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 68 

Abstract 69 

Survival rates of large trees determine forest biomass dynamics. Survival rates of small 70 

trees have been linked to mechanisms that maintain biodiversity across tropical forests. How 71 

species survival strategies change across size globally offers insight into the links between 72 

biodiversity and ecosystem function across tropical forests. We tested patterns of size-dependent 73 

tree survival across the tropics using data from 1781 species and over two million individuals to 74 

assess whether complex and diverse tropical forests can be characterized by size-dependent life-75 

history survival strategies. We found species, across the tropics, were classifiable into four 76 

“survival modes” that explain life-history strategies shaping the terrestrial forest ecosystem 77 

carbon-cycle budget and also display the full range of life forms in the forest, from shrubs to 78 
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emergent canopy trees. Frequently collected traits, such as wood density, leaf mass per area, and 79 

seed mass, were not generally predictive of these survival modes, suggesting poor alignment 80 

between those traits and survival strategies across tropical forests. Mean annual temperature and 81 

cumulative water deficit predicted the proportion of biomass of survival modes, indicating 82 

important links between evolutionary strategies, climate, and carbon cycling. We also applied 83 

survival modes in demographic simulations to accurately predict biomass change over time in 84 

sites for which we had long-term data. Our results reveal globally identifiable size-dependent 85 

survival strategies that differ across diverse systems in a consistent way. These modes and their 86 

interaction with climate ultimately determine forest structure, carbon storage, and can link 87 

climate change to future forest states. 88 

 Tropical forests store an estimated 500-1000 Pg of C in biomass and soils1,2, making this 89 

biome the most important component of the terrestrial carbon cycle. Whether intact tropical 90 

forests will be sinks or sources of carbon in the future remains a critical question1,3 that will 91 

fundamentally depend on how different forest species respond to climate change4. The great 92 

diversity of tropical forests might buffer stands from shifts in standing biomass or might promote 93 

changes due to the characteristics of the species that best tolerate novel climate conditions. 94 

Forest carbon volume depends exponentially on the annual rate of tree survival, and tree survival 95 

rates in turn depend on climate5 and the strategies species use to tolerate climate variation. In 96 

most forests, survival strategies range from short-lived species that die within decades to long-97 

lived species that retain carbon for centuries. Changes in forest composition due to differential 98 

survival responses of species to novel climate variation or new regimes of extreme episodic 99 

events (i.e. droughts and storms), may cause large and rapid changes in the terrestrial carbon 100 
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balance that could potentially persist for centuries because different strategies may prove 101 

differentially vulnerable to such changes. Climate-driven impacts on tree survival are potentially 102 

more important than impacts on forest productivity (i.e., photosynthesis and allocation to 103 

growth), which has a relatively constrained and slower influence on forest carbon dynamics6-9.  104 

For species to coexist in diverse forests, they must have roughly equivalent fitness over 105 

long time periods10,11, yet differences in achieving that fitness can influence compositional shifts 106 

when faced with novel long-term ecological changes. Tree species have evolved resource 107 

allocation strategies that, over the course of life-history, emphasize investment in metabolic 108 

maintenance, structural, defensive, and reproductive tissues. Variation in these allocation 109 

strategies leads to variation in demographic rates (i.e. survival, growth and reproduction). The 110 

survival rates that emerge from allocation to maintenance, defense, and structure, can then 111 

determine observed population distributions across space12, size, and age structures13. Allocation 112 

to tissues that increase survival are typically negatively correlated (or “trade-off”) with allocation 113 

to tissues involved in other demographic rates14. For example, using resources to build defensive 114 

structures reduces resources available for growth. Allocation to tissues for increased survival can 115 

lead to distinct vulnerabilities to stressors, such as pathogens15, pests, storms, drought, or 116 

extreme temperatures16, or the reverse. Tolerance of climate change may vary with allocation 117 

strategies resulting in important implications for forest biodiversity and carbon stocks. Greater 118 

understanding of allocation strategies and how demographic rates vary with size should increase 119 

our ability to predict how diverse forests cycle carbon and provide insights into potential shifts in 120 

