and 18O for the ~129 and ~108 ka growth phases, with autocorrelation 336 

>0.6 at 15-year lag. Autocorrelation for 13C is stronger than for 18O, indicative of 337 

additional smoothing of the 13C, likely from the soil carbon store. Growth rate has very low 338 

autocorrelation (<0.4 after 4 years lag), in agreement with the observed flickering of growth 339 

rate. The ~120 ka growth phase has lower autocorrelation of 18O and 13C than the other two 340 

growth phases, suggesting limited mixing or smoothing of these proxies during this short 341 

growth phase. Low autocorrelation would agree with the observed highest variability in trace 342 

elements at this time. 343 

Spectral analysis was also undertaken (Fig. 5c) for the longest continuous growth phase at 344 

~129 ka. Bartlett, Hanning, Rectangular, Welsh and Triangular windows were used to 345 

explore the spectral properties for 18O and growth rate time series. Growth rate has a 17-18 346 
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year peak that is not statistically significant at 95% confidence, and two other peaks (31-33 347 

and 53-59 years), which are longer than the range (r, 20.5 years) and are likely to be 348 

harmonics of the 17-18 year frequency. 18O also has only weak and insignificant spectral 349 

power, not surprising given the low variability in the 18O data. 350 

 351 

4. Discussion 352 

 353 

4.1. Holocene stalagmite records 354 

Previous cave research in Ethiopia has included limited cave drip water and climate 355 

monitoring during sampling expeditions to the Mechara region of Ethiopia between 2004 and 356 

2008 (Asrat et al., 2008) (Fig. 1), and the analysis of modern and Holocene stalagmite 357 

samples. Modern calibration studies of stalagmite 18O of carbonate shows evidence of 358 

climate sensitivity, despite deposition out-of-equilibrium (Baker et al. 2007; 2010). The latter 359 

is potentially due to both rapid degassing and evaporation.18O and growth rate correlations 360 

with climate are sample-specific. Drip-specific flow-paths determine whether a stalagmite 361 

has a proxy which is sensitive to the ‘big’ rains, or to the relative amount of rain in the ‘big’ 362 

and ‘small’ rain seasons, or neither. For example, modern stalagmite 18O and growth rate 363 

records were reported from two stalagmites from Rukiesa Cave (Baker et al., 2007). The 364 

annual nature of the laminae was confirmed by 14C analyses and comparison to the modern 365 

atmospheric bomb carbon peak. In these samples 18O and growth rate were shown to have a 366 

correlation with the ratio of ‘small’ to ‘big’ rainfall and total summer rainfall, respectively. A 367 

sample specific climate sensitivity of 18O and growth rate was observed, which probably 368 

reflects the karst hydrogeology and its effect on individual water flow-paths. A loss of 369 

climate correlation was also observed in one sample during a period of high growth rates.  370 
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18O and growth rate time-series both exhibit multi-decadal variability in two stalagmite 371 

samples deposited in the Holocene. Such variability may be an amplification of extremes in 372 

hydroclimate (e.g., drought years) or rainfall isotopic composition, due to the non-linear 373 

replenishment or drainage of karst stores (Baker et al., 2013). A mid-Holocene record from 374 

Achere Cave (sample Ach-1) had laminae that were demonstrated to be annual by 375 

comparison to U-Th dates (Asrat et al., 2007). In this stalagmite a 18-21 yr periodicity in 376 

growth rate and 18O occur. 18O has a greater variability than 13C, indicative of the 377 

variability being driven by variations in the extent of evaporative enrichment of 18O. A 378 

discontinuous Holocene record from Bero Cave had six growth phases over the last 7800 379 

years (Baker et al., 2010). Mean stalagmite 18O is 1.2‰ higher than that predicted by 380 

forward modelling, and a multi-decadal variability in 18O and growth rate was again 381 

observed (Baker et al., 2010). 18O from this stalagmite was indicative of both rapid 382 

degassing and the additional enrichment, probably due to evaporation.  383 

Stalagmite growth phases are relatively short (103-104 years) due to the tectonically active 384 

nature of the region, which can change water flow paths. This is observed in stalagmites from 385 

all three caves, and has been explained by changes in flow regime or to the relative position 386 

of a growing stalagmite caused by tectonic activity related to the East African Rift (Asrat, 387 

