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“Every heritor, Life-Renter, and Wodsetter… within this ancient Kingdom of Scotland, worth 

one thousand pounds of yearly values Rent shall inclose four Aikers of Land Yearly at least, 

and enclose the same about with Trees of Oak, Elm, Ash, Plain, Sauch, or other Timber at 

three yards distance” 
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Lay summary 

 

Planting trees provides society with many benefits. Trees provide timber, wood and other 

products, they provide habitat for wildlife, they provide us with beautiful places to visit, they 

provide employment, shelter, and they reduce flooding and store carbon from the atmosphere 

in exchange for the air that we breathe. For these reasons, Governments in the United 

Kingdom and elsewhere are committed to planting trees to increase the area of woodland. 

Different members of the same species can vary substantially. In trees, it may not be quite as 

obvious as it is with dogs or humans but over many generations of natural selection in 

specific environments, trees often become adapted to aspects of their home environment, a 

phenomenon known as local adaptation. One consequence of local adaptation is that it means 

that locally collected seed should have an advantage, in some way, over non-locally 

collected seed if they are grown together. For this reason, when planting woodland, seed for 

planting has traditionally been collected from a local forest under the assumption that it will 

be best suited for the planting site and that it will help to conserve natural patterns of genetic 

variation. Under rapid climate change, the environments to which trees are adapted are 

changing at rates much faster than populations of trees can move and so it has been 

suggested that we should collect seed from further south, as trees will be better adapted to 

the warmer conditions expected in the future. However, there is little evidence yet to suggest 

that this strategy will work – and, at least in Britain, information on variation within and 

between populations of trees is very much limited. 

This thesis begins by investigating the specific case of ancient semi-natural ‘Caledonian’ 

Scots pine forests in Scotland. Seed zones for Scots pine were defined by describing 

geographical regions in which the trees contain different frequencies of biochemical 

markers. However, the biochemical variation is not thought to influence tree survival, and 

the regions, which are all in the uplands, contain much environmental variation within them. 

By looking at the other plants that grow in these forests, and analysing long term average 

climatic variables, a more biologically meaningful way to match seed sources to planting 

sites is recognised and described. 

Adaptation to climate change will depend on exchange of genes (via pollen and/or seed) 

between different populations of trees, to ensure that there will be high levels of genetic 

variation upon which natural selection can act. This can only be successful if trees in 

different places can reproduce at the same time. To discover whether this is the case, a 
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sample of twenty trees at each of three (2014) to five (2015, 2016) native pinewood sites was 

visited in three consecutive springs. The results show that pollen is released by male flowers 

earliest in the warmer west of Scotland, and they can be separated from the trees in the 

colder east by up to fifteen days but that populations which are closer to one another will be 

more synchronised. 

Computer simulations were used to test different methods of sourcing seed (collecting seed 

locally, collecting seed from further south, collecting mixtures of local and southern seed, 

collecting seed from anywhere). The simulations suggest that planting trees grown from seed 

collected further south means that more adaptive change can be achieved but that this can 

come at the cost of very high levels of mortality. 

Members of the domestic forest nursery sector in Great Britain were consulted to identify 

problems they face when supplying native trees. The major issues, mentioned unanimously 

were related to the way forest planting schemes are funded and the limited notice nurseries 

get from their customers. It takes a long time to grow a tree from seed but it is almost 

impossible for these businesses to accurately predict demand which means that trees are 

either wasted when there is overproduction, or imported when there is a shortage. Reducing 

uncertainty and volatility in grant systems would help the nursery sector supply the trees that 

are needed for future forests. 
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Current and emerging threats to trees and forest ecosystems require a re-evaluation of the 

way forest genetic resources are managed. Governments in the United Kingdom and 

elsewhere are committed to the restoration, expansion and creation of new woodlands. Tree 

populations are often adaptively differentiated from one another, so a key question 

underpinning the success of planting schemes is the choice of seed origin. A long held 

understanding is that locally sourced seeds will have the best opportunity to tolerate 

conditions of the planting site (local provenancing). However, the rate at which the 

environment is changing introduces a great deal of uncertainty into decision making and 

there is concern that climate change is proceeding at rates faster than those with which 

locally adapted trees would be able to cope. As such, there are suggestions that seed 

collected from areas already experiencing the anticipated future conditions will improve the 

adaptability of forests (predictive provenancing). This thesis investigated outstanding 

questions relating to the merits of the local provenancing and predictive provenancing 

approaches, and the practical implementation of seed sourcing policy in British forestry. 

The validity of existing seed zone boundaries used under local provenancing was analysed 

for ancient semi-natural Scots pine Pinus sylvestris L. forests of Scotland. Vegetation 
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description and analyses of climatic covariates revealed that the existing series of seed zones 

used to guide selection of planting stock for restoration do not necessarily environmentally 

match seed sources to planting sites under current conditions. Additional disparity is 

introduced when edaphic variation (or proxies for this) is considered. 

To determine whether future adaptation under local provenancing may be restricted by 

limited pollen flow among populations of native Scots pine in Scotland, the timing of pollen 

production in five populations was estimated by repeatedly measuring strobilus development 

on a series of twenty trees over three consecutive springs. Differences in the mean predicted 

date of pollen production were found, with populations in the warmer west shedding pollen 

earliest each year, although the timing and differences in timing among populations varied 

from year to year, with shedding taking place earliest in the warmest of the three years and 

latest in the coolest year. 

A theoretical multi-patch, ecological genetic individual-based model (IBM) was developed 

to investigate the utility of different seed sourcing strategies (local versus non local 

provenance) and their capacity to help populations adapt to directional climate change. As 

well as being adapted to climate, which varied in a clinal pattern, individuals also had to be 

well adapted to the habitat conditions of the planting site in order to survive hard selection at 

the seedling stage. The model showed that population size of a new planting was reduced 

when planting stock adapted to the future conditions but not to current conditions was 

deployed. The differences were most severe when selection acted simultaneously on both the 

climate-related and the habitat-related phenotype. 

Finally, a series of in-depth qualitative surveys conducted with members of the domestic 

forest nursery and seed supply sector in Great Britain found that there are many difficulties 

associated with seed sourcing and the supply of trees. These problems arise due to a very 

limited ability to predict demand at the time of seed sowing, and lead to waste when demand 

is overestimated and importation of planting stock when demand is underestimated. 

Confidence and competitiveness in the domestic sector could be greatly improved by 

updating seed sourcing guidelines and by simplifying certain aspects of the process by which 

forest planting projects are funded. 
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Chapter one 

Introduction and background 

1.1. Introduction 

Initiatives are in place to restore and extend the distribution of forests around the world 

(Thomas et al., 2014). The success of these initiatives depends, amongst other 

considerations, on the availability and selection of planting stock which is of good quality 

and is sufficiently adapted to conditions at the planting site in order to survive, compete and 

reproduce. This situation is exemplified by the case of native woodland establishment in 

Great Britain (GB) where high demand for planting stock is driven by ambitious policies 

aimed at increasing the area of forest cover (Scottish Executive, 2006; Forestry Commission, 

2007a; Welsh Assembly Government, 2009). If the policy objectives of increasing forest 

area are to be met, it is essential that there is a general understanding of the ecological and 

evolutionary processes underpinning appropriate seed source selection in a changing climate 

and how policy can encourage such practice. 

Until recently, policies relating to seed sourcing in GB and elsewhere have been based on the 

understanding that climatic conditions are stable over the long term. Increasing recognition 

of rapid environmental change undermines this assumption (Rehfeldt et al., 2002; Parmesan, 

2006). Not only is environmental change expected to be rapid, it is also difficult to predict. 

Whilst we might expect directional change in mean values of some climatic variables, 

increasing variability and increases in the frequency and severity of some extreme events are 

probable (IPCC, 2013).  The prevalence of some endemic pests and diseases is also likely to 

increase, as a result of climatic shifts (Battisti et al., 2005; Sturrock et al., 2011). Finally, 

increased pressure from novel, exotic pests and pathogens is anticipated, caused in part by 

greater long distance movement of plants by humans (Brasier, 2008; Liebhold et al., 2012; 

Banks et al., 2015, Jung et al., 2015). These considerations indicate the need for a thorough 

re-evaluation of existing seed sourcing guidelines (Alberto et al., 2013, Lefèvre et al., 2014). 

One option which has gained considerable attention in recent years is the possibility of 

sourcing seed from areas which already experience conditions anticipated for planting sites 

in the future (Aitken and Whitlock, 2013; Breed et al., 2013), a practice which is described 

by Breed et al. (2013), as ‘predictive provenancing’, which is the name which will be used in 

this thesis.  
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Before deciding whether such strategies ought to be adopted, it is necessary to ask a series of 

questions to fill gaps in our knowledge. Parts of the thesis (chapters  two and three) will 

focus on the specific case of Scots pine Pinus sylvestris L. within its native range in 

Highland Scotland, for which there is already some evidence of adaptive differentiation 

among populations in response to environmental variation (Salmela et al., 2011; 2013; 

Donnelly, 2016; Perry et al., 2016a,b). Chapters four and five consider general principles and 

challenges to updating seed sourcing policy but do not focus on any particular study system. 

The questions of the thesis and the means by which they will be addressed are: 

i. At what scale do climatic selective regimes in GB vary? How can this be described 

and does this preclude the use of space-for-time substitutions in adaptive seed sourcing? Do 

other environmental characteristics vary at more idiosyncratic scales than climate among tree 

populations? Is there evidence that these non-climatic factors are selectively important? 

Description and classification of variation in plant community composition is conducted to 

describe groups of sites which are expected to experience similar selective regimes. 

ii. Are fragmented populations sufficiently well connected by gene flow to maintain 

the high levels of genetic variation required for adaptation to climate change? A possible 

barrier to gene flow is reproductive asynchrony and so the timing of pollen production in a 

series of native pinewoods is estimated. 

iii. What factors influence the suitability of different seed sourcing strategies? A 

theoretical model is developed which compares the current practice of local provenancing 

with alternatives such as introducing pre-adapted genotypes in various proportions and 

spatially unbiased seed sourcing. 

iv. If alternative seed sourcing strategies are adopted, what practical changes in the 

supply of seed and plants would be necessary to enable this? Do pre-existing problems 

preclude changes to policy and how can these problems be remedied? Evidence gained from 

in-depth, qualitative interviews within members of the plant and seed supply industry in GB 

is used to provide an overview of the challenges faced by the industry.  

Before beginning the thesis proper, it is necessary to provide some background against 

which the original investigations of the thesis rest. This introductory chapter will begin by 

briefly describing the native woodland resource in GB, with a historical account of planting 

efforts and current policy priorities. The introduction will then discuss genetic resources in 

forest trees and the current state of the knowledge base pertaining specifically to genetic 

variation in trees within GB as well as a description of current domestic seed sourcing 
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guidance. This is followed by a brief summary of climate change in GB, the impacts that 

climate change may have on forests and an analysis of the options for changing seed 

sourcing policy to account for rapid climate change. The introduction concludes by setting 

out the main purposes of the thesis and provides a rationale for each of the chapters. 

1.2. The forest resource of Great Britain 

The character of native woodlands in Great Britain (GB) differs regionally. The native 

woodlands of lowland Britain are composed of temperate mixed broadleaved forest in which 

the dominant canopy species tend to be Quercus robur L., Fraxinus excelsior L. and Fagus 

sylvatica L. Towards the north of the country, particularly in the uplands of Scotland, there is 

a gradient towards boreal forest communities characterised by Pinus sylvestris and Betula L. 

spp. This coenocline represents not only a relatively steep environmental gradient from 

south-east to north-west but also the migration history of trees in the British landscape 

during the Holocene (Birks, 1988).  

There has been much speculation about the ‘past natural’ sensu Peterken (1993) status of the 

GB landscape and how much of it was maximally covered in woodland. A view which 

prevailed throughout much of the 20
th
 Century was that the vast majority of GB would have 

been covered in more or less continuous forest (Tansley, 1911). More recently, it has been 

pointed out that this vision is unrealistic, even without human intervention (Breeze, 1992; 

Vera, 2000).  

Regardless of the previous maximum extent, it can be generalised that woodland cover has, 

at some time in the current inter-glacial period been much higher than it is currently (Roberts 

et al., 1992). A combination of climatic changes and human deforestation during the 

Holocene has caused the coverage of native woodland to decline substantially. By the early 

20
th
 century, it is estimated that woodland cover was around 5% (Smout, 2005). Some large-

scale tree planting had taken place between the 17
th
 and 20

th
 century on private estates, 

typically in close proximity to the big estate houses (House and Dingwall, 2003) although 

there was no national policy in place to protect, expand or manage woodlands in perpetuity 

(Foot, 2003). 

It was not until the establishment of the Forestry Commission in 1919 following the First 

World War that a deliberate public initiative to create woodlands as a strategic reserve of 

timber for military efforts that broadscale planting of trees took place (Smout, 2005). This 

was made possible by public purchase of relatively cheap land unsuitable for agriculture and 
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the initiation of ‘dedication’ and tax incentive schemes for private landholders and investors 

in forestry (Warren, 2000; Foot, 2003). 

By the time of the Second World War, newly established plantations were still too young to 

be exploited and as such, private forests and native woodlands were felled to support military 

efforts. The net effect of this was that by the early 1960’s woodland cover had increased by 

only 1% in Scotland, despite public planting initiatives (Foot, 2003). From the 1960’s 

onwards, afforestation expanded rapidly due to renewed demand, the emergence of private 

forestry companies, technological advancements and favourable tax regimes for woodland 

creation (Foot, 2003).  

Intensive silvicultural planting of Sitka spruce Picea sitchensis (Bong.) Carr., a coniferous 

species from the northern Pacific seaboard of North America became particularly prevalent 

in the landscape due to its ability to grow well on very wet soils of the uplands (Samuel et 

al., 2007). This planting took place not only on previously unwooded land but also replaced 

semi-natural woodland, which declined in extent by 20% during the century (Hampson and 

Peterken, 1998). Conifer plantations now account for 51% of the forest area in GB, of which 

Sitka spruce represents 50% (Forestry Commission, 2011a). This species continues to 

account for the sale of 30 million tree seedlings annually to Scotland, much of which is used 

for restocking felled plantations (Forestry Commission, 2016). 

Large scale conifer plantations had been unpopular for a long time due to their perceived 

detrimental landscapes. Ultimately, controversy was caused by some high profile schemes 

(Warren, 2000; Foot 2003). An example of such a high profile scheme, or series of schemes 

can be found in the rapid proliferation of tree planting that took place on the ecologically 

important deep peats of the ‘Flow Country’ in Caithness during the late 1970’s and 1980’s 

which was enabled by private investment in forestry by absentee landholders (Mather and 

Murray, 1987). At the time, willingness to pay analyses discovered that the general public 

claimed that they would pay personally to prevent further afforestation (Hanley and Craig, 

1991).  An increasingly poor public perception of forestry, and greater recognition of the 

multiple possible benefits of sustainable forest management led to policy changes to 

encourage multi-functional forest planning (Slee, 2005; Quine et al., 2013; Thomas et al., 

2015; Nijnik et al., 2016). The tax incentive system was removed in the chancellor’s budget 

of 1988 (Hansard, 1988) and replaced with a series of ‘woodland grant schemes’, which 

would ensure that woodland creation could continue with publicly invested funds (Urquhart 

et al., 2010). Such woodland grant schemes would eventually provide funding not only for 
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initial planting but also for assisting the expansion of native woodland by natural 

regeneration and other management activities (McIntosh, 2006). 

 

Figure 1.1. The annual area of new planting and restocking in Great Britain (1971-2015). ‘Conifers’ is virtually 

analogous to timber production and ‘Broadleaves’ is virtually analogous to native woodlands. Data source: Forestry 

Commission. 

By the end of the 20
th
 century, woodland cover had nearly tripled across GB with current 

estimates suggesting that c. 12% of the land area occupied by woodland (Forestry 

Commission, 2011a). There was a steep decline in new planting of conifers towards the end 

of the 1980’s and a corresponding increase in new planting of broadleaves at around this 

time (Figure 1.1). Nonetheless, total rates of afforestation are at a much lower level generally 

than they were during the 1970’s and 1980’s (Figure 1.1). 

There is now currently high motivation to continue expanding the area of native woodlands 

in GB for a range of purposes including the provision of habitat for native biodiversity, 

access to green space for public health and recreation purposes (e.g. Ward-Thompson et al., 

2005); provision of ecosystem services such as uptake of carbon (Feliciano et al., 2013; 

Nijnik et al., 2013) and for flood attenuation (Nisbet and Thomas, 2006), as well as a 

sustainable source of timber and wood (Lee et al., 2015). Forest policy in the United 

Kingdom is devolved to each of the four constituent countries: England, Northern Ireland, 

Scotland and Wales. Governments in each of the countries have expressed commitments to 

expanding the area of woodland cover to deliver the public benefits that woodland expansion 

can achieve (Scottish Government, 2006; Forest Service, 2006; Forestry Commission 2007a; 

Welsh Assembly Government, 2009). Scotland, which has the highest proportion of 
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woodland cover in the UK and underwent by far the greatest expansion in the 20
th
 Century 

has set ambitious targets, stating in 2006, that the area of land under woodland cover would 

increase from 17% to 50% by the year 2025 (Scottish Government, 2006). Targets are 

continually being missed for several reasons (Thomas et al., 2015). Delays to planting due to 

difficulties with bureaucracy are frequently cited amongst the main barriers to woodland 

expansion (WEAG, 2012; Thomas et al., 2015). In Northern Ireland, a target was set to 

double the area of woodland cover from 8% to 16% in the fifty years following 2006 (Forest 

Service, 2006). However, as in Scotland, targets are being missed for similar reasons 

(Northern Ireland Land Matters Taskforce, 2015). England and Wales set no specific targets 

although state aspirations to expand or improve woodlands within their national strategy.  

If such planting ambitions are to be realised, it will take continued and concentrated effort to 

rapidly increase the rate of tree planting, meaning that demand for planting stock is set to 

increase. Recognition of contemporary challenges such as rapid environmental change and 

the increasing prevalence of exotic pests and pathogens call for an appraisal of the way such 

planting stock is currently sourced, produced and deployed. It is therefore necessary to take 

the opportunity to ask a series of questions about the origins and supply of planting stock and 

the management of genetic resources in native trees; essential prerequisites for woodland 

creation in an era of environmental uncertainty. 

1.3. Genetic resources of forest trees and their deployment 

1.3.1. Genetic characteristics of temperate trees   

Trees are characterised by a unique combination of life history characteristics which enable 

efficient adaptation to environmental change (Kremer et al., 2012). Trees typically very 

large, immobile organisms with long generation times (seed-to-seed), long life spans and 

delayed but prolific reproductive output (Petit and Hampe, 2006).  

Most of the ecologically and silviculturally important tree species which are native to Britain 

have very large ranges spanning across much of Eurasia. Such species are often dominant 

within their ecosystems and thereby typically have very large population sizes (Petit and 

Hampe, 2006; Cavers and Cottrell, 2015). Large population sizes of long-lived organisms 

with overlapping generations are capable of containing within them high levels of genetic 

diversity because polymorphisms can be retained within the standing population for long 

periods of time (Hamrick and Godt, 1996; Petit and Hampe, 2006).   
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Trees are often highly fecund and predominantly outcrossing (Hamrick and Godt, 1996) and 

so pools of seedlings produced via natural regeneration can be both very large and highly 

genetically variable. Natural selection acts at an early stage upon such pools of seedlings, 

removing individuals unable to cope with the environmental conditions prevailing at that 

time thereby increasing the likelihood that well fitted individuals will survive until maturity 

and contribute to subsequent generations. Space tends to be limited for naturally regenerated 

seedlings and so natural selection is very strong and efficient (Petit and Hampe, 2006). 

Different environmental conditions throughout the species’ range impose variable selection 

pressures on the offspring of standing trees in different places, a process which leads to 

adaptive differentiation or local adaptation (Kawecki and Ebert, 2004; Savolainen et al., 

2007). 

The large stature of trees ‘makes the world smaller for them’ (Petit and Hampe, 2006), which 

assists in the dispersal of pollen and seed over long distances. This is particularly prevalent 

in northern temperate species in which pollen dispersal by wind is common. Estimated 

pollen dispersal distances are often 20-200 times that of seed dispersal (Ennos, 1994), and 

rare events can transport viable pollen for hundreds of kilometres (Varis et al., 2009). 

Gene flow reduces differentiation between populations although it increases the variation 

within a single population. Variation in adaptive traits is typically quantitative, meaning that 

it arises as a product of many loci of small effect, rather than few large effect loci (Mackay 

and Latta, 2002; Savolainen et al., 2013). This acts in favour of adaptive differentiation 

because it means that, despite low genetic differentiation between populations at neutral 

markers brought about by extensive gene flow, many combinations of phenotypic trait 

variation are possible and strong natural selection will act upon this variation, removing 

individuals which cannot cope (Petit and Hampe, 2006). Quantitative trait variation in trees 

typically shows moderate to high heritability values (Alberto et al., 2013a), which means that 

that there is considerable potential evolutionary change from one generation to the next 

(Cavers and Cottrell, 2015). 

1.3.2. Measuring adaptive genetic variation in trees 

Adaptive genetic variation can be assessed in various types of common garden tests, which 

involve growing plants raised from seed together in a common environment. Under such 

conditions, each seed source experiences similar environmental conditions such that 

observed differences between phenotypes can be inferred to be due to genetic differences 
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between them. There are many possible variations of common garden tests used in tree 

genecology and the types of inferences that can be made will depend very much on the 

quality of the experimental configuration (White et al., 2007; Aitken et al., 2008; Gibson et 

al., 2016), the traits assessed, the methods for assessing trait variation and the spatial and 

temporal scale of the experimental trials (Gibson et al., 2016). Tests which maintain a family 

structure, i.e. retain the identity of parent trees of progeny throughout the investigation, have 

the added value of enabling estimates of trait heritability and the most meaningful 

approximations of genetic variation within populations because variance components for 

families within populations can be determined (White et al., 2007). 

Two broad categories of common garden tests are described by White et al. (2007) as ‘short 

term seedling studies’ and ‘long-term provenance trials in field experiments’ and provide an 

excellent description of the advantages, disadvantages and motivations of each approach 

(White et al., 2007, pages 198-204). These will be summarised here.  

Short term seedling studies tend to be single-site tests carried out in artificial (e.g. glasshouse 

or laboratory) conditions, which have the intention of determining whether there are adaptive 

differences between populations. Results from such trials can be used to investigate 

correlations between expressed trait variation and aspects of the genotypes’ home 

environment (Aitken et al., 2008; White et al., 2007). Larger numbers of provenances within 

a test will enable the most robust correlations with environmental characteristics (if present) 

and indoor studies may be particularly useful for this purpose due to the capability of 

controlling the environment which minimises experimental noise. In some cases, local 

adaptation may only become apparent when genotypes are exposed to stress, and so indoor 

studies are also useful for conducting experimental manipulations, such as measuring 

phenotypic responses to deliberately imposed stress such as extremes of temperature (Bower 

and Aitken, 2006); drought (Anekonda et al., 2002; Arend et al., 2011); waterlogging 

(Donnelly, 2015) or pathogen pressure (Perry et al., 2016a,b). However, results are unlikely 

to apply to field conditions and do not provide information about long-term survival (White 

et al., 2007). There is also the possibility that, by chance, some individuals will be better 

adapted to the conditions of the glasshouse or laboratory which may generate false positive 

results, meaning that these studies are not ideal for choosing provenances for deployment at 

particular planting sites (Kawecki and Ebert, 2004; Gibson et al., 2016). 

Replicated, long-term trials in realistic field conditions enable for stronger inferences to be 

made and are desirable if the intention is to identify suitable seed sources for planting 

because the responses of genotypes in different environments can be observed. The presence 
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of strong genotype by environment (G x E) interactions (White et al., 2007) indicates that the 

most suitable seed source will vary from site to site. Ideally, long-term trials should be 

replicated involving seed sources and trial locations representative of as large a range of the 

environmental variation in the area of interest as possible and involve assessments of 

survival and growth related traits at longer time scales than are possible in short term tests 

(White et al., 2007). With high levels of replication, it may be possible to use results to 

predict responses in many environments, using population transfer functions, (e.g. Rehfeldt 

et al., 1999) or population response functions to specific sets of environmental variables (e.g. 

Rehfeldt et al., 2002; Wang et al., 2006, Saenz-Romero et al., 2016). To determine whether 

local genotypes have a home site advantage, i.e. whether true local adaptation exists, fully 

reciprocal transplant experiments are required in which each genotype from each population 

in the experiment are reciprocally transplanted in each of the natural home environments 

(Kawecki and Ebert, 2004; Blanquart et al., 2013). However, for most applied forest science 

purposes, an indication that populations are adaptively differentiated and robust correlations 

with environmental variables may be sufficient for sourcing suitable planting stock, without 

going to the effort of establishing resource intensive reciprocal transplant experiments with 

many provenances. In this case, it may be more desirable to have reasonably well replicated 

trials of many provenances rather than fully reciprocal transplants of few provenances, 

unless the aim is to establish that there is a home site advantage sensu stricto. 

In many biological systems, fitness is measured as a function of reproductive output, or the 

genetic composition of subsequent generations, i.e. ‘Darwinian’ fitness (Orr, 2009). Trees 

are long lived, take up large amounts of space and resources and typically have late maturity 

and so measuring fitness in this manner is not typically feasible (Aitken and Bemmels, 

2016). Instead, proxies for fitness are measured among a range of ‘performance’ or growth 

related traits; phenological traits such as bud burst and bud set; physiological traits such as 

those related to water use (e.g. stomatal characters, carbon isotope discrimination) or 

photosynthesis (e.g. chlorophyll fluorescence) and traits related to tolerance of stress such as 

survival and responses to experimental treatments which deliberately impose stress such as 

drought (Salmela, 2011) or waterlogging (Donnelly, 2015). Disease resistance can be 

assessed in trials in which trees can be deliberately inoculated with a pathogen (e.g. Perry et 

al., 2016a), or allowed to be colonised naturally (e.g. Pliura et al., 2011; Perry et al., 2016b), 

revealing geographical patterns in susceptibility or assessing the extent of genetic variation 

in resistance within populations. Two traits which are very commonly assessed in common 

garden tests are height growth (e.g. Rehfeldt, 1989; Rehfeldt et al., 2002; Reich and Oleksyn, 

2008; Lee et al., 2015) and the timing of initiation (bud flush) and cessation (bud set) of 
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annual growth (e.g. Campbell, 1974; St Clair et al., 2005; Vitasse et al., 2009; Alberto et al., 

2013b; Vander Mijnsbrugge et al., 2015; 2016; Delpierre et al., 2016). 

Height growth tends to show moderate to high levels of quantitative genetic differentiation 

(QST) amongst populations (Alberto et al., 2013a) and it is a useful phenotypic trait to 

investigate in experiments because it indicates that a genotype has been healthy enough to 

grow to a large stature (Aitken and Bemmels, 2016). In addition to ‘performance’, height 

may also reflect the ability for a tree to compete with others trees for light and better 

opportunities for dispersal of pollen and seed (Ying and Yanchuk, 2006; Savolainen et al., 

2007). However, the interpretation of results regarding genetic differences in height growth 

should consider the age of trees measured. For instance, in a Scottish trial of Betula pendula, 

involving a mixture of Scottish and non-local (Scandinavian) provenances, Worrell et al., 

(2000) found that Scandinavian origins which had shown good initial growth subsequently 

proved to be susceptible to damage by late spring frosts after mild winters as long as ten 

years after planting and therefore eventually experienced substantially higher mortality than 

native origin material. This suggests that assessments of height alone, particularly when 

measured at a juvenile stage, are insufficient to gain meaningful predictions of suitability of 

planting stock at different sites.  

The timing of bud flush and bud set show similar levels of QST to height growth (Alberto et 

al., 2013a). These traits are informative because these events should be reasonably 

synchronised with the local growing season to maximise growth during summer but 

minimise the risk of frost damage during active growth in spring or autumn (Howe et al., 

2004; Aitken and Bemmels, 2016).   

An important component of local adaptation is that it may be associated with conservative 

growth as a result of evolved tolerance of local conditions (Ledig, 1998). Temperate trees are 

likely to simultaneously experience hard stabilising selection on timing of growth and 

dormancy (cold hardiness) and soft directional selection on growth due to the need to 

compete with neighbouring trees of the same species and other species (Aitken et al., 2008). 

Locally adapted individuals may also be conservatively adapted to historical extreme 

climatic episodes which occur periodically at the home site (Montalvo et al., 1997; 

Gutschick and BassiriRad, 2003). These factors combine to suggest that a locally adapted 

individual may not necessarily show the greatest growth in any particular duration of time 

compared to individuals sourced from other populations, but may be best able to cope with 

the full range of environmental conditions at its home site experienced during its life time. 
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1.3.3. Adaptive genetic resources of native trees in Great Britain 

Throughout the last century, efforts at provenance testing and selection in Britain have 

tended to focus on economically desirable traits (e.g. height, wood density) for exotic conifer 

species. Improvement programmes were established by the Forestry Commission for several 

species. These are Picea sitchensis (Fletcher and Faulkner, 1972; Samuel et al., 2007; Lee 

and Connolly, 2010), Pseudotsuga menziesii (Mirb.) Franco (Fletcher and Samuel, 2010), 

Pinus sylvestris (Lee, 2002), Pinus nigra subsp. laricio Maire (Lee, 2002), Pinus contorta 

Douglas ex Loudon (Shelbourne, 1974; Lee and Connolly, 2004) and Larix X eurolepsis 

(Lee, 2003). Currently, only the improvement programme for Picea sitchensis remains 

active, although clonal archives remain for other species and improved material is widely 

deployed. Pinus sylvestris grown for commercial forestry purposes continues to be sourced 

from a seed orchard containing select ‘plus’ trees of mixed origin. Genetically improved 

Scots pine has accounted for approximately 50% (19.8 million) of all Scots pine sales to 

Scottish planting schemes by British nurseries between 2005 and 2015 (Forestry 

Commission, 2016). By comparison, genetically improved Sitka spruce accounted for >90% 

(240 million) of the nursery stock sold to Scotland for this species in the same period, of 

which 55 million of were produced via clonal propagation (Forestry Commission, 2016). It 

should be noted that the purposes of these programmes was for selection of superior 

phenotypes, and the work has sought to identify sources to contribute to seed mixtures which 

perform similarly well under many conditions in GB. For Sitka spruce, this has tended to be 

based on initial collections from parent trees in the Queen Charlotte Islands (Samuel et al., 

2007). 

Improvement of broadleaved species such as Betula pendula, Quercus spp., Prunus avium 

(L.) L., Juglans regia L., Fagus sylvatica and Acer pseudoplatanus L. are underway 

although programmes are at earlier stages than conifer improvement programmes and are not 

organised within the public sector (Hubert et al., 2010). Relatively little effort has been 

placed in measuring adaptive genetic variation in native species for purposes other than 

selection for economically desirable traits (Boshier and Stewart, 2005; Cavers and Cottrell, 

2015). There have been a number of experiments established in the past thirty years 

involving genotypes from multiple native populations (Table 1.1), from which two rather 

general statements can be made. 

Firstly, strong adaptive differentiation between populations can occur at relatively narrow 

spatial scales. The differences between populations are often related to continentality of 

climate, which in GB is determined by longitude. For instance, populations of downy birch 
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Betula pubescens from the north west of Scotland have evolved smaller leaves than 

populations in the south east and this is thought to be an adaptation to windy conditions 

(Pelham et al., 1988). 

Secondly, despite the differentiation between populations, there is typically very high 

variation within single populations. For instance, under common garden conditions 

individuals within Scottish populations of Scots pine show substantial differences in their 

susceptibility to Dothistroma needle blight (Perry et al., 2016b). There is greater variation 

within a single population than between populations for this trait. This reflects the effect of 

high gene flow rates, but shows that if pathogen pressure increased, the population could 

potentially evolve by natural selection as more resistant genotypes were favoured. In this 

case, despite the fact that most of the variation was found within rather than between 

populations, the total variation showed a similar longitudinal pattern (Perry et al., 2016b). 

Despite these efforts, the number of individual studies and the number of species studied is 

low and most of the trials either have no or limited replication (Table 1.1) or do not include a 

series of either provenances or trial sites that reflect the full range of environmental variation 

that British populations experience (e.g. Cundall et al., 2003; Boshier and Stewart, 2005; 

Hubert, 2005).  

Therefore, whilst the existing evidence base goes some way towards understanding 

broadscale patterns of adaptive variation in some native species, the ability to predict 

survival and adaptedness at planting sites in the highly heterogeneous landscape of GB is 

currently limited. 

