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Abstract: Disturbance plays a key role in shaping forest composition and diversity. We used a
community phylogeny and long-term forest dynamics data to investigate biotic and abiotic factors
shaping tropical forest regeneration following both human and natural disturbance. Specifically,
we examined shifts in seedling phylogenetic and functional (i.e., seed mass) community structure
over a decade following a major hurricane in a human-impacted forest in Puerto Rico. Phylogenetic
relatedness of the seedling community decreased in the first five years post-hurricane and then
increased, largely driven by changes in the abundance of a common palm species. Functional structure
(based on seed mass) became increasingly clustered through time, due to canopy closure causing
small-seeded, light-demanding species to decline in abundance. Seedling neighbor density and
phylogenetic relatedness negatively affected seedling survival, which likely acted to reduce
phylogenetic relatedness within seedling plots. Across the study site, areas impacted in the past by
high-intensity land use had lower or similar phylogenetic relatedness of seedling communities than
low-intensity past land use areas, reflecting interactive effects of human and natural disturbance.
Our study demonstrates how phylogenetic and functional information offer insights into the role of
biotic and abiotic factors structuring forest recovery following disturbance.

Keywords: community assembly; cyclone; density dependence; environmental filtering; hurricane;
Luquillo; phylogenetic diversity; Puerto Rico; regeneration niche; seed mass; succession;
tropical forest dynamics; wind disturbance

1. Introduction

Disturbance plays a key role in shaping ecological communities by increasing spatial and temporal
variation in resource availability and providing opportunities for recruitment [1,2]. Species often differ
in their responses to disturbance, employing divergent strategies that allow them to take advantage of
heterogeneous environmental conditions [3,4]. This variation in life history strategy is hypothesized
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to permit species coexistence and foster species richness [5–7]. If there is phylogenetic signal in the
traits that underlie species life history strategies in response to disturbance (e.g., related species have
more similar strategies than expected by chance), disturbance will leave a signature not only on
species composition, but also on the phylogenetic structure of the community [8]. Thus, examining the
phylogenetic structure of plant communities following disturbance can offer insights into the processes
driving succession.

Natural disturbance has been shown to influence phylogenetic patterns on both ecological
and evolutionary time scales [9,10]. For example, Verdú & Pausas [10] found that phylogenetic
community structure differed in Mediterranean woody plant communities that have contrasting fire
frequencies. Similarly, a number of studies have investigated effects of anthropogenic disturbance
on phylogenetic patterns of plant community composition (e.g., [11–16]). In temperate and tropical
forests, such studies have typically found that phylogenetic relatedness is higher in more recently
disturbed sites (e.g., young secondary forest) compared to sites that were undisturbed or had been
recovering for longer (e.g., [14,17]). In addition, Norden et al. [18] reported that light-demanding
pioneer and secondary forest species that colonize disturbed areas in Costa Rica tend to be more
closely related to each other than expected by chance. Thus, previous studies suggest that human
disturbance often results in increased phylogenetic relatedness (i.e., decreased phylogenetic diversity)
in forest communities.

Following both human and natural disturbance, species’ responses to changing abiotic conditions
are governed, in large part, by their life history strategy. In forests, disturbance typically results in
significantly altered patterns of understory light availability. Thus, one key axis of species’ life history
strategy governing responses to disturbance in forest systems is shade tolerance. Light-demanding
species germinate and grow rapidly under high light conditions, while shade-tolerant species
can establish and persist beneath closed canopies [19]. If traits that underlie shade tolerance are
phylogenetically conserved, then differential species’ responses to light availability may drive changes
in phylogenetic community structure over time after disturbance [18]. Multiple structural and
physiological traits contribute to shade tolerance. One such trait is seed mass, which has been
shown to be significantly phylogenetically conserved in tropical tree communities [20–22] and to be
correlated with seedling recruitment and survival [23]. Seed size tends to trade-off with seed number,
such that plant species are able to produce either few large seeds that provide more resources to aid in
seedling establishment and survival in shaded conditions, or many small seeds that allow the species
to disperse further to reach high resource environments, such as light gaps [24–26]. Although a number
of species depart from the expected relationship (e.g., [27,28]), seed mass is generally considered a
good proxy for shade tolerance specifically [25] and stress tolerance of seedlings in general [26]. Thus,
changes in mean seed mass of the seedling community can reveal how species life history interacts
with changing abiotic conditions to shape post-disturbance forest communities.