2012). Physically anomalous laminae within an otherwise regular and visible annual laminae 388 

sequence, frequent deviations from vertical growth axis, and abrupt changes in stalagmite 389 

morphology, as well as the tectonically-controlled formation of the larger cave system, 390 

further confirm the influence of tectonics and recorded earthquakes in the region (see Fig. 1a) 391 

on the length of the growth phases (Asrat et al., 2008; Asrat, 2012). 392 

 393 

4.2.Conceptual growth model 394 
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The combination of stable isotope and trace element geochemistry, growth rate, statistical 395 

analyses, and observations of the laminae types and stalagmite shape, allow us to build a 396 

conceptual model for stalagmite GM1 (Fig. 6). 397 

Firstly, the stalagmite probably had continuous deposition for more than 1000 years, and 398 

during this period isotope and trace element composition has low variability and high 399 

autocorrelation. This homogeneity of 13C, 18O and trace elements suggests a drip water 400 

source which is well mixed, enough to obscure any annual to decadal scale variability in 18O 401 

and maintain dripping. The continuous deposition of the laminae and the candle-stick shape 402 

of the stalagmite before it narrows down towards the tip of this growth phase (the last few 403 

years of growth) supports a continuous drip source. We propose this water comes from 404 

matrix flow of the porous sandstone and sandy limestone, which was channelled to the drip 405 

source by a network of small fractures. The annual laminae are driven by this flow regime, 406 

which provides the necessary seasonal variability in drip water hydro-geochemistry. 407 

Combined with the evidence from flickering, we infer the variations in lamina thickness are 408 

driven by the karst hydrology and not by the cave environment. In the ~129 ka growth phase, 409 

these would have to maintain high levels of saturation for the initial ~1000 years of 410 

deposition.  411 

 Secondly, the four growth phases of GM1 reflect the changing karst hydrologic regime 412 

above the cave. The ~129 ka growth phase is marked by the dominance of a continuous 413 

supply of water from ‘matrix’ flow for most of its growth period, which rapidly dried out a 414 

few tens of years before the hiatus. In contrast, the ~120 ka growth phase reflects a rapid 415 

‘fracture’ flow, following a possible tectonic event, which did not maintain growth for a long 416 

time before it abruptly shut off as marked by the rapid increase in trace element ratios and 417 

18O. The third, undated growth phase shows similar features to that of the second, only the 418 

growth period was shorter suggesting a rapid start to dripping and subsequent exhaustion 419 
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from a ‘fracture’ source, as marked by the nearly vertical laminae down the sides of the 420 

stalagmite and the abrupt narrowing towards its top. The ~108 ka growth phase is again 421 

marked by a more ‘porous’ matrix flow which maintained growth for longer period, attested 422 

by the regular laminae, broad stalagmite shape, generally low variability trace element ratios 423 

and depleted 18O.  424 

Thirdly, growth rate varies annually, shows evidence of flickering, and has a range of ~20 425 

years and a spectral peak at 17-18 years.  Given the relative homogeneity of the stable isotope 426 

and trace element signals, the growth rate variability has to occur subsequent to the mixing of 427 

the water. Dissolutionally-enlarged fractures or a network of small conduits would allow 428 

limited water storage, permitting degassing of karst water and prior calcite precipitation 429 

(PCP) as well as drip rate variations, both affecting growth rate variability. We conceive this 430 

store to have a proportional volume of approximately 20 years of recharge (see later). In 431 

drying conditions, water from this store could maintain dripping and deposition for short time 432 

periods. 433 

Fourth, a pre-existing fracture zone/brecciated fault trace which might have been 434 

reactivated during subsequent tectonic activities, extending from the surface, through to the 435 

store and the cave roof, permits fracture flow to stalagmite GM1. This would permit short-436 

duration recharge, probably after high magnitude / frequency rainfall events, in the absence 437 

of saturated porous sandstone and limestone aquifer. This would explain the short duration, 438 