Table 1.1. A summary of published knowledge gained from GB-based experiments involving three or more different 

seed origins grown under common conditions, indicating the focal species, the number of GB provenances 

(although trials may also contain non-GB provenances), the traits under investigation and reference. 

Species Number GB 

provenances 

 

Type of experiment Traits investigated Reference 

Betula pendula 7 Single site 

provenance trial  

Height (3
rd
 Year) 

Basal diameter 

Stem form 

Cold hardiness 

Blackburn and 

Brown, 1988 

 3 Laboratory 

experiment 

Germination time Midmore et al., 2015 

 36 Multiple but non-

identical provenance 

trials 

Height 

Survival 

Flushing 

Senescence 

Worrell et al., 2002 
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 58 Multi-site 

provenance trials 

Height Lee et al., 2015 

 3 Single site 

provenance trial 

Bud burst Billington and 

Pelham, 1991 

 42 Multi-site 

provenance trials (4 

trials) 

Survival 

Height 

Chlorophyll 

fluorescence 

Stomatal density 

Leaf morphology 

 

C. Rosique et al., 

unpublished data 

Betula pubescens 26 Single site 

provenance trial 

Leaf morphology 

Height 

Survival 

Diameter 

Fungi 

 

Pelham et al., 1988 

 7 Single site 

provenance trial 

Bud burst Billington and 

Pelham, 1991 

Crataegus 

monogyna Jacq. 

5 Multi-site 

provenance trial (2 

trials) 

Height 

Bud burst 

Basal diameter 

Branching 

Infection (Powdery 

mildew) 

‘Thorniness’ 

Jones et al., 2001 

Fraxinus excelsior 12 Multi-site 

provenance trials 

Survival 

Height 

Cundall et al., 2003 

 8 Reciprocal 

transplant 

experiment 

Volume 

Basal diameter 

Height 

Boshier and 

Stewart, 2005 

 42 Multi-site 

provenance trials (2 

trials) 

Survival 

Height 

Diameter 

Chlorophyll 

fluorescence 

Stomatal density 

Leaf morphology 

 

C. Rosique et al., 

unpublished data 

 6 Reciprocal 

transplant 

experiment 

Survival 

Height 

Basal diameter (3 

yrs) 

Clark, 2013 

Pinus sylvestris 4 Single site common 

garden 

Stem dimensions 

Root condition 

Root frost hardiness 

Bud dry matter 

Perks and McKay 

1997 

 4  Single site common Diameter Perks and Ennos 
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garden Height 

Bud burst 

1999 

 8 Single site common 

garden 

Chlorophyll 

fluorescence 

following low 

temperatures 

Salmela et al., 2011 

 21 Replicated indoor 

common garden (2 

trials) 

Bud burst Salmela et al., 2013 

 8 Single site indoor 

common garden 

Leaf morphology Donnelly et al., 2016 

   Waterlogging 

tolerance 

Carbon isotope ratio 

 

K. Donnelly et al., 

unpublished data 

 6 Single site indoor 

common garden 

Susceptibility to 

Dothistroma (indoor) 

Perry et al., 2016a 

 6 Single site outdoor 

common garden 

Susceptibility to 

Dothistroma 

(outdoor) 

Perry et al., 2016b 

 21 Multi-site 

provenance trial (3 

trials) 

Height 

Phenology 

Disease resistence 

Endophytes 

S. Cavers, J. 

Cottrell, G. Iason, 

unpublished data 

Populus tremula L. Maximum 89 

genotypes 

5 clonal trials (not 

strictly a provenance 

test) 

Survival 

Height 

Diameter 

Mason et al., 2002 

Quercus petraea 4 in one series 

8 in another 

series 

8 non-identical 

provenance trials 

Survival 

Height 

Hubert, 2005 

Quercus robur 6 in one series 

5 in another 

series 

 

8 non-identical 

provenance trials 

Survival 

Height 

Hubert, 2005 

Sorbus aucuparia Seed from 15 

individuals on an 

altitudinal 

gradient 

Laboratory 

experiment 

Germination Barclay and 

Crawford, 1984 

  

42 

 

Multi-site 

provenance trials (4 

trials). 

 

Survival 

Height 

Chlorophyll 

fluorescence 

Stomatal density 

Leaf morphology 

 

 

C. Rosique et al., 

unpublished data 
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1.3.4. The current system for sourcing seed and planting stock for native 

woodlands 

For new planting of native trees and shrubs in GB, seed sourcing guidelines currently 

involve adherence to a series of ‘seed zones’ (Figure 1.2). Seed zones are fixed geographical 

regions with distinct boundaries. The purpose of seed zoning is to define regions in which 

seed can be transferred with minimal risk of maladaptation (Herbert et al., 1999; Ying and 

Yanchuk, 2006).  

 

Figure 1.2. a). The 24 seed zones of Great Britain, coloured according to the ‘Regions of provenance’ (Herbert et 

al., 1999). b). The seven biochemical regions used as seed zones for Scots pine within the native range in Scotland 

(native range shaded). 

Delimitation of the common seed zones is based not on known patterns of adaptive variation 

of trees but on proxies for these which include geomorphology and major watersheds 

together with an additional altitudinal discriminant factor whereby seedlots are described as 

having been collected either above or below 300 m.  The map (Figure 1.2) was created by 

Herbert et al., (1999) to encourage the use of local stock at planting sites as an extension to 



Introduction 

16 
 

earlier administrative systems for identification and certification of seedlots under the 

Organisation for Economic Co-operation and Development (OECD) (Gordon et al., 1992).   

Following adoption of this system in 1999, adherence to local provenance became a 

stipulation for receipt of government grant support for native woodland creation, at least 

when seed can be obtained without excessive difficulty (Buckley and Blakesley, 2008).  A 

major achievement of the current system of seed zoning is that it has generally discouraged 

grant support being provided for use of stock of non-GB provenance, much of which has 

been shown to survive for shorter periods or grow less well than GB provenances in Britain, 

including silver birch Betula pendula Roth (Worrell, 1992; Worrell et al., 2000); Scots pine 

Pinus sylvestris, alder Alnus glutinosa (L.) Gaertn. and sessile oak Quercus petraea (Matt.) 

Leibl. (Worrell, 1992); hawthorn Crataegus monogyna (Jones et al., 2001); ash Fraxinus 

excelsior (Cundall et al., 2003) and for sessile and pedunculate oak Quercus robur (Hubert, 

2005). It was estimated that 70% of the native broadleaved trees supplied to British planting 

schemes in 1993 were grown in other countries (Gordon, 1998). Since that time, the 

proportion of imported trees has reduced to around 12.5% (Anon, 2012), with 59% of these 

imported trees certified as having been raised from seed collected from trees in GB (Whittet 

et al., 2016a). 

It was recognised from its inception that the seed zone system for encouraging currently 

adapted seed sources in GB was no more than a first attempt which would require refinement 

as more knowledge became available (Herbert et al., 1999). In the course of the last fifteen 

years a number of shortcomings in the system have been recognised, the first of which is that 

the regions of provenance and seed zones specified do not accurately reflect geographic 

areas with uniform environmental conditions for tree survival and growth in GB (Salmela et 

al., 2010).   

In upland regions, such as the Highlands of Scotland, the current seed zones contain within 

them a high degree of climatic variation (Salmela et al., 2010).  Where climatic conditions 

are not uniform within seed zones, fine scale patterns of adaptive variation may be 

overlooked, such that the seed zones do not consist of populations which are adapted to 

similar environmental conditions (Salmela et al., 2011; 2013).  Therefore, adhering to local 

seed zones in a heterogeneous landscape does not necessarily guarantee a local fitness 

advantage as plants from a geographically proximal location may be adapted to very 

different temperature, moisture and exposure regimes (Bischoff et al., 2006). 

On the other hand, in more topographically homogenous lowland regions such as central and 

eastern England, seed zones could justifiably be enlarged. Seed zones which are smaller than 
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necessary may make seed collection and stock management more laborious and complicated 

than necessary without any clear fitness advantage to planted stock (Hubert and Cottrell, 

2007; Buckley and Blakesley, 2008; O’Neill et al., 2014). An example of excessively 

conservative seed zoning has been found for alder Alnus glutinosa in Belgium, a relatively 

flat country, where assessment of patterns of molecular and adaptive variation demonstrated 

that material from each of the five seed zones could be exchanged with little risk of 

maladaptation (De Kort et al., 2014). 

The second shortcoming of the seed zone system in GB is that (with the exception of Scots 

pine Pinus sylvestris) it is applied uniformly to all native species on the assumption that they 

show equivalent patterns of adaptive variation across the landscape, which is unlikely to be 

the case (Rehfeldt, 1994; Johnson et al., 2004; Boshier and Stewart, 2005; Cavers and 

Cottrell, 2015; Loranger et al., 2016). There is good evidence that this assumption is unlikely 

to be warranted. For instance, Vitasse et al., (2009) observed opposing adaptive clines in the 

phenological response of beech Fagus sylvatica to those of ash Fraxinus excelsior and 

sessile oak Quercus petraea in the Pyrenees. In multiple common garden experiments 

established along an altitudinal cline, beech populations from a higher altitude were found to 

be the earliest to flush, whereas the opposite trend was recorded in ash and oak.  Moreover in 

the same trial it was shown that for three other species, sycamore Acer pseudoplatanus, holly 

Ilex aquifolium L. and European silver fir Abies alba Mill., there was no evidence of 

adaptive differences in phenology in response to altitude (Vitasse et al., 2009).  

There are therefore a series of shortcomings associated with the current approach to seed 

sourcing in GB related not only to aspects of tree biology, but also in their practical 

implementation, which will be discussed in chapter five.  

1.4. Climate change  

1.4.1. Climate of Great Britain 

Great Britain has a maritime climate which is typically classified in its entirety within the 

temperate-oceanic within the Köppen-Geiger classification (Peel et al., 2007). The island 

(and surrounding islands) is situated between 49 and 61°N but experiences a warmer climate 

than elsewhere on this latitude due to the effect of mid-latitude westerly air flows and the 

North Atlantic Drift (the ‘Gulf stream’) which introduce warm air and seawater of tropical 

origin (Barrow and Hulme, 1997). The high thermal inertia of the ocean reduces temperature 

variation within a year because relatively warm sea surface temperatures, compared to air 

temperatures keep coastal areas mild in temperature in autumn and winter and relatively cool 
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sea surface temperatures in spring and summer compared to air temperatures keep coastal 

areas relatively cool in spring and summer (Barrow and Hulme, 1997). While the whole 

country is strongly influenced by the Atlantic ocean to the west and the North Sea to the east 

and has a generally oceanic climate; inland areas have a more continental climate and 

experience a larger extreme temperature range with higher summer maximum temperatures 

and lower winter maximum temperatures than coastal areas and thus may be more exposed 

to extremes of temperature and its consequences such as frost and drought (Barrow and 

Hulme, 1997). The highest levels of precipitation are usually produced by cyclonic, 

southerly or westerly air circulations which bring maritime air masses from the Atlantic 

Ocean. When moist Atlantic air masses reach the GB, they are forced to rise due to the 

presence of mountains, or meeting continental easterlies in fronts, producing very large 

quantities of precipitation and cloud, especially in the west of the country. For instance the 

west coast of Scotland can receive up to five times as much precipitation as the east coast 

(Barrow and Hulme, 1997). Autumn and winter often contribute the greatest amount of 

precipitation to the annual total due to more frequent depressions, especially in the north and 

west of the country. In more continental areas of the south and east, the seasonal variation in 

precipitation is less clear (Barrow and Hulme, 1997). The location of GB, on the Oceanic 

margin of a large continental land mass gives rise to an extreme wind climate (Cook and 

Prior, 1987). Prevailing winds are south-westerly in origin; the highest wind speeds are 

produced in coastal and upland areas, both of which are prone to frequent gale force 

conditions (Palutikof et al., 1997). Average temperature and precipitation regimes for a 

selection of Met Office weather stations are summarised in Table 1.2. The stations were 

deliberately chosen to represent a geographical distribution which would demonstrate 

variation in temperature and rainfall in GB (Figure 1.3) where February is typically the 

coldest month and July is typically the warmest month.  

Table 1.2 Average climatic values for selected meteorological stations in GB (1981-2010). Data source: MET Office 

http://www.metoffice.gov.uk/public/weather/climate-network/#?tab=climateNetwork 

Station name Altitude (m) 
Maximum July 
temperature (°C) 

Minimum February 
temperature (°C) 

Annual 
precipitation (mm) 

Stornoway 15 16.1 2.1 1248.5 

Braemar 339 18.1 -1.4 932 

Eskdalemuir 242 18.2 -0.5 1742.1 

Llanfairfechan 40 19.5 3 1099.7 

Church Fenton 8 21.2 0.9 603.2 

St Austell 79 20.4 3.7 1206.1 

Kew Gardens 6 23.5 1.7 622.5 
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Figure 1.3.  Location of the weather stations summarised in Table 1.2 within Great Britain. 

1.4.2. Climate change in Great Britain 

Recent trends in meteorological variables indicate that the surface temperature of GB is 

increasing. Central England Temperature, which is the longest known series of monthly 

temperature observations (Jones and Hulme, 1997), has increased by 1°C since the 1970’s. 

Due to the longevity of this time series, it has been possible to relate the long term 

temperature increase directly to human activity (Jenkins et al., 2008). Annual precipitation 

sums have increased in Scotland in the last 45 years and, although these have not changed 

appreciably in England and Wales; all parts of the UK have experienced an increased 

contribution towards annual precipitation sums from heavy precipitation events in winter. 

Most regions (except north east England and northern Scotland) have experienced drier 

summers in the last 45 years (Jenkins et al., 2008). The North Atlantic Oscillation (NAO), 
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which can greatly influence winter weather conditions (Stenseth et al., 2002), has been 

particularly variable since 1990 and there has been an increase in stormy weather although 

these have not of greater frequency or magnitude than in the 1920’s, another period in which 

the NAO exhibited great variability (Jenkins et al., 2008). 

The most recent comprehensive set of climate change projections for the whole of the UK 

are the UKCP09 projections which provide probabilistic projections of change in a series of 

climatic variables (Jenkins et al., 2008; 2010; Murphy et al., 2009). These probabilistic 

projections are calculated for seven future, overlapping time periods and are modelled 

against a baseline climate of average values from 1961-1990 (Murphy et al., 2009). These 

are given for three distinct emissions scenarios (IPCC, 2013), and are available at a spatial 

resolution of 25 km. 

There is a cascade of confidence in the probabilistic projections and there is much 

uncertainty, particularly regarding local scale changes (Murphy et al., 2009). However, it is 

possible to make some general statements about expected climate change in GB. 

Increasingly high temperatures are expected throughout the year in most places. These will 

be accompanied by drier summers and continued, and possibly larger contribution to annual 

precipitation sums from heavy precipitation events in winter (Jenkins et al., 2010).  

It has been suggested that extreme wind events will increase in frequency (Ray, 2008) 

although there is a particularly high degree of uncertainty in projections of changing wind 

regimes (Jenkins et al., 2010). Nonetheless, a trend towards weather which is generally more 

variable and difficult to predict (IPCC, 2013), especially if it includes intense rainfall events, 

is likely to be accompanied by more frequent stormy conditions (Ray, 2008). 

Europe and the Mediterranean are expected to experience a higher level of warming than the 

global average (Christensen et al., 2007). However, it is worth noting that the magnitude of 

temperature increase expected is lowest in the north west of the region. An analysis of 

seventeen different climate change simulations identified the British Isles as the region in 

Europe which would undergo the least warming in all seasons by the period between 2071-

2100 (Figure 1.4) (Christensen and Christensen, 2007). Therefore, in the design of adaptive 

strategies is important to consider that the idiosyncrasies of the oceanic British climate, 

notably the variability that can be produced at short time scales 
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Figure 1.4. Mean projected change in seasonal mean temperature (+/- 95% confidence intervals) for eight regions 

of Europe for the period 2071-2100, based on seventeen different simulations. Data from Christensen and 

Christensen (2007). 

1.4.3. Potential direct impacts of climate change on GB forests 

Higher temperatures and levels of CO2 are expected to increase forest growth and 

productivity in areas not limited by water (Saxe et al., 2001; Boisvenue and Running, 2006; 

Lindner et al., 2012). Challenges for GB forests due to climate change are more likely to 

arise from altered disturbance regimes and interactions with pests and diseases (Dale et al., 

2001; Lindner et al., 2012). 

Warmer and drier summers are likely to increase the risk of drought in some places, most 

notably in the south-east of England, where confidence in projections of reduced water 

availability are highest (Jenkins et al., 2010). Instances of drought induced mortality of trees 

are becoming more frequent globally and there are many documented examples of drought 

induced mortality events in European forests, albeit mostly in the lower latitudinal parts of 

species ranges (Allen et al., 2010). Extreme drought causes stress and may lead to mortality 

in trees in multiple interacting ways. Firstly, extreme simultaneous drought and heat stress 

may kill trees through hydraulic failure through xylem cavitation, whereby pockets of air in 

the xylem prevent movement of water in the stem (McDowell et al., 2008). Secondly, 

prolonged exposure to drought conditions may lead to carbon starvation, whereby closure of 

stomata to prevent desiccation compromises metabolic processes (McDowell et al., 2008). 

For either of these two hypothesised mechanisms of drought induced mortality to directly 

kill trees in GB, drought would have to be very severe. As with other reports of drought 
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induced mortality in Europe (Allen et al., 2010); a more likely mechanism of drought 

induced mortality is via altered biotic interactions with antagonists or latent antagonists, 

which will be discussed in section 1.4.4. 

Intense precipitation events in winter are expected to increase in frequency, which enhances 

the possibility of flooding. While trees can play an active role in the interception of flood 

water (Calder et al., 2003), this is less efficient during winter when trees are not in active 

growth. The mechanical load and anaerobic conditions caused by waterlogging can lead to 

fine root death which results in poorer stability (Ray and Nicoll, 1998). 

The British Isles are already prone to very high winds (Cook and Prior, 1987; Palutikof et al., 

1997), and there is very limited confidence in projections of wind related variables into the 

future (Jenkins et al., 2010). The magnitude of increases in wind speeds and extremes are 

likely to be less than those which occur due to interannual variability in the already extreme 

wind conditions of the British Isles (Quine and Gardiner, 2002). Nonetheless, diversifying 

the structure of commercial plantations could assist in delivering resilience to change. The 

uniform and even-aged stands typical of clear-fell silviculture of upland Britain may be more 

vulnerable to storms than structurally complex, continuous cover systems (Mason, 2002; 

Hanewinkel et al., 2014). 

1.4.4. Interactions with pests and diseases 

Climate change may interact with tree pests and diseases in many ways. Generalisations of 

impacts are difficult to make because effects will vary widely depending on the ecology and 

evolutionary history of the pathosystem (Sturrock et al., 2011; Ennos et al., 2015; Desprez-

Loustau et al., 2016). The most important climate-related impacts on pest and pathogen 

outbreaks in GB are likely to arise from stress and mechanical problems caused by drought 

and waterlogging; increased levels of injury caused by storm conditions and higher 

minimum temperatures in winter changing the activity of pests and pathogens.  

Desprez-Loustau et al (2006), describe two main processes by which fungal pathogens may 

be positively influenced by drought. Firstly, drought may assist pathogen attack via altered 

community interactions, for instance changes to the behaviour of insect vectors (Gibbs and 

Greig, 1977; Wainhouse and Inward, 2016), or when competitive interactions between 

pathogens with different drought sensitivities result in a reduction of antagonism on one 

species which becomes aggressive (Cook, 1973; Redfern and Stenlid, 1998). Secondly, 

pathogens may be positively influenced by changes in host physiology caused by water 

stress (Schoeneweiss, 1975; Dale et al., 2001; Desprez-Loustau et al., 2006; Jactel et al., 
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2012; Telford et al., 2015). Trees may be predisposed to attack by facultative or non-

aggressive pathogens, e.g. endophytes of the Botryosphaeriaceae (Slippers and Wingfield, 

2007), although exhibit resistance when not in conditions of physiological stress 

(Schoeneweiss, 1975). The presence of water-stressed tissues, considered better substrate for 

some pathogens, may trigger a switch in behaviour from latency to aggression (Desprez-

Loustau et al., 2006). It is worth noting that the climate of much of GB is highly oceanic and 

that severe droughts, such as those experienced in 1976 (Peterken and Mountford, 1996; 

Cavin et al., 2013) and in 1995 (Redfern et al., 1996; Subak et al., 2000) are much more 

likely to occur in the south-east of England than elsewhere (Broadmeadow et al., 2005).  

On the other hand, many fungal, bacterial and fungus-like pathogens require moist 

conditions for dispersal, such as the flagellate zoospores of Phytopthora spp. which may be 

hindered in drought conditions (Desprez-Loustau et al., 2006; Sturrock et al., 2011). A 

greater frequency of flooding events which lead to anaerobic, waterlogged soil conditions 

which kill or prevent formation of fine roots (Ray and Nicoll, 1998) coupled with root 

invasions of Phytophthora could be particularly devastating for susceptible trees (Brasier, 

1996). Extended periods of high air humidity, a circumstance not uncommon in GB 

plantation forests which are often planted at very high density (Ennos, 2015), may also 

facilitate fungal pathogen dispersal. Outbreaks of Dothistroma needle blights on pines in GB 

and in North America have been associated with particularly wet spring and summer 

conditions (Woods et al., 2005; Brown and Webber, 2008).  

If tree injury becomes more common under windier conditions, opportunities for infection of 

trees via wounds may increase. More windthrow in forest stands would expose breeding 

habitat for secondary pests, such as pine shoot beetles Tomicus piniperda L. (Wainhouse and 

Inward, 2016). However, there is a high degree of uncertainty surrounding changes to wind 

regimes (Jenkins et al., 2010).  

Damage from some relatively weak ‘dormant-season’ pathogens (sensu Lonsdale and Gibbs, 

2002) may become more prevalent in milder winters. These are pathogens which are unable 

to overcome host resistance during the growing season but able to establish and become 

pathogenic in temperatures slightly lower than those in which hosts are active (Lonsdale and 

Gibbs, 2002). An example of such a ‘dormant-season’ pathogen can be found in Phacidium 

coniferarum (G.G. Hahn) DiCosmo, Nag Raj & W.B. Kendr. By making monthly annual 

artificial inoculations of this fungus in wounds of Japanese larch Larix kaempferi (Lamb.) 

Carrière in the Netherlands during the relatively mild winters of 1949-50 and 1950-51; van 

Vloten (1952) found that the number and size of stem lesions were highest during Autumn 
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and early winter at which time trees were in dormancy but temperatures were sufficiently 

high to enable microbial activity. Higher minimum temperatures in winter may extend the 

asynchronous dormancy period, such that there are greater opportunities in early winter for 

dormant-season pathogens to become aggressive in dormant trees (Lonsdale and Gibbs, 

2002). 

Finally, under milder winter conditions with fewer frost events, the winter survival of some 

pests and pathogens will be higher, possibly facilitating poleward or up-slope range 

expansion of some species, e.g. the pine processionary moth Thaumetopoea pityocampa 

Denis & Schiffermüller (Battisti et al., 2005), Phytophthora cinnamomi Rands (Bergot et al., 

2004). Climate-induced range expansion will occur simultaneously with ongoing human-

mediated dispersal of live plants and forest products as a result of international trade 

(Brasier, 2008; Leibhold et al., 2012; Banks et al., 2015; Jung et al., 2015), meaning that 

forests will not only have to cope with possibly higher levels of virulence of indigenous pests 

and pathogens, but also with exotic pest and pathogen species to which they are not currently 

adapted due to an absence of contact in recent evolutionary history (Ennos, 2015).  

1.4.5. Can evolution help forests cope with climate change?  

As discussed in section 1.3.1., trees and forests possess a suite of evolutionary characteristics 

which can enable efficient adaptation to environmental change despite their very long 

generation times. Ongoing rapid climate change in the next century will require both plastic 

acclimation responses and adaptive evolution by natural selection. 

The immediate response of forest trees to rapid environmental change will be a plastic one 

involving a change in their physiology or morphology but no change in their genetic 

composition (Nicotra et al., 2010; Reich et al., 2016). Where this change improves the 

chances of individual tree survival and reproduction during the period of extreme 

environmental conditions the change is known as acclimation. As long lived organisms that 

survive naturally through environmental conditions that can be highly variable in time and 

space, acclimation, or plastic responses to environmental change can be highly developed in 

trees (Rehfeldt et al., 2001; Aitken et al., 2008; Chevin et al., 2013). However, such plastic 

responses are often associated with metabolic costs, or trade-offs amongst traits meaning that 

there may be losses in the efficiency of evolutionary genetic adaptation (DeWitt et al., 1998; 

Valladares et al., 2007; Aitken et al., 2008; Richter et al., 2012). Furthermore, there are 

limits to acclimation responses and trees may die either directly or as a consequence of stress 

which compromises their herbivore and pathogen defences (Telford et al., 2015). 
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Within a tree population there are very high levels of genetic variation among individuals for 

adaptive characters such as timing of growth, cold, drought and flooding tolerance, and 

resistance to herbivores and pathogens (Petit and Hampe, 2006). Even where population 

sizes of trees are very small, there can still be substantial genetic and phenotypic variation 

amongst standing trees and offspring, in situations where genetic variation is delivered by 

long distance gene flow (Bacles et al., 2004; Hampe et al., 2013). Over a long period of 

relatively constant environment at any one site, a range of genotypes will have been selected 

that are adapted to the combination of abiotic and biotic conditions at that site, known as 

local adaptation (Ennos et al., 1998; Savolainen et al., 2007). Local adaptation does not 

necessarily mean that the local genotypes in a site will show greater growth over any 

particular duration than genotypes from other sites. This is because local populations can 

possess a conservative legacy of adaptation to extreme events in which acclimation 

responses were exceeded, leading to lower height growth but a greater tolerance of extremes 

(Montalvo et al., 1997; Gutschick and BassiriRad, 2003). Conservatism may not be 

recognisable as intrinsically advantageous within a single generation if extreme events do 

not occur (Ledig, 1998). However, it does mean that the local population is likely to be the 

most successful if one of these extreme climatic events does occur during a generation. 

If a novel environment is imposed on a genetically variable, locally adapted population, 

individual trees will respond differently, and the most successful will make the greatest 

contribution of offspring to the next generation. If the offspring of these fitter individuals are 

able to establish, the population will evolve genetically, producing a subsequent generation 

that is better adapted to the novel environmental conditions, i.e. natural selection occurs. The 

rapidity of this evolution will be proportional to the amount of adaptive variation present in 

the original population (Davis and Shaw, 2001; Alberto et al., 2013a). However, adaptive 

evolution comes at a cost. Trees that respond poorly to the change in environment may either 

die or grow very slowly, leading to a reduction in size of the reproducing population. The 

magnitude of this cost of adaptation will increase with the rapidity of the environmental 

change imposed. If the environmental change is too rapid, populations may go extinct before 

they adapt (St Clair and Howe, 2007). In any event, there will always be some degree of lag 

in adaptation to the new environmental conditions (Aitken et al., 2008; Kuparinen et al., 

2010). Importantly, for adaptive evolution to operate, it is essential that forests are able to 

regenerate. 

A proxy for the limits of adaptation of the species can be found by analysing the limits of the 

environmental envelope naturally occupied by the species, with the caveat that recognized 
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natural distributions may not reflect the total fundamental niche of that species. If the 

predicted environmental conditions lie far outside that envelope, it will be unrealistic to 

expect future adaptation to those conditions. If it is generally considered that climate change 

is more likely to cause extirpation at the lower latitudinal edges of species distributions, the 

most probable mechanism for such extirpation is via drought or heat stress leading to 

pathogen attack and the death of existing trees (McDowell et al., 2008; Allen et al., 2010; 

Fady et al., 2016), or enhanced competition from other taxa which are also shifting their 

ranges poleward or upslope (Aitken et al., 2008). It is worth noting that the majority of 

native British trees are not at their lower latitudinal edge of their distributions and as such, 

climate change in GB is unlikely to cause extinction of species or even local extirpation but 

rather potential changes in suitability of planting some species in some places for particular 

purposes (Broadmeadow et al., 2005). 

1.5. Should climate change influence the way genetic resources are 

deployed? 

Amid concerns about the rate at which climate change is taking place, there is current 

interest in proposals to change the way planting stock is sourced for woodland establishment, 

which are summarised here as ‘predictive provenancing’, ‘species change’ and ‘currently 

adapted’.  

1.5.1. Predictive provenancing 

The ‘predictive provenancing’ strategy holds that seed sources should be planted that are 

adapted to a predicted future climate. Predictive provenancing recommends use of material 

from parts of the species range in which the current climate matches predicted future 

conditions at the planting site. A variation on this theme is composite provenancing, where a 

mixture of local and non-local material, the latter of which is, sourced from areas matching 

predicted future climates, is used (Broadhurst et al., 2008; Breed et al., 2013).  This has also 

been called assisted gene flow (Aitken and Whitlock, 2013) and seed portfolio (Crowe and 

Parker, 2008) and is described within the context of ecosystem centred assisted migration 

(Sansilvestri et al., 2015). In a GB context, this would involve sourcing seed from currently 

warmer climates further south, most plausibly from France. 

Predictive provenancing uses planting stock raised from seed collected in an area that 

currently experiences a climate similar to that predicted for the planting site in the future.  A 

pure predictive provenancing approach would involve selection of a single seed source 
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population which offered the closest match to anticipated climate at some time in the future 

(i.e., a space-for-time substitution), in place of local origin material. 

An intermediate option between continuing to source locally and sourcing all planting stock 

from further south is composite provenancing (Broadhurst et al., 2008; Breed et al., 2013). 

Under composite provenancing, proportions of the seed would be collected from multiple 

populations located in areas at increasing geographical distances from the planting site. The 

seed would be collected from populations in locations experiencing currently warmer 

conditions than the   planting site and would be mixed with a proportion of local seed. For 

instance, under composite provenancing, a planting scheme in southern Scotland would be 

designed to include perhaps one third of locally sourced seed, one third southern English 

origin seed and one third French origin seed. The inclusion of varying proportions of 

southerly provenances alongside local provenance material in new plantings has been 

recommended as an adaptation strategy in England by Forestry Commission England 

(Broadmeadow et al., 2005; Forestry Commission England, 2010; Ray et al., 2010; Weir, 

2015), as well as by Natural England and the RSPB (2014).  A recommendation is to use a 

mixture of  planting material derived from seed from multiple provenances located 2-5° 

further south than the planting site, provided that distance from the Atlantic Ocean of seed 

sources is similar to that of the planting site.  Recommendations suggest that these should be 

used in addition to at least one third local provenance material (Forestry Commission 

England, 2010). 

Despite considerable debate in the literature and the existence of many review and opinion 

papers on the topic (McLachlan et al., 2007; Broadhurst et al., 2008; Crowe and Parker, 

2008; Kreyling et al., 2011; Sgrò et al., 2011; Weeks et al., 2011; Pedlar et al., 2012; Aitken 

and Whitlock, 2013; Breed et al., 2013; Jones, 2013; Williams and Dumroese, 2013; Havens 

et al., 2015; Kelly and Phillips, 2015; Sansilvestri et al., 2015; Aitken and Bemmels, 2016; 

Whittet et al., 2016a,b), there is currently very little evidence to suggest that this strategy is 

necessary, or that it will be effective (Bucharova, 2016). Due to the very long generation 

times of trees, gaining empirical support for the efficacy of the strategy to help newly 

established populations adapt in the long term is implausible. The focus of chapter four of 

this thesis is to formalise some theory regarding the relative strengths and weaknesses of the 

strategy of sourcing seed from currently warmer climates with the use of individual based 

models. 

 



Introduction 

28 
 

1.5.2. Species change 

A more radical suggestion than the deployment of southerly seed origins is the introduction 

of further exotic species into GB for use in planting schemes. This is driven not only by 

climate change but also by concern that GB lacks sufficient genetic and species diversity for 

resilience to novel pathogens (Ray et al., 2010; Forest Policy Group, 2012). This is arguably 

most relevant to silvicultural management, but is also considered in the context of native 

woodland creation as a means to find alternative species to take on the ecological role of 

vulnerable native species (Mitchell et al., 2014). For instance, the recent outbreak of ash 

dieback Hymenoschyphus fraxinea (T. Kowalski) Baral, Queloz, Hosoya. on susceptible 

British ash trees has triggered a search for resistant ash trees from Asia (Boshier and Buggs, 

2015; Harper et al., 2016).  

Some bioclimatic envelope models predict that the climatic niches of many species will shift 

at faster rates under climate change than the species are capable of migrating (Parmesan, 

2006; Cheaib et al., 2012). Assisted migration, or assisted colonisation is a species 

conservation strategy in which poleward species translocation is conducted to conserve 

dispersal limited species which are threatened by climate change in their range but which 

may have the opportunity to establish in areas which have a predicted future climate 

matching the current, or recent climatic envelope of the species (Hoegh-Guldberg et al., 

2008; Kreyling et al., 2011; McLane and Aitken, 2012). Assisted migration is not a major 

focus of the thesis and no effort will be made to discuss this or test theory, but it is worth 

mentioning since much of the current debate regarding predictive provenancing has emerged 

from theory surrounding conservation-oriented species translocations. 