While most studies of forest recovery following disturbance focus on the role of the abiotic
environment (i.e., light, moisture, etc.), biotic interactions are also likely to change following
disturbance. For example, disturbance can cause increased light levels in the forest understory,
leading to higher densities of seedlings and saplings and potentially resulting in stronger competition
for resources or increased pathogen or herbivore attack [29]. At the local neighborhood scale,
in particular, such species interactions are likely to influence phylogenetic community structure [30].
Neighboring plants that are closely related phylogenetically are expected to compete strongly for the
same resources or be susceptible to the same herbivores and pathogens [31,32] (although this is not
always the case [33]). Thus, phylogenetic structure may influence patterns of survival and recruitment
on local scales [34–36], resulting in a decrease in phylogenetic relatedness over time.

In the present study, we examined shifts in phylogenetic community structure over time following
natural disturbance in a subtropical wet forest, for which a highly resolved DNA barcode-based
community phylogeny has been assembled [37]. Specifically, we analyzed how the phylogenetic
structure of the seedling bank within the 16-ha Luquillo Forest Dynamics Plot (LFDP) in Northeastern
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Puerto Rico changed over the decade following a major hurricane (Hurricane Georges in 1998).
To better understand the abiotic and biotic interactions driving changes in phylogenetic community
structure, we also examined community-wide shifts in seed mass values, as well as effects of local
neighborhood composition on individual seedling survival. In addition, we took advantage of spatial
variation in the intensity of past human activity within the LFDP to examine the signature of land use
history on phylogenetic community structure. We focused on the seedling stage because this life stage
responds strongly and rapidly to disturbance [29,38] and because processes occurring during early
life stages ultimately shape community composition and play a key role in maintaining diversity in
species-rich plant communities [3]. During hurricanes, tree mortality is often low [39,40], but damage to
large trees can be extensive (i.e., defoliation, broken branches), altering conditions beneath the canopy
and resulting in significant effects on seedlings growing in the understory [29,41,42]. In addition,
in forests recovering from past human disturbance, studies of the seedling layer can offer insights into
the successional trajectory of forest recovery [43].

In this study, we examined changes in seedling phylogenetic community structure during
forest recovery from disturbance and test several hypotheses. After the hurricane, as the canopy
recovered and understory light levels dropped, we expected a decrease over time in the abundance
of small-seeded, shade-intolerant species in the seedling layer resulting in increasing phylogenetic
and functional clustering. However, at the same time, we predicted an initial decrease in phylogenetic
clustering as seedling densities thinned out due to non-random mortality with respect to the
phylogenetic relatedness of neighbors (i.e., phylogenetic negative density dependence). Finally,
since human disturbance generally results in more homogenous areas dominated by closely related,
disturbance-adapted species, we predicted that areas with a history of high-intensity land use would
exhibit higher phylogenetic clustering compared to adjacent areas that had been less disturbed by past
human activity.

2. Materials and Methods

2.1. Study Site

The study was conducted in the 16 ha Luquillo Forest Dynamics Plot (LFDP) in Northeastern
Puerto Rico (18◦20′ N, 65◦49′ W). Annual rainfall at the site averages 3500 mm, with all months
receiving >200 mm of rain, and daily average maximum and minimum air temperatures are 25.2 ◦C
and 20.5 ◦C, respectively [44]. All freestanding woody stems ≥1 cm dbh (diameter at 1.3 m above
ground) in the LFDP have been tagged, mapped, identified to species, and measured at ~five-year
intervals since 1990.

The Luquillo forest has a well-documented history of hurricane disturbance. In the two decades
before our study, two major storms struck the forest, Hurricane Hugo (category 4) in September
1989 [39] and Hurricane Georges (category 3) in September 1998 [45]. In this study we focused on
regeneration following Georges, which caused significant damage to trees in the Luquillo forest,
altering understory conditions. Specifically, the mean and heterogeneity of light levels on the forest
floor were elevated for 1–3 years following Georges, resulting in high seedling densities that persisted
for 4–6 years [29].