high geochemical variability, ~120 ka growth phase. The absence of ‘stored’ water and 439 

subsequently rapid exhaustion of the fracture flow/drip source is supported by the nearly 440 

vertical lamina depositing down the sides of the stalagmite, high variability/rapid increase in 441 

the 18O and trace element ratios and low autocorrelation in 13C and 18O.  442 

The varying trends between the 18O and 13C, and trace element ratios from one growth 443 

phase to the other suggests that a single kinetic fractionation process does not dominate our 444 
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proxy records, rather we infer a hydrological control based on climatic and tectonic 445 

processes.  446 

Our conceptual model explains other features of GM1 geochemistry and growth rate. The 447 

geochemistry at the end of the 129.3 ka growth phase can be interpreted as a decline in the 448 

saturation or water level in the porous media, leading to an increase in 18O and trace 449 

elements as dripping is maintained just from the smaller store. Before growth stops, a change 450 

in gradient of Mg/Ca, Sr/Ca and Ba/Ca indicates a drying trend which lasts for ~170 years, 451 

followed by a 18O increase of 2.2‰ that occurred over 4 years, and then increased 452 

variability in Sr/Ca, Mg/Ca and Ba/Ca until deposition stops 28 years later. Many of the 453 

previously studied stalagmites from Ethiopia such as Ach-1 (Asrat et al., 2007) show similar 454 

features, which could be attributed to the specific geological setting of the region where 455 

earthquake/tectonics play a strong role in shifting the relative position or the extent of the 456 

major ‘fracture’ flow routes for such short-phased growths, leading to growth maintained for 457 

short time longer from the smaller ‘matrix’ flow. 458 

The similarity in values for the range r (20.5 yrs), the spectral frequency f (17-18 yrs), 459 

and the observation that it takes 24 yrs for the stalagmite to stop growing, all suggest the 460 

presence of a water store that can hold ~20 years of recharged water. The multi-decadal 461 

growth rate frequency of 17-18 yrs, although insignificant, is in agreement with that observed 462 

from Holocene stalagmites in the region (Ach-1, Bero-1; Baker et al., 2010), and similar to 463 

observed variability in the modern rainfall pattern and subsequent flow at the upper Blue Nile 464 

(Taye and Willems, 2012). Plausible climatic forcing over this timescale includes changes in 465 

Atlantic and Indian Ocean sea surface temperature and variability in the movement and 466 

intensity of the ITCZ and its effect on Ethiopian rainfall (Degefu et al., 2017). However, the 467 

similarity of f and r suggests that any climate forcing in GM1 growth rate variability may be 468 
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amplified by the size of karst water store, or be karstic rather than climatic, the latter 469 

something previously observed in forward modelling studies (Baker et al., 2013). 470 

Finally, the shift to higher isotope values within a growth phase can be explained by our 471 

conceptual model as a change from porous flow being the dominant water source to a 472 

dominance of fracture flow. It suggests that the observed 2‰ shift could be indicative of a 473 

water that has undergone additional kinetic or evaporative isotope fractionation. Both 474 

fractionation processes had been previously inferred as occurring in both Modern and 475 

Holocene Ethiopian speleothems, and from ‘Hendy tests’ on GM1, to a similar extent (up to 476 

1‰). The implication for the climatic interpretation of stalagmite 18O is that variability of 477 

up to 2‰ cannot be directly ascribed to climatic forcing, but larger changes cannot be 478 

explained by fractionation processes. Similar rapid shifts in 18O of +2‰ within a period of 6 479 

years have been identified in the Hulu cave speleothems (Treble et al., 2007). 480 

 481 

4.2. The climate record 482 

We can compare the 18O composition for each GM1 growth phase with published 483 

Holocene stalagmite data from Ethiopia (Asrat et al., 2007; Baker et al., 2007; 2010), as well 484 

as the modelled solar insolation for 15N (Laskar et al., 2004), and other archived speleothem 485 

18O records along the monsoon path and the “downstream” countries (China, Cheng et al., 486 

2017; Israel, Bar Matthews et al., 1999; 2003). This comparison is shown in Figure 7. In GM-487 