1.5.3. Currently adapted planting stock 

A final option is to continue to plant trees within their native range using seed which is 

putatively adapted to current conditions but to sophisticate the way in which seed is sourced 

and woodlands are managed (Cavers and Cottrell, 2015; Whittet et al., 2016b). A major 

advantage of this strategy is that it will minimise the risk of translocation failure due to 

maladaptation to climate during early development, for instance due to unseasonal frost 

damage (Worrell et al., 2000; Benito-Garzon et al., 2013b). Using local, or regional planting 

stock also reduces the likelihood that translocated genotypes will be maladapted to aspects of 

the biotic environment (Frascaria-Lacoste and Fernández-Manjarrés, 2012; Bucharova, 

2016; Whittet et al., 2016b). If survival rates of the new planting are high due to adaptation 

to current conditions, then the initial goal of restoration can be considered to have been 
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achieved. With as large a population size as possible, the newly established population will 

then have the greatest chance of tolerating stochastic events during the first generation 

(Lande, 1993; Lacy, 2000), and will also contain high genetic variation required for 

continued adaptation to changing conditions, with the greatest contribution coming from 

well adapted individuals and additional genetic variation delivered by gene flow from 

existing populations (Cavers and Cottrell, 2015). This success of this strategy is strongly 

couched in the assumption that natural regeneration will take place. To ensure that natural 

regeneration occurs, control of herbivore populations and periodical human-mediated 

disturbances within the forest will encourage generational turnover and increase the rate of 

genetic adaptation (Kramer et al., 2008; Kuparinen et al., 2010). Woodland management 

planning on a landscape scale which aims to connect populations either physically, or within 

dispersal range of one another will encourage gene flow among populations, thereby 

increasing effective population sizes. However, for this to be done effectively requires 

evidence regarding spatial and temporal patterns of gene flow, which is the subject of 

chapter three of this thesis. 

Problems with continuing to source local origin seed are that over the first generation of the 

new woodland, the planted trees may become maladapted to aspects of the environment 

which change rapidly (Jump and Peñuelas, 2005; St Clair and Howe, 2007), or that 

adaptation lag will be so great that there will be failure of the focal species to compete with 

other species (Kellomäki et al., 2001; Aitken et al., 2008; Gómez‐Aparicio et al., 2011). A 

further problem (already discussed in section 1.2.4) arises in the actual selection of local or 

regional planting stock, as geographic proximity does not necessarily imply adaptation to the 

planting site (Bischoff et al., 2006; Salmela et al., 2010); the fact that scales and patterns of 

adaptive variation are not always repeatable across species (Rehfeldt, 1994; Vitasse et al., 

2009) and the current lack of knowledge of the adaptive genetic resources of trees within GB 

required to set limits to seed transfer (Boshier and Stewart, 2005; Cavers and Cottrell, 2015; 

Whittet et al., 2016b). In the absence of data regarding patterns of adaptive genetic variation, 

a plausible first step may be to make use of climatic and ecological information to better 

characterise seed zones, based on the classical assumption that currently adapted material is 

best, which is the subject of chapter two. 

1.6. Purpose of the thesis  

The purpose of this thesis is to address several important knowledge gaps pertaining to the 

choice of seed origins for woodland creation under climate change, using methods from a 
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range of fields. Chapters two and three are empirical, focussing on the specific case of Pinus 

sylvestris in Scotland as a study organism. However, it is hoped that the methods and 

reasoning applied to this particular study system will be useful for other tree species. Chapter 

four is theoretical, and uses simulated data to generalise adaptive responses of trees although 

with no strong focus on any particular tree species. Chapter five is inductive, using 

qualitative methods from social sciences to identify the socio-economic challenges and 

consequences of seed sourcing policies for all native trees and shrubs. The following key 

questions will be addressed: 

i. Does the current system of seed zones for native Scots pine reflect realistic patterns of 

climatic and/or ecological variation?  

Chapter two. Defining climatic and ecological groupings among the native pinewoods of 

Scotland. 

The second chapter of the thesis investigates the specific situation for seed sourcing for Scots 

pine in its native range in the Scottish uplands. Concerns expressed about the relevance of 

the current system of seed zones (Ennos et al., 1998; Salmela et al., 2010; Whittet et al., 

2016b) will be addressed using multivariate analyses of interpolated climatic covariates for 

each of the 84 ‘Caledonian’ pinewoods to identify natural climatically similar clusters of 

pinewoods, assessing whether the amount of climatic variation existing within the current 

seed zones can be minimised with an alternative grouping system. Reducing the climatic 

variation within groups but maximising variation between groups would provide a basis for 

delineation of ‘floating’ seed zones (sensu Rehfeldt, 1983) based on environmental distances 

rather than geographical proximity of seed source and planting site. Considerations often 

missing from seed transfer guidelines are aspects of the edaphic and biotic environment, 

although there is clear evidence from some tree species that local adaptation to these 

selective pressures does take place (Linhart and Grant, 1996; Viherä-Aarnio and Heikkilä, 

2006; Smith et al., 2012; Pickles et al., 2015), and that community composition of associated 

species can be associated with tree genotype (Wimp et al., 2005; Davies et al., 2014; Sinclair 

et al, 2015; Bucharova et al., 2016a). To provide a broad description of ecological 

dissimilarity among sites, vegetation survey and analyses were conducted, based on a subset 

of the ‘Caledonian’ pinewoods (n = 21), treating plant community dissimilarities as a 

surrogate for measured variation in non-climatic aspects of the environment. The chapter 

concludes with recommendations for further research required to refine and improve the 

biological relevance of seed sourcing guidelines.  

ii. Do different native populations of Scots pine release pollen at the same time? 
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Chapter three - Variation in the timing of pollen production indicates limited reproductive 

synchrony between distant native populations of Pinus sylvestris in Scotland. 

In the third chapter, the potential for temporal variation in pollen production amongst 

populations to limit inter-population gene flow is assessed. This was achieved by making 

repeated sets of observations of the morphology of male strobili on trees growing in situ in 

three native populations in 2014, adding a further two populations to the assay for 2015 and 

2016. In the absence of data regarding the timing of female strobilus receptivity, the time and 

space over which viable pollen can be transported between populations in the Scottish 

landscape and the direction and strength of winds at any given time; it is difficult to make 

predictions of the probabilities of gene flow amongst specific stands. However, the results 

are a useful step towards developing an understanding of patterns and possible barriers to 

pollen flow in the complex Scottish uplands (Whittet et al., 2017). 

iii. What factors influence the suitability of implementing predictive provenancing? 

Chapter four - Testing options for adaptive forest seed sourcing. Insights from individual 

based model simulations. 

In chapter four, simulations from an individual based model (IBM) are used to investigate 

factors influencing the suitability of adopting alternative strategies for seed sourcing, aimed 

specifically at helping newly established plantations to adapt to unidirectional environmental 

change. A custom multi-patch (n = 11), bi-allelic IBM is developed and is used to generalise 

adaptive evolutionary responses to environmental change in a newly established population. 

The IBM considers adaptedness to more than one aspect of the environment, namely climate, 

which varies clinally and changes over time and ‘habitat’, which is considered to be a proxy 

for any non-climatic aspects of the environment. Contrasting with climate, ‘habitat’ variation 

amongst patches is randomly spatially arranged and remains constant over time. 

Adaptedness to either of these selection pressures is determined by individuals’ genotypes. 

The individuals in the model therefore undergo simultaneous directional and stabilising 

natural selection on two genetically uncorrelated traits.  

The main experimental treatment applied in the IBM is to establish a new population under 

different seed sourcing strategies. These are to continue the established practice of sourcing 

currently adapted, locally sourced seed; to source seed from a population which experiences 

conditions most similar to a correctly predicted future climate (i.e. nearer the equator); to 

source mixtures of currently adapted, local seed and from more equatorial populations and 

finally, to source seed randomly from the entire species range. The main outputs from the 
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model are the amount of change to the mean phenotype of the population the number of trees 

surviving strong selective mortality in the first years after planting.  

iv. What is the current status of the plant and seed supply chain in GB? Which 

practical considerations will limit implementation of science-based policies for seed 

sourcing? 

Chapter five - Supplying trees in an era of environmental uncertainty: An analysis of the 

options for the forest nursery sector in Great Britain. 

In applied forest science, it is important to understand the practical boundaries within which 

science-based policy can be implemented. Regarding seed sourcing for woodland creation 

and expansion, a clear practical and economic constraint upon the uptake of science based 

policy is that imposed by the commercial trade in forest plants and seed (Hubert and Cottrell, 

2007; Buckley and Blakesley, 2008; O’ Neill et al., 2014; Broadhurst et al., 2016). 

In this chapter, inductive methods from qualitative social sciences are used to provide an 

overview of the current status of the domestic forest nursery and seed supply sector in GB. 

To build this overview, semi-structured interviews were conducted in person with members 

of the domestic forest nursery and seed supply industry. Respondents included 14 private 

sector forest nurseries, one representative of the public sector organisation involved in plant 

and seed supply and the only major specialist tree and shrub seed merchant in the UK. The 

interview guideline included a mixture of quantitative (descriptive) and qualitative 

(discursive) questions on seed procurement, plant production, sales and customer demand; 

grant schemes; attitudes to climate change and open questions regarding any other 

bottlenecks in the plant and seed supply chain.  

v. Chapter six - Discussion and conclusions 

Chapter six will summarise the results from each of the main chapters of the thesis and 

discuss implications for forest management planning to encourage adaptation to climate 

change. 
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Chapter two 

Defining climatic and ecological groupings amongst the native 

pinewoods of Scotland. 

Abstract 

The eighty-four native populations of Pinus sylvestris L. in Scotland, often known as the 

‘Caledonian pinewoods’ are grouped into a series of seven regions which are used to define 

seed transfer limits for the creation of new native woodland. The biochemical variation 

found among populations reflects the species’ postglacial history in Scotland but is not 

known to be selectively important, whereby it does not influence adaptedness of seed 

sources to planting sites. The landscapes contained within the biochemical regions are 

topographically heterogeneous, meaning that the populations within them do not form 

climatically uniform clusters. Using hierarchical cluster analysis of a distance matrix of 13 

environmental variables, we provide an alternative classification of the native pinewoods by 

specifying a number of ‘climatic clusters’ equivalent to the number of seed zones to find 

groups of sites which experience a similar climatic selection regime. As a means to test 

climatic congruence of seed zones, comparison of site classifications was conducted which 

found that site membership of existing seed zones agrees with site membership of the 

climatically defined site clusters at a rate of 0.74 (p <0.0001), a pattern most likely derived 

by spatial auto-correlation in climatic variables at relatively broad geographical scales. 

Nonetheless, analyses of variance of the first two axes of climatic variation identified in a 

principal components analysis demonstrated that the classification produced by climatic 

clustering was more effective in explaining variation between groups. The ecological 

relevance of the seed zones is assessed with description and analyses of plant communities at 

a subset of these sites (n = 21) which finds four ‘sub-communities’ within the native 

pinewoods. The differences between sub-communities can be explained firstly by a 

longitudinal axis of continentality and secondly by soil nutrient status. However, the extent 

to which this lithological variation, or variation in community composition contributes to 

adaptive genetic variation in pine trees remains untested. 

2.1. Introduction 

Seed sourcing guidelines for native tree and shrub species tend to involve designating 

geographical regions in which use of seed for new planting is considered to entail a low risk 

of maladaptation to local conditions. In Great Britain, geographically divisive seed zones are 
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applied to all native tree species. All but one species share an identical series of seed zones 

which, in the absence of comprehensive data regarding phenotypic variation and correlations 

with environmental variables, were defined arbitrarily, based on major geomorphological 

landforms and watersheds (Herbert et al., 1999). The exception is Pinus sylvestris L. in its 

native range in Scotland. The seed zones applied to Pinus sylvestris are also geographically 

divisive but the delineation was based on variation among populations in the frequency of 

biochemicals, e.g. monoterpenes (Forrest, 1980; 1982) and allozyme alleles (Kinloch et al. 

1986). These are molecular markers which are thought to be selectively neutral, i.e. have 

little or no effect on fitness (Ennos et al., 1998; McKay and Latta, 2002). The rationale for 

delineating seed zones in this way was that restricting the choice of seed for new planting to 

local origins should firstly mean that planting stock should be well adapted to the planting 

site and secondly, should preserve the ‘genetic integrity’ of populations (Forestry 

Commission, 1998; Herbert et al., 1999). The definition of ‘genetic integrity’ is slightly 

unclear (Salmela et al., 2010), but presumably refers to maintenance of distinct genetic 

variation, including possible co-adapted gene complexes, and a naturally developed genetic 

structure. However, it is worth noting that levels of molecular genetic diversity in Scottish 

populations of Scots pine are similar to those found in continuous parts of the species range 

and the majority of genetic variation is held within, rather than between populations. The 

genetic differences between populations are typically due to small variations in allele 

frequencies, rather than the existence of unique alleles in different populations, suggesting 

that levels of gene flow are sufficient to have minimised divergence among populations 

(Provan et al., 1998; Wachowiak et al., 2011; 2013). The area covered by timber plantations 

of Scots pine in Scotland, which have historically been based on unknown origin material or 

planting stock based on mixtures of Scottish and non-Scottish seed origins in seed orchards 

(Lee, 2002), is estimated as 100,000 ha, which is over five times the 18,000 ha covered by 

the native pinewoods (Mason et al., 2004). The possibility or extent of pollen contamination 

from non-indigenous stands into indigenous stands remains to be tested, but is not 

implausible (Forrest and Fletcher, 1994; Salmela et al., 2010). This lack of natural 

selectively neutral genetic structure and extensive gene flow which most likely involves gene 

flow between plantations and native woodlands suggests that ‘genetic integrity’ is of much 

lower relevance than adaptively significant variation when selecting seed sources for new 

planting. 

Variation in adaptively significant traits evolves in response to natural selection, which acts 

on phenotypic variation generated by the product of many loci of small effect, rather than 

variation at single genetic marker loci (Le Corre and Kremer, 2012; Alberto et al., 2013a; 
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Savolainen et al., 2013). Adaptively significant genetic variation can be assessed in common 

garden experiments or provenance trials in which trees, raised from seed collected from 

populations in many locations, are grown together in common conditions. In this scenario, 

environmental conditions are held constant and so differences in the phenotypes of 

individuals in the experiment can be inferred to reflect differences in the genotypes (White et 

al., 2007). Where there are geographic differences in phenotypes between populations, it is 

possible to form hypotheses about the selective forces that have shaped the variation, by 

relating phenotypic to environmental variation (White et al., 2007). 

Optimally, seed transfer guidelines would be informed by evidence from well replicated 

long-term field tests or fully reciprocal transplant experiments in which the survival and 

ability for genotypes to compete in multiple environments could be assessed (Rehfeldt et al., 

2002; Reich and Oleksyn, 2008; Wang et al., 2006). Although reciprocal transplant data do 

not yet exist for Scottish populations, data from single-site provenance tests demonstrate 

adaptive differences within and between native populations. Experiments indicate significant 

adaptive variation among families within populations for physiological characteristics such 

as growth characteristics such as height and diameter increment, phenology and cold 

tolerance (Perks and McKay, 1997; Perks and Ennos, 1999; Salmela et al. 2011; 2013), 

variation in susceptibility to infection by Dothistroma septosporum (Dorog) Morelet (Perry 

et al., 2016a, b) and variation in needle anatomy (Donnelly et al., 2016). Where significant 

adaptive differences have been found between populations, variation in phenotypic traits 

tends to be most closely related to longitude. For instance, when grown in a common 

environment in trials based in either Edinburgh or Aberdeen, the progeny of populations 

from colder, drier eastern environments initiated their annual growth earlier than those from 

warmer, wetter western sites (Salmela et al., 2013). Similarly, in an outdoor trial in the south 

west of Scotland, the progeny of populations from western sites showed lower susceptibility 

to infection by Dothistroma septosporum than those from the east, perhaps due to co-evolved 

resistance in the plants from humid environments with higher pathogen pressure (Perry et al., 

2016a). Even when the majority of variation has been found within rather than between 

populations, phenotypic variation tends to show the same regionality, for instance for 

photochemical responses to cold temperatures (Salmela et al., 2011) and variation in needle 

morphology (Donnelly et al., 2016). These results reflect the relatively steep environmental 

gradient that exists between the oceanic west and more continental east of Scotland. For 

example, the driest of the native pinewoods, Carn na Loine, which is in the Cairngorm 

mountains in the east central Highlands receives 739 mm of annual precipitation whereas 

Glen Barisdale on the Knoydart peninsula in the west receives 3730 mm of annual 
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precipitation despite geographic separation of only 115 km. Geographic proximity does not 

always mean that sites experience similar conditions. For example, the warmest and coldest 

of all of the native pinewoods, based on long term average annual growing degree days 

(GDD; accumulated number of degrees per day on days in which the mean temperature 

exceeds 5.5° C) are in the same seed zone. Loch Maree Islands, which is 12 m above sea 

level has an average GDD of 1423.6 whilst Coir a’ Ghamhna, which is 249 m above sea 

level has an average GDD of 436.6, despite geographical separation of 18 km. 

Selectively neutral molecular markers provide relatively little useful information on the 

extent to which plants are adapted to local conditions (Ennos et al., 1998; McKay and Latta, 

2002; Holderegger et al., 2006; Jørgensen et al., 2016). This is exemplified in 

topographically complex landscapes, such as those which the native pinewoods occupy in 

Scotland. In this case, populations which are geographically proximal may not experience 

similar selection regimes due to the confounding effects of altitude and aspect, and a closer 

climatic match may be found at pinewood sites which are located further away (i.e., in 

another seed zone). The lack of environmental coherence in existing seed zones was 

demonstrated for the native Scots pine by investigating the principal components of variation 

among a series of climatic covariates by Salmela et al. (2010). This analysis showed that the 

most climatically similar sites were often not within the same seed zone. 

In this chapter, we begin by applying similar multivariate techniques to identify natural 

groupings of pinewoods which do experience similar climatic regimes, thus forming an 

initial basis for delineation of custom ‘floating’ (unfixed seed zones which aim to match sites 

rather than draw boundaries) seed transfer guidelines (Rehfeldt, 1983) for native Pinus 

sylvestris in Scotland. However, organisms must also be able to cope with, or adapt to 

aspects of the biotic and edaphic environment (Bucharova et al., 2016a), conditions which 

are likely to vary more dynamically and at different, more mosaic-like patterns than climatic 

covariates (Linhart and Grant, 1996) but which may be overlooked when climatic covariates 

are considered alone. A proxy for selectively different environments incorporating these 

multiple aspects of the environment might be found by investigating plant communities at a 

range of sites, as these are the product of these combined selective pressures. To characterise 

sites ecologically, we conducted a survey and analysis of plant communities at a series of 21 

native pinewood sites. Plant communities are useful in this context because they are 

relatively easy to describe using well-established methods (Rodwell et al., 1991). The use of 

plant species as bioindicators, suitable for detecting ecological variation between sites is well 

established in British forest management (Pyatt et al., 2001).  
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This combined approach enables us to quantitatively test the suitability of the existing seed 

zones for identifying populations which undergo similar climatic selective regimes and use 

floristic data to determine whether there is additional, idiosyncratic environmental variation 

potentially producing responses which would go un-noticed if climate was considered as a 

proxy for selection alone. Together, these approaches provide a basis for improving upon the 

current system of seed zoning for native woodland creation in Scotland.  

2.2. Materials and methods 

2.2.1. Site selection 

The native or ‘Caledonian’ pinewoods in Scotland consist of 84 ancient-semi natural Scots 

pine Pinus sylvestris populations which are considered to have persisted through natural 

regeneration since their initial colonisation and establishment. These 84 populations are 

listed as such on the ‘Caledonian pinewood inventory’ (Forestry Commission, 1998) and 

here, these will be subjected to climatic clustering. 

2.2.2. Obtaining environmental data 

Long term average values for a series of 13 climatic variables were extracted from the UK 

Meteorological Office’s datasets for each of the 84 sites on the Caledonian pinewood 

inventory, for the years 1970-2000. Values for the meteorological variables are interpolated 

onto 5 x 5 km grids in order to estimate values for the entire country (Perry and Hollis, 

2005). Monthly values for count variables (e.g. sunshine hours, days of snow lying, 

precipitation) were summed and mean monthly variables were averaged (e.g. mean wind 

speed, mean monthly temperatures) to generate annual values for each of the covariates, 

using a custom script in R version 3.2.3 (R Core Team, 2015).  

2.2.3. Vegetation sampling 

Selection of sites for inclusion within the vegetation surveys was based on a sub-set of 21 

populations (Figure 2.1) from which seed had been collected in 2007 for inclusion within 

provenance-progeny trials raised at Centre for Ecology and Hydrology in Edinburgh and the 

James Hutton Institute near Aberdeen. Details of these trials can be found in Salmela et al. 

(2013). These 21 populations represent one quarter of the ‘Caledonian’ pinewoods and 

include three sites from each of the seven biochemical regions which are used as seed zones. 

The site names used here match those used in the Caledonian pinewood inventory. 
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All the vegetation surveys were conducted in the summer of 2014. Sampling followed a 

similar approach to that of the National Vegetation Classification (Rodwell, 1991). Ground 

layer species were identified within 1 * 1 m quadrats and the shrub layer within 5 * 5 m, 

inclusive of the ground layer quadrat. Abundance was estimated using the ten category 

DOMIN scale. Where plants were growing interspersed amongst others, or in slightly 

different layers, total abundance values were permitted to exceed a cumulative score of 10 – 

or 100% of the quadrat. Tree cover was estimated within a 15 x 15 m plot. The surveying 

based on 1, 5 and 15 m square quadrats was repeated at five locations at each site. Selection 

of sampling plots within populations was on a stratified-random basis, to enable rapid 

sampling. Five plots were selected from within blank site polygons within ArcMap v.10.1 

(ESRI, Redlands, California) and subsequently located and sampled once on site. Some of 

the woodlands are very large and so sampling was targeted in a limited area. When this was 

the case, the area chosen was in close proximity to the locations of the parent trees from 

which seed had been collected for common garden experiments. In situations where the GPS 

waypoint lay in a location which was not representative of pine woodland, the quadrat was 

cast into the nearest representative area. No attempts to quantify grazing intensity, canopy 

height or openness, slope, aspect or any soil properties were made. Furthermore, no 

deliberate effort was made to capture total variation or conduct exhaustive surveys 

throughout the forests. Instead, our intention was to produce a rapid characterisation of the 

vegetation type at each site. 

2.2.4. Mean Ellenberg indicator values 

Ellenberg indicator values (EIVs) are bioindicator values assigned to plant species for a 

series of six habitat traits on a nine point ordinal scale (Ellenberg, 1992). These values were 

initially assigned based on measured variation of habitat characteristics in Central European 

sites, but have since been adjusted for use in the British Isles for vascular plants (Hill et al., 

2004) and bryophytes (Hill et al., 2007).  

The purpose of using EIVs in this study is as a surrogate for measured variation in soil 

variables, notably soil reaction and nitrogen content which can be difficult to measure and 

which can exhibit considerable variation at narrow spatial and temporal scales (Diekmann, 

2003). We will use only the mean site EIVs for N (nitrogen) and R (reaction), as measured 

long-term climatic observations are available to describe other phenomena. To gain 

frequency-weighted mean EIVs for each of the pinewood sites, we followed the protocol of 

Pyatt et al. (2001). Under this protocol, species weightings are calculated by multiplying the 

species’ frequency score (the number of quadrats within each site in which the species 



Chapter 2 

39 

 

occurred) with the EIV of that species. The weighting value for species occurring in only one 

quadrat at a site is dropped from 1 to 0.5 to reduce the strength of the effects of rare species 

in the dataset. The calculations were made using the full dataset, including site-singletons. 

However, constant species in the dataset, which were Pinus sylvestris, Hylocomium 

splendens, Vaccinium myrtillus and Calluna vulgaris were not considered in the calculations. 

Mean EIVs for each site are calculated as the sum of the species weighted values divided by 

the sum of all of the species weights at that site, giving the mean taxon EIV for the site. 

This therefore gives the mean EIV of the taxa at that site. N and R indicator values have a 

recognised tendency to be positively correlated (Hawkes et al., 1997; Dzwonko, 2001; Pyatt 

et al., 2001) and were indeed strongly positively correlated in our dataset (r = 0.8, df = 19, p 

= <0.01). Due to this strong correlation, values for each of these were combined by 

calculating the mean of both values to give a combined ‘soil nutrient regime’ (SNR) score.  

2.2.5. Statistical analyses 

All the statistical analyses described here were performed in R version 3.2.3. (R Core Team, 

2015), with particular reliance on the ‘vegan’ package for vegetation analyses (Oksanen et 

al., 2016). 

2.2.5.1. Climatic site clustering 

Heirarchical cluster analysis, with complete linkage was applied to a Euclidean distance 

matrix of the full set of environmental covariates for the 84 pinewood sites on the 

Caledonian pinewood inventory which aimed to produce seven distinct groups of sites and to 

explore whether their composition matched that of the seven seed zones that already exist for 

Scots pine. This number was deliberately chosen so that it would be possible to assess how 

well membership of the existing seed zones matches a classification based on actual climatic 

variation. Classification tree analysis was then conducted, treating cluster group as a factor 

response variable. This method uses recursive binary partitioning to choose splits based on 

the predictor terms in the formula (in this case, all 13 variables). The tree, built using the 

‘tree’ package within R (Ripley, 2016) searches iteratively for splits amongst the response 

terms which maximise the reduction in Gini impurity (a measure of misclassification) until 

the number of terminal nodes is equivalent to the number of factor levels (Ripley, 2016). 

The two classifications (seed zones, climatic clusters) were then compared to determine 

whether group membership is more similar than would be expected by chance, using 

simulated data. Since the actual number of clusters is arbitrary and the groupings made by 
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either classification cannot be compared directly, we produced n*n binary ‘membership’ 

matrices for each of the classifications in which pairwise comparisons of sites within the 

same cluster would be scored as successes (1) and sites which were in different groups 

would be scored as failures (0). Agreement between membership matrices was calculated as 

the sum of the paired successes between classifications. The number of possible agreements 

between matrices therefore ranges from n = 84 to n
2
 = 7056. After correcting for different 

frequencies of the pre-defined seed zone classifier, 10000 simulated binary datasets were 

generated and compared to the reference classification to give a probability of achieving a 

higher number of agreements between the classifications by chance. 

Principal components analysis (PCA) was then applied to a correlation matrix of the same 

set of environmental covariates to identify important axes of climatic variation in the dataset. 

Analysis of variance in the first two principal components was then applied; treating the 

classification levels (seed zones, climatic clusters) as grouping factors in order to evaluate 

variance explained between and within groups under each system of classification.  

2.2.5.2. Vegetation description and analyses 

Prior to conducting statistical analyses, the vegetation dataset was summarised to use 

frequency values for each site (the number of relevés from each site in which species 

occurred, regardless of their abundance). This was conducted because the aims are to 

interpret variation in community composition between sites, rather than within sites. 

Singletons, which are taxa occurring at only one site were removed from the dataset to avoid 

the presence of rare taxa exaggerating dissimilarities between sites. Additionally, Wisconsin 

standardisation of these frequency scores was applied to down weigh infrequent but not 

unique taxa. Hierarchical clustering, using a Ward minimal variance algorithm (Ward, 1963), 

was applied to a Bray-Curtis dissimilarity matrix of pairwise site combinations to produce a 

dendrogram. The subjective criteria for pruning the dendrogram into clusters were to find the 

greatest number of clusters possible, provided that each cluster could be represented by no 

fewer than three sites and that each cluster could be represented by at least one significant 

indicator species. Dufrêne-Legendre indicator species analysis (Dufrêne and Legendre, 

1997) was implemented using the ‘indval’ function of the ‘labdsv’ package (Roberts, 2016). 

This function calculates the fidelity and relative abundance of species within each of the 

predefined clusters to identify taxa which can be significantly associated with each of the 

communities or sub-communities. 

To visually interpret dissimilarities and to test associations with environmental variables, 

ordination of vegetation data onto two axes of variation by nonmetric multidimensional 
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scaling (NMDS) based on a Bray-Curtis dissimilarity matrix was applied, using the function 

‘metaMDS’. In NMDS, a random starting configuration of points (sites) in ordination space 

is assigned. On each iteration, the distance between points in the ordination is calculated and 

'stress', a measure of goodness of fit between the dissimilarity matrix and the ordination 

solution is calculated. The algorithm proceeded with a maximum 20 random starts and ran 

until it found a solution with the lowest stress and highest goodness of fit. Multiple runs were 

performed to ensure that the function did not converge on a local optimum and were found 

not to appreciable change the results, thereby the solution was considered appropriate. An 

advantage of NMDS over other ordination procedures is that it does not make assumptions 

about the distribution of the data and can accommodate the use of different dissimilarity 

metrics.  

Vector fitting, using the full set of environmental variables described in section 2.2.2 was 

applied to the ordination solution using the ‘envfit’ function within vegan to test for 

associations between axes of variation in community composition (NMDS axes) and 

environmental variables. Significance of vectors was tested using 999 permutations. Finally, 

a classification tree was built using the same methods as were applied to produce the 

classification tree of climatic clusters to identify environmental factors which can be used to 

discriminate between the different sub communities, again using the ‘tree’ package (Ripley, 

2016).  

2.3. Results 

2.3.1. Climatic site clustering 

The dendrogram solution produced by hierarchical cluster analysis was deliberately cut to 

produce seven climatic clusters of sites in order to have the same number of classes as the 

current system of seed zones (Figure 2.1). The first division separates sites in the eastern, 

central and northern Highlands from those in the west. The classification tree which treated 

cluster membership as a factor variable found that membership of climatic clusters could be 

determined using just two climatic variables, AP (annual precipitation) and GSL (growing 

season length) (Figure 2.2). 
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Figure 2.1. Heirarchical cluster dendrogram of the 84 pinewoods on the Caledonian pinewood inventory, based on 

climatic dissimilarity. Branch colours represent membership of each of the seven climatic clusters. Leaf colour 

represents membership of existing seed zones.  

 

Figure 2.2. Classification tree of the ‘climatic cluster’ groups fitted with 13 environmental variables, converging on a 

solution involving only two variables (AP = annual precipitation (mm); GSL = growing season length (days)). When 

threshold conditions at each node are met, the branching proceeds to the left. There are 2/84 misclassifications. 

Tree redrawn based on a topology produced in the R package ‘tree’ (Ripley, 2016). The labels (“Cairngorms”, 

“Central-Atlantic” and “Hyper-oceanic”) are optional subjective classifications 
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Figure 2.3. Map of Scotland with the locations of the 84 native pinewoods, indicating a) seed zone membership and b) membership of the ‘climatic clusters’ defined here. 
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We found 5244/7056 agreements between the seed zones classifier and the climatic clusters, 

representing an agreement rate of 0.74. For instance, the majority of sites from the ‘east-

central’ and ‘north-east’ seed zones, in the east of Scotland cluster together climatically. The 

agreement rate was higher than in any of the 10000 simulated datasets therefore the 

probability of producing a classification which matched the climatic clusters as well as the 

existing seed zones by chance is p = <0.0001. 

The first two principal components of variation in climatic variables explained 64.6% and 

24.6% of the total variation respectively (Figure 2.4). PC1 represents a gradient in 

temperature related variables, having a strong negative correlation with values of variables 

such as GDD (growing degree days); MFT and MJT (mean monthly temperatures for 

February and July). PC2 represents a gradient in precipitation and continentality, having a 

strong positive correlation with AP (annual precipitation), and a strong negative correlation 

with SH (mean annual sunshine hours), and ETR (extreme temperature range). Visually, the 

principal component biplot suggests that different pinewood sites within seed zones do not 

form environmentally uniform clusters (Salmela et al., 2010), and that the defined ‘climatic 

clusters’ provide a more discrete solution to minimising variation within groups but 

maximising variation between groups (Figure 2.4). This is confirmed by analysis of variance, 

which demonstrates that this is indeed the case (Table 2.1). While climatic differences 

between levels of both classifications (climatic clusters and seed zones) are highly 

significant; the variance explained by the climatic clusters is greater. The climatic clusters 

explain 0.62 of the variance in PC1 (ANOVA F (6,77) = 24.831) and 0.73 of the variance in PC2 

(ANOVA F (6,77) = 27.778) whereas the seed zones explain 0.26 of the variance in PC1(ANOVA F 

(6,77) = 6.3942) and 0.6 of the variance in PC2 (ANOVA F (6,77) = 14.648). All significance values 

are well below 0.001. 
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Figure 2.4. Plot of the first two principal components of variation amongst a set of 13 climatic variables, accounting 

for 64.6 and 24.6% of the total variation respectively indicating a) seed zone membership and b) climatic cluster 

membership. The variables used and their correlation coefficients with each of the first two components are shown 

in table 2.1. The key to the abbreviations used for the seed zones is as follows: EC = east central, N = north, NC = 

north central, NE = north east, NW = north west, SC = south central, SW = south west. 