In addition to the natural disturbance, the LFDP forest has experienced anthropogenic disturbance
in the form of clear-cut logging and agriculture that occurred before 1934 when the USDA Forest
Service purchased the land. Selective logging occurred in the LFDP until 1953 [46]. This past land-use
history has significantly altered the species composition of the forest [47–49]. For this study, we divided
the LFDP into two areas based on past land use, using information from aerial photographs taken in
1936. The northern portion of the plot (~2/3 rds of the LFDP) was categorized as high land use history
and the southern area was categorized as low land use history (see [29,46] for more details).
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2.2. Seedling Census

To monitor seedling dynamics following Hurricane Georges, 150 permanent 1 × 2 m plots were
established at ~20 m intervals along six north-south running transects spaced 60 m apart [29,50].
A census was conducted in March–April 2000, during which all tree and shrub seedlings ≥10 cm
tall and <1 cm dbh within the seedling plots were tagged, measured for height and root collar
diameter, and identified (99.99% of individuals were positively identified to species). Palm seedlings
were included if ≥10 cm tall and their newest frond arose <1.3 m from the ground. Recensuses
of the seedling plots took place in April–June 2002, August–October 2004, February–March 2007,
and January–February 2008. Mean daily rainfall in mm (±sd) in the four census intervals was 9.03
(±17.17), 10.80 (±18.28), 11.03 (±8.60), 9.98 (±15.27), respectively. From 2000 to 2008, 13,957 individuals
of 78 tree, palm, and shrub species were measured and identified in the 150 seedling plots.

2.3. Analysis of Phylogenetic Community Structure

An ultrametric community phylogeny at the species-level was generated for the LFDP using
a multi-locus DNA barcode library of three plastid markers, shown in Figure S1: rbcL, matK,
and trnH-psbA. The molecular phylogeny contained 141 species and was constructed using a super
matrix approach and constraint tree at the level of order. A detailed description of the construction of
the phylogeny can be found in [37,51]. We calculated phylogenetic community structure of the seedling
layer (all tree, shrub, and palm seedlings ≥10 and <130 cm tall) for each of the five seedling censuses.
We excluded seedlings of four species (Casearia decandra, Lasianthus lanceolatus, Phytolacca rivinoides,
and Psychotria maleolens) because they either do not grow to be ≥1cm dbh or because individuals
≥1 cm dbh were not found when tissue was collected to construct the phylogeny. Together these
excluded species contributed only 0.3% of individuals to the seedling census, and are therefore unlikely
to influence the results.

Various metrics for assessing phylogenetic community structure have been proposed [52].
We chose two of the most commonly utilized: Net Relatedness Index (NRI) and Nearest Taxon Index
(NTI) [53]. NRI and NTI are calculated based on the standardized effect size of mean pairwise distances
(MPD) separating taxa and mean nearest taxon distances (MNTD) in communities, respectively.
NRI is more sensitive to tree-wide patterns of phylogenetic clustering and evenness, whereas NTI
is more strongly influenced by patterns closer to the tips of the phylogeny (i.e., within families or
genera). We calculated NRI and NTI for each individual 2 × 1 m seedling plot containing at least two
species (n = 136–146 plots, depending on census year), using abundance data to assess phylogenetic
relatedness among individuals within each plot. We used random draws from the pool of species
occurring in the community phylogeny as our null model (i.e., all species ≥1 cm dbh in the 16 ha
LFDP), which maintains the observed species richness but does not constrain species occurrence
frequencies [54]. This null model is appropriate for examining changes in phylogenetic structure in our
system, over the spatial and temporal scales of interest, since seedlings were expected to be a subset
of the adult trees present in the 16 ha LFDP. Given that the phylogenetic signal in species abundance
can influence the patterns of phylogenetic structure [55], we tested for, and found no evidence of,
a phylogenetic signal in species abundance in any census (all values of Blomberg’s K < 0.61 and not
significant based on randomization tests with α = 0.05). Phylogenetic analyses were carried out using
the ‘picante’ package for R [56].