those cycles. 121 
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Here we quantify tree survival strategies to provide a deeper understanding of basic 122 

ecological and evolutionary features of tropical forests. Using an exemplary dataset of more than 123 

two million trees across the tropics, we developed models of size-dependent survival. Using a 124 

cluster analysis, we aggregated the results of these models into groups of similar survival 125 

strategies that we call ‘survival modes’.  We then explore how these modes reflect important 126 

features of tropical forest carbon and diversity dynamics.  127 

To understand the ecological significance of these survival modes, we : 1) investigated 128 

how survival modes contribute to carbon fluxes through differences in growth rates and biomass 129 

turnover; 2) examined if the modes of survival that emerge from the demographic data are 130 

related to the commonly collected plant traits of wood density, leaf mass per area and seed mass; 131 

3) tested whether the relative abundance of these survival modes relate to climate variables and 132 

4) tested the predictions of our model results against the observed biomass at each site through 133 

time. 134 

Results 135 

Survival models were fit for 1781 species occurring across 14 pan-tropical large area forest 136 

dynamics plots (ranging from 2 to 52 ha each with 371 ha in total in which all stems ≥1 cm 137 

diameter at breast height are recorded (Supplementary Table 1). The parameters from these 138 

models were included in a principal component analysis (PCA) (Fig. 1 details the workflow). 139 

The PCA revealed clear axes of evolved life-history strategies (Supplementary Fig. 1). For 140 

example, PCA axis one defines a continuum characterized by relatively stable survival 141 

probability across the life-cycle at one extreme (either high or low survival) and at the other by 142 

notable increases and decreases in survival probability with size at small and large sizes 143 
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respectively, i.e. species with more extreme thinning due to competition for resources when 144 

relatively small, and senescence or mortality causes related to old age and exposure in the other 145 

direction. Axis two differentiates species based on long-term survival rate (i.e. the upper 146 

asymptote of the survival curve).  147 

Species were hierarchically clustered by loadings of the PCA analysis which creates a 148 

dendrogram from a similarity matrix. An optimizing analysis of the inertia of cluster numbers 149 

across the dendrogram resolved four survival modes (Fig. 2, Methods). To test the robustness of 150 

our survival modes, we bootstrapped the Jaccard similarity index for all clusters which were well 151 

above the 0.75 threshold17 indicating stable clustering for our size-dependent survival modes 152 

(Supplementary Table 2). 153 

Although annual survival probability across much of the life-cycle was high for most 154 

species (greater than 0.95), there were species with much lower long-term survival rates (less 155 

than 0.78, Supplementary Table 2). Further, the degree of juvenile mortality varied between 156 

modes indicating differences in the strength of mortality mechanisms in small sizes across the 157 

four modes. Finally, there were also clear differences between the maximum sizes at which 158 

species showed increased mortality (senescence) indicating important mode-dependent life-159 

expectancies (Fig. 2).  160 

The four survival modes clustered along multiple axes, but there was a clear delineation 161 

among species of size at senescence which allows us to group them by life form. Understory 162 

species are characterized by their small maximum diameters, with an across-site mean 99th 163 

percentile diameter of 9.8 ±2.4 cm (mean ±1 sd). Transient species are distinguished by their 164 

very low overall survival with an across-site mean maximum-survival rate of 78% yr-1 and an 165 



9 
 

across-site mean 99th percentile diameter of 14.3 ±9.4 cm. There are two groups of large stature 166 

tree species or species capable of reaching canopy sizes. Canopy species are the group with 167 

intermediate maximum size, across-site mean 99th percentile diameter of 27.8 ±7.0 cm and lower 168 

small-diameter survival rates compared to Large Canopy species which have larger maximum 169 

diameter, across-site mean 99th percentile diameter of 68.4 ±18.5 cm and relatively higher 170 

survival at smaller diameters. Our analysis has an abundance threshold of 200 individuals; 171 

species with lower abundance are Unclassified, and it is possible that some of them display other 172 

survival modes that were too rare to describe statistically.  173 

Survival modes varied in abundance (Supplementary Table 3) and dynamics across 174 

forested plots (Fig. 3). The Canopy mode was typically the most species rich, followed by the 175 