Table 2.1. List of climatic variables used in the principal component analysis and their correlation coefficients with 

the first two axes of variation. 

 

 

 

Variable Abbreviation PC1 PC2 

Mean February temperature MFT 
-0.341 0.289 

Mean July temperature MJT 
-0.303 -0.255 

Consecutive dry days CDD 
-0.265 -0.312 

Mean wind speed MWS 
0.28 0.262 

Sunshine hours SH 
-0.518 0.18 

Growing degree days GDD 
-0.328 -0.134 

Days of snow lying DSL 
0.317 -0.133 

Vapour pressure VAP 
-0.341 0.123 

Annual precipitation AP 
-0.178 0.38 

Growing season length GSL 
-0.336 0.205 

Extreme temperature range ETR 
0.142 -0.468 

Ground frost days GFD 
0.309 -0.204 

Altitude ALT 
0.244 -0.237 
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2.3.2. Vegetation description and analyses 

A total of 89 plant species were found amongst the pinewood sites, of which 21 were 

singletons, i.e. taxa which occurred at only one site and were thus omitted from multivariate 

analyses. Strath Oykel and Shieldaig had a relatively high number of singletons with eight 

and six respectively. Eleven of the 21 sites contained no singletons. 

2.3.2.1. Identifying sub-communities 

Hierarchical clustering, based on Bray-Curtis dissimilarities were produced a dendrogram 

from the vegetation data (Figure 2.5) which found four discrete groups of sites (henceforth 

described as sub-communities). The 21 sites that were included in the vegetation survey 

consisted of three sites from each of the seven Scots pine seed zones yet the three sites from 

the same seed zone never clustered together in the same plant sub-community (Figure 2.5), 

despite the smaller number of sub-communities (n = 4) than seed zones (n = 7). Each of the 

four sub-communities could be associated with at least one significant indicator species 

(Table 2.2). 

 

Figure 2.5. Hierarchical cluster dendrogram demonstrating group membership (branch colours), and seed zone 

membership (leaf colours). Figure customised using functions from the ‘dendextend’ package (Galili, 2015).
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Figure 2.6. Map of Scotland with the locations of the 21 native pinewoods in which vegetation sampling was conducted, indicating a) seed zone membership and b) membership of the 

vegetation sub-communities. 
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Table 2.2. Significant indicator species of each sub-community 

 

Sub-

community 

Taxon Indicator value P value 

1. Pleurozium schreberi (Willd. Ex Brid.) Mitt. 

Vaccinium myrtillus L. 

Vaccinium vitis-idaea L. 

Calluna vulgaris (L.) Hull 

Hylocomium splendens (Hedw.) Schimp. 

Rhytidiadelphus triquetrus (Hedw.) Warnst.  

0.4818 

0.3731 

0.4639 

0.3874 

0.3189 

0.4912 

0.001 

0.001 

0.001 

0.001 

0.019 

0.036 

2. Plagiothecium undulatum (Hedw.) Schimp. 0.3818 0.031 

3. Sphagnum (L.) spp. 

Sorbus aucuparia L. 

Dicranum majus Turner 

0.4921 

0.5558 

0.3901 

0.011 

0.019 

0.032 

4. 

 

Pteridium aquilinum (L.) Kuhn 

Potentilla erecta (L.) Raeusch. 

Viola riviniana Rchb. 

Mnium hornum Hedw. 

Pseudoscleropodium purum (Hedw.) M. 

Fleisch. 

0.4422 

0.6418 

0.6039 

0.6667 

0.4871 

0.022 

0.003 

0.016 

0.016 

0.038 

 

2.3.2.2. Environmental interpretation 

Nonmetric multidimensional scaling produced a solution with a minimum stress of 0.146 and 

a non-metric fit of R
2
 = 0.979 (Figure 2.7). The first axis of community composition was 

related to continentality and positively correlated with extreme temperature range (p = 0.006) 

and negatively correlated with annual precipitation (p = 0.001) (Table 2.3). The second axis 

was strongly negatively correlated with soil nutrient regime (p = 0.001). The strength of 

these environmental correlations meant that a classification tree could be produced to 

indicate the environmental criteria under which each sub-community develops. On the first 

run, the classification tree found one fewer terminal node than those which had been 

described by clustering, i.e. the first tree did not discriminate between two of the clusters. To 

build a fully resolved tree, the analysis was repeated by implementing a separate model 

considering only the two unclassified sub-communities (2 and 3). The resulting classification 

tree (Figure 2.8) contains four terminal nodes, with misclassification error rates of 1/21 at the 

first node, which is split by SNR; 3/18 at the second node, split by AP and 1/14 at the final 

node to separate sub-communities 2 and 3 by altitude (Figure 2.9). Because SNR is used for 

the first division, and these values are derived from plant composition as a surrogate for 

measured variation in soil nutrient status, it should be strongly emphasised that this is not an 

external variable and as such, the tree should be considered a tool by which to classify 
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existing data, rather than to predict based on environmental variables (Zelený and Schaffers, 

2012).  

The classification tree and the ordination solution are sufficient to provide a verbal 

description of each of the sub-communities as follows: 1 = dry, base-poor pinewoods; 2 = 

central pinewoods; 3 = oceanic bryophyte rich pinewoods; 4 = relatively base rich 

pinewoods. These categories are approximately similar to those determined from the climatic 

clustering, with the main novelty being that of the ‘base-rich’ pinewood sub-community, 

which is not explained by climatic variation. Sub-communities 1, 2 and 3 are clearly 

arranged along a geographical and ecological gradient on the ordination biplot (Figure 2.7) 

and this shows strong spatial auto-correlation (Mantel test statistic based on Pearson’s r = 

0.3624, p <0.001). 

 

Figure 2.7. NMDS ordination biplot for the 21 pinewood sites, demonstrating sub-community membership and their 

geometric centroids. The solution is rotated so that the first axis is oriented with longitude. Fitted environmental 

vectors are those in which p < 0.01. Unabbreviated vector names are provided in Table 2.3. 
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Table 2.3. List of environmental variables used in vector fitting and their correlation coefficients with the NMDS 

axes. Those in bold and italics are significant to p < 0.01.  

 

Variable Abbreviation NMDS1 NMDS2 R
2 

P value 

Mean February temperature MFT -0.71881 -0.6952 0.4011 0.014 

Mean July temperature MJT -0.08012 -0.99679 0.1814 0.172 

Soil moisture regime SMR -0.90419 0.42712 0.4972 0.005 

Soil nutrient regime SNR -0.00658 -0.99998 0.7428 0.001 

Consecutive dry days CDD 0.24385 -0.96981 0.03 0.768 

Mean wind speed MWS 0.25135 0.9679 0.0776 0.485 

Sunshine hours SH 0.96242 -0.27156 0.4022 0.018 

Growing degree days GDD -0.27995 -0.96001 0.2724 0.055 

Days of snow lying DSL 0.88995 0.45606 0.4706 0.008 

Vapour pressure VAP -0.65313 -0.75724 0.3551 0.026 

Annual precipitation AP -0.93689 0.34963 0.7383 0.001 

Growing season length GSL -0.56106 -0.82777 0.3718 0.019 

Extreme temperature range ETR 0.99163 -0.12908 0.4295 0.006 

Ground frost days GFD 0.95452 0.29813 0.4844 0.006 

Altitude ALT 0.60847 0.79358 0.4683 0.004 

 

 

Figure 2.8. Classification tree derived from environmental variables associated with populations in each of the four 

sub-communities, manually redrawn by the author based on a topology produced in the R package ‘tree’ (Ripley, 

2016).  
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Figure 2.9. Values for each of the external environmental variables used to discriminate between sub-communities, 

in order of placement on the tree. Vertical lines on the plots indicate the threshold value for discrimination and 

horizontal lines on the lower two plots indicate where a sub-community has already been classified at an earlier 

node. Diamond shaped plotting characters indicate mis-classified sites. 

2.4. Discussion 

Geographically defined seed zones offer a convenient way for forest reproductive material to 

be described and certified by producers (Ying and Yanchuk, 2006). Fixed geographical 

boundaries provide the most intuitive and simple solution to this, as they can be represented 

with lines on a two dimensional map. However, in heterogeneous environments such as 

upland Scotland, geographically defined seed zones do not necessarily contain similarly 

adapted populations, as microclimate, topography and lithology can vary at narrow spatial 

scales (Linhart and Grant, 1996; Bischoff et al., 2006; Salmela et al., 2010). Our analyses 

have shown that the current seed zones for Scots pine in Scotland do not account for fine-

scale climatic variation in 26% of sites and that alternative groups can be defined in which 

differences between groups can be increased whilst minimising the climatic differences 

between sites within a single group.  

Survey and analysis of vegetation at a subset of the native pinewood sites found four 

different sub-communities. The variation in plant community composition was strongly 

spatially auto-correlated and the associations with climatic variables, particularly those 

related to continentality support the climatic clusters defined when considering climatic 

variation alone. The novel information emerging from vegetation description and analysis 
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was the second axis of variation which is attributed to proxy values for soil nutrient status 

(SNR). The magnitude of differences in SNR observed here are relative only to the native 

pinewoods in which the vegetation sampling was conducted, a habitat which in Scotland is 

notable for its association with strongly leached, acidic podzol soils (Steven and Carlisle, 

1959; Carlisle and Brown, 1968; Rodwell et al., 1991), meaning that the ecological 

importance of the edaphic variation within the sample is difficult to interpret. 

Furthermore, the measure of soil nutrient status applied here was gained from mean EIVs, 

which are not independent of community composition, provoking a circularity of reasoning 

whereby dissimilarities in EIVs can be inherited by dissimilarities in community 

composition (Zelený and Schaffers, 2012). Whilst the strength of the correlation between 

SNR and community composition reported here may be somewhat inflated by the use of 

EIVs, the gradient in SNR found in the vegetation data is nevertheless qualitatively realistic. 

Significant indicators of the ‘base rich’ sub-community include the herbs Viola riviniana and 

Potentilla erecta and bracken Pteridium aquilinum, which was constant whilst Vaccinium 

vitis-idaea was almost entirely absent and V. myrtillus and Calluna vulgaris were much less 

abundant than elsewhere. The sites in this sub-community contained a high number of 

singletons, including species more commonly associated with deciduous woodlands on 

brown-earth soils. Examples of singletons from sites within this group are Lonicera 

periclymenum L., Hyacinthoides non-scripta (L.) Chouard ex Rothm., Lysimachia nemorum 

L. and Brachypodium sylvaticum (Huds.) P.Beauv.   

Ecological information inferred from the use of bioindicators is already used to inform 

species choice in GB woodlands, as part of the ‘Ecological site classification’ (ESC) 

decision support system (Pyatt et al., 2001). The site classification models in ESC are 

applied at higher taxonomic scales and imply lower precision in the estimated variable than 

would be implied by selecting components of genetic variation within species based on high 

precision measurements or estimates of environmental variation at narrow spatial scales. 

Therefore, there are a number of important shortcomings in applying this type of ecological 

site matching to the selection of seed origins for new planting. Firstly, matching 

characteristics of currently unwooded planting sites to woodlands based on community 

assembly alone is inherently problematic because it relies on the use of bioindicator values. 

Composition and physiognomy of vegetation between wooded and non-wooded sites will 

necessarily be different, perhaps inflating differences in indicator values, due to 

dissimilarities inherited from compositional dissimilarity (Zelený and Schaffers, 2012). 

Secondly, a comprehensive ecological site matching tool based on plant community 
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composition would require vegetation classification at a greater number of sites and ideally, 

would require higher sampling intensity than was carried out in this study. This would be 

time consuming and expensive. A further problem with this is that pragmatic decisions taken 

during vegetation sampling often render results subjective (Podani, 2006), and for this reason 

it would be difficult to ensure that ecological profiles created by different recorders were 

comparable. Finally, without conducting the research necessary to determine whether 

edaphic variation gives rise to selectively important phenotypic variation and the scales at 

which this operates, it will be difficult to determine whether it is necessary to incorporate 

this information into seed sourcing guidelines.  

 An experiment in which seed collected from five open pollinated maternal genotypes of 

Populus angustifolia E. James in Utah, with a total separation distance of 65 km were grown 

reciprocally in soil collected from beneath the parent trees demonstrated that seedling 

survival in local soils was 2.5 times higher than in non-local soils, and plant size (based on a 

multivariate size-related trait) was between 15-20% larger in local soils (Smith et al., 2012). 

In replicated trials of Pseudotsuga menziesii (Mirb.) Franco in southwestern British 

Colombia, provenances demonstrated heritable specificity to ectomycorrhizal fungi, with the 

consequence that productivity of non-local tree genotypes planted in the trials reduced with 

increasing divergence of ectomycorrhizal communities between the sites of origin 

(Kranabetter et al., 2015). There is evidence of variation amongst ectomycorrhizal 

communities in the native pinewoods in Scotland linked both to interpolated predicted values 

of nitrogen deposition (Dore et al., 2012) as well as regional scale variation in climate (Jarvis 

et al., 2013). The possibility that local adaptation of pine trees as hosts to ectomycorrhizae, 

or vice versa, or local adaptation of either to the soil environment has not been tested in this 

system. 

Ideally, seed sourcing would be informed by a deeper understanding of patterns of adaptive 

genetic variation in tree species than we currently have. Existing data strongly suggest that 

adaptive variation in Pinus sylvestris is largely partitioned longitudinally in Scotland 

(Salmela et al., 2011; 2013; Donnelly et al., 2016; Perry et al., 2016a, b) and the results of 

ongoing replicated provenance trials will yield a higher level of information required to 

understand how genotypes respond to multiple different environments (S. Cavers, J. Cottrell, 

G. Iason et al., unpublished data). An additional component of future research work may 

attempt to quantify the extent to which edaphic variation (and associated microbiota) is of 

selective importance to Pinus sylvestris populations in Scotland. However, designing 

experiments to address the question comprehensively would be challenging as it would 
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likely require a very large combination of factors and replication at a large scale. Relatively 

little phenotypic variation in North American populations of Pseudotsuga menziesii is 

explained by edaphic variables (Monserud and Rehfeldt, 1990; Campbell, 1991) despite fine 

scale adaptation to climate in early genecological studies (Campbell, 1979; Rehfeldt, 1994). 

On these criteria, Ying and Yanchuk (2006), conclude that whilst edaphic variation is not 

unimportant, the scale at which it varies render them ‘unnecessary details’ (sensu Levin, 

1992), likely to complicate predictions of tree genotypes’ adaptedness to planting site 

conditions beyond a level which is operationally practicable. 

As more information regarding patterns of adaptive variation in Pinus sylvestris is generated, 

this can be used in conjunction with the results presented here to determine the number of 

seed transfer zones required in Scotland. For instance, multivariate regression trees, 

parameterised with values for traits such as survival, growth, phenology and disease 

resistance as response variables could be fitted to the environmental parameters to identify 

environmental distances over which seed can be deployed safely (Hamann et al., 2011; 

Oubida et al., 2015). Such an approach would extend and increase the sophistication of the 

classification trees applied here (Figures 2.2 and 2.8), by using actual measured observations 

of phenotypic variation in trees to define biologically relevant groupings of sites.  

It may be the case that the number of climatic clusters defined here are greater, or indeed 

even fewer, than strictly necessary. We can speculate that the three regions subjectively 

described in Figure 2.2 as ‘Cairngorms’, ‘Central-Atlantic’ and ‘Hyper-Oceanic’ may be 

sufficient as this reflects the longitudinal pattern of phenotypic variation identified thus far 

(Salmela et al., 2011; 2013; Donnelly et al., 2016; Perry et al., 2016a, b). 

Alternatively, these results could provide the basis for development of a climatic site-

matching tool, such as those which exist in Canada (McKenney et al., 1999) and the United 

States (Howe et al., 2009). A climatic site-matching tool would enable bespoke seed origin 

choice provided that planters were able to provide nursery producers with sufficient time to 

source seeds to be sown and raised to the stature required for planting in the field, a situation 

which is currently very uncommon in Great Britain (Whittet et al., 2016a). As long as the 

reliance on speculative production of planting stock in GB continues, categorical seed zones 

will offer the best solution to enable nursery producers to make decisions about where to 

source seed for speculative sowing, with the caveat that further investigation is required to 

determine the number of seed zones actually warranted by native Scots pine in Scotland. 
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Chapter three 

Substantial variation in the timing of pollen production suggests 

limited reproductive synchrony between distant native populations of 

Pinus sylvestris L. in Scotland  

This chapter is published as: 

Whittet, R., Cavers, S., Cottrell, J., Rosique-Esplugas, C. and Ennos, R. 2017. Substantial 

variation in the timing of pollen production reduces reproductive synchrony between 

distant populations of Pinus sylvestris L. in Scotland. Ecology and Evolution. DOI: 

10.1002/ece3.3154. 

 

Abstract 

Gene flow among populations of temperate trees is an essential prerequisite for maintenance 

of high levels of genetic diversity within populations and so is required to enable adaptive 

responses to environmental change. Fragmented ancient semi-natural populations of Pinus 

sylvestris in Highland Scotland show a pattern of adaptive differentiation for a range of 

phenotypic traits despite the fact that most of the selectively neutral variation is maintained 

within, rather than between populations. This pattern, which is common in widespread, wind 

dispersed trees, is indicative of strong, spatially variable natural selection acting against the 

possibly homogenising effect of extensive contemporary or historic gene flow. However the 

mechanisms of gene flow among these fragmented populations remain understudied. To 

begin to develop an understanding of whether populations are currently as well connected as 

molecular data would suggest it is essential to make field observations of trees to determine 

whether there are barriers to effective pollen dispersal. To assess synchrony in pollen 

production among populations, a sample of twenty trees at each of these sites was repeatedly 

visited roughly every ten days during the springs of 2014, 2015 and 2016. Male strobili on 

these trees were assigned a value based on a developmental ordinal morphological scale. 

Ordinal regression models were applied which identified clear differences in predicted mean 

date of maximum pollen shedding among populations with the westernmost site developing 

the earliest in each year and the most easterly site developing latest in each year. Predicted 

dates and the differences in predicted date between sites varied by year, indicating that there 

may be some variation in plasticity for the timing of pollen production. Each of the three 
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sampling years was warmer than the local long term average temperature and asynchrony 

was greatest in the warmest of the three years (2014) and smallest in the coolest year (2015).  

3.1. Introduction  

A characteristic of many boreal and northern temperate tree species is the capacity for long 

distance pollen dispersal by wind and high levels of gene flow between populations are 

thought to be widespread (Savolainen et al., 2007; Kremer et al., 2012). Gene flow amongst 

tree populations is essential for maintenance of the naturally high levels of genetic variation 

within populations and provides the raw material upon which natural selection can act to 

enable populations to continually adapt to environmental changes (Davis and Shaw, 2001).  

Pinus sylvestris is one such species which is capable of extensive pollen dispersal over long 

distances (Robledo-Arnuncio and Gil, 2005; Varis et al., 2009). In Scotland, the 84 semi-

natural populations of Pinus sylvestris, also known as the ‘Caledonian pinewoods’ persist in 

a fragmented distribution, thought now to represent only 1 % of its former maximum 

distribution (McVean and Ratcliffe, 1962). Despite severe fragmentation, levels of neutral 

genetic variation remain similar to those observed in more continuous parts of the species 

range in Eurasia, with the majority of the genetic variation held within rather than between 

populations (Forrest, 1980; Kinloch et al., 1986; Provan et al., 1998; Wachowiak et al., 2011; 

2013). A possible explanation for this distribution of genetic differentiation among 

populations is that they are, or have in recent history, been connected by levels of gene flow 

which are sufficiently high to prevent genetic differentiation between populations. 

Despite the lack of major differentiation at neutral genetic markers, there is evidence from 

common garden experiments that these Scottish populations are differentiated for a range of 

adaptive traits (Salmela et al. 2011; 2013; Donnelly et al., 2016; Perry et al., 2016a, b), 

indicating that spatially variable selection is sufficiently strong to counteract some of the 

homogenising effect of gene flow. An adaptive trait which has been shown to vary amongst 

populations is spring vegetative phenology (timing of bud burst). When grown together 

under common conditions in a glasshouse in the south of Scotland, trees raised from seed 

collected from mother trees growing in colder environments initiated their annual growth 

earlier than those from warmer environments (Salmela et al., 2013). Differentiation for 

spring phenology is common in trees, typically showing moderate to high QST  in response to 

clines in temperature (Vitasse et al., 2011; Alberto et al., 2013a; Aitken and Bemmels, 2016). 

The phasing of initiation and cessation of annual growth evolves as a mechanism by which 

to maximise annual growth whilst minimising the risk of frost damage in spring and autumn 
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(Howe et al., 2004; Aitken et al., 2008; Vander Mijnsbrugge et al., 2015; Lenz et al., 2016). 

Due to high genetic differentiation, strong selective importance and relative ease of 

assessment from a young age, spring phenology is frequently assessed in provenance tests. 

Reproductive phenology (i.e. timing of flowering in angiosperms, or timing of strobilus 

development in gymnosperms) is more difficult to investigate in provenance tests because 

many tree species have delayed maturity (Petit and Hampe, 2006). As there theoretically can 

be many reproductive events in the lifetime of an individual, selection on reproductive 

phenology is likely to be softer than selection on timing of bud burst and show high levels of 

phenotypic plasticity (Koski and Sievanen, 1985; Vander Mijnsbrugge et al., 2015). 

However, reproductive phenology is almost certainly serially autocorrelated with the timing 

of bud burst, thus showing a similar pattern of variation (Soularue and Kremer, 2012; 2014) 

and is highly relevant for population and landscape genetic studies which aim to understand 

patterns of gene flow, local adaptation and genetic structure (Manel et al., 2003; Ramstad et 

al., 2004; Kremer et al., 2012; Thomasset et al., 2014). 

In Pinus sylvestris, there is already an evidence base for variation in reproductive phenology 

among populations. The majority of this evidence has been generated from research in seed 

orchards in the Nordic countries (especially Finland), (Jonsson et al., 1976; Chung, 1981; 

Parantainen and Pulkkinen, 2003), and from forest stands in situ (Luomajoki, 1993; 

Pulkkinen and Rantio-Lehtimäki, 1995; Parantainen and Pulkkinen, 2002; Varis et al., 2009). 

A common finding from these studies is that pollen tends to be produced in the warmer south 

of Finland earlier than it is produced in the colder north but that there can be considerable 

interannual variation in timing. 

Although there is some information on the timing of spring vegetative phenology from a 

glasshouse experiment (Salmela et al., 2013), no information on the timing of pollen 

production in Scottish pinewoods in situ yet exists. The aims of this study are to investigate 

whether there are differences in the timing of pollen production between native populations 

of Pinus sylvestris in Scotland in situ across three consecutive years (2014; 2015; 2016). 

With this information, it will then be possible to begin to investigate whether populations 

experiencing different environmental conditions are as connected by gene flow as is 

suggested by observed low divergence at neutral marker loci (Forrest, 1980; Kinloch et al., 

1986; Provan et al., 1998; Wachowiak et al., 2011; 2013).  
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3.2. Materials and methods 

3.2.1. Reproductive biology of Pinus sylvestris 

Pinus sylvestris is a monoecious gymnosperm which bears male and female reproductive 

structures (strobili) separately on the same individual. The pollen grains, which have lateral 

air sacs to assist dispersal by wind, are borne on strobili which are highly variable in size, but 

are often c. 30-60 mm in length, shedding pollen minimally from the age of 10-15 years 

(Carlisle and Brown, 1968). The pollen can retain high germinability rates after several days’ 

exposure to air (Lindgren and Lindgren, 1996). Although the dispersal kernel is strongly 

leptokurtic (Robledo-Arnuncio and Gil, 2005), with the majority of pollen falling 

proximally, infrequent long distance mating events do occur. Robledo-Arnuncio (2011) 

reports that 4.4% of seedlings sampled from an isolated Scots pine remnant stand in Iberia 

were sired by individuals in a stand which was c. 100 km away, suggesting that significant 

long distance dispersal of pollen was not rare in the sparsely forested landscape studied. 

Female strobili are roughly 5-7 mm long and tend to be borne on the tips of well-illuminated 

branches and can set seed in trees that are six years old or over (Carlisle and Brown, 1968). 

Female strobili are pollinated during summer. Pollen comes into contact with a liquid 

secretion from the female strobilus (‘pollination drop’) and is drawn into the pollen chamber. 

The pollen chamber of Pinus sylvestris has room for around six pollen grains (Sarvas 1962), 

and because grains are often clustered together so that more than one pollen grain may enter 

simultaneously, it has been suggested that early arriving pollen has a greater chance of 

occupying a position closest to the nucellus, increasing its probability of fertilising the ovum 

(Sarvas, 1962). Varis et al (2008) point out that the reality may be more complex than this, 

involving competitive interactions amongst pollen grains, for instance via genetic differences 

in the temperature requirements of pollen germination and the rate of pollen tube growth. 

Whilst self-pollination can occur, little selfed seed is produced because it tends to abort due 

to presence of lethal homozygous recessives (Hedrick et al., 1999). 

3.2.2. Selection of sites and individuals 

Selection of sites was based on an inventory of ancient, semi-natural pinewoods in Scotland, 

which are considered to have persisted through natural regeneration since their initial 

colonisation and establishment and are known collectively as the ‘Caledonian pinewoods’ 

(Forestry Commission, 1998). The site names applied here are those from the Caledonian 

pinewood inventory. In the first year of observations, three sites (Beinn Eighe, 

Rothiemurchus and Allt Cul) were selected for phenological recording on the basis of their 
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location along a longitudinal gradient (Figure 3.1), which in upland Scotland represents the 

most important axis of environmental variation and one which has been shown to exhibit 

correlations with variation in phenotypic traits among Scots pine populations in common 

garden studies (Salmela et al., 2011, 2013; Donnelly et al., 2016; Perry et al., 2016a, b). 

These sites were deliberately chosen because they were geographically far apart yet were 

readily accessible by road such that they could all be visited in a single round trip lasting two 

or three days and so the short time difference between when phenological measurements 

were taken across all sites meant that results between sites would be comparable (Figure 

3.1). For 2015 and 2016, a further two sites (Lochindorb and Bunloyne) were added to the 

sample. The maximum distance between these five populations is 137 km, a distance which 

can likely be occasionally achieved by wind dispersed pollen in certain conditions (Varis et 

al., 2009). 

Twenty trees within each site were selected along circuitous walking routes. To minimise 

bias, a patch of trees would be identified from a distance and then the first one arrived at that 

was; accessible, seemingly of a reproductively mature age, amenable for visual inspection 

and likely to survive the three sampling years was marked non-permanently for inclusion 

within the sample. No measurements of tree size or age were made of the sampled trees. 

Where possible, the recorded trees were separated by at least 100 metres. However, at 

Bunloyne, Allt Cul and Lochindorb, which are small sites containing fewer than 100 mature 

pine trees, some of the recorded trees were unavoidably less than 100 metres apart. At these 

three small sites, most of the pine trees were very old and there were few young trees and 

almost no natural regeneration. Population sizes at the two larger sites of Rothiemurchus and 

Beinn Eighe were (orders of magnitude) larger and age and size structure were more 

variable. 
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Figure 3.1. Map of mainland Scotland indicating the location of field sites 

3.2.3. Phenological scoring 

At each site, the preselected sample of 20 trees was visited repetitively during the months of 

May and June in 2014, 2015 and 2016, in order to make phenological recordings during the 

period of male strobilus development. Strobili were assigned an ordinal developmental score, 

based on their morphology, which is an extension of a scale used by Gömöry et al. (2000) 

(Figure 3.2.).  
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Figure 3.2. Line illustrations indicating strobilus morphology at each of the modal states (1-7). Illustrations by 

Cristina Rosique. 

Male strobili in pine trees are highly abundant, and so a pragmatic decision to score the five 

most developed strobili on each tree was made. These were scored based on a one minute 

visual search of the entire crown either unaided or with binoculars. Tree branches were 

agitated to confirm whether pollen shedding was taking place. In almost all cases, the five 

most developed strobili were all at the same stage of development, although there can be 

considerable variation throughout the crown of a tree, particularly between north and south 

facing sides of the crown (Pérez et al., 2002).  

3.2.4. Climatic data 

Daily maximum and minimum air temperatures for the nearest Met Office weather station to 

each recorded population were obtained from the first of January 2013 until the 30
th
 of June 

2016. Average daily temperature was calculated as the median of the maximum and 

minimum temperature. Daily average temperatures were then used to calculate indices of 

thermal time for the periods preceding anthesis. To do this, we calculated growing degree 

days (GDD), which is the cumulative daily sum of the number of degrees Celsius on days in 

which the average air temperature exceeds 5.5°C, beginning on the first of January in each 

year. This is a standard index of thermal time which has been found to be informative for 

understanding climatic cues of spring phenological activity in temperate trees (Murray et al., 

1986; Vitasse et al., 2013), including P. sylvestris (Chung, 1981; Luomajoki, 1993).  

It should be noted that there is wide variation in the distance between weather stations and 

sampling sites (Table 3.1), and in some cases, the temperatures observed at weather stations 

may not be particularly representative of those of the sampling site. This may be due not 

only to geographical distance but also to the effects of altitude and aspect, which vary at 
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narrow spatial scales in the Scottish Highlands (Salmela et al., 2010). The nearest weather 

stations to Bunloyne and Lochindorb are particularly geographically distant and situated in 

different topographical contexts. Variation in temperature within sites has not been 

considered. 

Table 3.1. Location details of each of the five field sites and their nearest weather stations for which daily 

temperature values were available. Distance, difference in altitude and the likely sign of difference in air temperature 

between site and weather station are also listed. 

Site name Location 
(OSGB36) 

Mean 
tree 
altitude 
(m) 

Weather 
station 
name 

Location 
(OSGB36) 

Weather 
station 
altitude 
(m) 

Distance 
(km) 

Altitude 
difference 
(m) 

Temperature 
at site likely to 
be: 

Beinn Eighe 
 

NG995654 90 Kinlochewe NH626629 19 4 71 Slightly cooler 

Rothiemurchus 
 

NH930080 307 Aviemore NH896143 229 7.2 78 Slightly cooler 

Allt Cul NO180953 475 Braemar 
No. 2 

NO152919 341 4.5 134 Cooler 

Bunloyne NH217097 150 Cluanie Inn 
No. 3 

NH076117 218 14 -68 Warmer 

Lochindorb NH984355 372 Cromdale NJ072284 193 11.2 179 Cooler 

 

3.2.5. Statistical analyses 

All of the statistical analyses were performed in R version 3.2.3. (R Core Team, 2015). Data 

management, analysis and visualisation relied upon the ‘dplyr’ (Wickham and Francois, 

2015) and ‘ggplot2’ (Wickham, 2009) packages. 

Due to the intervals between site visits, it was not always possible to be at each of the sites at 

precisely the time at which the majority of pollen is shed, a period which, in Finland, lasts 

only around three days per tree (Parantainen and Pulkkinen, 2003). To overcome this, 

estimates of the differences in timing of development between sites were made using 

cumulative link models, a type of ordinal logistic regression implemented using the ‘ordinal’ 

package within R (Christensen, 2015). A major advantage of ordinal logistic regression 

models in this context is that they recognise that an ordinal response is bounded at both ends 

and make no assumption about the spacing between values of the response variable, as 

would be implied by a linear regression model with a continuous response (Harrell, 2015).  

i. Between site variation  

In the cumulative link models, different intercepts for each factor level j (e.g. sites) are set as 

a function of a constant Θ, meaning that a common slope is applied to each j. This means 

that the slopes for different sites do not vary and as such, differences between sites will be 

the same at any of the response levels (1-7). 
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Optimally, the phenological scores would be modelled thus: 

P[STROBILUS == x] = Day + Site*Year 

In which P[STROBILUS == x] is the phenological observation and x is any one of the phenological 

modal states (1-7). Day is the day of observation counting from May 1. Site and Year are 

factor variables. 

As each of the sites was not visited every year, the full dataset is rank deficient. For this 

reason, the Site*Year interaction term was dropped and, to investigate interactions between 

site and year, separate models were fitted for each year and to a restricted dataset containing 

only the sites visited in a given year.  

To estimate the time lag between sites, we followed the method of Vander Mijnsbrugge et al. 