To examine temporal shifts in phylogenetic structure of the seedling community over the decade
following Hurricane Georges, we used non-parametric Kruskal-Wallis rank sum tests to determine if
values of NRI and NTI varied significantly among census years. When significant variation among
years was found, we then tested for significant differences between individual pairs of years using
paired Wilcoxon signed rank tests with p-values adjusted for multiple comparisons using the False
Discovery Rate (FDR) method [57].

To examine the effect of land use history on phylogenetic community structure, we compared
the NTI and NRI values for seedling plots in the high-intensity land use portion of LFDP versus
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seedling plots in the low-intensity land use portion of LFDP. We analyzed each census year separately,
using Wilcoxon signed rank tests with p-values adjusted for multiple comparisons using the
FDR method.

The most dominant species in the Luquillo forest is the palm Prestoea acuminata. The other palm
species in the LFDP, Roystonia borinquena, is also relatively common. As palms, they are distantly
related to most other species in the forest, and may therefore have a disproportionately large impact
on patterns of phylogenetic community structure. Therefore, we recalculated all NRI and NTI values
and repeated the above analyses after dropping palm species from the data set.

2.4. Phylogenetic Neighborhood Effects on Seedling Survival

To examine whether the phylogenetic structure of local neighborhoods influenced seedling
dynamics, we used generalized linear mixed models (GLMMs) with binomial errors to model
individual seedling survival as a function of the density and phylogenetic relatedness of seedlings
within the same 2 × 1 m seedling plot for each census interval. The phylogenetic neighborhood of
each individual was quantified as ∑S

i=1(Ni·Pd
ij), where S is the number of species present in the same

seedling plot as the focal individual, N is the number of individuals of species i in that plot, and P
is the phylogenetic relatedness of species i to the focal species j. P was calculated by computing
the cophenetic distances between species and then scaling values from 0 to 1, with 1 indicating a
conspecific. Therefore, the effect of a neighbor was strongest if it was the same species as the focal
individual, and declined with decreasing phylogenetic relatedness as a function of the exponent
d. We initially ran models using several different values of d (0.5, 1, 2, 3, 4), but found that these
values all gave qualitatively similar results. Therefore, we only present results from models with d = 1
(i.e., a linear decrease with relatedness). In addition to the phylogenetic neighborhood, seedling height
was included as a fixed effect. Species and seedling plot were included as random effects to account
for species-specific variation in mortality rates and spatial variation in survival unrelated to neighbor
density (i.e., spatial autocorrelation), respectively. We also ran the model including canopy openness
(light) as a random effect that varied among species; however, it did not alter the effect of phylogenetic
neighborhood on survival (data not shown). In order to determine whether significant effects of
phylogenetic neighborhood on survival were predominantly due to effects of conspecific neighbors
or total neighbor density, we used Akaike information criterion (AIC) to compare the phylogenetic
neighborhood models to models that substituted the density of either conspecific seedling neighbors
or all seedlings neighbors in the 2 × 1 m plot in place of the phylogenetic neighborhood. GLMMs were
fit using the ‘lme4’ package for R [58].

2.5. Temporal Variation in Community Mean Seed Mass

We used data on species’ mean seed mass to examine whether effects of disturbance on
phylogenetic community structure were likely driven by species’ differential life history strategies.
As previously reported [22], closely related species in the Luquillo forest have significantly more
similar values of seed mass than expected by chance (i.e., significant phylogenetic signal in seed mass).
For each species, between 20 and 200 seeds (depending on seed size and species abundance) were
collected from a network of 120 seed traps located throughout the 16 ha LFDP and taken back to the lab
where they were dried at 60 ◦C for several hours before weighing. Seed mass varied over several orders
of magnitude among species and was highly skewed, therefore values were log-transformed before
use in analysis. Each individual seedling was assigned the mean seed mass of its species. We then
calculated the mean and variance of seed mass across all seedlings in the 150 seedlings plots in each
census to assess community-wide changes over time in response to post-hurricane canopy dynamics.
In addition, we constructed a trait dendrogram, analogous to a phylogenetic tree, and calculated
abundance-weighted NRI and NTI values for each seedling plot in each census to determine whether
patterns of seed mass structure mirrored patterns of phylogenetic structure. The trait dendrogram
was constructed by first transforming the seed mass trait data, then using hierarchical clustering
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(UPGMA) on the trait distance matrix. We tested for significant variation among years in seed mass
NRI/NTI values using Kruskal-Wallis tests. When significant variation among years was detected,
differences between individual years were then tested using paired Wilcoxon-signed rank tests with
p-values adjusted for multiple comparisons (see above). Seed mass analyses were performed using the
‘picante’ package in R [58]. All analyses were run using the R statistical package [59].