Understory and Large Canopy modes (Supplementary Table 4). The species included in the 176 

cluster analysis represented 76.7% (range: 46.9-97.0%) of the biomass on average across the 177 

plots (Supplementary Table 3 & Supplementary Fig. 2).  178 

We calculated carbon lost to mortality at each site in order to understand the influence of 179 

these survival modes on carbon residence times. Total carbon loss from tree mortality ranged 180 

from 0.14 - 5.6 Mg C·ha-1·yr-1with a mean of 2.28 Mg C·ha-1·yr-1 for all survival modes 181 

including Unclassified (Fig. 3). The Lambir plot in Malaysia had the highest absolute rate of 182 

annual carbon loss. The dry tropical forest Palamanui plot in Hawaii had the lowest rate of 183 

annual carbon loss due to tree mortality. Somewhat surprisingly, the plots that are commonly 184 

struck by typhoons and hurricanes (Luquillo, Palanan and Fushan) had intermediate rates of 185 

carbon loss due to mortality even though the plots experienced storms during sampled intervals, 186 

demonstrating that species at these sites are potentially selected to tolerate disturbances instead 187 
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of recover from them. The overall portion of carbon loss due to mortality varied greatly among 188 

these forests, though on average Indo-Malaysian forests had the highest rates of absolute carbon 189 

loss (Fig. 3); alternately, relative to total biomass neo-tropical forests lost slightly more biomass 190 

(Supplementary Table 3). 191 

Common plant traits had limited ability to predict survival modes, indicating that species 192 

within given survival modes were diverse in these traits. Only the Transient mode was 193 

significantly less dense wood that the other survival (ANOVA F= 9.65, p-value<0.001, Fig 4a), 194 

when we limited the analysis to sites (7 of 14) that had locally collected wood density values the 195 

Large Canopy and the Transient groups had significantly lower wood density than the 196 

Understory and Canopy survival modes (Supplementary Fig. 3). Leaf mass per area (LMA) 197 

varied significantly among survival modes, with the Transient and Large Canopy species having 198 

significantly lower LMA than the Understory and Canopy species (ANOVA, F=7.28, p-199 

value<0.001) (Fig 4b). The relation between the natural log of seed mass and survival mode 200 

revealed no significant difference among clusters (ANOVA F=2.26, p-value= 0.086) (Fig. 4c). 201 

These analyses were constrained by the low current availability of functional trait data: LMA 202 

was only available for 40.4% and seed mass for only 8.1% of species. This result does, however, 203 

support an emerging consensus in the trait literature that using traits as proxies for life-history 204 

strategies may be constrained to specific contexts and questions, and does not offer an easy link 205 

between measurements and performance18-20. 206 

 We related mean annual temperature (MAT), mean annual precipitation (MAP) and 207 

cumulative water deficit (CWD) at each forest to the relative percent biomass of Large Canopy 208 

survival mode species (Supplementary Fig. 4) to understand if there were climate dependencies 209 
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in survival mode composition. Multiple linear tobit regression (p-value = 0.000083, McFadden’s 210 

pseudo R2 = 0.24, note this is not the same as OLS R2 and a model with a statistically good fit to 211 

the data will have McFadden’s pseudo-R2 between 0.2 and 0.4) indicated that Large Canopy 212 

biomass relative abundance had a negative relation to MAT, but had a positive relation to CWD 213 

and no relation to MAP. The relative percent biomass of Canopy and Large Canopy survival 214 

modes were inversely related (Supplementary Fig. 2). Transient survival mode biomass was 215 

miniscule and was not modeled. The Understory mode relative biomass was positively related to 216 

MAT (p-value = 0.031, McFadden’s pseudo R2 = 0.12), but lacked any significant relation to 217 

CWD or MAP.  218 

To further explore the characteristics of the survival modes, especially to understand how 219 

survival and growth interact to affect the progression of individuals through their life-cycle, we 220 

calculated mean growth rates by survival mode. We found that growth rates significantly differed 221 

among survival types where the Large Canopy survival mode had the largest mean annual 222 

growth rate 2.18 mm·yr-1, while the Understory survival mode was the slowest growing 0.52 223 

mm·yr-1 (Fig. 5). A similar pattern was found when we expressed growth in terms of biomass 224 

accumulation (Supplementary Fig. 5). The Canopy mode has nearly half the growth rate of the 225 