(2015), by using beta coefficients returned by the fitted models. The time lag is defined as 

the difference in number of days in which half of the strobili at one site has reached the same 

phenological stage as at another site and is calculated thus:  

Day [Site i] – Day [Site j] = (β [Site j] – β [Site i]) / β Day 

In which β [Site i, j] are the estimated beta coefficients for sites in the fitted model and β Day is 

the estimated coefficient for time. Confidence intervals of these estimates were calculated 

using nonparametric bootstrapping but were considered to be insufficiently stringent to 

account for the variation within sites and the time period over which pollen is shed. To 

account for this variability, an additional three days were added to the confidence intervals 

for ‘significance’ testing. If these penalised confidence intervals for any pairwise comparison 

among sites overlapped zero, the difference between sites was considered insignificant. 

ii. Between year variation 

To investigate the differences in timing of phenological events amongst years, a similar 

model was fitted and was based on a restricted dataset including only the three sites which 

were visited in all three sampling years.  

P[STROBILUS == x] = Day[from May 1(inclusive)] + Site*Year 

iii. Thermal time response 

To investigate male pollen phenological responses to indices of thermal time, models were 

fitted to indices of thermal time (growing degree days, GDD), rather than calendar dates. The 

temperature data for the nearest weather stations to Bunloyne and Lochindorb were 

considered likely to be unrepresentative of conditions at the two pinewood sites and these 
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were therefore excluded from the analysis to concentrate on the extreme sites and an 

intermediate temperature site which had data from a weather station that was much nearer to 

it (Rothiemurchus). This model was specified thus: 

P[STROBILUS == x] = GDD + Site*Year 

iv. Variation within sites 

To investigate the consistency across observation years in the rank order of trees’ male 

strobilus development at each site, the sum of strobilus scores were taken for each tree across 

all of the site visits. The tree with the highest summed scores is taken as being the earliest to 

develop at each of the site. Correlation among years was tested with Spearman rank 

correlation.  

3.3. Results 

3.3.1. Variation in timing of strobilus development among sites 

At the site level, there were clear differences in the timing of strobilus development between 

populations, with the most westerly site (Beinn Eighe) consistently developing earliest, and 

the most easterly site (Allt Cul), typically developing latest (Figure 3.3).  The intermediate 

sites typically followed the same order with Bunloyne second, Rothiemurchus third and 

Lochindorb fourth. 
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Figure 3.3. Mean strobilus scores and 95% confidence intervals on the observation dates. The dashed horizontal 

line is plotted at stage 5, which is when trees are at peak pollen production. Site abbreviations are AC: Allt Cul, BE: 

Beinn Eighe, BL: Bunloyne, LD: Lochindorb, RM: Rothiemurchus. NB: RM and BE overlap one another on the final 

date of observation in 2016 as each observed strobilus had reached stage 7. 

3.3.2. Predicting timing of pollen production 

The cumulative link models found significant differences amongst sites (Figure 3.4, Table 

3.2) and were used to generate parameter estimates to predict the time lag between sites 

(Figure 3.5). In each year, the greatest time lags were between Beinn Eighe (BE) and Allt 

Cul (AC), ranging from 9.85 days in 2015 to 15.8 days in 2014. Allt Cul and Lochindorb 

(LD) were separated from the other sites by more than three days in the years sampled, 

although the difference between Allt Cul and Lochindorb was less than 2 days in 2016 

(Figure 3.5.). 

Despite tendencies for these timing differences between sites, the model predicts overlap 

between the tails of the distributions for even the most distant sites (BE, AC) (Figure 3.4). 

For instance, in 2014, at the time when the latest 10-15% of strobili were expected to be at 

stage 5 at Beinn Eighe, the earliest 10-15% were predicted to be at stage five in Allt Cul 

(intersection of the blue and red curves on Figure 3.4). This means that, all else being equal, 

there is a possibility of pollen from Beinn Eighe arriving at Allt Cul at a time when some 

female strobili are receptive. 
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Figure 3.4.  Modelled timing of pollen shedding indicating for each score level, exceeding those which come before 

pollen is shed (5-7), the probability that strobili of trees at each of the sites have reached a given score. 

Table 3.2.  Estimated beta coefficients for parameters in the separate phenological models fitted for each year. 

Rothiemurchus, which is the intermediate site in most cases is the reference to which other sites are compared 

(estimated parameter for Rothiemurchus = 0). 

Year = 2014 

 Estimate Standard error z value p value  

Day 0.31994 0.01265 25.29 <2e
-16        

*** 

Allt Cul -3.33438 0.19124 -17.44 <2e
-16        

*** 

Beinn Eighe 1.72096 0.16500 10.43 <2e
-16        

*** 

 

Year = 2015 

 Estimate Standard error z value p value  

Day 0.36521 0.01229 29.72 <2e
-16         

*** 

Allt Cul -2.88661 0.18078 -15.968 <2e
-16         

*** 

Beinn Eighe 0.71232 0.17425 4.088 4.35e
-5      

*** 

Bunloyne 0.48288 0.16753 2.882 0.00395  ** 

Lochindorb -1.11316 0.17213 -6.461 9.99e
-11    

*** 

 

Year = 2016 

 Estimate Standard error z value p value  

Day 0.45109 0.01221 36.93 <2e
-16         

*** 

Allt Cul -2.58712 0.16300 -15.87 <2e
-16         

*** 

Beinn Eighe 3.14027 0.18427 17.04 <2e
-16         

*** 

Bunloyne 2.56554 0.16592 15.46 <2e
-16         

*** 

Lochindorb -2.05079 0.15645 -13.11 <2e
-16         

*** 
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Figure 3.5. Comparison of estimated developmental time difference in days between sites in 2014, 2015 and 2016. 

Square symbols represent ‘significance’, which is defined as differences between mean site scores which exceed 

three days plus the confidence interval of the site estimate. 

3.3.3. Variation in timing of strobilus development among years. 

Although the rank order of sites in terms of male strobilus development was consistent 

across years, the actual timing and the differences in timing between sites were variable 

between years in most cases. An exception is for Allt Cul, where the timing was the same in 

2014 and 2016 (Figure 3.6, Table 3.3).  

Table 3.3. Estimated beta coefficients and interaction terms in the phenological model fitted to investigate the timing 

of phenological development in different years. 2014 is the reference year to which other years are compared and 

Allt Cul is the reference site (estimated parameter for AC in 2014 = 0). 

 Estimate Standard error z score p value 

Time 0.351073 0.007372 47.624 <2e
-16         

*** 
SiteBE 5.320636 0.193581 27.485 <2e

-16         
*** 

SiteRM 3.522285 0.171889 20.492 <2e
-16         

*** 
Year2015 -2.79851 0.17338 -16.141 <2e

-16         
*** 

Year2016 0.07263 0.156045 0.465 0.64162 
SiteBE:Year2015 -2.2717 0.234546 -9.686 <2e

-16         
*** 

SiteRM:Year2015 -1.12068 0.222555 -5.036 4.77e
-07     

*** 
SiteBE:Year2016 -0.74973 0.228456 -3.282 0.00103  ** 
SiteRM:Year2016 -1.43396 0.214075 -6.698 2.11e

-11     
*** 
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Figure 3.6. Modelled timing of pollen shedding, indicating the cumulative probability that strobili have minimally 

reached stage 5 (peak pollen shedding) from the first of May (inclusive) at each site in each of the three observation 

years for the three sites visited in each sampling year. 

3.3.4. Response of strobilus development to thermal time. 

When thermal time (GDD) is considered in place of calendar time, we found that the pattern 

was reversed whereby a lower heat sum has been accumulated at Allt Cul by the time trees 

are predicted to be shedding pollen than at Beinn Eighe (Figure 3.7). However, as with 

calendar time, the degree day sum at the predicted time of pollen shedding varied by year 

(Table 3.4), suggesting that there is plasticity in the response and that anthesis is not driven 

solely by temperature regimes  

Table 3.4. Estimated beta coefficients and interaction terms in the phenological model fitted to investigate the effect 

of temperature accumulation (GDD) on phenological development. 2014 is the reference year to which other years 

are compared and Allt Cul is the reference site (estimated parameter for AC in 2014 = 0). 

 Estimate Standard error z score p value 

GDD 0.064047 0.001345 47.635 <2e
-16   

*** 
SiteBE -5.80744 0.222883 -26.056 <2e

-16   
*** 

SiteRM -1.91364 0.171499 -11.158 <2e
-16   

*** 
Year2015 3.094563 0.17209 17.982 <2e

-16   
*** 

Year2016 3.505477 0.167658 20.908 <2e
-16   

*** 
SiteBE:Year2015 2.320135 0.242268 9.577 <2e

-16   
*** 

SiteRM:Year2015 2.217429 0.229563 9.659 <2e
-16   

*** 
SiteBE:Year2016 1.087952 0.235684 4.616 3.91e

-06   
*** 

SiteRM:Year2016 0.666183 0.21529 3.094 0.00197   *** 
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Figure 3.7. Modelled accumulated GDD at the time of pollen shedding, indicating the cumulative probability that 

strobili have minimally reached stage 5 (peak pollen shedding). 

Of the three sampling years, 2014 experienced the warmest temperatures in the period 

leading up to and including strobilus development (Figure 3.8). Correspondingly, 

development was earliest in this year, showing a tendency to take place 3.2 days earlier than 

in 2016 and 11.4 days earlier than 2015 (Figure 3.9). In each of the three sampling years, the 

greatest high temperature anomalies were observed at Beinn Eighe (Figure 3.8.), suggesting 

that differences in asynchrony may be due to local anomalies rather than an effect of 

uniformly warmer conditions. 

 

 

Figure 3.8. Differences from long term average GDD based on temperature data from the nearest weather stations 

1960-2011. 
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Figure 3.9. Estimated time lags/leads (number of days) between the different years, based on pooled estimates for 

AC, BE and RM, as shown in Figure 3.6 and Table 3.3. 

Interannual climatic variation also seems to influence the range of variation between 

populations. The range of variation between sites was greatest in the warmest year (15.8 

days in 2014) and lowest in the coolest year (9.85 days in 2015) (Figure 3.9). Notably, the 

degree by which temperatures sums exceed annual averages was greatest for Beinn Eighe in 

each of the three years (Figure 3.9), suggesting that greater differences possibly arise due to 

particularly high temperature anomalies in the west in the three years of sampling.  

3.3.5. Variation within sites 

Despite tendencies for earlier development in sites in the warmer west, there was 

considerable variation within sites. For instance, in 2014 and 2015, some of the trees at 

Beinn Eighe were reluctant to flower at all, containing very few or no male strobili. Trees 

were randomly chosen in early May 2014, before anthesis had begun. At that time, it was 

impossible to determine whether all of the trees were reproductively mature or active. It may 

be the case that the trees which did not reach advanced stages of development were sterile or 

immature at that time, despite deliberate attempts to choose trees which looked old enough to 

produce male strobili (c. 20 years in Pinus sylvestris (Carlisle and Brown, 1968)). Another 

example of a surprising result when within site variation is considered is that a single tree 

was shedding pollen at Lochindorb in 2015 before any of those at Bunloyne and 

Rothiemurchus (Table 3.5), despite the general tendency for slower development at 

Lochindorb (Figure 3.3). This individual tree was again amongst the first at Lochindorb to 

shed pollen in 2016. The order of development of individual trees tends to be correlated in 

different years generally (Table 3.6, Figure 3.10), which has previously been recognised in 
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P. sylvestris (Burczyk and Chalupka, 1997), and in several broadleaved tree species (Hinks 

et al., 2015; Delpierre et al., 2016). 

Table 3.5. Proportion of strobili to have minimally reached a score of five on each of the visits in each year. 

 Visit 1 Visit 2 Visit 3 
2014 10-12 May 27-28 May 7-8 June 
AC   .59 
BE  .78 .92 
RM  .45 1 
2015 23-26 May 3-5 June 13-16 June 
AC   .35 
BE  .21 .81 
BL   .95 
LD  .05 .55 
RM   .92 
2016 14-16 May 24-26 May 5-7 June 
AC   .45 
BE  .25 1 
BL   1 
LD   .35 
RM   1 

 

Table 3.6. Spearman rank correlation coefficients for the pooled sum of phenological scores for each tree in each 

year. Strong correlations suggest that trees within a site develop in the same order in different years. Significance 

codes, p> 0.05, * p < 0.05, *** p < 0.001 

 

Site 2014/2015 2014/2016 2015/2016 
AC 0.56 * 0.25 

n.s.
 0.42 

n.s.
 

BE 0.73 *** 0.72 *** 0.89 *** 
BL   0.27 

n.s.
 

LD   0.71 *** 
RM 0.78 *** 0.7 *** 0.8 *** 

 

 

Figure 3.10. Summed strobilus scores for each tree across the first three sets of observations in each year, ranked 

in descending order according to a reference year. The reference year for BE, AC and RM is 2014. The reference 

year for BL and LD is 2015. 



Temporal variation in pollen production 

72 

 

3.4. Discussion  

There were large differences in the predicted timing of pollen production between the sites 

sampled in each year and between years. The largest of these differences were observed 

between the pair of sites that were separated by the greatest geographical distance (Beinn 

Eighe and Allt Cul). Populations in the warmer west showed a strong tendency to shed 

pollen earlier than those in the colder east, but the populations in the east were capable of 

producing pollen at much lower temperature sums. These results show the opposite pattern 

from common garden experiments in which populations from the colder east commence 

spring phenological activity earliest (Salmela et al., 2013). The apparent negative correlation 

between experimental and field observations follows a pattern of counter-gradient 

phenotypic variation (Levins, 1969; Conover and Schultz, 1995; Soularue and Kremer, 2012; 

2014).  

The size of these observed differences in the predicted timing of pollen shedding (9.85 – 

16.8 days) suggest that direct pollen transfer between the extreme populations, which would 

already be infrequent due to the large distance between them would be further limited by a 

degree of reproductive asynchrony. Nonetheless, the cumulative link models predicted a 

small overlap between the tails of the distributions of the reproductive period between the 

extreme populations and the ranking of individuals within sites tended to be correlated 

between years (particularly in the larger populations of BE and RM). This means that, if a 

effective dispersal among distant populations would only partially connect populations and 

likely involve the same overlapping individuals each year, a situation of assortative mating. 

The likely pattern of assortative mating among the populations studied would involve 

immigrant alleles from the latest individuals to produce pollen in a warmer environment 

(BE), into a receiving environment which selects for early growth initiation (AC). The late 

warm-adapted alleles may be maladaptive in the cold environment and therefore never 

recruited into the standing population (Soularue and Kremer, 2012; 2014). The largest 

differences in timing of pollen production between sites were observed in 2014, which was 

the warmest sampling year. The smallest differences were observed in 2015, which was the 

coldest year. Notably, in each of these three years, temperatures in the western site (Beinn 

Eighe) were particularly high compared to long term averages, suggesting that spatially 

variable climatic warming (i.e. greater levels of warming in the west) may lead to increasing 

reproductive asynchrony among populations. 
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It is important to note that there are many other populations of Scots pine between those 

sampled here, which will presumably exhibit intermediate timing. Although synchrony 

between the extreme sites (BE and AC), which are separated geographically by 137 km is 

limited, the differences in timing of strobilus development between more proximal 

populations is smaller and, all else being equal, unlikely to impose a barrier to reproduction 

between populations. Furthermore, the area of timber plantations of Scots pine in Scotland 

exceeds the area of semi-natural woodlands by over five times (Mason et al., 2004). The 

genetic base of such plantations is mixed, including material of unknown origin and material 

derived from seed orchards based on seed collected from phenotypically superior trees 

growing in Scotland and elsewhere (Lee, 2002). Gene flow, resulting in fertilisation between 

exotic-origin plantations and native populations of Pinus sylvestris has been reported in 

southern Iberia (Unger et al., 2014; Ramírez-Valiente and Robledo-Arnuncio, 2015). The 

occurrence of gene flow between these exotic and mixed origin plantations and semi-natural 

populations in Scotland has not been tested but seems probable (Forrest and Fletcher, 1994; 

Ennos et al., 1998; Salmela et al., 2010).  

 

Figure 3.11. Distribution of ancient semi-natural (‘Caledonian’) pinewoods and planted pinewoods in the native 

pinewood zone. 

Only male strobili were considered in the sampling regime, as they are much more 

conspicuous than females, being larger, abundant throughout the crown and with 
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morphologies which are relatively easy to describe. Female strobili are much smaller than 

the males and tend to be higher up in the tree crown, in exposed, illuminated positions at the 

ends of branches (Carlisle and Brown, 1968). Pinus sylvestris is thought to be protogynous, 

whereby female strobili are often receptive before male strobili shed pollen (Sarvas, 1962; 

Jonnson et al, 1976; Chung, 1980; Lindgren et al., 1995; Parantainen and Pulkkinen 2003). 

However, there can be considerable temporal variation across a single tree crown. Pérez et al 

(2002) report a delay of up to one week between the shaded and sunny sides of Pinus 

pinaster Aiton and P. sylvestris seems qualitatively similar. Nonetheless, the temporal 

difference between development of male and female strobili within a single tree crown is 

likely to exceed the differences within a branch and the variation within a population means 

that synchronous receptivity and pollen shedding within a large population will not be 

restricted due to protogyny. 

However, if it is the case that some female strobili will be receptive before any local pollen 

is available, and there is an advantage to early pollination (Sarvas, 1962), it is more likely 

that non-local pollen contribution to any population will be from warmer than from colder 

environments. The prevailing winds in Scotland in May and June proceed from the south 

west (Cook and Prior, 1987); meaning that there is a greater likelihood that pollen will be 

transported from the (warmer) west to the (colder) east. This directional bias in gene flow 

from warmer sites to colder sites may be beneficial in delivering alleles which would confer 

an advantage to seedlings produced under warmer temperatures predicted for the future 

(Davis and Shaw, 2001; Aitken and Whitlock, 2013), provided that the adaptive differences 

are not so great that selection for early development acts against these warm-adapted alleles 

(Soularue and Kremer, 2012; 2014). Another consequence of this geographical variation is 

that the western populations are less likely to receive large volumes of non-local pollen than 

populations elsewhere. Collectively, native Scottish populations of Pinus sylvestris represent 

the westerly oceanic margin of the species’ natural range (Carlisle and Brown, 1968). Within 

Scotland, the western populations represent the upper temperature margin of Scottish 

populations, ostensibly the ‘rear-edge’ of the Scottish meta-population in terms of gene flow. 

The marginal status of these western populations and their potential capacity for contributing 

warm-adapted alleles to other populations under climate change mean that they are important 

candidates for dynamic gene conservation (Hampe and Petit, 2005; Lefèvre et al., 2013; 

Fady et al., 2016). 
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Chapter four 

Testing options for adaptive forest seed sourcing: insights from an 

individual based model 

Abstract 

As climate change accelerates, the traditional practice of using locally collected seed to plant 

forests is increasingly being questioned. It is now widely proposed that seed collected from 

populations which already experience climatic conditions expected for the planting site in 

the future should be used to help 'pre-adapt' newly established populations to future 

conditions, a form of within-species assisted migration. Here, we use a multi-patch, multi-

trait individual-based additive genetic model (IBM) to simulate early survival and adaptive 

responses of tree populations established using different seed sourcing strategies. These 

strategies include deploying currently adapted local seed, seed adapted to warmer future 

climates and mixed seedlots involving proportions of seed adapted to the current and to the 

future climate. The fitness of individuals in the model depends on variation in two 

genetically uncorrelated quantitative traits and the degree of mismatch to local conditions. . 

One trait was climate-associated, varied clinally in the landscape and changed through time. 

The second trait was habitat-associated, varied randomly in space but remained temporally 

stable. The interplay between these two selection pressures was investigated by modifying 

their relative selective importance. Sourcing seed from currently warmer locations caused 

greater phenotypic change in response to climate change. However, this was accompanied by 

very high juvenile mortality rates because the plants were not adapted to contemporary 

conditions. Levels of mortality were highest when the habitat-associated trait was selectively 

important. These findings emphasise that adaptive management should pay attention to local 

non-climatic site factors and population size in the short term as well as genetic composition 

at the time of establishment. 

4.1. Introduction  

For long lived species such as forest trees, there is concern that the rate at which the 

environment is changing will exceed the rate at which trees can adapt or migrate, such that 

local populations will become increasingly maladapted, or fail to survive in situ (Jump and 

Peñuelas, 2005; St Clair and Howe, 2007; Aitken et al., 2008). Reforestation is one activity 

which, alongside many other benefits, may help to mitigate against climate change and to be 

achieved successfully requires effective decision making surrounding sourcing of 
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appropriate planting material (Thomas et al., 2014; Broadhurst et al., 2016). A long-held 

view is that the most appropriate strategy when establishing new populations of plants for 

ecological restoration is to source seed collected locally, on the basis that it ought to be best 

suited to tolerate local site conditions (i.e. is locally adapted) (McKay et al., 2005; Vander 

Mijnsbrugge et al., 2010; Bucharova et al., 2016b). 

However, the motivation to source currently adapted seed is partly based on the 

understanding that climatic conditions are relatively stable in the long term, an assumption 

that is no longer valid (Parmesan, 2006; Aitken and Bemmels, 2016). A possible practical 

solution to account for climate change predictions in seed sourcing is to identify populations 

within the range of the focal species which already experience conditions expected for the 

planting site into the future and to collect seeds for planting from those populations (Ledig 

and Kitzmiller, 1992; Broadhurst et al., 2008; Aitken and Whitlock, 2013; Breed et al., 2013; 

Jones, 2013; Havens et al., 2015). Incorporating proportions of genetic material from 

currently warmer or drier regions into new plantings is expected to provide components of 

‘pre-adapted’ genetic variation which would help the newly established planting adapt to 

climate change, and possibly help other local populations adapt, via migration of alleles 

beneficial in a future environment (Aitken and Whitlock, 2013). Following Breed et al. 

(2013), we describe the sourcing of seed from currently warmer environments as ‘predictive 

provenancing’, sourcing of mixtures of locally adapted seed with non-local seed from 

currently warmer environments as ‘composite provenancing’. 

However, there are several biological and practical difficulties associated with a predictive 

approach (Whittet et al., 2016a, b). For instance, it is important to note that climatic 

predictions are far from certain, not least because an increase in the frequency and severity 

of extreme events is likely to occur simultaneously with directional change in some variables 

(IPCC, 2013). Variability will mean that it is particularly difficult to downscale broad 

climatic trends to local areas, especially in heterogeneous environments (Jenkins et al., 

2008). This presents the first major obstacle to successful predictive provenancing, i.e., if we 

are to use climatic predictions to make space-for-time substitutions, at which time or times 

into the future do we wish our newly established population to be adapted to? Does the 

contemporary climate in the putative seed source accurately reflect the expected for the 

future, or will the future consist of no-analogue climates (Williams et al., 2007)? If a point in 

the future is selected, will translocated genotypes possess the evolved conservatism required 

to tolerate harsh conditions during extreme events in the intervening period (Gutschick and 
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BassiRad, 2003)? What will be the consequences for the population as a whole if one such 

extreme event does occur? 

A further difficulty in selecting suitable non-local source populations is the possibility that 

tree populations are differentially adapted to other, non-climatic aspects of the environment 

which may vary at more idiosyncratic spatial scales than climate and remain approximately 

the same over time (Aitken and Whitlock, 2013; Bucharova et al., 2016a). Such aspects 

might include biotic interactions with pathogens, herbivores and mutualists (Linhart and 

Grant, 1996; Ennos, 2015; Pickles et al., 2015), or lithological features, such as soils and 

geology (Worrell, 1992; Smith et al., 2012). Adaptation to environmental change is likely to 

be a complex process and one which may be constrained by correlations, or the decoupling 

of correlations between multiple traits (Jump and Peñuelas, 2005; Cotto and Ronce, 2014; 

Lefèvre et al., 2014). Nonetheless there remains a tendency to model adaptive responses in 

terms of individual genetic traits within a single population in a homogeneous environment 

(Hoffman and Sgrò, 2011).   

Empirical studies investigating the processes of adaptation to environmental change tend, for 

obvious reasons, to focus on model species with short generation times, e.g. Drosophila 

(Willi and Hoffmann, 2009); Chlamydomonas (Bell and Collins, 2004; Lachapelle et al., 

2015) and Sacharromyces (e.g. Bell and Gonzalez, 2009; 2011). A consequence of the very 

long generation times of trees is that it is impossible to rapidly gain any empirical support for 

either, the long term efficacy of alternative seed sourcing strategies, or the possibility of an 

adaptive response enabling evolutionary rescue under rapid climate change.  

In the immediate absence of such information, theoretical models provide a useful 

opportunity to formalise arguments surrounding the limitations of the different approaches 

for seed sourcing under directional climate change. To investigate the advantages and 

disadvantages of different seed sourcing strategies, such a model must have the capability to 

describe the responses both in terms of the degree to which populations adapt genetically in 

response to directional selection, and the absolute size of the population following 

afforestation. Models must also take into account the possibility that populations are 

differentially adapted to non-climatic aspects of the environment (for convenience, 

‘habitat’), and examine the outcome of interactions between adaptive or demographic 

responses and habitat heterogeneity (Schiffers et al., 2013; Bourne et al., 2014).  

Here, a fully customised multi-patch, multi-locus, bi-allelic individual based evolutionary 

model is introduced and is used to explore the adaptive and demographic responses of tree 

populations established under four different seed sourcing strategies. Individuals within the 
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model vary in two genetically uncorrelated quantitative traits which evolve in response to 

spatial habitat and climate variability. 

4.2. Materials and methods 

4.2.1. Purpose 

The purpose of this model is to investigate factors influencing the application of different 

seed sourcing strategies for woodland creation, in particular the potential for different 

strategies to assist populations as a whole to adapt genetically to environmental change.  

The model is designed to represent a low-intensity forest created in perpetuity for 

restoration, biological conservation or landscape/amenity purposes rather than a high-

intensity setting in which cyclical harvesting and restocking occurs. The geographical 

context is a relatively harsh selective landscape, reflecting the type of marginal upland site in 

which this type of land use is applied in place of more intensive forms of land use such as 

arable farming which are likely to take priority in a productive lowland setting. 

4.2.2. Simulation procedure 

 4.2.2.1. Initiation of the landscape and tree populations  

Eleven patches, each consisting of 1024 cells arranged as 32 x 32 cell grids  are established, 

whereby one living tree can occupy one grid cell at a time (patch carrying capacity = 1024). 

Each patch is characterised by different local phenotypic optimum values for two 

environmental variables: ‘climate’ and ‘habitat’.  To represent a latitudinal species range, the 

patches are arranged in a single column such that peripheral patches have a single neighbour 

and interior patches have two neighbours (Figure 4.1).  

The climate of the patches in the landscape was represented by a single, arbitrarily-scaled 

temperature variable with interannual fluctuations. During simulations, the initial long term 

mean phenotypic optima for climate at each patch is taken from an equal-interval sequence 

of 0.1:0.7. These values are arranged clinally with the largest number (0.7) representing the 

lower latitudinal patch and the smallest number (0.1) representing the upper latitudinal patch 

(Figure 4.1). To simulate climate change, the mean climatic optima for each patch are 

increased by 0.2 gradually over a period of 100 years. The annual climatic optimum in each 

patch was generated as the local climatic optimum plus a single random number drawn from 

a normal distribution with mean of 0 and standard deviation set by climSD. Although 

temperature was scaled arbitrarily, there was a realistic ratio between interannual variability 
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and the warming trend calculated by examining historical records of Central England 

Temperature (CET) (Parker et al., 1992). From 1700-1940, temperatures were stationary 

(regression slope P = 0.454) and approximately normally distributed with a standard 

deviation of 0.6°C and little correlation between consecutive years (Pearson's r = 0.124, P = 

0.054). If an increase of 2 °C per century above this baseline is to be realised, which is 

consistent with the CET warming trend from 1970-2015 (regression slope = 0.021 °C yr
-1

, P 

< 0.001), then the inter-annual standard deviation in temperatures is approximately 30% of 

the warming per century. In the model, mean annual temperature values rose linearly by 0.2 

over a period of 100 years following the equilibration phase and temperature standard 

deviation (climSD) was set to 0.05 by default (25% of the total warming). Conditions within 

a patch are uniform. 

The phenotypic optimum for habitat in each patch is drawn randomly from an equal-interval 

sequence of 0.2:0.8. The values are reshuffled at the beginning of each model replicate 

although the actual numerical values themselves remain the same (Fig 4.1). The phenotypic 

optimum for habitat in any patch remains constant throughout the equilibration and selection 

phases of the simulations. Conditions within a patch are uniform. 
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Figure 4.1. Spatial arrangement of the patches within the simulation landscape and their values for climatic and 

habitat phenotypic optima. Note that the habitat optima are reshuffled for each model replicate and that the three 

configurations shown here are only examples to demonstrate possible arrangements. 

The model organism is a monoecious tree species based very loosely on Pinus sylvestris L. 

Within each patch, individuals are assigned attributes for age, alive/dead status and a 

genotype, which is used to determine phenotypic values which describe their optimal climate 

and habitat values. 

To begin the simulation, living individuals are placed in each grid cell.  These are of a mixed 

age-structure, with ages randomly drawn from the exponential distribution with a scale 

parameter equivalent to the annual mortality rate (1/150, see section 4.2.2.2.iii.). Ages are 

rounded to the nearest integer. We assume a minimum reproductive age of five years 

whereby younger trees have zero fecundity and older trees have equivalent fecundity each 

year. The minimum reproductive age of 5 is based on the minimal age of female 

reproduction in Pinus sylvestris (Carlisle and Brown, 1968). 

The genotype for each of the two traits (climate phenotype, habitat phenotype) is a vector of 

10 unlinked diploid bi-allelic loci, in which the two possible alleles are represented as binary 

integers (1 or 0). An individual’s phenotypic value pertaining to either climate or habitat is 

the arithmetic mean value of its allelic value at the ten loci and therefore can vary from zero 
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to one. Ten loci were considered appropriate following trials with larger numbers of loci, 

which did not appreciably change the results. The climate and habitat traits are genetically 

independent of each other. In the starting population, the allelic state at each locus is 

randomly drawn from the Bernoulli distribution. The distribution probability for each 

individual is randomly drawn from a uniform distribution, to ensure a wide diversity of 

genotypes and phenotypes in the initial population. The inheritance model thus considered 

only additive genetic variation with no epistasis.  

 4.2.2.2. Process overview and scheduling 

The model proceeds with overlapping generations running with discrete annual time steps. 

Within each time step, the following processes take place in order (Figure 4.3.).  

  i. Annual climatic optimum generation 

The annual climatic optimum in each patch is generated as the local mean climatic optimum 

plus a single random number drawn from a normal distribution with mean of 0 and a 

standard deviation set by climSD, which has a default value of 0.05.  

  ii. Reproduction, recombination, dispersal and selection 

Recruitment of new trees is only permitted in gaps, i.e. grid cells not currently occupied by a 

living tree. Following Savolainen et al. (2004), we generate a pool of up to ten seedlings in 

each gap. Each of these seedlings has an opportunity to become established.  

We assume spatially localised seed dispersal, so that seedling mothers are randomly selected 

from living individuals of reproductive age in the eight (Moore neighbour) cells immediately 

surrounding the gap, if such a candidate can be found. We assume the trees are entirely self-

incompatible but that their pollen is highly dispersive, so that these mothers have been 

pollinated by any other living tree of reproductive age which is in the same patch as the 

mother, or by long-distance dispersed pollen from reproductive-age trees in other patches. 

The frequency of long distance dispersal events varies for each patch, because of loss of 

pollen dispersing out of the species’ range. We assume that long-distance-dispersed pollen is 

more likely to come from a neighbouring patch than from further afield and that peripheral 

patches receive less pollen from other patches than the interior patches (Figure 4.2). To 

model this we calculate an index for the relative ‘connectivity’ of a patch i to all the other 

patches 𝑠(𝑖) = ∑ |𝑖 − 𝑗|−1
𝑗≠𝑖 , where i and j are integers coding the patches position in the 

cline. The central interior patch has the highest connectivity, so the proportion of mating 

events involving the contribution of pollen from other patches is expressed as 
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𝐦𝐚𝐱𝐏𝐫𝐨𝐩𝐏𝐨𝐥𝐥𝐞𝐧𝐋𝐃𝐃 𝑠(𝑖) 𝑠(6)⁄ , where maxPropPollenLDD is the maximum proportion 

of matings from long-distance pollen and has a default value of 0.05.  

As with local pollen dispersal, the location of the individual contributing long-distance 

dispersed pollen within its local patch is not considered. 

 

Figure 4.2. Graphical representation of the dispersal weighting functions applied in the model indicating a).  Inverse 

distance weighted pollen dispersal kernel and b).  Proportion of mating events involving extra-patch pollen weighted 

by home patch. 