3. Results

3.1. Phylogenetic Community Structure Following Hurricane Disturbance

We found significant variation in phylogenetic structure among years, as seen in Figure 1, for both
indices (For NRI, Kruskal-Wallis chi-squared = 26.7238, df = 4, p-value < 0.001; for NTI Kruskal-Wallis
chi-squared = 15.8741, df = 4, p-value = 0.003). Values of NRI tended to be negative in all years,
while values of NTI tended to be positive. However, both indices showed the same pattern over time:
Mean abundance-weighted NRI and NTI values were highest in the 2000 census, decreased from
2000 to 2004, and then increased between 2004 and 2008, as seen in Figure 1a,b. Thus, over the study
period, individuals within seedling plots tended to be most closely related in the first census following
hurricane disturbance and least related ~five years after the hurricane.
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Figure 1. Mean phylogenetic relatedness of seedlings at the local neighborhood scale (2-m2 seedling
plot). Panels (a,b) show mean abundance-weighted values of Net Relatedness Index (NRI) and Nearest
Taxon Index (NTI), respectively, for the full data set. Panels (c,d) show the same metrics, but when palm
species were excluded. Bars represent 1 s.e. and letters indicate differences between years within each
panel. Positive and negative values indicate phylogenetic clustering and overdispersion, respectively.
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However, when palm species were dropped from the data set, this pattern changed substantially.
Specifically, values of both NRI and NTI tended to increase slightly over time when palms were
excluded, up until the final census when values dropped significantly, shown in Figure 1c,d.

3.2. Phylogenetic Community Structure and Land-Use History

Mean values of NRI and NTI within seedling plots differed significantly between the high-intensity
and low-intensity land-use categories for two of the five census years (2004 and 2007; Figure 2). In those
years, both indices indicated that seedlings were more closely related to each other in plots in the
low-intensity land-use history area than in the area that had experienced high-intensity land-use prior
to 1934. When palm species were excluded, significant differences between land-use history categories
in NRI and NTI values were detected not only in 2004 and 2007, but also in 2002, as seen in Figure S2,
again with higher phylogenetic clustering in the low-intensity land-use history area compared to the
high-intensity land-use area.
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Figure 2. Mean phylogenetic relatedness of seedlings within 2-m2 plots that experienced varying
effects of past land use. Panels (a,b) show mean abundance-weighted values of Net Relatedness Index
(NRI) and Nearest Taxon Index (NTI), respectively, for the full data set. Gray bars indicate results
for seedling plots located in low-intensity land use portion of Luquillo Forest Dynamics Plot (LFDP)
and white bars indicate results for seedling plots located in high-intensity land-use portion of LFDP.
Stars (*) and pluses (+) indicate years where values differed between land use history categories at the
α = 0.05 and α = 0.10 levels, respectively.

3.3. Phylogenetic Neighborhood Effects on Seedling Survival

We found a significant effect of the density and phylogenetic relatedness of neighbors on seedling
survival over each of the first three census intervals (p < 0.05 for 2000–2002, 2002–2004, 2004–2007),
but not in the final census interval (2007–2008, Table 1). In the first three censuses, the probability
of survival declined with increasing density and relatedness of neighboring seedlings, as seen in
Figure 3). For the 2000–2002 interval, the model that included density and phylogenetic relatedness of
all neighbors performed better at predicting seedling survival than did the model that only included
conspecific neighbor density, shown in Table 1, even when palm species were excluded from the
analyses, shown in Table S1. This indicates that seedlings were negatively affected not only by
seedlings of their own species but also by seedlings of closely related species that were present in the
same seedling plot. AIC values were similar for both the phylogenetic and conspecific models in the
2002–2004 and 2004–2007 intervals, with the conspecific model performing slightly better in 2002–2004
and the phylogenetic model performing slightly better in the 2004–2007 interval, as seen in Table 1.
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Table 1. AIC values for model comparisons. Bold values indicate the best fit model (i.e., lowest AIC)
for each census interval.