Large Canopy mode suggesting carbon residence times of these two groups may be similar, but 226 

the Large Canopy mode would sequester more carbon in a similar time frame.  227 

We found strong correlation (marginal R2 0.97) between observed biomass in each 228 

survival mode and biomass predicted from an Individual Based Model (IBM) run at each site, in 229 

which individuals were classified by survival mode (Fig. 6).  Biomass was small and changed 230 

little across census intervals, particularly for the Understory and Transient survival modes.   The 231 
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accuracy of predictions of biomass varied for the Large Canopy and Canopy modes. Predicted 232 

biomass was underestimated in the Large Canopy mode at Lambir and Laupahoehoe by 47.68 233 

and 42.15 Mg∙hectare-1, respectively. In contrast, expected biomass was overestimated in the 234 

Canopy and Large Canopy modes at BCI, by 14.45 and 26.62 Mg∙hectare-1 respectively.  235 

Discussion 236 

Our results provide objective and quantitative descriptions of global size-dependent tropical tree 237 

survival that reflect some of the classic descriptors of tree species demographic strategies21. We 238 

discovered groups of species that differ in how they survive as they grow. We found mortality at 239 

small sizes varies among the survival modes, likely reflecting the tradeoffs inherent in competing 240 

for limited resources (e.g. light) in the understory22, or susceptibility to pests23 and 241 

pathogens24,25. We also found that survival modes varied in their senescence phase, where causes 242 

of mortality are likely driven by reallocation of resources from resistance or tolerance of 243 

structural damage26, water limitation16 and accumulation of pathogens27 to increased investment 244 

in reproduction.  Our contention that this difference in survival at large sizes is a life-history 245 

strategy and not simply a product of a lower average survival rate for earlier senescing modes is 246 

supported by the fact that three of the four modes had very similar maximum survival rates, but 247 

differed remarkably in their size at senescence. 248 

Past studies have indicated that tree survival under environmental stress can depend on 249 

tree size16,28. We discovered that climatic factors correlated well with the relative biomass of 250 

survival modes. The climate correlates with different proportions of survival modes suggests 251 

differences in carbon residence times and forest structure with climate. Higher relative biomass 252 

in the Large Canopy survival mode was observed in forests with lower MAT and longer dry 253 
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seasons and less Canopy species biomass. Considering that larger individuals can be more 254 

susceptible to drought16, the cumulative water deficit result seems counter-intuitive at first, but it 255 

may be that these species are deciduous or have particular adaptations for water limitation 256 

tolerance in forests with intense dry seasons. Alternately, the prevalence of the Large Canopy 257 

mode may be driven by other environmental factors not considered here, such as soils or 258 

biogeographic history. The increase in the prevalence of the Understory mode with increasing 259 

temperature suggests an advantage to being shaded in warmer forests. Indeed, photosynthetic 260 

efficiency and stomatal conductance decline above a temperature threshold27, which may provide 261 

an advantage to being shaded in warmer forests though the best fit to the data was linear. 262 

Differences in the dominance of these survival modes among tropical forests are likely driven by 263 

many mechanisms and understanding those drivers is an important next step towards accurately 264 

forecasting the fate of forests. 265 

Widely collected plant traits explained some of the differences in size-dependent survival 266 

modes in our analysis. Wood density has been previously recognized as a significant predictor of 267 

tree survival29,30 and growth-survival trade-off in saplings31, but variation in size-dependent 268 

survival was not explicitly considered in those analyses. We found that clear associations 269 

between trait means and survival modes were demonstrated only for the Transient mode, which 270 

likely describes many aggressive light-dependent pioneering species. Lower LMA in the 271 