The genotype of each seedling is determined by randomly combining the maternal and 

paternal alleles. There is no linkage among loci and so inheritance is independent. Mutation 

occurs at a rate prMutation, with a default setting of 10
-7

 per allele per generation, which, 

following Schiffers et al (2012), represents average published mutation rates for Arabidopsis 

thaliana (Schultz et al., 1999; Hoffman et al., 2004; Ossowski et al., 2010).  Only point 

mutations are considered and these have the effect of substituting a 1 with a 0 and vice versa. 

After fertilisation and mutation have been accounted for, the genotype of the seedlings is 

generated and thus the phenotype score can be calculated.  

We assume strong density-dependent selection on recruitment of seedlings to the adult tree 

population, based on the combined degrees of mismatch between their phenotypes and the 

local values of climate and habitat in that patch and year. Of the ten candidate seedlings, 

individuals with higher fitness values have a greater probability of becoming established 

(Savolainen et al. 2004). A seedlings’ fitness 𝑊𝑐,ℎ(ɀ) relative to the environment is 

calculated by a bivariate Gaussian fitness function: 

𝑊𝑐,ℎ(ɀ) =  𝑒𝑥𝑝 [−
(ɀ𝑐 − 𝜃𝑐)2

0.01
−

ℎ𝑆 × (ɀℎ − 𝜃ℎ)2

0.01
] 
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In which ɀ is the observed phenotype of the individual for c climate and h habitat, θ is the 

local phenotypic optimum at the time and 0.01 is a parameter that scales the relative strength 

of selection. Parameter hS (‘habitat strength’) allows the selective importance of habitat 

relative to climate to be varied. The pool of seedlings is then sampled stochastically with the 

probability of establishment related to the fitness condition of each individual. 

  iii. Mortality 

To create canopy gaps, mortality of the standing population occurs randomly with Bernoulli 

trials at an annual rate prMort, with the default setting of 1/150 (following Savolainen et al., 

2004). Therefore, the median lifespan is 104 years. 

  iv. Updating attributes 

Live status of individuals (alive/dead) is updated, individuals are aged by one year and 

output summaries of each patch are generated. These summaries include the mean and 

standard deviation of the phenotype values for all individuals in each patch; the number of 

live individuals in each patch and the median age of live individuals in each patch. When the 

full experiments were conducted, these summary values were recorded and saved during the 

selection phase for the years 0 (prior to felling the locally adapted plantingPatch), 5, 25, 50, 

75, 100, 125, 150, 175 and 200. Results presented will be based on the summary values for 

these years. 
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Figure 4.3. Flow diagram illustrating the scheduling of processes in the simulations. The annual schedule takes 

place each year that the model is running. 

4.2.3. Simulations 

4.2.3.1. Equilibration 

An equilibration or ‘burn-in’ phase, in which climate does not change over the long term is 

simulated to allow populations to adapt to the starting environment. From the initially 

diverse population, stabilising selection causes asymptotic decline in the standard deviation 

of the mean phenotype. The equilibration phase of the model is ended once the phenotypic 

standard deviation has reached the asymptote and the simulation has been running for at least 

1000 years. To test for this each year, linear regression is used to estimate the temporal trend 

in phenotypic standard deviation over the previous 500 years. The populations are 

considered to have reached equilibrium on the first occasion when the regression slope in 

phenotypic standard deviation is >0. At this point, the asymptote has been reached but 

stochasticity in the simulations means a very slightly positive slope is estimated. 
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4.2.3.2. Seed sourcing and restoration planting 

To make space for simulated restoration planting, immediately after the equilibration phase 

of the model, all of the individuals within a single focal patch (set by plantingPatch, Table 

4.2) are removed, rendering the patch available for replanting 1024 new individuals. 

Although the aim is to represent a previously unwooded site, felling and replanting takes 

place for two reasons. Firstly, it removes the necessity to fully spatialize the model and 

sophisticate the dispersal modules. Patches can be described simply by their identity number 

on the gradient and dispersal probabilities can be based on this number alone, meaning that 

actual distances are arbitrary and can be modified. Secondly, the mean phenotype of the 

planted patch can be compared to expected phenotypes at equilibrium stage, enabling 

calculation of the mean phenotypic change. This is therefore a matter of methodological 

convenience, rather than a suggestion that existing woodlands be replaced. 

To collect 1024 seeds for deployment at the planting site, thirty open-pollinated mother trees 

are randomly sampled with replacement. We assume the mothers have been pollinated 

following the same algorithms described above. Because the carrying capacity (𝐾) of the 

planting patch is relatively low and of a much smaller number of genotypes than would 

normally be deployed to a planting site (n = 1024), we make the philosophical assumption 

that these seeds would be germinated and raised to transplantable stature in a nursery and 

transplanted to the newly available patch rather than sown directly.  Individuals sampled 

within a patch are determined randomly, without any spatial stratification sensu Hoban and 

Strand (2015). 

Four different provenancing strategies are applied, following the typology set out by Breed 

et al (2013). The specification of the model to follow any strategy determines the identity of 

the patch or patches from which the seeds are collected (Table 4.1). 
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Table 4.1. Description of the different seed sourcing strategies applied in the IBM 

Seed sourcing strategy Model implementation 

Local provenancing All seed is sampled from the local patch prior to felling, i.e. maternal 

genotype is generated from individuals that were in the felled patch and 

are deployed the following year. 

 

Predictive provenancing All seed is sampled from mothers in the patch for which the current mean 

climatic optimum (clim1) has the minimum mismatch from the future 

mean climatic optimum one hundred years hence (clim2) of the focal 

patch.   

 

Composite provenancing 

 

This strategy is specified by a binary operator whereby at each trial, 

mothers are selected either from the local patch (sensu Local 

provenancing) OR from any other source patch up to and including that 

which minimises the mismatch between current source optimum (clim1) 

and future local optimum (clim2) sensu Predictive provenancing. This 

strategy is therefore an intermediate of local and predictive provenancing. 

 

Admixture provenancing Seed is sampled randomly from any individual in the entire species 

distribution, including the felled patch. 

 

Other strategy Model implementation 

Natural regeneration Natural regeneration is modelled implicitly and measured as the mean 

response in all of the populations in which felling and replanting does not 

take place but tree cover is maintained throughout the entire simulation 

period. 

 

4.2.3.3. Climate change 

In the first year after the equilibration phase has ended, the mean phenotypic optima for 

climate in all eleven patches begin to change directionally (from clim1 to clim2, Figure 4.1.) 

for a period of 100 years, after which it stabilises and remains constant for a further 100 

years of simulation. The phenotypic optima for ‘habitat’ remain stable throughout the 

duration of the simulation. After 200 years of directional selection, the simulation stops. 

During this period, there is no change in the ‘habitat’ optima. 

4.2.3.4. Juvenile mortality sub-model 

In forest planting schemes, as well as in our gap recruitment model, juvenile mortality is 

typically very high (Persson and Stahl, 1990; Petit and Hampe, 2006). Two different sub 

models for juvenile mortality during the first five years immediately after planting were 

applied. Importantly, this additional selection only operates on the planted trees and not on 

natural recruits at any other stage in the simulations. 

Firstly, there is a Gaussian selective mortality function (Figure 4.4.), implying that the 

probability of surviving to establishment 𝑊 at age 5 is determined by the individual’s 

phenotypic value for both ‘climate’ 𝑊𝑐  and ‘habitat’ 𝑊ℎ in each of the first five years after 

planting (Schiffers et al., 2012). Mortality is then determined by Bernoulli trials, using the 

annual probability gained from the function. Fitness is determined by: 
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𝑊𝑐𝑙,ℎ(ɀ) =  𝑒𝑥𝑝 [−
(ɀ𝑐𝑙,ℎ − 𝜃𝑐𝑙,ℎ)

2𝜎𝜔
2

] 

In which ɀ is the observed phenotype of the individual for c climate and h habitat, θ is the 

phenotypic optimum at the time. 𝜎𝜔 
2 is the standard deviation of the Gaussian function 

(default = 0.225), which represents the selection intensity, or niche breadth of the individual 

(Lynch and Lande, 1992; Pease et al., 1989; Schiffers et al., 2013). Simulations were run 

with different settings of 𝜎𝜔 
2 (Figure 4.3) but the intermediate value of 0.225 was selected as 

the default value as the effect of modifying  𝜎𝜔 
2  was found to have no more than an additive 

effect. The probability of mortality used in Bernoulli trials is therefore 1-𝑊𝑐,ℎ(ɀ). 

 

Figure 4.4. Graphical representation of bivariate Gaussian selection function, with a default standard deviation set 

to 0.225 (solid line). Dashed lines represent other values tested in sensitivity analyses.  

Secondly, the model was implemented with a fixed mortality function. This implies that the 

probability of early mortality does not depend on the phenotype but that a fixed number of 

individuals would fail to survive the first five years of selection, regardless of any parameters 

in the model. The mortality strength was determined by calculating the annual mortality 

experienced by all planted trees under the selective model – regardless of the planting 

strategy applied or any other parameter setting. The annual mortality 𝑎𝑀 rate applied in the 

fixed mortality model was calculated thus: 

𝑎𝑀 = 1 − 
𝜇𝑆𝐼𝑍𝐸

𝐾1/5
 

In which 𝐾 represents the carrying capacity (1024) and 𝜇𝑆𝐼𝑍𝐸 is the mean population size 

after five years of initial selection under the selective mortality model. 
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4.2.4. Simulation experiments  

Fully factorial experiments were established, in which each of the parameters in tables 4.1 

and 4.2 varied, as well as the two juvenile mortality models (fixed and selective). Each 

unique parameter combination was replicated 50 times, giving a total of 150,000 replicates. 

Code for the simulation model was written and processed in R version 3.1.1. (R Core Team, 

2015) and was implemented on a high performance computer cluster at CEH Edinburgh.  

Table 4.2. Description and values of key state variables which were permuted within the model. Default values are 

in bold and underlined. 

Parameter Description Settings 

plantingPatch The patch in which felling and replanting takes 

place 

2 (upper latitudinal), 5 (mid-range),  

8 (lower latitudinal) 

habitatStrength (hS) The relative importance of ‘habitat’ selection 

versus climatic selection 

0, 0.5, 1, 1.5, 2 

climSD The inter-annual variability of the phenotypic 

optimum for climate (standard deviation around 

long term mean optimum) 

0.005, 0.01, 0.05, 0.1, 0.2 

maxPropPollenLDD The maximum proportion of mating events 

involving pollen contribution from trees out with 

the local patch 

0.005, 0.01, 0.05, 0.1, 0.2 

 

4.2.5. Statistical analyses 

Differential rates of adaptation in the mean climate phenotype to the changing optimum were 

tested by investigating the significance of interaction terms in analyses of covariance 

ANCOVA, with the formula: 

Rate = 𝜇ɀ𝑐𝑙 ~ year [100,200] x Seed sourcing strategy 

These were conducted separately for the ‘fixed’ and ‘selective’ mortality sub-models and 

were based on simulations in which parameters were held at default values. Only the years 

following the period in which climate was changing directionally were considered. 

The effect sizes of independently permuting key state variables (Table 4.2) on simulated 

results were calculated using Hedges’ g with 95% confidence intervals, using the ‘effsize’ 

package within R (Torchiano, 2016). Effect size calculation was based on comparisons 

between the maximum and minimum values for each of the variables permuted and included 

only simulations in which all other state variables were held at default values. 

Data management and visualisation were conducted with particular reliance on the ‘dplyr’ 

(Wickham and Francois, 2015) and ‘ggplot2’ (Wickham, 2009) libraries within R. 
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4.3. Results 

4.3.1. Equilibration and generation of locally adapted populations 

Locally adapted populations are generated after a minimum of 1000 annual time steps and 

when the temporal trend in the standard deviation of the patches’ mean phenotype has 

reached an asymptote for 500 years. By the time equilibrium is achieved, each of the eleven 

populations has a mean phenotypic value matching the local optima for both climate and 

habitat (Fig. 4.5). 

 

Figure 4.5. Typical model run indicating the progress of three populations throughout equilibration and 500 years of 

directional selection indicating a) adaptive evolution in the climate phenotype and b) adaptive evolution in the habitat 

phenotype. The vertical dashed line indicates the change from the equilibration phase to the directional selection 

phase. In the simulated populations shown, no planting took place. 

4.3.2. Responses to climate change 

4.3.2.1. Phenotypic change following replanting 

By the end of the period of directional selection, predictive provenancing emerged as the 

seed sourcing strategy which enabled the greatest total change in the mean climatic 

phenotype of the planted population (Figure 4.6). The populations established under local 

provenancing achieved less change in climate phenotype and the other two strategies which 

involved some non-local genotypes (composite, admixture), were intermediate. Unassisted 

natural regeneration, which was measured as the mean phenotypic change recorded in all 

patches in which no felling and replanting took place (i.e., a ‘do-nothing’ approach), 

achieved the least change to the climate phenotype. This is presumably due to the absence of 

a pulse of mortality followed by a major recruitment event involving recent selection on 

planted trees (Kramer et al., 2008; Kuparinen et al., 2010). For this reason, even when 

locally sourced genotypes are planted, which are the offspring of the felled local parents, a 
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greater shift in the distribution of phenotypes towards the new climatic optimum is achieved 

than when the population regenerates without intervention. 

 

Figure 4.6. Change in the mean climate phenotype during the period of simulation, when parameter settings are 

held at default values under the fixed and selective juvenile mortality sub-models. The dashed black line represents 

the mean value for the changing climatic optimum. Regeneration refers to phenotypic change occurring in patches 

which have not undergone felling and replacement. Error bars represent 95% confidence intervals. The positions of 

the points and error bars are artificially offset to avoid overlap. 

Differences in the rate of adaptation between years 100 and 200 (i.e. once the climate had 

stabilised) were calculated by analyses of covariance (interaction terms in Table 4.3). Under 

selective early mortality, the rate of adaptive change is slowest when predictive 

provenancing is applied, but there are no differences between any of the other strategies. 

When the early mortality rate is fixed, the rate of adaptation (i.e. amount of change per time 

step) is greatest under local provenancing and natural regeneration and is slower when any 

strategy involving non-local genotypes is used. 
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Table 4.3. Analysis of covariance table for rates of phenotypic change between years 100 and 200. Local 

provenancing is the reference and therefore the parameter estimate for Local provenancing is 0. Only the interaction 

terms are considered informative. 

 
Establishment model = Fixed 

 Estimate Standard error t value p value  

(Intercept) -1.43e-02 1.72e-03 -8.316 5.32e-07 *** 

Year 5.32e-04 1.12e-05 47.563 2.00e-16 *** 

Composite 4.39e-02 2.44e-03 18.027 1.41e-11 *** 

Predictive 1.04e-01 2.44e-03 42.659 2.00e-16 *** 

Admixture 2.96e-02 2.44e-03 12.148 3.65e-09 *** 

Regeneration -3.99e-03 2.44e-03 -1.637 0.12253  

Year: Composite -1.17e-04 1.58e-05 -7.399 2.22e-06 *** 

Year: Predictive -2.74e-04 1.58e-05 -17.296 2.56e-11 *** 

Year: Admixture -5.93e-05 1.58e-05 -3.753 0.00192 ** 

Year: Regeneration -2.64e-05 1.58e-05 -1.67 0.1157  

Establishment model = Selective 

 Estimate Standard error t value p value  

(Intercept) -2.09e-02 2.74e-03 -7.642 1.51e-06 *** 

Year 5.95e-04 1.78e-05 33.432 1.68e-15 *** 

Composite 1.75e-02 3.88e-03 4.521 0.000406 *** 

Predictive 4.98e-02 3.88e-03 12.842 1.70e-09 *** 

Admixture 6.49e-03 3.88e-03 1.676 0.114535  

Regeneration 1.65e-04 3.88e-03 0.043 0.966525  

Year: Composite -4.58e-05 2.52e-05 -1.823 0.088308 . 

Year: Predictive -1.33e-04 2.52e-05 -5.281 9.24e-05 *** 

Year: Admixture -1.30e-05 2.52e-05 -0.518 0.611677  

Year: Regeneration -2.40e-05 2.52e-05 -0.953 0.355477  

 

There is an initial spike in mean population climatic phenotype under predictive and 

composite provenancing at year 5 (Figure 4.6). This represents the initial step change in 

mean phenotype of the planting patch compared to that of the felled patch at the end of 

equilibration. Under both selective and fixed mortality models, a rapid decline occurs by 

year 25. Under the selective mortality model, this is due to both heavy losses during the five 

initial years of hard selection on planted trees and, to a lesser extent, subsequent density 

dependent selection on recruits towards the contemporary optimum.  

Under the fixed mortality model, any change in the mean phenotype during the first five 

years is caused by random genetic drift. This is then followed by natural selection acting 

upon recruits after the end of the juvenile sensitivity period, causing the mean phenotype of 

the population to migrate rapidly towards the current optimum. Rapid adaptation can take 

place at an early stage in the simulation years because, following juvenile mortality, there are 
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many gaps on the forest floor and thus many opportunities for recruitment, in which the best 

fitted individuals in any year become established. Once these gaps have been filled, a 

process which takes place rapidly; there are fewer annual opportunities for selection to act 

upon recruits, thereby slowing the rate of ongoing adaptation (Kuparinen et al., 2010).  

The reduction in the extent of change which occurs under composite and predictive 

provenancing in the first 25 years occurs because the climate is changing gradually. The 

planted genotypes were initially ‘overfitted’, i.e. they are adapted to conditions correctly 

predicted for one hundred years hence but not to the conditions prevailing at the time. 

Counter-gradient selection causes the population to adapt to a contemporary optimum (when 

the solid lines intersect the dashed lines on Figure 4.6). However, by this time, the rate of 

change experienced during the first 25 years can no longer be achieved. Ongoing adaptation 

is not as fast as it had been initially because there are fewer opportunities for recruitment 

because the population size approaches carrying capacity and is therefore limited to 

regeneration following mortality which occurs at a rate of 1/150. 

4.3.2.2. Population size following replanting 

The initial phenotypic change achieved in the planting patch is concurrent with high levels of 

juvenile mortality occurring during the phase of hard selection on planted trees. Juvenile 

mortality was highest when the planted trees are not adapted to contemporary conditions 

(Figure 4.7) and thus, local origin genotypes have the highest survival rates. The lowest and 

most variable survival rates were observed when predictive provenancing was applied. 
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Figure 4.7. Size of the planted patch in year 5 following implementation of juvenile mortality functions. In this case, 

adaptation is to climate only. Habitat is not considered selectively important. 

4.3.3. Responses to habitat selection and climate change 

 4.3.3.1. Phenotypic change following replanting 

Understanding the effects of selection acting upon the habitat phenotype is somewhat 

different to the effects of selection acting on the climate phenotype for two reasons. Firstly, 

the phenotypic optimum pertaining to habitat does not change throughout the period of 

selection for climate and so the pattern of selection acting upon habitat phenotypes is 

stabilising, rather than directional, meaning that the results are best visualised as mismatches. 

Secondly, the values for habitat optima are assigned randomly to patches at the beginning of 

each iteration of the model, which means that variation associated with these mean 

mismatches was necessarily large, increasing with the mean (Figure 4.8).  
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Figure 4.8. Mean habitat mismatch and 95% confidence intervals recorded in years 5, 25, 50 and 100 under fixed 

mortality (upper panel) and selective juvenile mortality (lower panel) when parameter settings are held at default (hS 

== 1, i.e. selection on climate and habitat phenotypes are equally strong). The dashed horizontal line represents a 

mismatch of 0, i.e. fittedness to the optimum. Years are plotted on different facets to avoid overlapping confidence 

intervals. 

Predictive provenancing leads to the most variable response and the greatest mismatch at an 

early stage. Under predictive provenancing, seeds are sampled from a single patch whereas 

under admixture provenancing and composite provenancing, seed is sampled from multiple 

patches, thereby implying a greater probability of finding proportions of the seedlot which 

are better adapted to the habitat optimum at the planting site than is the case when choosing 

from a single non-local patch. Local provenancing results in a consistently small phenotypic 

mismatch for habitat (Figure 4.8). Stabilising selection operates faster when the selective 

juvenile mortality sub-model is applied. Under fixed juvenile mortality, adaptation to habitat 

takes longer (Figure 4.8), as it is due only to selection upon naturally regenerated seedlings. 

 4.3.3.2. Population size following replanting 

Increasing the strength of selection on the habitat phenotype (hS) causes the number of 

surviving trees to decrease because the total selection strength is greater; individuals must be 

simultaneously well adapted to the prevailing climate and local habitat.  

The difference in population size when hS was increased was largest when non-local 

genotypes were deployed. The greatest of these differences was observed between settings of 

0 (habitat not selectively important at all) and 0.5 (habitat half as selectively important as 

climate). This suggests that if selection does not operate on the habitat phenotype at all, 

chances of non-local genotypes’ surviving the first five years are much higher than they 
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would be otherwise. However, when habitat was at all selectively important, including when 

it was less important than climate, there was a large reduction in population size (Figure 4.9). 

At increasing levels of hS, the population size decreases, but the size of the differences 

resulting between settings for hS decreases with increasing selection strength, becoming 

insignificant for composite, admixture and predictive strategies when hS was one or greater, 

due to very low but highly variable population sizes in different model replicates (Figure 

4.8).  

 

Figure 4.9. Size of the planted population following implementation of juvenile mortality functions and under 

different values of hS. 

4.3.4. Sensitivity of responses to other parameter variation 

The parameters other than hS varied in sensitivity analyses (Table 4.2) were found to have 

small, or spurious effects on the simulation results and so have not been presented within the 

main results.  

Varying the proportion of mating events involving extra-patch pollen dispersal 

(maxPropPollenLDD) had a negligible effect on both population size and phenotypic 

change (Figure 4.10). Phenotypic change was lower when planting was conducted in patch 2 

than in patch 8, although the effect size is small (plantingPatch, Figure 4.10). However, this 

is likely related to different allele frequencies in different parts of the cline at equilibrium. In 

patch 2, the optimum climatic phenotype at equilibrium (clim1) is 0.16, whereas in patch 8, 

clim1 is 0.52. Following planting, selection is directional, increasing the optima by a value 

of 0.2, meaning that ‘1’ alleles will be favoured over ‘0’ alleles. Parent trees in patch 8 are 
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52/16 (3.25) times more likely to produce seedlings with ‘1’ alleles than they are in patch 2, 

meaning that there is an adaptive advantage towards a higher phenotype score. If fitness was 

determined by a single locus, at which allele frequencies varied clinally, this phenomenon 

may not be unrealistic. However, variation in adaptive traits is typically governed by many 

loci, each of small effect, rather than variation at a single locus (Le Corre and Kremer, 2012; 

Savolainen et al., 2013), and so this result should be considered an artefact of the model. 

Increasing the interannual climatic variability (climSD) had a large effect on the population 

size at year 5 because very high variability implicitly increases the range of phenotypes 

which will have a very low fitness condition in at least one of the five years (Figure 4.10). 

The size of the effect of increasing climSD was smaller under predictive provenancing, 

because high interannual variability may also, by chance, increase the range of phenotypes 

with a high fitness condition in particularly ‘warm’ years. Predictive provenancing therefore, 

might be more successful in replicates in which each of the five years of hard selection were 

comparatively ‘warm’, although overall, the effect of increasing climSD was negative and 

led to highly variable population sizes under predictive provenancing. The outputs printed 

from simulations did not include the climatic optimum in every year and so this cannot be 

confirmed or refuted. 

 

Figure 4.10. The effect sizes of permuting key state variables, pooled across seed sourcing strategies under the 

selective juvenile mortality sub-model. 
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4.4. Discussion  

4.4.1. What do the results indicate? 

From the model outputs, we can see that adaptation to climate change happened in all cases, 

and at approximately similar rates. In all cases, adaptation lagged behind the arbitrary 

moving optimum but the total lag by the end of the simulation period was smaller when 

predictive provenancing was applied. However, this is not due to differences in adaptive 

potential or the rate of adaptation, as the rate of adaptation from years 100-200 was actually 

slightly lower than that of local provenancing (Table 4.3). Rather, it is due to a step change 

in the mean phenotype of the population at the time of planting with genotypes adapted to 

conditions 100 years hence. Hard natural selection at an early stage resulted in very high 

levels of mortality, leading to a population collapse, with only those individuals remaining 

which were not too maladapted to survive in the first five years. The existence of many 

spaces on the forest floor meant that recruits, which underwent softer density-dependent 

selection were able to adapt rapidly to contemporary conditions. However, the direction of 

selection at this point was opposed to the direction in which the phenotypic optimum was 

changing in the longer term because adaptation to current conditions was occurring. Such an 

initial high rate of adaptation could no longer be sustained once the population size 

approached carrying capacity because there were fewer opportunities for recruitment. Local 

provenancing, on the other hand experienced lower mortality rates and thus maintained a 

high effective population size throughout the simulations. However, the mean phenotype at 

the end of the simulation period had undergone less change than either of the other two seed 

sourcing strategies. The influence of using mixtures of local and non-local genotypes was 

found to have no more than an additive effect and composite and admixture provenancing 

were conspicuously intermediate in terms of their effect upon the two main response 

variables investigated here. Higher order interactions between more sophisticated response 

variables and other parameter values (Table 4.2) may emerge under further investigation, 

although the proportion of variation in phenotypic change and population size explained by 

seed sourcing strategy was sufficiently high to concentrate on these basic qualitative results. 

Relaxing the assumption that populations are strongly adaptively differentiated by the end of 

the equilibrium, for instance by stipulating a time-limit for the ‘burn in’ phase equilibration 

rather than requiring low phenotypic variation would be useful to investigate effectiveness of 

the strategies among different landscape configurations. Different sets of circumstances and 

landscape configurations which could be investigated are connectedness (modelled by 

varying maxPropPollenLDD), habitat heterogeneity (varying hS) and short term temporal 

environmental variability (climSD).  



Options for adaptive forest seed sourcing 

98 
 

The most influential of the parameters varied within the simulations (Table 4.2) was the 

selective importance of non-climatic factors (hS). Increasing hS led to lower population 

sizes, although the reduction was less severe when local seed was deployed (Figure 4.9).  

The simplest summary of the results is that varying the seed sourcing strategy involved a 

trade-off between maintenance of a large population size and total phenotypic change 

(Figure 4.11). Less change was achieved under local provenancing although the population 

size remained higher. Predictive provenancing achieved the greatest change, although the 

population size was lowest and extinction events occurred. Composite provenancing was 

intermediate and was most effective when selection only acted on the climate phenotype. 

Admixture provenancing led to the most variable results and was poorer than composite 

provenancing both in terms of phenotypic change and population size, suggesting that 

directed composite provenancing is both more effective and less risky than admixture 

provenancing (Figure 4.11). 

 

Figure 4.11. Phenotypic change achieved by the end of the simulation period plotted against population size in year 

5, for all replicates when state variables are held at default levels. 

4.4.2. Adaptation and demography 

Results from the IBM indicate that in situations where local adaptation exists and early 

survival depends on the phenotype; there is a greater probability of mortality in the early 

stages after planting takes place. In this IBM, it is possible for the planted populations to 

recover rather quickly from these intense mortality events (Figure 4.12). 
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Figure 4.12. Mean population size throughout the simulation period when juvenile mortality of planted trees is 

selective and when other state variables are held at default values. Population recovery following decline is rapid. 

In reality, recovery would be constrained by exposure of very small populations to stochastic 

processes (Shaffer, 1981; Lacy, 2000; Willi and Hoffman, 2009). Stochastic processes may 

be natural catastrophes or high temporal environmental variability (Dale et al., 2001; Nabel 

et al., 2013; Botero et al., 2015), outbreaks of indigenous or exotic pathogens or herbivores 

(Woods et al., 2005; Ennos, 2015; Desprez-Loustau et al., 2016) or intense competition from 

other plant species (Kellomäki et al., 2001; Gómez‐Aparicio et al., 2011) ecological 

interactions not included in the IBM.  

Furthermore, in the IBM, unless population size declines to zero during the first five years 

(Table 4.4), the chance that at least one seedling establishes is 1 because annual mating 

events are implicit in the model. Even if only a single tree survives, pollen contribution from 

another population will ensure that a pool of seedlings will be established. From the pool of 

seedlings produced, seedlings with a smaller phenotypic mismatch from the current optimum 

have the greatest chance of survival. The effect of this is that there are no selective limits in 

the density-dependent natural recruitment phase. Furthermore, both male and female 

reproductive output is not related to fitness, does not vary from year to year and commences 

from an early age (5 years). 

Table 4.4. Number of extinction events under all model replicates, arranged by planting strategy (max = 37500). 

Seed sourcing 

strategy 

Number of model replicates in which 

population size after 5 years is 0 

Number of model replicates in which 

population size after 5 years is  <5 

Admixture 32 199 

Composite 16 84 

Local 12 43 

Predictive 1202 2763 
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The IBM assumes a situation of random mating and even sexual allocation in individuals. 

Departures from either of these situations in a very small population in reality could lead to 

demographic stochasticity, reducing reproductive output and success, for example due to 

reproductive asynchrony caused by phenological differences (Ennos, 2003). The fact that 

reproduction and reproductive success is guaranteed provided there is as least one gap on the 

forest floor and at least one individual capable of dispersing seed into a gap likely combine 

to over-estimate the rate and ease by which natural regeneration can take place in reality. 

Recovery of the population from a very small initial size is possible within the IBM largely 

due to these two reasons, as well as the absence of stochastic events.  

The IBM considers only additive genetic variation, with no genetic architecture and our 

inheritance model assumes free recombination. Similar allelic models which consider 

linkage show that strong linkage will constrain the efficiency of natural selection upon 

genetic variation and thus reduce likely rates of adaptation (Schiffers et al., 2013; Bourne et 

al., 2013).  

Another consequence of the lack of genetic architecture is that there are no opportunities for 

genetic Allee effects (e.g. inbreeding depression) to emerge. Nonetheless, in a real-word 

setting with trees, genetic stochasticity is less likely to present a major problem than 

environmental or demographic stochasticity for two main reasons. Firstly, small populations 

of highly fecund and predominantly outcrossing species which have the capacity for long 

distance dispersal of seed and/or pollen are unlikely to suffer from sustained inbreeding 

depression. Even very small, fragmented populations of fewer than ten trees are capable of 

producing highly genetically variable seed crops. Negative fitness consequences of 

inbreeding are erased by selective purging of inbred individuals and genetic variation can be 

restored efficiently by distance migration of pollen and seed (Bacles et al., 2005; 2006; 

Hampe et al., 2013). 

Secondly, forest tree planting schemes tend to be involve tens or hundreds of thousands of 

individuals, rather than the maximum of 1024 planted in the IBM. Genetic and demographic 

stochasticity in tree populations is likely to be much more sensitive to population size than 

environmental stochasticity or natural catastrophes, as the latter can similarly impact larger 

populations (Lande, 1993).  
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4.4.3. Choosing a seed source in a changing climate 

The purpose of this highly abstracted modelling exercise was to identify factors which may 

influence the suitability of different seed sourcing strategies, rather than to provide evidence 

for decision making in forest management. Results in realistic scenarios will be highly 

dependent on species biology, management objectives, landscape configuration and the 

magnitude and type of climate change, all of which will be highly context dependent, 

varying by region (Breed et al., 2013; Whittet et al., 2016b). 

Nonetheless, several results are qualitatively useful. Firstly, adaptation is rapid when there 

are many spaces available for recruitment (Figure. 4.6), although slows down considerably 

when population size approaches carrying capacity. In a simulation of this type, mortality 

will necessarily hasten adaptation (Kramer et al., 2008; Kuparinen et al., 2010) because it 

generates more opportunities for contemporary natural selection to act upon recruits. This 

supports the concept of utilising disturbance based management in forest ecosystems 

(Harvey et al., 2002; Brang et al., 2014; Lefèvre et al., 2014; Cavers and Cottrell, 2015; Fady 

et al., 2016), although sensible and context dependent limits to the magnitude of artificial 

disturbances imposed on forests are required. These limits should take into account 

population size, the ease by which natural regeneration occurs, resilience to environmental 

stochasticity at the population level and the delivery of other management objectives than 

adaptation to climate change. Additionally, increasing climatic variability caused by climate 

change may increase the frequency of such disturbance events without management 

intervention (Dale et al., 2001). 

The amount of adaptive change achieved, and the rate of juvenile mortality were both 

negatively influenced when the habitat phenotype was considered selectively important. If 

there is evidence that past adaptation to temperature regimes is much more  important than to 

any other (temporally stable) aspect of the environment, demographic risks of using 

proportions of non-local planting stock are lower than they would be otherwise (Aitken and 

Whitlock, 2013). For instance, when the habitat phenotype was not selectively important (hS 

= 0), the difference in survival rate between composite and local provenancing was much 

smaller than when habitat was considered selectively important (hS > 0) (Figure 4.9). If 

knowledge of adaptive variation is limited, habitat is heterogeneous and it is unclear whether 

non-climatic factors are of adaptive significance, predictive provenancing from a single 

population should be avoided. It will be safer, in this case, to assume that local adaptation 

does exist than to assume that it does not (Aitken and Bemmels, 2016). 