Census Interval

Model 2000–2002 2002–2004 2004–2007 2007–2008

Null (No neighbors) 5064.9 42670.0 3210.5 3106.5
Total neighbor density 5063.1 4265.1 3210.7 3108.2

Conspecific neighbor density 5060.4 4261.0 3183.8 3108.5
Phylogenetic density 5049.8 4261.5 3182.3 3108.5Forests 2018, 9, x 8 of 16 
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Figure 3. Effect of neighbor density on the probability of survival for a 10 cm tall seedling from
2000 to 2002 in the Luquillo Forest Dynamics Plot. Lines show the predicted relationship based on
model results for different degrees of phylogenetic relatedness (R) between the focal individual and
neighboring seedlings (with R = 1 for conspecifics).

3.4. Changes in Seed Mass Values Following Hurricane Disturbance

In all years, the seedling community was dominated by individuals of relatively large-seeded
species, as demonstrated by the left-skewed distributions of seed sizes shown in Figure 4. Variation in
seed mass among seedlings was greatest in the initial census in 2000 (variance = 3.50) and decreased
in each subsequent census (2002: var = 2.77, 2004: var = 2.11, 2007: var = 2.04, 2008: var = 1.72).
This suggests that the heterogeneous conditions immediately following the hurricane permitted the
recruitment of species with a wide variety of life history strategies, but the effect did not persist.
This pattern was largely a result of an elevated number of seedlings of species with low seed mass in
the 2000 seedling census, as seen in Figure 4.
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Figure 4. Histograms showing the frequency of log-transformed seed mass values of seedlings in
the 150 2 × 1 m seedling plots in the Luquillo Forest Dynamics Plot, Puerto Rico. Each seedling was
assigned the mean seed mass value for its species.

Within seedling plots, patterns of structure in seed mass values varied significantly among census
years for NRI (Kruskal-Wallis chi-squared = 56.7, df = 4, p < 0.001), but not NTI (Kruskal-Wallis
chi-squared = 7.81, df = 4, p = 0.10). Values of NRI and NTI for seed mass steadily increased over
each census interval, as seen in Figure 5, indicating that seedling plots were increasingly occupied by
seedlings of species with more similar seed mass values. In all censuses, seedlings had more similar
values of seed mass than expected (compared to the null model), as indicated by positive NRI and NTI
values shown in Figure 5. Patterns of NRI and NTI for seed mass were largely consistent when palm
species were dropped from the analysis, as seen in Figure S3.
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Figure 5. Mean similarity of seed mass values of seedlings within 2-m2 seedling plots. Values of
abundance-weighted Net Relatedness Index (NRI) (a) and abundance-weighted Nearest Taxon Index
(NTI) (b) measure the functional similarity of individuals in each plot. Bars represent 1 s.e. and letters
indicate differences between years for NRI. There was no significant variation among years for NTI.

4. Discussion

We used a well-resolved community phylogeny coupled with long-term seedling dynamics data
to improve our understanding of forest regeneration processes following disturbance. We found
evidence that the phylogenetic structure of the seedling community shifted over time as the forest
recovered from hurricane disturbance. Our analyses revealed that the direction and pattern of these
changes in phylogenetic structure depended strongly on whether palm species at the site were
included in the analysis. We also found evidence that changes in phylogenetic community structure
were shaped by both the abiotic environment and biotic interactions in the seedling community.
Specifically, seedlings of small-seeded, light-demanding species, which had been able to recruit under
the high light conditions created by hurricane disturbance, decreased in abundance over time as
the canopy recovered and light levels dropped. At the same time, the high densities of seedlings
present immediately post-hurricane led to significant conspecific and phylogenetic density-dependent
mortality, reducing phylogenetic relatedness of co-occurring seedlings. In addition, our study revealed
that the signature of past anthropogenic impacts were still present in the phylogenetic structure of the
seedling community, even decades after human land use ceased.