1 the 18O composition (–7.77±0.57‰ (129.3 ka), –3.82±0.61‰ (120.7 ka), –6.05±0.76‰ 488 

(undated), and –6.31±0.59‰ (108.4 ka)) is generally isotopically more negative compared to 489 

both modern (Merc-1: –1.22±0.31‰; Asfa-3: –1.37±0.37‰; Baker et al. 2007), and 490 

Holocene (Bero-1: –3.42±1.45‰, Baker et al., 2010; Ach-1: –3.20±0.35‰, Asrat et al., 491 

2007) samples from the region. Even allowing for kinetic fractionation and non-equilibrium 492 

deposition of up to 2‰ in all samples, GM1 18O composition at 129.3 ka, 108.4 ka, and an 493 
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undated growth phase, is more negative than any Holocene stalagmites from the region. 494 

Combined with our conceptual understanding of GM1 deposition, we can be certain that 495 

these growth phases and lower isotope composition are indicative of wetter conditions and 496 

sustained recharge. 497 

The GM1 record is the first high-resolution last interglacial continental climate record 498 

and among the few climate records of any resolution from Ethiopia so far published. A deep 499 

seismic and near-continuous core record of the last 150,000 years from Lake Tana on the 500 

Northwestern Ethiopian highlands used geochemical proxies (sediment Ca/Ti ratio) for 501 

climate-driven lake level fluctuations (Lamb et al., 2018). The oldest cave sediment records 502 

from the Southeastern Ethiopian highlands goes back only to 63±7 ka (Tribolo et al., 2017). 503 

The four phases of the GM1 record are dated at particularly important periods of the last 504 

interglacial. Noting the quantified age uncertainties (see section 3.1.4), they provide high 505 

resolution snapshots from some critical time-windows. The two long growth phases at ~129 506 

ka and ~108 ka, which we conceptualise as being dominated by a sustained porous/matrix 507 

flow regime, match maximum summer insolation at 15N. This suggests that though internal 508 

growth variability may be dominated by karst hydrology above the cave, the GM1 growth as 509 

a whole and the geochemical proxies were responding to climate forcing.  510 

Comparison of the GM1 18O record with the China composite 18O record (Hulu and 511 

Dongge caves; Cheng et al., 2016), the Soreq cave (Israel) 18O record (Bar-Mathews et al., 512 

1999; 2003) (Fig. 7) suggests a similar relationship for all three sites, with wet conditions 513 

(lower 18O and peak summer insolation) during the ~108 ka growth period, and dry or 514 

drying conditions (higher 18O and low summer insolation) at the ~120 ka growth period. 515 

The Soreq cave 18O record from central Israel in the Levant has been shown to indicate 516 

enhanced rainfall (Bar-Mathews et al., 1999) and could be a “downstream” indicator of a 517 

stronger northeast African monsoon (Tierney et al., 1999). At ~129 ka, the lower 18O and 518 
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wetter conditions in Ethiopia occur at the summer insolation maxima, but may occur before 519 

the isotope response observed in Israel and China. Dating uncertainty in the GM1 record 520 

prevents a more precise interpretation, but it does raise the possibility of the intensification of 521 

the East African Monsoon before other northern hemisphere monsoon systems at the start of 522 

the last interglacial. The Lake Tana (Northwestern Ethiopian highlands) sediment Ca/Ti 523 

record (Fig. 7) indicates an abrupt increase in moisture even earlier at ~132 ka, leading to 524 

stable high lake level conditions during the period ~132 ka to ~95 ka, with some brief dry 525 

episodes (Lamb et al., 2018). This period is defined by a generally flat trend of Ca/Ti, 526 

truncated by very brief high Ca/Ti excursions. The major wet conditions during the ~129 ka 527 

and 108 ka growth phases of GM1 are generally consistent with this predominantly high lake 528 

level phase, although they do not particularly correspond to the lowest values of Ca/Ti. 529 