Options for adaptive forest seed sourcing 

102 
 

The dramatic population size reductions following hard early selection is couched in the 

assumption that populations show strong adaptive differentiation and a somewhat narrow 

climatic niche. This narrow local adaptation operates such that novel environments impose 

severe selective pressures on planted trees. The extent to which this reflects reality will very 

much depend on the geographical context and aspects of species biology. Local adaptation is 

common in plants, and perhaps especially in tree species with large ranges (Savolainen et al., 

2007), but it is not ubiquitous (Leimu and Fischer, 2004). It will remain very difficult to 

empirically validate the extent to which composite or predictive provenancing would 

actually help forests adapt to climate change. A more plausible approach would be to 

reparametrize models with survival results from long term field provenance tests, as such 

data may be informative after 15-30 years (White et al., 2007), which is shorter than the 

generation time of most trees. If demographic risks can be quantified with empirical data, 

new models could then be applied to better understand whether predictive and composite 

provenancing strategies provide resilience to climate change whilst minimising risk of 

population collapse.  
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Chapter five 

Supplying trees in an era of environmental uncertainty: identifying 

challenges faced by the forest nursery sector in Great Britain. 

This chapter is published as: 

Whittet, R., Cottrell, J., Cavers, S., Pecurul, M. and Ennos, R. 2016a. Supplying trees in an 

era of environmental uncertainty: Identifying challenges faced by the forest nursery 

sector in Great Britain. Land Use Policy 58, 415-226. 

 

Abstract 

In recent years, numerous articles have addressed management strategies aimed at assisting 

forests to adapt to climate change. However, these seldom take into account the practical and 

economic implications of implementing these strategies, notably, supply of forest plants and 

seed. Using semi-structured interviews with practitioners involved in the plant and seed 

supply chain in Great Britain, we highlight a series of practical and economic bottlenecks 

commonly encountered in the supply of locally sourced seed and domestically produced 

planting stock for native woodland and hedging markets. We find that adoption of alternative 

seed sourcing strategies, designed specifically to account for directional climate warming, is 

likely to exacerbate existing problems by adding further complexity to decisions nurseries 

make about tree species and seed origins to produce. The lack of long-term market 

predictability brought about by the current configuration of forestry grants and regulations 

and, in particular, the administrative systems for processing grant applications is  identified 

as a major impediment to having a sustainable and competitive supply of home-grown and 

currently adapted planting stock. Finally, the time and effort it takes to supply healthy plants 

for native woodland creation projects deserves much wider recognition throughout the 

industry and will be crucial if planting objectives are to be met sustainably. 

5.1. Introduction 

A sustainable supply of germplasm or planting material is crucial for any plant based 

ecological restoration project (Broadhurst et al., 2016). An abundance of research 

emphasises that the planting material supplied for native woodland creation and restoration 

should come from a seed source that is ecologically and genetically appropriate for the 
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planting site (McKay et al., 2005; Leimu and Fischer, 2008; Vander Mijnsbrugge et al., 

2010; Sgrò et al., 2011; Breed et al., 2013; Bucharova et al., 2016b).  

A long held view, especially in conservation science has been that the use of locally sourced 

seed for planting or sowing is the optimal strategy. However, with increasing recognition of 

global climate change, it has been proposed that in future, seed should be sourced from areas 

which currently experience climatic conditions expected for the planting site at some point 

into the future (Aitken and Whitlock, 2013; Breed et al., 2013; Prober et al., 2015).  

Absent from much of this ongoing debate regarding the biological considerations affecting 

seed sourcing is any assessment of the practical implications of seed-sourcing strategies and 

the impact that seed origin specification has upon forest nursery enterprise. In this chapter 

we explore how private businesses involved in the supply of seed and planting stock of trees 

and shrubs for the forestry and hedging markets are affected by policies that govern seed 

origin choice – using Great Britain (GB), as our study region. The situation in GB, the 

archipelago composed of the countries of England, Scotland and Wales, is particularly 

pertinent because there is currently high motivation to expand and restore native woodland in 

many parts of the country (Scottish Executive, 2006; Forestry Commission, 2007a; Welsh 

Assembly Government, 2009), and due to problems with fragmentation of woodland and 

unreliability of natural regeneration, this is best conducted by planting of nursery-raised tree 

seedlings, rather the use of less resource intensive direct seeding approaches (Willoughby et 

al., 2004). 

To achieve our objectives we have canvassed and attempted to portray opinion on these 

issues from members of the domestic forest nursery sector in GB. This provides us with a 

sound basis of critical qualitative data which is frequently communicated verbally and via 

various informal online platforms, but rarely discussed in the scientific literature. This 

information, combined with summary data from publicly held trade records (see section 

5.2.6), has been synthesized to provide an account of the seed supply and forest nursery 

sector as it exists in practice in GB, and to explore its strengths and weaknesses.  

A key practical aim of the chapter is to highlight bottlenecks in the forest seed and plant 

supply chain, i.e. identify where various practicalities or bureaucratic protocols impose 

constraints on the ability for the nursery sector, and their customers to follow biologically 

based guidance related to seed sourcing for forest trees. We look at these issues under 

guidelines that were designed under the assumption of a  stable climate, but also explore 

whether changes to existing guidance which aim to account specifically for directional 

climate warming (e.g. Morison et al., 2010; Forestry Commission England, 2010; Forestry 
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Commission, 2011b; Weir, 2015), will complicate or ease the current status of the supply 

chain. 

5.2. Materials and methods 

5.2.1. Background and context 

For native species, seed sourcing and certification in GB involves a geographical system of 

seed zones comprising four regions of provenance which are subdivided into 24 seed zones 

of roughly similar size (Herbert et al., 1999). Apart from the special case of Scots pine 

(Pinus sylvestris L.), which has customised seed zones based on patterns of selectively 

neutral genetic variation (Forrest, 1980; Kinloch et al., 1986), the delineation of seed zones 

is identical for all native species and thus fails to take into account the possibility that 

patterns of adaptive variation may vary amongst different species (Rehfeldt, 1994; Vitasse et 

al., 2009). The purpose of the seed zones is to encourage the use of locally adapted planting 

stock for woodland creation, i.e. a planting scheme should use planting stock which has been 

raised from seed collected from within the confines of the local seed zone. The requirement 

to use locally sourced seed is based on the premise that generations of natural selection in 

similar environments will have produced phenotypes best able to cope with biotic and abiotic 

conditions of the planting site. Using locally sourced seeds is often a requirement to obtain 

subsidy support for a planting scheme. However, it is worth noting that delineation of the 

seed zones, in their current form was somewhat arbitrary, based on major geographical 

boundaries and watersheds but not based on evidence of phenotypic or genetic variation in 

tree populations (reviewed in Whittet et al., 2016b).  

Seed collections from native trees are typically organised by nurseries and seed merchants 

and conducted by contractors from wild tree populations (Herbert et al., 1998). British tree 

seed collection guidelines for native species suggest that collections should be made from at 

least 20-30, well-spaced, open-pollinated individuals which are isolated from non-indigenous 

stands of the same or closely related species, and should avoid selecting trees based on any 

particular morphological characteristics (Herbert et al., 1998). However, it is worth noting 

that following these guidelines is typically at the discretion of the seed collector. Problems 

with a lack of sufficient genetic variation may arise if, for instance, seed demand is very low 

or if seed crops are very small. One system of control over this is that commercial seed 

suppliers tend only to purchase seed from contractors when volumes are large enough to 

preclude collections from few individuals.  In addition to seed collection, seed for most 

species tend to require cleaning and stratification (breaking dormancy) before they are sown, 
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which, along with seed storage, is considered by most nurseries to be a specialist activity and 

therefore often tends to be conducted by specialist seed merchants rather than by nurseries. 

Most tree planting schemes are eligible for subsidy support via contributions from the United 

Kingdom’s allowance of funding from the Common Agricultural Policy of the European 

Union (EU). As part of the grant application process, applicants must demonstrate that the 

proposed planting scheme complies with regional priorities. Usually, stating the intended 

seed origin of planting stock is required and often the authority overseeing the proposal 

stipulates that seed from the local seed zone is used. However, the extent to which seed 

origin choice influences approval of a planting scheme can vary depending on the region and 

the objectives of planting. The applicant must also state the year in which they will claim for 

grant money following completion of work, meaning that funding is recouped once work has 

been successfully completed. Stating the claim year takes place before they know whether 

the proposed scheme will be approved, a process which involves many other protocols and 

assurances (e.g. Environmental Impact Assessment) and as such may take some time.  

To meet demand, nurseries can trade amongst themselves, provided that EU regulations 

pertaining to the marketing of seeds, plants and parts of plants, collectively known as ‘forest 

reproductive material’ (FRM) are followed (Forestry Commission, 2007). This may involve 

purchasing FRM from large scale enterprises on the European mainland which speculatively 

buy and raise GB provenance seed to be raised into plants for the GB marketplace (Russell 

and Evans, 2003). Imported plant material has been strongly implicated as a major pathway 

for transfer of plant pests and pathogens into the UK (Brasier, 2008) and elsewhere 

(Liebhold et al., 2012; Jung et al., 2015). 

5.2.2. Selection of informants 

Selection of informants was based on a list of 149 registered suppliers of FRM, maintained 

by Forestry Commission GB; the national forestry authority in GB. With expert opinion 

from key informants (representatives of the Forestry Commission who are in regular 

correspondence with the nursery sector), 34 businesses were contacted by email and invited 

to participate. This sample was subjectively considered to be a representative cross-section 

of the industry at the time as it contained nurseries of varying size, product specialities and 

with representation throughout all parts of GB. Of these 34, 19 responded positively. 

Ultimately, 14 private sector nurseries, 1 public sector nursery and 1 seed merchant were 

visited, based on the relevance of their business models to our questions. As a matter of 

convenience, we will henceforth describe all of the businesses as nurseries. Collectively, 
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these nurseries estimated that they were responsible for the sale of approximately 83 million 

trees annually, although this number may include some double counting as many nurseries 

trade amongst each other. Nonetheless, this is likely to represent a very high proportion of 

the trees sold annually in GB. 

 5.2.3. Interviews 

Interviews were conducted in person in semi-formal office settings and were held with senior 

staff, which always included owner/operators for sole traders and managing directors for 

limited companies. On three occasions, more than one interviewee was able to participate 

and when this was the case, the interview panel included other managerial staff. 

Interviews were conducted towards the end of the lifting season (when plants are harvested 

for sale) in 2014, between February and April, with one interview conducted in April 2015. 

Interview duration ranged from 30 minutes to 2 hours and followed a semi-structured format 

with a pre-defined interview guideline containing a mixture of quantitative (descriptive) and 

qualitative (discursive) questions – although in some cases, answers were not provided, for 

example, most respondents were unwilling or unable to provide detailed summaries of 

annual sales volume by species. The interview guideline included questions on seed 

procurement, plant production and sales, grant schemes, attitude to climate change and open 

questions regarding any other bottlenecks in the supply chain and policy recommendations. 

All meetings were recorded digitally using a hand held voice recorder and transcribed 

manually.  

Transcripts were analysed using a ‘grounded theory’ approach (Glaser and Strauss, 2009), 

which is a widely used inductive technique for qualitative research and seeks to address 

questions without a priori hypotheses or assumptions. Transcripts are coded manually to 

identify particularly informative chunks of text within the responses, meaning that data 

collection and analysis to be performed simultaneously. Codes which are repeated across the 

different responses are grouped into concepts. Concepts are grouped into categories, which 

then form theories or hypotheses. Hypotheses are formed from the patterns which emerge in 

the early stages of analysis and are continually tested by re-reading and coding transcripts 

until a point of diminishing returns is reached, when no novel information emerges (Ní 

Dhubháin et al., 2009; Górriz-Mifsud et al., 2015). The theories emerging from grounded 

theory analysis provide the structure for communication of the results. 
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5.2.4. Selection of quotations 

Quotations reported here are used to demonstrate themes that were derived from qualitative 

data coded during data collection and analysis. We have aimed to provide a limited series of 

anonymous quotes to demonstrate the range of views held by the industry. Initially, all 

quotations relevant to each theme were collated and reviewed by the authors. The selection 

was narrowed down iteratively by the authors to maintain only those quotations which were 

either most pertinent to the matter at hand, or those which added important information 

which otherwise would be absent from the manuscript.  

5.2.5. Generating nursery typologies 

In order to contextualise the respondent’s views, quantitative summary data gathered from 

respondents were used to generate typologies of the different nurseries. Such criteria 

included details of size (sales volume; number of employees) and position in market place 

(proportion of turnover generated by native species; dominant growth system (containerised 

production or bare root production); proportion of sales generated by own-produced versus 

traded stock; proportion of customers which were end users). An attempt was made to apply 

a hierarchical cluster analysis to objectively classify the respondents into groups. However, 

results were difficult to interpret and not all businesses could be categorised according to 

these criteria (e.g. seed merchants), which would restrict the possibility of anonymising 

responses. 

Instead, a less objective but more easily interpretable approach has been applied which is 

used to categorise nurseries based on three attributes. These three attributes are relative size, 

determined by ranking the nurseries by sales volume, as well as the number of employees 

and contractors; trading status, determined by self-sourced/grown versus purchased product 

and whether the nursery was involved predominantly in the market for exotic or native trees 

and seed. The latter two attributes were distinguished by using a 50% (i.e. majority) 

discriminator, i.e., if > 50% of the nursery’s turnover was having been derived from trade in 

seed or plants for native species, it has been scored as an ‘N’ for native. Otherwise, it has 

been scored as an ‘E’ for exotic. If the proportion is between 40 and 60% for native and 

exotic species, then the nursery was scored as ‘NE’. Importantly, ‘exotic’ species does not 

necessarily imply that the exotic planting stock is used for forestry purposes. It also includes 

exotic species supplied for amenity or horticultural purposes. 
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5.2.6. Trade records 

To complement the qualitative aspect of this research, we also interrogated the Forestry 

Commission’s FRM databases which contain records of import and export transactions for 

forest reproductive material and for registration of seed collections. This national database is 

maintained in accordance with EU directives on trade in FRM.  

5.3. Results 

Grounded theory emerged as a satisfactory method of data collection and analysis for the 

interview transcripts, as common concepts emerged across responses and could be formed 

into logical categories rapidly. An interesting attribute of the forest nursery sector in GB is 

that private sector nurseries tend to be organised into professional membership groups, for 

example, the CONFOR nursery producer’s group 

(www.confor.org.uk/AboutUs/Default.aspx?pid=137) and the Horticulture Trades 

Association tree and hedging group (www.the-hta.org.uk/page.php?pageid=58). Members of 

these groups are in frequent communication and competition with one another and 

experience virtually identical market conditions. For this reason, common themes emerged in 

most interviews and hypotheses could be generated rapidly forming the basis of our results. 

We firstly discuss issues related to seed sourcing (section 5.3.2.), most notably those 

pertaining to procuring seed of particular seed origins for sowing in nurseries. We then 

discuss issues related to the next stage of the supply chain, i.e., actually supplying the 

planting stock to customers for planting schemes (section 5.3.3). In this second section, we 

focus on factors identified as complicating prediction of demand (forest grant schemes and 

regulations) and measures taken by nurseries to counteract these difficulties (trading in live 

plants, contract growing). 

5.3.1. Characteristics of the survey respondents 

The sample was indeed found to represent a reasonably diverse set of nurseries, supporting 

the subjective criteria we had adopted whilst selecting informants (Table 5.1). Quotations 

used in the following sections will be accompanied with a code (Table 5.1) to demonstrate 

the category of respondent the quotation can be attributed to. These classifications are 

provided only to set context to the quotes and ought to be interpreted qualitatively, as there 

are too few respondents to make any statistical inference or comparative analysis of views 

held by different types of nurseries.  

 

http://www.confor.org.uk/AboutUs/Default.aspx?pid=137
http://www.the-hta.org.uk/page.php?pageid=58
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Table 5.1. Characteristics and codes of the survey respondents 

Attribute Nursery size Trading status Majority market (species) 

Category Large Medium Small Producer Trader Natives Exotics Equal  

Number 4 7 5 12 4 7 6 3 

Code L M S P T N Ex NEx 

 

5.3.2. Seed sourcing  

5.3.2.1. Seed collection 

Two of the nurseries surveyed, which were small producers of native species, collected seed 

for all of the stock they grew with only occasional exceptions. Four nurseries organised their 

own seed collections and typically employed contractors to do so. It is unclear what 

proportion of total stock produced was derived from their own collections, although 

collections were made for a broad suite of tree species. Other producers either did not collect 

at all (n=6) or collected fairly haphazardly, when it was economically viable to do so, such 

as during a mast year when large quantities of seed are locally available. Other nurseries 

were content to rely on seed merchants as they considered that seed collection, treatment and 

storage to be a highly skilled activity which some nurseries have no interest in incorporating 

as part of their regular business practice. 

There can be considerable variation in availability of seed from year to year for some 

species. For example, oak trees (Quercus spp.), exhibit masting behaviour, with highly 

variable interannual seed crops (Figure 5.1). In the case of oaks, this is further complicated 

by the seed being recalcitrant (dessication-intolerant) and cannot be viably stored for long 

periods (Gosling, 2007). In addition to temporal variability, most northern hemisphere trees 

exhibit spatially variable synchrony in seed production, meaning that, in some years, seed is 

produced in greater quantity in some places than in other places (Silvertown, 1980; Koenig 

and Knops, 2000). Spatial patterns of oak seed availability in GB differ between years 

(Figure 5.2).  
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Figure 5.1. Annual quantity (kg.) of seed collected for the two native Quercus spp. in GB. Data obtained from the 

Forestry Commission FRM database.  

 

Figure 5.2. Location of seed collected for the two native Quercus spp. in GB, in the years 2012 and 2013, 

summarised by seed zone. Breaks for colour coding indicate seed quantity for each species and were generated 

using the ‘sd’ style within the R package “classInt” (Bivand et al., 2013). The numerical scales are based on values 

for the year in which seed was more abundant – in both cases, 2013.  

Variability in seed production is not always considered in woodland creation plans. 

“There hasn’t been a good acorn year in the last five years. It was good in the east last year 

[2013] but not here and we haven’t taken any orders yet the Forestry Commission are still 

approving schemes that are 60% planted oak, the customers are coming back and saying 

“what am I going to do?”  I can’t magic acorns out of nowhere.” [S|P|N] 
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“If nurseries don’t sell any oak then that means that they don’t sell any companion species 

either and all the schemes involving oak will be put off for a year.” [M|P|N] 

5.3.2.2. The current system of seed zoning 

Respondents were asked for their views of the existing system of seed zones (mapped in 

Figure 5.2). Discussion tended to focus on two themes. Firstly, the biological relevance of 

the seed zones, i.e. whether adhering to local origin encourages the use of adapted material 

and secondly, the practical application of the seed zones for suppliers, i.e. whether seed zone 

stipulation helps or hinders their business operations.  

One respondent, who had described difficulties with the seed zones, found it hard to 

envisage a viable alternative solution. 

“The lines on the map have to be there anyway to maintain bureaucracy. Creating separate 

zones for more species would create an even more convoluted system than is already present 

and it would become impossible to get what you want.”  [M|P|NEx] 

Some were sceptical of the seed zone maps, calling into question their biological relevance. 

“I understand why we want seed zones and the reason for having them – climate et cetera 

but that does not adhere to how they are split at the moment. If you can split up the country 

using motorways and stuff like that then there isn’t much science behind it.”  [M|P|NEx] 

“I do feel that southern Britain is one outbreeding mass… I really have difficulty seeing 

much difference between 405,403,404 [three seed zones in the south of England].” [M|P|N] 

“I think that you could get away with three zones in England– the semi-arid zone, the wet 

zone and the dry zone. Once you get north of the border [Scotland], it’s a different story 

because topography plays a major role and I don’t think the current seed zone map allows 

for that” [M|P|N] 

Despite these doubts, there was some support for the seed zones, at least conceptually, as 

they add assurances to products, which gives the domestic sector a competitive advantage 

over producers elsewhere. 

“I’ve always thought that basically, if it hadn’t been for the seed zones, during the time of 

recession, there would be a whole lot less nurseries out there” [M|P|N] 

Almost all respondents commented that they experienced difficulties in supplying specific 

seed origins for a planting scheme at some time. The problems were linked to demand at 

short notice. 
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“What I said at the time [the seed zones were initiated] is this is going to make our sales a 

complete lottery and if you’ve happened to grow the provenances that suddenly there’s a big 

planting scheme for then you’ve won the lottery but if you haven’t then there’s a load of 

stock which isn’t going to go anywhere.” [M|P|Ex] 

Respondents indicated that forest authorities in different parts of GB had differing opinions 

about the necessity to source local origin material. Several respondents mentioned that 

certain forest conservancies [administrative regions in which grants and guidance are issued] 

in Scotland and Wales were far stricter about seed origin and that at times this had hindered 

or even prevented initiation of planting schemes. English authorities were perceived as being 

more lenient regarding seed origin choice and were often content to accept non-local GB or 

non-GB material. 

“It depends which conservancy they are in. In Wales they like Wales, England is broader. 

Scotland is much stricter, especially in the Highlands.” [M|P|N] 

“The Welsh office is always asking for Welsh provenance. Why is that?  It’s not 

particularly botanical survival I think. It’s a political wheeze. What happens is you get all 

the landscape contractors going around all the nurseries asking for the right provenance 

spec. They might find five or six nurseries with a bucketful each of Welsh provenance, and 

where do they go? To some extent, the nurseries with the most flexible paperwork get the 

deal. I don’t know.” [M|P|N] 

Regional differences in provenance specification are due to differences in species behaviour 

in different environments. Local adaptation is likely to be much more frequent in 

heterogeneous landscapes with strong selective gradients (Kawecki and Ebert, 2004), such as 

upland regions in Scotland and Wales and so, arguably, it is logical to apply a more 

conservative approach in these areas. 

Occasionally, using planting stock raised from seed collected in seed zones adjacent to a 

planting site is considered acceptable by the forestry authority (Forestry Commission 

Scotland, 2006). The influence that this flexibility has had upon the system was clearly 

recognised by one respondent, who had noticed that demand for seed of one region, 102 

(northernmost Scotland) had reduced. 

“The situation is now that if you haven’t got the right zone, you’ve got to have the one next 

door to it. There’s nothing [few other seed zones] next to 102 so it’s not a very popular zone. 

If you go into 105 or 106, you’ve actually got 104, 102, 201 and 106. We haven’t got a clue 

what people want next year. We haven’t got a clue what people want tomorrow. So what 
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you’ve now got is that the demand is coming from those provenances in which you can have 

the least amount of provenances but the most of the country covered.”  [L|P|N] 

5.3.2.3. Seed sourcing and climate change 

Respondents were asked for their opinion of the practice of predictive provenancing, i.e. 

sourcing seed from areas which currently experience climatic conditions expected for 

planting sites into the future(Aitken and Whitlock, 2013; Breed et al., 2013; Prober et al., 

2015). In a GB context, this would involve sourcing seed from locations 2 – 5 degrees south 

of the planting site (Broadmeadow et al., 2005; Forestry Commission England, 2010; 

Morison et al., 2010; Weir, 2015). 

Some felt that this would put the domestic trade at risk and have the unintended consequence 

of moving the market away from GB-grown material. Although most respondents were to 

some extent ambivalent, 12/16 of the respondents were either mostly sceptical or claimed 

that they did not understand the science but would not do it anyway. Two were very 

supportive of the concept and two felt that it did not matter. A common perspective was that 

indiscriminate sourcing of seed from currently warmer climates was not viable but that there 

was merit in the ideology of the approach as part of a general drive to diversify the base of 

material used.  

Generally, respondents felt that climate change was more complicated than patterns of 

directional warming, and therefore sourcing seed from more southerly origins was not 

suitable as a single strategy. 

“Climate and weather are two different things. I believe in climate change but if we adapt to 

climate change, we also have to take account of the present weather conditions we are 

having. I think the ideology of thinking long term is correct but whatever we are thinking 

long term has got to be able to tackle the short term too.” [L|P|N] 

“There’s only one thing I can guarantee you about the [climate change predictions] forecast, 

and that is that it is wrong, because all forecasts are wrong. We want to build in resilience 

for the unknown. If you’ve got known unknowns, don’t try and turn it into a known known 

because you never will.” [M|P|N] 

Some respondents gave very pragmatic answers. 

“We generally don’t go south because of the risk of frost damage.” [S|T|Ex]. 
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“No [sourcing seed from further south is not a sensible adaptation strategy], because the 

local climate effects are huge” [S|P|N]. 

Others were not convinced that it was necessary and that it may be best to spend more time 

considering the options. 

“I think that a foresters’ job is to manage his clients’ woodland. If there is a risk on the 

horizon, you consider it and have a think about how to mitigate or deal with it. Doing 

nothing can be all right though, as long as you have thought about it. It shouldn’t be chosen 

blindly. Trees do adapt, they can cope with a level of change.” [M|P|NEx] 

“There has been too much action and not enough thinking. The issue with forestry is that 

foresters tend to be very proactive “do-stuff” people but in this case it might be best to do 

absolutely nothing. People feel the need to do something although it’s not always necessary. 

There’s too much of “I want this to happen in my career”, but that shouldn’t be the case.” 

[M|P|N] 

Another response was that it would make little difference, due to widespread historical 

imports of plant material. 

“I would think that there is such a vast amount coming in from Holland, Belgium and 

France that the mix of crop already in the UK always has been coming from those areas and 

that it wouldn’t make much difference.” [L|T|Ex]. 

Supplying alternative products was recognised as a niche marketing opportunity. 

“[There are] some people who are living off the back of these recommendations and making 

money from it. I’m not sure they necessarily agree with it but it is a marketing opportunity” 

[M|P|N] 

One respondent was very supportive of the move for southerly origins. 

“Yes. In the right territories, within reason, assuming it’s all ok and disease free and not 

bringing in anything different up into the UK. Yes, definitely, yes. That’s what we’re doing, 

that’s what we’re getting customers asking us for. I think the people who are looking for 

climate change tolerance or testing out these species are people who are more serious 

productive people. Growing people. Thinking people.” [M|P|NEx] 
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5.3.3. Plant supply 

5.3.3.1. Grant schemes  

Forest planting schemes in GB tend to rely on subsidy support from grant schemes funded by 

the UK’s share of EU Common Agricultural Policy funds. Beginning in 1988 with the 

Woodland Grant Scheme, there have been six grant schemes in Scotland and five grant 

schemes in both England and Wales, with an average duration of 4.8 years. Additionally, 

subsidy rates for different activities and policies vary both between and within grant schemes 

at times – and the administrative systems required for their implementation are revised, 

which can create delays (Macaskill, 2016). Respondents to the survey were asked to 

comment on problems they have experienced with grant schemes and for their opinions 

regarding possible changes to grant schemes which might improve the efficiency of the plant 

and seed supply chain. 

“We should have a system reflecting that the industry is long term and not moving the goal 

posts every five years. If you remove the politics of it, you get an overarching strategy in 

place for twenty years that is the best thing for the sector” [L|P|Ex] 

Due to grant stipulations, and the long period of time it can take to secure funding, forest 

managers usually provide nurseries with specifications with little notice – despite nurseries 

requiring up to three years to produce a tree seedling which is ready to be deployed to the 

planting site, and longer if targeted seed collection is required. If grant application took place 

before plant specification, the entire process would be likely take longer than the period in 

which a single grant scheme is open for (Figure 5.3). 

 

 

Figure 5.3. Idealised timeline diagram of events involved in plant production and grant application and approval. NB 

there is likely to be much variation in the time and one of these activities may take. This variation is likely to be 

particularly strong for seed collection and stratification, grant approval and grant scheme duration. This is indicated 

by the additional narrow tails. 
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“Most of our clients are coming to us and saying, I would like to buy one million plants. 

When do they need them?  Two weeks. They are all purchasing plants for the season we are 

already in or the season we are about to enter. That’s to do with the amount of time it takes 

for grant approvals to go through.” [M|P|NEx] 

“You take a forester who is specifying to his or her nursery two weeks before they want it 

delivered. They want a certain species, of a given size, of the correct provenance. They’re 

also now specifying where it is grown, of a given altitude and want it in two weeks’ time. 

How is the nursery trade supposed to produce this product?” [L|P|N]This view was extended 

by some respondents, who suggested that subsidy schemes were not conducive to long term 

management. 

 “If you want the really big answer, you would remove all of the agricultural and forestry 

grants. The blackface sheep would come off the hillsides and the price of land would come 

down and after a few years people would really be thinking about what they want to achieve 

by doing x, y or z on that hill. There is no room for people to sit down with the client and say 

– ‘what do you want for your estate? What is it going to look like in 30 years?  What do you 

want to achieve?” [S|P|N]   

“I personally, would like to see the industry move away from direct support. I think it would 

come out stronger” [L|P|N] 

“We shouldn’t have taken away the tax concessions [of the 1980’s]. The people who were 

getting them weren’t taking money; it just meant that the tax was deferred. It was a good 

system. A company I used to work for were sending out lorry loads of trees and when that 

ended it just stopped” [S|T|Ex] 

5.3.3.2. Trading in live plants 

Due to the prevalence of speculative production in GB nurseries, trading among nurseries to 

fulfil stock requests is common. In addition to trading amongst GB nurseries, planting stock 

is also sourced from large scale nursery enterprises in other countries, especially in Western 

Europe (Russell and Evans, 2003). In our survey four out of the sixteen respondents did not 

import any planting stock from other countries. Those that did import planting stock 

indicated that they generally did so because they could rely on the quality of products and 

services and trusted their trading partners.  
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“The producers in Europe grow excellent stock. It is a safety net for us. We produce what we 

know we can sell. If for any reason, there is an increase in demand, we can meet that by 

importing” [M|P|NEx] 

“When the ash dieback thing [outbreak of Hymenoscyphus fraxineus infection of ash trees] 

happened, people were saying, why were you and the nursery trade importing such vast 

amounts of ash from abroad?  I suppose it was spontaneous demand and unusual 

specifications late in the season. This spontaneity doesn’t help stability in British 

production.” [M|P|N] 

One trading nursery that relies entirely on hedging or forestry-purposes stock grown outside 

of GB had tried but failed to commit to exclusively supplying GB-grown planting stock.  

“We decided last year that what we would try to do was buy British. And so we started 

buying more in this country but they weren’t able to do what we wanted them to do. We 

managed it for about two months, completely hit and miss deliveries and they were 

delivering the wrong size. It was complete chaos and so we went back to what we were doing 

before, sadly, buying from the continent.”  [S|T|Ex] 

“Often the choice is between having continental seed grown here or British seed grown on 

the continent. So you can have an imported plant of the right provenance or the wrong 

provenance that is grown in the UK.” [M|P|NEx] 

Purchasing and selling trees grown elsewhere can be profitable, and negates some of the risk 

associated with speculative production. 

“We work pretty closely with two other [GB] nurseries and these are people I know I can 

trust. I can make money from selling other people’s trees. If we just sold our own trees, we’d 

be pretty poor.” [S|P|N] 

Two respondents suggested that there are ways to bypass the marketing certification system 

and that, at times, European suppliers have taken advantage of weak policing of the FRM 

system by supplying false documentation. 

“I work widely in the European market and some of the things I am asked to do are blatant 

fraud. They’re looking for someone to produce the paperwork – that goes on widely.” 

[L|P|N] 
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“They [overseas suppliers] will say – you don’t need the certificate, just tell your customer 

lies. I think by and large we do get it right in this country but I think we need to be slightly 

more aware that not everybody is honest and truthful.” [M|P|N]  

The Forestry Commission FRM database records the number of plants imported for 

regulated species for which they have been notified. These can be broken down by year and 

by species (Figure 5.4). In total, approximately 59% of plants recorded as imported for 2003-

2013 were certified as being of GB provenance (i.e. raised from seed collected in GB), but 

supplied by other countries (Figure 5.5). The CONFOR nursery producer’s group which, at 

the time comprised seven of the largest forest nurseries in GB, estimated that their members 

imported at least 10 million plants in 2012 (Anon, 2012). Fewer than half of this number 

(36.5%) appears in the FC FRM database for that year, suggesting that the estimates we 

derived from the national databases are likely to be lower than the actual number of imported 

plants. In any case, the proportion of imported versus non-imported trees, which is estimated 

as 12.5% in Anon (2012) is much lower than the 70% estimated for native broadleaves in 

1993 (Gordon, 1998). This is in line with recent trends in customer preference for GB-grown 

material. A recent survey identified that 69% of woodland owners stated a preference for 

GB-grown trees for the future (Hemery et al., 2015). Interestingly, the intention to specify 

particular provenances is predicted to decline. A small majority of 54% of survey 

respondents claiming that they have tended to specify provenance in the past but only 44% 

claim that they will continue to do so into the future (Hemery et al., 2015). This suggests that 

less value will be placed on provenance than the location of supplier by forest owners into 

the future, contrasting with trends in the past decade in which importation of GB provenance 

material has been widespread (Figure 5.5). 