Transient and Large Canopy modes combined with mean growth rates of those modes suggests 272 

that those species likely have higher metabolic costs, potentially lower leaf nitrogen 273 

concentrations, and shorter life leaf-span32. Variation in seed mass may reflect a suite of 274 

strategies independent from allocation to size-dependent survival at the sizes we examined. Seed 275 
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mass among reproductive adults might correlate better with individual growth rates or different 276 

species’ reproduction life-history strategies33 and seed mass may correlate with survival in 277 

individuals < 1cm diameter at breast height (DBH).  278 

Our model predictions fit observed forest biomass well in an IBM. Despite large amounts 279 

of demographic data being available globally, few studies have moved beyond descriptions of 280 

mortality averaged over species or coarse size classes. Models in which survival probability 281 

changes as a continuous function of size are necessary to accurately represent the variation in the 282 

way that individuals of different species move through the life-cycle, thus allowing more 283 

biologically nuanced forward projection of populations and communities. Even when combined 284 

with a relatively simple growth model, the survival modes presented here were able to capture 285 

the change in biomass at each site attributed to each survival mode.  286 

 The IBM projections demonstrate that our survival modes might offer benchmarks for 287 

biome models that simulate forest dynamics at a global scale (e.g. terrestrial biome models 288 

(TBMs)) or dynamic global vegetation models (DGVMs), where vegetation is coupled with 289 

climate. Attempts at modelling carbon fluxes  in DGVMs have led to very divergent results due 290 

to the potential response of forests, both in estimates of future atmospheric carbon34 and in 291 

terrestrial vegetation carbon stocks6. The evolutionary strategies of tree survival, integrated 292 

within the ecological models of environmental conditions might provide a better pathway 293 

towards forecasting these diverse systems6,35. To do so, however, requires integration of field 294 

data, statistical models, and size-structured TBMs that can accept demographic data as inputs. 295 

We compared the observed mortality rates from our plot data with mortality rates from one size-296 

structured DGVM, Functionally Assembled Terrestrial Ecosystem Simulator (FATES), with one 297 
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tropical broadleaf evergreen plant functional type36. We found that FATES underestimated small 298 

tree survival, but over-estimated large tree survival compared to our data. Specifically, the 299 

annual mortality rate of trees larger than 70cm DBH in FATES was 1.47%, while the observed 300 

mean annual mortality rate from ForestGEO plots for the same size class was 2.85% 301 

(Supplementary Fig. 6), which could result in overestimation of carbon storage in the FATES 302 

model. This deviation of the FATES model is not on the surface a large error; however mortality 303 

rates compound annually, and this almost two-fold underestimate of annual mortality reflects a 304 

significant mismatch to the pace of forest dynamics over decades. Incorporation of size-305 

dependent survival constraints could improve how we assess, and perhaps how we model 306 

mortality for the suite of DVGMs that can incorporate size-based survival37. 307 

Despite the large range of species diversity and biomass turnover represented in our 308 

analysis, we found consistent patterns of size-dependent survival (Supplementary Fig. 7) that are 309 

not strongly tied to commonly collected plant traits. The relative abundance of different survival 310 

modes varied with temperature and water deficit, which has implications for community 311 

composition, dynamics and carbon storage. If the temperature-survival mode relation is 312 

mechanistically driven, then as temperature rise forests would shift from dominance by Large 313 

Canopy mode species to Canopy mode species resulting in less carbon sequestered. Future work 314 

based on our findings should investigate how trade-offs in growth and survival affect the survival 315 

modes identified, and how forecasting tropical carbon stocks could be improved by explicitly 316 

considering large tree survival mechanism to constrain terrestrial carbon dynamics.    317 

Methods 318 
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We used a global dataset of tree demography to build models of survival probability as a 319 

function of size. We used data from 14 plots that follow the same methodology: all woody stems 320 

≥ 1cm in diameter at breast height have been identified to species, mapped, and measured every 321 

five years (following38 and summarized in Supplementary Table 1). All species with > 200 322 

observations across the censuses were included in the following analyses, comprising a total 323 

sample of over two million individuals in 1781 species. All analyses were conducted in R39. 324 

We estimated size-dependent survival by fitting a functional form to the data for every 325 

species in each census interval (see Fig.1 for workflow diagram). We used a Bayesian 326 

framework (see Supplementary Table 5 for details of model fitting), and fit the model in R using 327 