As speleothem records of the Holocene from the region (Fleitmann et al., 2007) show, 530 

decreasing 18O values during the early Holocene indicate a rapid northward migration of the 531 

summer ITCZ and intensification of the rain belt of the Indian Summer Monsoon. On the 532 

other hand, the southward migration of the ITCZ during the middle to late Holocene, marked 533 

by increasing 18O values in speleothems, led to weakening of the associated summer 534 

monsoon. Similar studies from Madagascar (e.g., Voarintsoa et al., 2017) have also shown 535 

the link between speleothem 18O values and the ITCZ migration. The ~129 ka growth phase 536 

of GM1 could therefore be effectively considered as an annual record of relative ITCZ 537 

position ~129 ka BP.   538 

Ethiopia/northeast Africa has been considered as the origin of Anatomically Modern 539 

Humans (White et al., 2003; McDougall et al., 2005) and possibly the region out of which 540 

Anatomically Modern Humans dispersed during MIS 5-3 or during earlier migration episodes 541 

(cf. Hershkovitz et al., 2018). Considering the significant debate about the role climate 542 

variability played in human evolution and dispersal of Anatomically Modern Humans “Out of 543 
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Africa” (e.g., Tierney et al. 2017 and references therein; Lamb et al., 2018), high-resolution 544 

speleothem records from Ethiopia and northeastern Africa such as those of GM1 can shed 545 

light on this debate. The GM1 record for instance shows that the earliest human migration 546 

during MIS 5, confirmed by the presence of ~110-80 ka old Anatomically Modern Human 547 

fossils in Israel (Grün et al., 2005), occurred during a major wet event in northeast Africa. 548 

The Tana Lake record confirms that the northwestern Ethiopian highlands experienced 549 

relatively stable moist climate during MIS 5c-e (Lamb et al., 2018). This supports earlier 550 

conclusions that human migration occurred during humid conditions, as such conditions 551 

provided humans “green corridors” to overcome inhospitable deserts (e.g., Timmerman and 552 

Friedrich, 2016). However, the major episode of human migration occurred during 50-75 ka 553 

(Nielsen et al., 2017), and marine records from the Gulf of Aden show that this migration 554 

event occurred during a sustained dry condition in northeast Africa (Tierney et al., 2017), 555 

while the Lake Tana record shows more complex climate variability during this period (Lamb 556 

et al., 2018). Future research is required on the speleothems from Goda Mea and Aynage 557 

caves, some of which have been dated to the critical period of 120-50 ka. 558 

 559 

5. Conclusions 560 

Stalagmite GM1 was deposited discontinuously around the time of the last interglacial, at 561 

~129 ka, 120 ka, an undated growth phase, and ~108 ka. Variogram analysis of growth rate 562 

shows a low range (20.5 years), some flickering (–0.33) and good information content (56%), 563 

indicative of a stalagmite fed by a karst water store of limited volume. Oxygen and carbon 564 

isotopes and trace elements generally have low variability, indicative of a second, well-mixed 565 

water source feeding the stalagmite. Stalagmite GM1 provides a high-resolution insight into 566 

stalagmite hydrogeochemical responses to environmental change prior to growth hiatuses. 567 

Multi-decadal variability of frequency 17-18 years, though statistically not significant at 95% 568 
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confidence, is present, but only in the growth rate time series, and is slightly less than the 569 

range in the growth rate record. A climatic or karstic forcing of this spectral frequency cannot 570 

be determined. 571 

Our conceptual model for the stable isotope, trace element and growth rate records in 572 

GM1 allows the interpretation of the stalagmite geochemical time series. Importantly, all 573 

three proxies were necessary to adequately understand the processes forcing them, and 574 

whether they contained a climatic or karstic signal. Only through this approach were we able 575 

to confirm that low 18O at ~129 ka and ~108 ka can be attributed to wetter climatic 576 

conditions. These two growth phases occur at the same time as solar insolation maxima for 577 

15N, and suggest a direct solar forcing on rainfall in Ethiopia at these times, influencing the 578 

northward migration of the ITCZ and the associated rain belt of the Indian Summer 579 

Monsoon, of potential relevance for early modern human migration out of the region.   580 
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Table Caption 724 

 725 

Table 1. U and Th isotope data and age determinations (in depth order) for stalagmite GM1. 726 