 

Figure 5.4. The number of plants (thousands) recorded as being imported to GB 2003-2013 for species in which the 

total number of trees imported exceeded one million, according to the FC FRM database.  
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Figure 5.5. The supplying country of imported planting stock presented in Figure 5.4. This is broken down by 

country of provenance (GB/non-GB), to demonstrate the proportion of imported planting stock which is of GB 

provenance. 

Box 1. Uncertainty begets importation 

Using quantitative data offered by one respondent, we aim to present an example of 

problems which can be caused by rapid shifts in policy and subsidy support. 

 “Overnight the demand shifted because the grant rate was more attractive for hardwoods in 

the new scheme [Figure 5.6]. We can’t magic plants out of thin air, so when the demand for 

softwoods dropped – the proportion we still have on the nursery gets burnt because we can’t 

sell it” 

In this scenario, there was a rapid shift from one subsidy scheme to another in 2007. In the 

latter scheme, more attractive rates of subsidy were available for broadleaved species 

(especially agricultural hedging) than before. This influenced demand at very short notice to 

the nurseries – and as such, conifer crops which were already being grown at this nursery 

were destroyed as subsidy rates were less competitive. The nursery was able to diversify 

quickly by importing planting stock. 

“There was a hedging grant. That allowed us to survive the transition because of that 

hedging. We were able to import those plants because provenance wasn’t important – the 

farmers didn’t care about the provenance of their hedges. That increase buffered that 

decrease [in conifer sales] which is why we are still here” 
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However, in 2010 the subsidy rate for hedging was removed, again, at short notice, and 

without prior consultation with the nursery sector (Figure 5.7). In this case, reduced 

Crataegus sales were buffered increased in Betula sales. 

“If I had decided here [3 years prior] – the market looks good for this [hedging] so I will sow 

loads of them, I would have been burning them at this point. So that ability to import is in my 

opinion necessary until the market is stable enough to allow advance purchase of plants.” 

 

 

Figure 5.6. Annual sales volume for softwoods and hardwoods at a private sector nursery 2007-2013.  

 

 

Figure 5.7. Annual sales volume for Betula spp. and Crataegus monogyna at the same nursery between 2007 and 

2013. Note – There are no values on the Y axes, as these data are confidential. Additionally, the scale of the Y axes 

of the figures 5.6 and 5.7 is not equivalent – these data are used to indicate magnitude and thus should be 

interpreted qualitatively. 

Looking more widely, there seems to be a relationship between the volume of imports and 

transitions between grant schemes. The change from the Scottish Forestry Grant Scheme to 
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the Scottish Rural Development Programme occurred between September 2006 and January 

2007. There were major revisions to the English Woodland Grant Scheme between 2007 and 

2009 and a new grant scheme in Wales, “Better Woodlands for Wales”, opened in 

September 2006. The period between 2006 and 2009 is when the highest number of plants 

was reported as having been imported (Figure 5.8). It seems likely that these two factors are 

related and supports the claims made by the nursery used in our example of grant scheme 

transitions.  

 

Figure 5.8. The total number of plants (thousands) recorded as being imported to GB 2003-2013 for all species, 

according to the FC FRM database. 

5.3.3.3. Advance purchase of plants – contract growing 

Contract grows, whereby a customer specifies a particular seed origin, either by providing 

the seed or contracting a collection in addition to growing the plants are one option which 

may add assurance to crop production. The advantage of contract growing is that the stock 

can be grown in addition to normal production, with an agreement on the sale in place at the 

time of sowing. This is common practice in some countries, e.g. Finland (Rikala, 2000) and 

the United States (Haase, D. personal communication), especially for large planting 

schemes. 

Few examples of contract growing were found within the domestic sector in GB. One 

nursery reported that 60% of their stock was grown under contract and another reported 

40%. For all of the other respondents, the proportion was lower than 5% and several said that 

it had happened once or twice or never at all.  

Generally, nurseries were amenable to the idea of advance purchase of plants, although 

several respondents made it clear that contract growing is not a panacea and it does present 

its own difficulties:   
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“Yes, it has its difficulties but if people want a particular seed origin and if it’s seed from 

ancient woodland or something special then it is definitely a good idea.” [S|T|Ex] 

One respondent noted that contract growing is a partial solution, but could not replace 

speculative production. 

“On spec, we don’t know who is going to take it [planting stock] but we know that somebody 

will. Even if half of that were on contract, it wouldn’t make the slightest bit of difference to 

the other half. That would still be speculative. Contract grows are a bit of a red herring.” 

[M|P|N]   

For smaller producers, entering into a contract to supply plants is often more of a risk than 

speculative production.  

“No contract grows, it is too much risk. Too much risk for ourselves, contract prices are low 

prices and if we have a disaster it’s a big disaster, then you have to go out and re-buy the 

stock.” [S|P|N]  

5.4. Discussion 

5.4.1. Tree seed sourcing 

The availability of tree seed is the first limiting factor in any seed sourcing process and is 

subject to the vagaries of nature, especially when harvested in field conditions (Broadhurst et 

al., 2015). Strategies to improve availability could either involve increasing collection effort 

in situ, increasing seed production ex situ (Broadhurst et al., 2016) or investigating 

technology to increase the period of time for which germplasm can be stored without losing 

the ability to germinate (Gosling, 2007). In the immediate absence of these capabilities, 

organisations responsible for overseeing grant applications should make better recognition of 

these natural fluctuations in availability of seed. Whilst this may entail delays in planting, it 

is preferable to deploying planting stock of an inappropriate seed origin or species for the 

planting site and preferable to importing the planting stock (Hubert and Cundall, 2006). 

Grant schemes do not currently offer enough flexibility to allow for this, as they place a time 

limit on completion of works following approval. 

The current system of seed origin choice (seed zones), clearly creates problems for suppliers, 

as they increase the number of product lines a supplier is expected to manage beyond those 

which would enable a nursery to produce any specific seed origin in volume. This is a 

problem because tree seedlings are perishable and must be sown long before they are 

available for sale, a process which typically takes 1-3 years. Without prior knowledge of 
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demand, nurseries must be judicious when sourcing seed and decide whether to grow large 

quantities of trees from few seed origins (high risk, high reward), or smaller quantities of 

trees from many seed origins (lower risk, lower reward). Of course, this risk is a reality for 

any commercial enterprise but it can lead to negative consequences for genetic resource 

management (inappropriate material planted), biosecurity (excessive reliance on imports) 

and leads to unnecessary waste. It is important to remember that much of the capital 

supporting this industry is indirectly derived from taxpayers on the understanding that 

woodland expansion delivers public benefits. 

A survey in British Colombia and Alberta discovered that support for reforestation with non-

local seed for climate change adaptation amongst the general public was around 60%, and 

that increasing levels of knowledge of reforestation technology increased the likelihood of 

acceptance of the strategy (Hajjar and Kozak, 2015). Our sample was comprised of highly 

knowledgeable individuals and although it is smaller than necessary to make statistical 

inference, the GB nursery sector seems to be more sceptical about predictive provenancing. 

This may be due to the much smaller scale, and perhaps inherently more commercially 

conservative status of the forest industry in GB than in Canada. Nonetheless, most of the 

criticisms of predictive provenancing (sourcing seed from more currently warmer locations) 

were related to the biological considerations (section 5.3.2.3). 

In addition to biological considerations, some practical and economic problems with 

predictive provenancing emerged from the survey. Landholders of seed stands typically 

receive a proportion of profit achieved on the sale of seed collected from their woodlands. A 

shift to non-local seed origins could remove the incentive for landholders to manage or allow 

access to seed stands or increase costs of obtaining seed if collectors are required to source 

seed from further afield. This would increase the wholesale cost of seed and the costs of 

woodland establishment. If nurseries are required to speculatively produce planting stock 

from additional seed origins to those already grown, this will add further risk to their own 

investments than already exists. Finally, if the suggested practice of mixing the seed origins 

of planting stock at a single planting site is adopted (Forestry Commission, 2011), a likely 

scenario, given the existing difficulties associated with predicting demand, is that managers 

will either have to accept whichever seed origins a nursery sows or accept that trading will 

be required to provide planting stock of multiple seed origins simultaneously.  

More research is required to identify major patterns of adaptive variation in GB tree species, 

and this should inform policies related to seed sourcing (Boshier and Stewart, 2005; Cavers 

and Cottrell, 2014; Whittet et al., 2016b). For instance, several respondents perceived that 
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there are currently more seed zones than is necessary in the relatively homogeneous south of 

England, as has been demonstrated for Black alder Alnus glutinosa L. Gaertn. in Belgium 

(De Kort et al., 2014). In this case, small seed zones may make seed collection and stock 

control more complicated than necessary, with no obvious fitness advantage of using local 

material (Hubert and Cottrell, 2007; O’Neill et al., 2014). A more bespoke, biologically 

relevant system for sourcing currently adapted seed would not necessarily be more restrictive 

or complicated than that the current system of seed zones. Such a bespoke system, based on 

scientific evidence, would also have the advantage of better predicting tree survival at 

planting sites. This coupled with a greater capacity to access documented and stored seed 

would add security to the supply chain. 

5.4.2. Plant supply 

Demand or at least a preference for GB-grown planting stock is increasing, partly brought 

about by awareness of plant health problems (Hemery et al., 2015). This greater emphasis on 

home-grown planting stock should theoretically improve the competitiveness of the domestic 

nursery sector. However, whilst uncertainty created by the configuration of GB grant 

schemes remains, there is little indication that imports are likely to cease in the foreseeable 

future. Large nurseries in mainland Europe have the volume, infrastructure and climate to 

produce a greater number of product lines, including those grown from GB provenance seed 

or traded in from elsewhere in Europe. These efficiencies of scale provide continental 

producers with the confidence to grow trees from a range of GB seed origins speculatively 

and still make sustainable profit margins by selling back into GB or elsewhere. 

Contract growing, in the strict sense, is not an ideal solution to the problem of unpredictable 

demand, since it requires the supplier and customer to enter into a legally binding agreement, 

which itself is not free from risk. Contract grows are useful when stock specifications are 

very tight or when the product being sought is not typically carried by a supplier, especially 

if targeted seed collection is required. However, in some instances they are unattractive 

because the sale price may be lower. If nurseries are tied completely into contracts, they will 

lose the ability to innovate, or gain higher rewards associated with speculative production. In 

any case, contract growing relies on consumer confidence, which is currently lacking and is 

a major bottleneck in sustainable seed and plant supply. 

Transitioning from a subsidised to a free-market status was mentioned by some of the 

respondents as a way of increasing consumer autonomy and confidence. Decoupling from 

agricultural subsidies took place in New Zealand in the 1970’s. This was initially followed 



Supplying trees in an era of uncertainty 

126 
 

by a steep decline in the country’s agricultural human population and subsequently led to 

intensification of the agriculture sector (Macleod and Moller, 2006). Effects of liberalising 

the market in GB would be complex and would constitute very radical reform (Potter, 1996). 

A possible scenario is that it would lead to reluctance to deliberately create non-profit 

making native woodlands by private landholders. On the other hand, reducing the rates of 

subsidy, or adopting a more moderate cost-sharing incentive scheme rather than direct 

support might entail a shift away from native woodland creation by materialistic/profit-

seeking landholders to recreational landholders (sensu Serbruyns and Luyssaert, 2006), 

meaning that deliberate woodland creation for non-financial purposes would be conducted 

only by those who are genuinely interested in and motivated by positive environmental 

outcomes. Another indirect consequence of removing agricultural subsidy might be natural 

colonisation of formerly agricultural land by trees in instances where currently subsidised 

activities become economically inviable without financial support, particularly in remote 

areas less favoured by intensive agriculture (Potter and Goodwin, 1998). 

Although in-depth analysis of alternative modes of incentivising native woodland creation 

and expansion is beyond the scope of this chapter; the most obvious consensus from 

respondents is that more stable grant schemes would allow nurseries to operate efficiently 

and plan over much longer time-scales than they are currently able to do. Greater flexibility 

and tolerance of changes to individual planting schemes where there are legitimate reasons 

for doing so (e.g. inability to procure GB-grown plants of appropriate origin) are also a 

priority.  

To achieve this, it is necessary to develop simpler and more reliable administrative systems 

for processing grant proposals. Decentralisation of some aspects of the approval process may 

also enable more efficient delivery of woodland creation and expansion projects whilst 

taking advantage of local knowledge. Of course, over time, it may be necessary to modify 

some guidance and policies as our understanding of environmental change develops and to 

reflect naturally changing requirements of the industry. However, any such changes must be 

coupled with extensive consultation between the public and private sectors and notice should 

be provided long in advance of changes, especially to nursery producers in the private sector. 

Nursery producers are arguably exposed to the highest level of the risk in the supply chain 

(Broadhurst et al., 2016), despite the fact that their ability to produce and compete with 

suppliers elsewhere to supply plants for native woodland expansion is clearly in the public 

interest. 
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5.5. Conclusions 

The ability to create resilient and healthy woodlands from nursery raised planting stock 

depends on the existence of a resilient domestic seed and plant supply chain to support these 

efforts. Identifying challenges faced by the forest nursery sector in Great Britain has revealed 

that bottlenecks in the supply chain are principally natural (seed availability at a given time) 

and bureaucratic (grants and regulations). Little can be done to mitigate the former 

bottleneck in the short term. However; greater tolerance at an administrative level may go 

some way towards easing the constraints it poses. Across the sector currently, productivity 

and competitiveness are hindered, not by an intrinsic lack of capacity in the GB domestic 

forest nursery sector, but by a lack of long term market predictability which leads to 

overproduction and waste on one hand and underproduction and consequent reliance on 

imports on the other. This analysis suggests that better scientific information – and the tools 

to use it efficiently – is required to guide seed sourcing policies under uncertain future 

conditions. Sourcing appropriate planting stock is an inherently long term process and so for 

such information to be adopted operationally, much more stable and efficient administrative 

systems for financing and regulating native woodland creation than currently exist are 

required. In the absence of consistent policy, it may be necessary to revisit stated planting 

targets and ask whether these are achievable, and at what costs? Finally, an important 

conclusion from this chapter is that it is crucial for scientists and policy makers to consult 

with industry to determine the practicability and economic viability of any change to forest 

policy.
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Chapter six 

Conclusions 

6.1. Summary of key findings 

Chapter two showed that the seed zones for native Scots pine do not always ensure that a 

seed source within the seed zone is a closer match to the planting site than another source 

may be. There are opportunities to improve upon the existing system in order to identify 

sources of seed which have evolved in similar conditions. Incorporating site-scale ecological 

information is likely to be very complex. Experiments would have to be conducted to 

determine whether it is necessary to incorporate ecological information into seed zoning.  

Chapter three showed that pine populations in different areas show a tendency to release 

pollen at different times. In the three study years, male pine strobilus development was 

earliest in the warmest site in the west of Scotland and proceeded up to 15 days earlier than 

at the coldest site at the highest altitude in the east of Scotland. However, in every case, 

models predicted that there is some overlap between all of the sites sampled. This suggests 

that gene flow is more likely to proceed from west to east than from east to west.  

Chapter four used simulations which suggested that using seed sourced from further south 

enabled a newly planted population to change its mean phenotype to a greater degree when 

local seed was used. However, this was only due to a step change in the genetic composition, 

rather than differences in the intrinsic adaptive capacity, of the population. Furthermore, 

using seed not adapted to the current climate meant that there were high levels of juvenile 

mortality, especially when aspects other than climate were selectively important. In all cases, 

adaptation was fastest when there were many opportunities for recruitment. 

Chapter five demonstrated that the British forest nursery sector experiences significant 

difficulties in the provision of domestically grown, locally sourced planting stock. These are 

caused by spatio-temporal variation in the availability of seed and excessive difficulties in 

predicting demand due to the current configuration of forestry grants and regulations. 

Importing of live plants continues to be widespread and is a threat to domestic biosecurity. 

Longer term, stable systems for funding woodland establishment are required if planted 

targets are to be met sustainably. 
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6.2. Possibilities for further research 

Improving seed sourcing guidelines requires more information on patterns of adaptive 

genetic variation than currently exists within GB (Boshier and Stewart, 2005; Cavers and 

Cottrell, 2014). The approach applied in chapter two using climatic and ecological 

information forms a basis for improving the ability to match seed sources to planting sites 

although remains couched in the assumption that local adaptation exists. To define transfer 

limits, well replicated provenance tests for a range of species, representing a large a range of 

source and trial environments are possible. Work is underway with trial series’ of Betula 

pendula, Fraxinus excelsior and Sorbus aucuparia which will contribute greatly towards our 

understanding of adaptive variation in these species (C. Rosique et al., unpublished data).  

Given the highly resource intensive nature of such experiments and the influence that early 

decisions can have on results, it will be necessary to set priorities in terms of species choice 

and to make very clear the purpose of conducting such experiments. If they are to identify 

seed sources which will be most productive in certain environments the goal may be to 

sample from high quality trees in the field and to focus on measuring and reporting variation 

in economically important traits so that these can contribute to improvement programmes in 

the long term. However, if the aim is to establish more generally whether genotype by 

environment interactions exist then initial planning may be less selective (White et al., 

2007). Collaboration with the forest industry would be very helpful in this regard, for 

instance by gaining semi-quantitative data on establishment mortality rates of different 

species in different environments by means of a survey of forest managers. The survey could 

also target the forest nursery sector and attempt to gain information on relative volumes of 

stock for different species sold as ‘beat-up’ (planting stock resold to replace failed trees in 

the first year), as well as canvassing opinion on seed sourcing throughout the sector as a 

whole. 

Future research could endeavour to determine the influence of edaphic or biotic variation on 

phenotypic variation among populations of Scots pine and other species. This would help to 

understand whether it is necessary to consider such variation within seed sourcing 

guidelines. A plausible experiment would be to reciprocally grow genotypes from different 

environments in soils collected from their home sites in short term seedling tests under 

common conditions, with a controlled replicate growing in sterilised soil. Although it would 

difficult to fully replicate the edaphic environment of any given site in artificial conditions; it 

would be impossible to control for the effect of climate in field conditions and so sowing 
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seed in pots in controlled conditions would be desirable. Such an experiment would help 

indicate whether populations are differentially adapted to their edaphic environments. 

However, caution would be required in choice of fitness measures, as traditional 

‘performance’ indicators such as height growth may reflect enemy release, rather than local 

adaptation (Dostál et al., 2013; Gundale et al., 2014). A sample of the biotic component of 

the different soils could be described using molecular approaches prior to sowing seed and at 

the end of the experiment to determine whether the different tree genotypes influence 

recruitment or turnover of different species (e.g. ectomycorrhizae). 

The aim of chapter three was to investigate and demonstrate, using a simple methodology, 

whether timing of pollen production is synchronous amongst populations. Differences 

among distant sites were found to be as many as 15 days, with anthesis taking place earliest 

in the warmer west of the country. Due to protogyny and prevailing westerly or south-

westerly winds, a hypotheses emerging from the study was that the directional bias in pollen 

transfer among populations is from the west to the east. However, there is a large conceptual 

difference between the presence of pollen in one location and the effective dispersal of 

pollen among locations (i.e. successful dispersal, fertilisation, germination and 

establishment). There may be several other pre-zygotic barriers to gene flow among 

populations which may be temporal, spatial, or spatio-temporal. Future studies could aim to 

investigate the timing of female strobilus receptivity among sites and more clearly test 

hypotheses surrounding the cues of spring reproductive phenology in pines. A relationship 

with temperature seems highly plausible, but would require higher resolution temperature 

data than were available in this study for confirmation. Continuing to visit the same trees 

into the future would generate valuable data, and the mechanisms underpinning variation in 

reproductive phenology become clearer under further investigation. 

The next steps in developing a clear picture of patterns of pollen dispersal in Scottish pine 

populations would be to parameterise pollen dispersal kernel using molecular markers, 

accepting that it will be very difficult to capture long-distance events (Kremer et al., 2012). 

Pollen dispersal kernels could be made spatially explicit/coherent with modelling studies of 

wind patterns at the time of predicted pollen shedding, as well as elucidating whether certain 

landscape features (e.g. mountain ranges, conifer plantations) would act against pollen 

dispersal. Future studies may also endeavour to investigate whether interannual variation in 

reproductive phenology has consequences for seed production (Koenig et al., 2015).  
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The model presented in chapter four was highly abstracted and necessarily made a series of 

simplifying assumptions to generalise adaptive responses. Future efforts to use simulations 

to investigate seed sourcing strategies could endeavour to incorporate more realistic 

processes, for instance by considering clinal phenotypic variation in a trait linked closely to 

fitness, e.g. timing of bud burst (Aitken and Bemmels, 2016), alongside a more spatially 

explicit landscape and a more sophisticated basis for genetic adaptation to a realistic climate. 

A further improvement would be to explicitly incorporate heritable variation in phenotypic 

plasticity into the model (Chevin et al., 2010; Oddou Muratorio and Davi, 2014), to assess 

the relative contribution of plasticity to the adaptive responses of populations established 

under the different seed sourcing strategies and identify whether there are evolutionary 

tipping points in plastic responses (Botero et al., 2015). 

An obvious flaw in the model is that there were no implicit consequences for low population 

size and evolutionary recue was not constrained by any ecological interactions or Allee 

effects. This was simply a matter of interpretation, as the population size at year 5 was 

considered to be the main response variable but it is conceivable that, had a competing 

species with a faster life cycle been included in the model, evolutionary rescue from a very 

small population size would have been limited.  

However, gaining experimental data would be more informative and more valuable than 

more modelling (Bucharova, 2016). Experiments could help to fill two of the major 

knowledge gaps the model identified. Gaining information on the extent to which 

populations are adaptively differentiated in terms of non-climatic aspects of the environment, 

as discussed in short term seedling tests would help to inform how likely phenotypic 

mismatch leading to early mortality could be among provenances. Longer term provenance 

tests in realistic field settings will be more useful to determine whether genotypes 

translocated from currently more benign climates can survive in the field. Confirming 

whether there are any differences in the extent to which any of the seed sourcing strategies 

will help populations adapt to climate change will remain very difficult with long-lived trees. 

Virtually all aspects of the simulation experiments could realistically be replicated in a 

microbial system (e.g. Chlamydomonas reinhardtii P.A. Dang.). Although such an 

experiment would be biologically interesting, it would not contribute very useful information 

for forest management and would be little more biologically realistic, and much more 

difficult than using simulated data. 
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6.3. Practical implications for forest management 

Until it is possible to determine whether biotic or edaphic variation explains sufficient 

quantities of phenotypic variation in trees at a fine geographical scale (i.e. within the rather 

limited range of the native pinewoods), it will be difficult to determine whether seed 

sourcing guidelines ought to be modified to take these details into account (Ying and 

Yanchuk, 2006). At broader scales, however, for instance when considering introducing new 

species or translocations over larger differences, biotic or edaphic variation may be of 

greater effect and certainly warrants further investigation (Bucharova, 2016). Nonetheless, 

the analysis of climatic covariates clearly showed that improvements can be made upon 

geographical boundaries with a climatic site matching tool, and one could be designed with 

relative simplicity, such as those in the USA (Howe et al., 2009) and Canada (McKenney et 

al., 1999). The main problem with a site matching tool, or ‘floating’ seed transfer zones 

(sensu Rehfeldt, 1983) would be that, in order to obtain the closest match between seed 

source and planting site, it would be necessary for seed to be available already in storage, or 

to arrange bespoke seed collection and sowing in time for plants to be raised and deployed at 

the planting site, something which is rarely possible in GB (Whittet et al., 2016a). The entire 

process would be more effective if results from trials found quantitative limits in 

environmental distance over which seed can be transferred without risk of maladaptation. 

The general geographical pattern of variation in climatic and community compositional was 

a longitudinal one, matching with empirical results from provenance tests and short term 

seedling studies with Pinus sylvestris in Scotland (Salmela et al., 2011; 2013; Donnelly et 

al., 2016; Perry et al., 2016a,b). Although no fully comparative data are yet available to 

determine transfer limits, it seemed subjectively possible that the number of seed zones for 

Scots pine could be reduced to three. These three seed zones would include a hyper-oceanic 

group in the far west of Scotland, a central group of populations at higher altitudes in the 

central and northern Highlands and a third group containing populations in and around the 

Cairngorms national park. 

The potential that temporal reproduction isolation between distant pine populations exists in 

some years seems plausible. Further research is required to elucidate the mechanisms of 

these phenological differences in reproduction, but it is worth noting that temporal isolation 

is just one of many possible barriers to gene flow. Parameterising more complex models of 

pollen flow with empirical data can only reduce expectations of effective dispersal. A further 
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hypothesis is that warming temperatures, if not synchronised across the landscape could act 

to increase asynchrony in reproduction. Exchange of genetic variation among populations 

maintains high levels of diversity among populations, which is a crucial prerequisite for 

genetic adaptation (Savolainen et al., 2007; Kremer et al., 2012). Therefore, forest 

management planning at landscape scales ought to endeavour to identify realistic pollen and 

seed dispersal routes and incorporate them into the design of connected forest habitat 

networks. 

Use of the individual based models did not support or refute the use of predictive 

provenancing. It was, however, an effective means by which to formalise several arguments 

regarding the approach. Firstly, that adaptation to characteristics other than climate, e.g. soils 

or biota will impose additional selection on translocated genotypes meaning that 

establishment mortality could be more severe, especially if variation in two selectively 

important traits is genetically uncorrelated and arranged in different spatial patterns. 

Secondly, that the effect of varying proportions of provenances within a seed lot has no more 

than an additive effect, influencing the genetic composition at the time of planting, but 

having no emergent effect on the rate of adaptation. Finally, in all sets of circumstances, 

adaptation change under directional selection does happen and this is necessarily fastest 

when there are opportunities for recruitment (Kramer et al., 2008; Kuparinen et al., 2010), 

supporting the idea of utilising disturbance based management by imposing periodic 

disturbances in new and existing stands (Harvey et al., 2002; Brang et al., 2014; Cavers and 

Cottrell, 2015). This could be achieved by conducting thinning, as part of a continuous cover 

approach, or under shelterwood systems (Whittet et al., 2016c).  Predictive provenancing 

from a single population is discouraged as it was found to result in very low population sizes 

and often extinction. Composite provenancing (i.e. deliberate mixtures of seed from further 

south with local seed) were found to be more useful than admixture (random) provenancing 

in all cases and therefore, admixture provenancing is also discouraged. One conceptual 

problem with the approach is that, outwith a long term experimental context, it would be 

impossible to determine whether predictive provenancing is effective. As such, 

implementing predictive provenancing is an act of faith, rather than evidence based decision 

making. 

The nursery surveys identified that there are two main problems in the supply chain for 

native tree seed and plants. These were related firstly to availability of seed and secondly, to 

minimal consumer confidence caused by difficulties in the approval of grant schemes. The 

availability of seed for some native species can be problematic, especially where lead-in 
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times are lacking (Russell and Evans, 2003). There are currently few long term seed stores in 

Great Britain and therefore much of the stored seed is held in few locations. Additional seed 

stores in multiple locations could reduce the vulnerability of this key stage in the plant 

supply chain. For species with recalcitrant seeds, long term seed storage is not at present a 

viable option and so establishment of regional seed orchards, designed to conserve genetic 

diversity and improve seed availability may be a more appropriate strategy for improving 

seed availability in the long term. For recalcitrant-seeded species with late maturity such as 

oaks, public investment or involvement in assisting organisations with existing expertise in 

seed collection and stratification could increase productivity in the short term.  Oak seed may 

be especially difficult due to obtain due to strong interannual variability in seed production 

(mast seeding) (Silvertown, 1980; Koenig and Knops, 2000). Planning for woodland creation 

schemes involving oaks must recognise that it will not always be possible to obtain seed or 

plants at short notice and so raised awareness and clearer communication is required when 

planting schemes involving oak are being conceived and reviewed. Establishment of a 

national forum on seed availability would be helpful in this regard and could perhaps provide 

anecdotal predictions of forthcoming seed crops. 

A clear practical recommendation emerging from the nursery surveys was that longer lead-in 

times for planting schemes are required so that nurseries have the ability to better predict 

demand, thereby reducing waste and reliance on imported planting stock. A review of grant 

approvals with recommendations for streamlining the process has recently been produced at 

the request of the Scottish Government (MacKinnon, 2016), and this seems to have bolstered 

ambitions in Scotland (Anon, 2016). However, the future of subsidy schemes elsewhere is 

deeply uncertain. The United Kingdom voted to leave the European Union shortly after 

chapter five (Whittet et al., 2016a), which discussed subsidy schemes and plant imports was 

accepted for publication. Implications for the subsidisation of woodland planting schemes, 

implementation of plant health directives as well as environmental policy in general have 

generated uncertainty within the sector and will be complex (Glynn, 2016; Winkel and 

Derks, 2016). Certain aspects of deregulation, if it proceeds, may represent opportunities for 

increased levels of planting (Glynn, 2016). However, deregulation, if it proceeds, is also 

likely to lead to reduced levels of protection for existing forests (Glynn, 2016) and will 

perhaps favour production of timber over less profitable native woodland management. 
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6.4. Concluding remarks 

Climate change is just one of many challenges to the maintenance and expansion of 

woodland cover in Great Britain. Other factors include high herbivore density, patterns of 

land use and ownership, infrastructure development, pests and diseases. The threat posed by 

these multiple pressures and the interactions between them highlight the need to recognise 

that that there is no “quick fix” for adaptation to climate change and no single seed sourcing 

strategy can be seen as a surrogate for sound, continued woodland management which aims 

to encourage natural regeneration and colonisation.  Several potential problems have been 

identified with predictive provenancing. However, maintaining the status quo by continuing 

to adhere to the current system of seed zones may also be problematic. A moderate approach 

might involve updating or extending the status quo in order to improve knowledge and make 

better use of existing genetic resources and evolutionary processes, thereby ensuring that 

native tree seed sourcing is better grounded in biological principles. In the short term, this 

would involve using environmental information to better match seed sources with planting 

sites, rather than focusing strictly on the current system of seed zones whilst continually 

monitoring populations further south which are likely to experience climate change related 

problems before they occur in Britain. However, in the longer term, this ought to be 

informed by a more detailed understanding of the responses of tree species and the 

populations within them to different environments. To achieve this, we firstly need 

information from a range of populations on their ability to acclimate to novel environmental 

conditions. Secondly, we need information on the pattern of adaptation of trees across the 

landscape in response to environmental factors, so that presently adapted seed sources can be 

identified for any particular planting site. Thirdly, we need a better assessment of the extent 

of genetic variability in standing tree populations. Although adaptation will depend on a 

whole range of factors, for some traits a measure of the extent of heritable genetic variation 

in populations can be obtained from progeny trials. This will allow an indication of likely 

rates at which populations might adapt to a novel environment if natural regeneration occurs. 

Finally, we need to know the limits of adaptation or tolerance of the species as a whole. This 

will determine whether a population of the species can realistically be expected to adapt to 

and survive in changed conditions. In the immediate absence of this information, it is 

necessary to pay close attention to a series of potential risks of deploying non-local planting 

stock. Firstly, it may not be possible to find contemporary analogues of future climates 

(Williams et al., 2007). Secondly, confidence in climate change projections, especially for 

covariates other than temperature change is strongly limited at local scale, especially in 



  Chapter 6 

 

137 

 

heterogeneous upland settings such as the north of Scotland (Jenkins et al., 2010). Site scale 

decision making should recognise that there is great potential for error in projections, and 

high interannual variability and increased and wider extremes are likely to occur alongside 

directional change (IPCC, 2013). Thirdly, if population size is greatly reduced due to 

extreme events happening at an early stage after establishment, the remaining trees will be 

more exposed to Allee effects and more vulnerable to further environmental stochasticity 

(Lande, 1993; Dale et al., 2001). Finally, there may be other aspects of the environment to 

which trees are differentially adapted which vary at different spatial scales and in patterns 

which constrast with climatic variation (Linhart and Grant, 1996; Bucharova et al., 2016b). 

Managers ought to consider these risks before exposing newly established woodlands to the 

many uncertainties in the implications of predictive provenancing. Any such efforts must 

initially be conducted conservatively and treated as long-term experiments until sufficient 

evidence can be found which suggests that these strategies are necessary, effective and can 

be implemented practically.   
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