Stan40. The basic form of the survival function allows for variations in the classic ‘U-shaped’ 328 

mortality curve13,41-43 (ours is inverted to survival). Because the data are heavily weighted to 329 

small individuals and the mechanisms that cause mortality across size can vary significantly, we 330 

combined two logistic functions to describe mortality across size (see Supplementary Fig. 7 for 331 

examples of the species specific fits and Supplementary Fig. 8 for sites). The probability of 332 

survival is therefore given by 333 

𝑆 = (
𝐾

1+exp(−𝑟1((𝑥−𝑝1)))
)^𝑡  for all x < thresh  (Equation 1) 334 

 335 

 𝑆 = (
𝐾

1+exp(−𝑟2((𝑥−𝑝2)))
)^𝑡 for all x >= thresh 336 

where S is annual survival probability, K, r and p are the upper asymptote, the rate of change and 337 

the inflection point of the survival curve, x is size (DBH in mm), t is the time in years between 338 
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censuses, and thresh is the size threshold at which the two functions meet. The threshold was set 339 

at the median DBH size (see Supplementary Fig. 7). This ensured that species had an equal 340 

number of observations informing each of the two curves. Subscripts 1 and 2 denote parameters 341 

for the curves describing survival in individuals below and above the size threshold respectively.  342 

The parameters in these functions hold distinct meanings across tree life-history. K 343 

determines the maximum annual survival probability, and usually remains constant over most of 344 

the tree’s life-history, especially in large statured species. Mortality of small individuals, often 345 

due to thinning in the understory is determined by r1 and p1, and r2 and p2 define survival at the 346 

largest sizes. 347 

The five parameters from the joint survival functions (K, r1, p1, r2, p2) for each species 348 

in each census interval were standardized to unit scale and included in a Principal Components 349 

Analysis (PCA). To ensure that species had equal weight in the PCA, species were weighted 350 

equal to the inverse of the number of census intervals over which they were modelled. We 351 

derived modes of survival across species by performing a hierarchical cluster analysis on the first 352 

five dimensions of the PCA using the “HCPC” function for hierarchical cluster analysis from the 353 

R package FactoMineR44. The HCPC function builds a dendrogram of species relatedness from a 354 

similarity matrix. It then calculates the within- and between-group sum of squares (also termed 355 

“inertia’) for a range of potential cluster numbers and selects the number of clusters where the 356 

change in between group variance is minimized45. Four clusters were selected using this 357 

algorithm, and we tested the robustness of the recommended clusters with Jaccard similarity 358 

index produced via bootstrapping function, clusterboot in the fpc package17. To visualize these 359 

modes (i.e., the four clusters, Fig. 2 and Supplementary Fig. 7), we used the mean values of 360 
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parameter sets within each cluster and their covariances to randomly draw 1000 simulated 361 

survival curves. At each millimeter increment, from 1 to the maximum size, we then selected the 362 

median, 50% and 90% quantile values. We also plotted the survival function corresponding to 363 

the most representative species of each mode (Supplementary Fig. 8), i.e. the species from each 364 

cluster closest to the centroid.  365 

 In calculations of biomass loss due to mortality for each survival mode, biomass was 366 

calculated for the main stem of each tree using general tropical allometries for trees without 367 

height measurements46, as tree height measurements are not part of the ForestGEO monitoring 368 

protocol. These allometries estimate height based on diameter of the stem and an environmental 369 

index to ultimately calculate biomass. For each survival mode, annual carbon loss due to 370 

mortality was based on tree diameter at the beginning of the census interval and made annual by 371 

dividing by the mean census interval time (typically ~5 years) and we also report mean mortality 372 

rate by survival mode at each site for comparability (Supplementary Fig. 9). Absolute annual 373 

diameter growth rates were calculated for each survival mode by subtracting diameters at the 374 

beginning of the census interval from the ending diameter and dividing by the time between 375 

censuses for each tree.  376 

We tested the correlation between survival modes and three common functional traits: 377 

wood density, leaf mass per area (LMA), and seed mass. Trait values for wood density (n=1781, 378 

some species were assigned genus or family level values when species specific values were not 379 

available) were obtained from compiled databases47-49, half of the plots had locally collected 380 

wood density values. Leaf mass per area (n=719) and seed mass (n=144) data were collected 381 

locally31,50-52. Differences between trait means among survival modes were compared with a 382 
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Tukey HSD test. To test associations between survival modes and climate variables, we 383 

calculated mean annual temperature53 (MAT), mean annual precipitation53 (MAP) and mean 384 