4.1. Phylogenetic Community Dynamics Following Hurricane Disturbance

Phylogenetic relatedness in the seedling community was highest in the first census following
Hurricane Georges. Following that census, seedling phylogenetic relatedness declined, reaching a
minimum ~five years post-hurricane, before increasing again. Comparing patterns of phylogenetic
community structure with and without palm species (Figure 1a,b vs. Figure 1c,d) revealed that the
observed changes in phylogenetic relatedness were driven by changes in the abundance of palm species.
In particular, the palm Prestoea acuminata doubled in relative abundance in the seedling plots between
2000 and 2002, becoming the most abundant species in the seedling layer. Because palms are distantly
related to most other species in the Luquillo forest, this increase in palm seedling abundance caused a
sharp decrease in mean phylogenetic relatedness in the seedling community, particularly across the
first census interval. Although Prestoea acuminata clearly recruits well under the high light conditions
created by hurricane damage, it is a relatively large seeded species. This explains why patterns of
phylogenetic community structure did not match patterns of mean seed mass over time when palms
were included in the analyses.
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When palms were excluded, phylogenetic relatedness tended to increase over time,
before dropping significantly in the final census interval (Figure 1c,d). This increase in phylogenetic
relatedness in the years following the hurricane was likely driven by decreased abundance of
light-demanding species that had recruited in response to higher understory light resulting from
hurricane damage to the canopy. Understory light levels were nearly four times higher in the Luquillo
forest six months after Hurricane Georges compared to during seedling censuses 3–9 years later [29].
Small-seeded, light-demanding pioneer species responded strongly to the high light conditions found
immediately after the hurricane, recruiting in higher densities than in other years. For example,
seedlings of the pioneer species Cecropia schreberiana were only recorded in the seedling plots in the
initial census in 2000. Other small-seeded, light-demanding species, such as Psychotria brachiata and
Schefflera morototoni, were relatively common in the 2000 seedling census but had declined sharply in
relative abundance by the subsequent census. Although we lack data on seedling abundances prior to
the hurricane, such a high abundance of small-seeded, light-demanding seedlings were not present
beneath the largely intact forest canopy that existed before the hurricane (JT, personal observation).
As seedlings of these light-demanding species either grew quickly into larger size classes or died out
as light levels dropped due to canopy closure, the relative abundance of more shade-tolerant species
increased. For example, several large-seeded, late-successional species, such as Dacryodes excelsa
and Tetragastris balsamifera, had substantially higher seedling densities in later censuses compared
to the 2000 census. This shift towards larger-seeded, shade-tolerant species can be seen in our
community-level analysis of mean seed mass values, which revealed higher abundance of seedlings
of small-seeded species in the initial census compared to later censuses (Figure 4). At the scale of the
seedling plots, this led to higher similarity of seed mass values over time following the hurricane,
at least for NRI (Figure 5a). Similarly, other studies in Puerto Rico showed consistent increases in
functional clustering [60,61]. This increasing functional clustering in the seedling plots appears to
contribute to the post-hurricane dynamics of phylogenetic community structure when palms are
excluded (i.e., similar temporal patterns of phylogenetic structure in Figure 1c,d and of seed mass
structure in Figure S3a). While we attribute these changes to the effects of increased canopy openness
due to hurricane damage, we also acknowledge that temporal changes in phylogenetic structure could
be influenced by additional factors, such as inter-annual climatic variation [62].

Our survival model results suggest that species interactions are also shaping the
phylogenetic structure of the seedling community. Specifically, we found evidence of phylogenetic
density-dependent seedling mortality, particularly in the first census interval following Hurricane
Georges when seedling densities were elevated due to increased canopy openness [29]. Specifically,
mortality was higher for seedlings surrounding by seedling neighbors of their own or closely related
species (versus distantly related neighbors). The negative effect of closely related neighbors most
likely results from the fact that closely related species tend to have similar resource requirements or be
susceptible to the same natural enemies [32], leading to strong resource competition or enemy-mediated
apparent competition among closely related plant species [63] (reviewed by [64]). Similar negative
phylogenetic neighborhood effects have been reported in other tropical forests. For example,
similar results were reported by Webb et al. [34], Metz et al. [35] and Paine et al. [36] for seedlings
in Borneo, Ecuador, and French Guiana, respectively, supporting the idea that the phylogenetic
composition of local neighborhoods influences regeneration dynamics in tropical forests (but see [65]).
However, our results contrast with those of a study of tree growth and survival, also conducted in
the LFDP, which found little evidence that the phylogenetic relatedness of neighbors had a strong
impact on performance of saplings and trees ≥1 cm dbh [22]. Thus, phylogenetic neighborhood
effects appear to be strongest at earlier life stages in the Luquillo forest. Interestingly, this result
contrasts with findings from the tropical forest of Barro Colorado Island, Panama (which does not
experience hurricane disturbance), where negative effects of neighborhood phylogenetic relatedness
on survival were found for adult trees, but not seedlings [66]. In the present study, we detected strong
negative phylogenetic neighborhood effects on seedling survival only in the first few years following
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the hurricane, indicating temporal variation in the strength of such effects. Thus, our study contributes
to a growing consensus that patterns of phylogenetic density dependence can vary both within sites
(i.e., with life stage and temporally), as well as across sites (e.g., [67]).