Square brackets indicate activity ratios. Ages shown are corrected for an initial 727 

[230Th/232Th] of 1.5 and a 100% uncertainty, which is incorporated into the age 728 

uncertainty. 729 

 730 

Figure Captions 731 

 732 

Fig. 1. (a) Regional structural setting of Ethiopia showing the location of Mechara. Lake 733 

Tana, and the epicentres of the major earthquakes in the Main Ethiopian Rift and the 734 

adjoining highlands are marked (Note that earthquake epicentres in the northern Afar 735 

depression are not represented). Insets show the mean position of the ITCZ in July 736 

(Boreal summer) and January (winter) over Africa; and the mean monthly rainfall (mm) 737 

and mean monthly temperature of the Mechara region, at the Bedesa Meteorological 738 

Station (1994-2014 data from the Ethiopian Meteorological Agency). Location of (b) is 739 

marked by a broken triangle around the location of Mechara (modified from Asrat et al., 740 

2008); (b) The topography, geology, structure and drainage system of the Mechara karst 741 

area and locations of the entrances to the caves mentioned in the text; (c) Goda Mea cave 742 

(surveyed according to BCRA Grade 3 using tape, compass and clinometer); (d) a 743 

photograph of the main chamber of the Goda Mea cave interior showing the collapse 744 

chamber on which grew several speleothems following a major fracture system 745 

(photograph by J. Gunn). Figures (a) and (b) modified from Asrat et al., 2008; Fig. (c) 746 

modified from Gunn et al., 2009. 747 
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Fig. 2. GM1 hand-section in both scanned image (left) and sketch (middle), showing the four 748 

major growth phases, locations of the major and minor growth hiatuses, and sampling for 749 

isotopes, trace elements and U-Th analyses. Right: photomicrographs of thick sections 750 

from across the major growth hiatuses showing a clear evidence of growth stoppage with 751 

no apparent dissolution. 752 

Fig. 3. U-Th data for stalagmite GM1. (a) Corrected U-Th ages vs depth for all analyses. (b) 753 

238U concentration vs depth (c) [230Th/232Th] vs depth (d) Initial [234U/238U] vs depth (e) 754 

U-Th ages vs depth for samples with [230Th/232Th] >1000. In all plots, the three major 755 

hiatuses are shown as vertical dashed lines. 756 

Fig. 4. GM1 times series for the geochemical proxies. From top: growth rate, 13C, 18O, 757 

Sr/Ca, Mg/Ca, Ba, Ca. Note the axis breaks on the x-axis, which permit equal scaling of 758 

data on the time axis. 759 

Fig. 5. (a) Scatterplot of variogram parameters range, information content and flickering for 760 

the 129.3 ka growth phase; (b) Autocorrelation of growth rate, 13C and 18O time series 761 

for the three U-Th dated growth phases; (c) Spectral analysis on the growth rate and 18O 762 

times series for the 129.3 ka growth phase. The 17-18 years peak, though statistically not 763 

significant is marked.  764 

Fig. 6. Conceptual model for the deposition of stalagmite GM1. 765 

Fig. 7. Comparison of climate proxy records. (a) Insolation at 15N (Laskar et al., 2004); (b) 766 

Chinese composite stalagmite 18O record (Cheng et al., 2016); (c) Soreq Cave 18O 767 

record (Bar-Matthews et al., 1999; 2003); (d) Lake Tana sediment Ca/Ti record (Lamb et 768 

al., 2018); (e) Ethiopian stalagmite 18O composite. Box-plots show median, inter-769 

quartile range and range for each stalagmite; shading represents different caves (grey – 770 

Bero Cave; Green – Rukiesa Cave; Orange – Achere Cave; Cyan – Goda Mea Cave). 771 
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Note the x-axis break; vertical shading aligns the Ethiopian records to the other time 772 

series. 773 

Fig. S1. Scatter plot of 13C vs 18O for all growth phases. ‘Hendy tests’ along growth 774 

laminae are shown in colour (Lines 1-7): their location is shown in Fig. 2 (HL1-HL7).  775 

 776 