Climatic Water Deficit (CWD) for each plot (1901-2013)53. As a metric of aridity, annual CWD 385 

(mm yr-1) was calculated as the sum of monthly deficit values which is the difference between 386 

potential and actual evapotranspiration46,54. Because the response variable was a percentage 387 

bounded at 0 and 100, multiple tobit regression models were run with backwards selection using 388 

the vglm function in the VGAM package55 on MAT, MAP and CWD. Residual diagnostics 389 

indicated that the Palamanui plot data was an outlier and was subsequently removed from the 390 

analysis of climate relations; none of the remaining plots data had undue leverage on the 391 

regression. The best fit model by AICc contained MAT and CWD as significant predictors. 392 

We projected the biomass at each site across census intervals using an Individual Based 393 

Model (IBM) parameterized with mean parameters for each survival mode, i.e. stems were 394 

assigned a survival mode and each year grew and survived with probabilities corresponding to 395 

the 95th% growth rate and the size-dependent survival curve of that mode. The site level IBM 396 

was initialized by the diameter distribution for each survival mode in the first census and then 397 

projected forward in time the length of the census interval at each site. At the end of the 398 

projection, we calculated biomass in each survival mode based on the mean wood density of 399 

each mode. We used the 95th percentile of growth rates by survival mode in the model to best 400 

capture canopy tree growth rates which are the greatest contributors to biomass, we also present 401 

the results using mean growth rate for comparison (Supplementary Fig. 10). Biomass was 402 

calculated as above using the mean wood density of each survival mode rather than species 403 

specific values. 404 
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Figure Captions 559 
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Figure 1. Schematic diagram of the workflow for this analysis.  560 

Figure 2. Survival probability as a function of DBH for each of the four identified survival 561 

modes. Survival modes were derived from a hierarchical cluster analysis on the parameters from 562 

the survival function fit to 1781 species at 14 large area forest plots. In each species, the survival 563 

function consists of two curves fit to individuals above and below a species specific size 564 

threshold. The means of the size thresholds for species within each mode are shown with the 565 

vertical dashed lines. In each mode, the solid line represents the mean of the survival functions 566 

from species within the mode and the lighter and darker shaded regions show the 50% and 90% 567 

uncertainty range around the mean. Parameters for each mean curve are listed in Supplementary 568 

Table 2. 569 

Figure 3. Site-level mean annual aboveground carbon loss to mortality for each survival mode 570 

across all census intervals including error bars for standard error. Species that did not have 571 

enough individuals to model survival are presented as Unclassified. Corollary figure for 572 

mortality rates presented in Supplementary Fig. 10.  573 

Figure 4. In general, traits do not map strongly onto the four survival modes. A) Natural log 574 

transformed wood specific gravity at all sites. B) Leaf mass per area at 6 sites (Lambir, BCI, 575 

Luquillo, Laupahoehoe, Palamanui and Fushan), C) Natural log transformed seed mass and 576 

survival modes at Luquillo, Laupahoehoe, Palamanui and BCI where there were no significant 577 

differences between survival modes. Letters represent significant differences among survival 578 

modes in traits at alpha=0.05 by Tukey HSD test. 579 

 580 
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Figure 5. Plot level average annual individual growth rate by survival mode boxplots with the 581 

width scaled to the square-root of the number of species that make up the survival mode for all 582 

forest plots. Significant differences (n=14, alpha=0.5, Tukey HSD test) denoted by letters above 583 

category. 584 

 585 

Figure 6. Observed biomass by survival mode versus predicted biomass from an individual based 586 

model at each site (marginal R2 = 0.9735). The line between points traces census interval 587 

typically diverging from the dashed line, which represents the 1:1 line, with time.  588 
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