4.2. Signature of Past Land-Use on Phylogenetic Community Structure

In addition to impacts of natural disturbance on phylogenetic community structure, we also found
that the phylogenetic structure of the seedling community differed significantly between areas that
had experienced different intensities of past human disturbance. Specifically, seedling communities in
areas of high-intensity past land use were similar to or less phylogenetically clustered than those in
areas of lower-intensity past land use (both with and without palm species included). These findings
are opposite to findings of previous studies examining the impacts of past human disturbance on
plant communities (e.g., [13,15,18,68,69]), which generally found that human disturbance tended to
homogenize not only the phylogenetic composition but also the functional and taxonomic composition
of tree communities [15].

The discrepancy between results of previous studies and our present study may be due to the
interaction between land-use history and hurricane disturbance at our study site, shaping patterns
of both disturbance and recovery. Earlier studies of the Luquillo forest have shown that the two
areas differing in land use history in the LFDP respond distinctly to hurricanes [70–72]. Specifically,
anthropogenic disturbance increases the proportion of secondary species, which are often more
vulnerable to storm damage [73]. Thus the high-intensity past land use area of the plot experienced
more canopy damage in Hurricane Georges than the low-intensity area, leading to higher and more
variable understory light levels in the high-intensity area [74]. These differences likely influenced
recruitment patterns and phylogenetic structure after the hurricane. Indeed, while the two areas
showed qualitatively similar patterns of seedling phylogenetic structure over time, the magnitude of
temporal change was different (Figure 2). The greater hurricane damage in the high-intensity land
use area may have sustained a mix of early successional and late successional species in the seedling
community in the years following hurricane disturbance, which resulted in the higher observed
phylogenetic overdispersion than in the low-intensity land use portion of the LFDP, which suffered
less damage and thus had a more homogenous understory.

5. Conclusions

Our results reveal how disturbance can impact both the abiotic and biotic environment,
causing changes in phylogenetic and functional community structure over space and time. Our study
focuses on a single life stage but suggests that both human and natural disturbance influence the
phylogenetic structure of ecological communities and that their effects are interactive. Understanding
the impacts of disturbance on forest communities, as well as the underlying processes driving
forest recovery, is critical given that the frequency of some types of severe natural disturbances
(e.g., hurricanes, droughts) is predicted to increase due to climate change [75,76]. In addition,
an increasing proportion of forested area is made up of secondary forest recovering from past human
disturbance [77]. Understanding the implications of past human land use for phylogenetic diversity
(and thus evolutionary history and potential), as well as how human disturbance interacts with natural
disturbances, should be a key research priority. Recent disturbance events, such as Hurricanes Irma
and Maria in the Caribbean [78] and droughts and fires in the Neotropics and Southeast Asia due
to the severe 2015–2016 El Niño event [79], offer the opportunity for studies that will increase our
understanding of forest disturbance and recovery in a changing world.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4907/9/9/556/s1,
Figure S1: DNA barcode phylogeny for the Luquillo Forest Dynamics Plot; Figure S2: Mean phylogenetic
relatedness of seedlings after excluding palm species; Figure S3: Mean similarity of seed mass values of
seedlings after excluding palm species; Table S1: AIC values for neighborhood model comparisons with palm
species excluded.

http://www.mdpi.com/1999-4907/9/9/556/s1
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