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ABSTRACT

The North-Western Sahara aquifer system (NWSAS) forms an important transboundary groundwater resource
whose properties remain to be fully understood across its whole extent. For example, groundwater flow in the
Cretaceous Continental Intercalaire (CI) unit of the NWSAS is well-characterised in the northern part of its range
around the Algeria/Tunisia/Libya borders and in the Great Eastern Erg sub-basin immediately to the south. To
the southwest, however, the CI of the Great Western Erg sub-basin has been much less studied. The present paper
reports hydrogeochemical data from a wellfield in central Algeria which will contribute to a better under-
standing of this sector of the NWSAS in terms of the age and origin of groundwater within it.

Groundwater pumped from five deep boreholes in the CI aquifer overlying the Krechba gas field has been
studied using a variety of environmental tracers including hydrochemistry, environmental isotopes, and reactive
and noble gases (the latter being reported for the first time for this sub-basin). All the waters were dilute (SEC
460-600 pS/cm), contained detectable O, (6.3-7.5 mg/L), showed evidence of evaporation (relative enrichment
in 8'80), gave late-Pleistocene '*C model ages (13.5-19.3 ka), and yielded lower than present-day noble gas
recharge temperatures (14.3-17.6 °C). Various lines of evidence suggest that these waters are the product of
mixing between water recharged direct to the CI and leakage from the Neogene-Quaternary Erg aquifer. The
results support the long-held concept of regional flow from a palaeo-recharge area to the northwest. Finally,
while the Krechba gas field (Carboniferous) has been since 2004 the site of a pilot carbon capture and storage
(CCS) project, the data revealed no evidence for leakage of fluids (gas or brines) into the overlying CI aquifer at
the time of sampling (October 2014).

1. Introduction

part of the Sahara Desert known as the Great Western Erg (Fig. 1), or
GWE.

The North-Western Sahara aquifer system (NWSAS) is one of the
largest in the world and includes two main aquifers, the Continental
Intercalaire (CI) and the overlying Complexe Terminal (CT), shared
between Algeria, Tunisia and Libya. At about 700,000 km?, Algeria has
approximately 60% of the surface area of the NWSAS (Fig. 1). The CI is
the thicker of the two aquifers and has the greater areal extent. How-
ever, being the shallower aquifer, the CT is currently the more exploited
of the two. There is limited interaction between the aquifers, with most
of this occurring in the Ouargla area (Edmunds et al., 2003).

The current abstraction rate of 2.2 billion m*/yr from the NWSAS
(60% of this from Algeria) demonstrates the importance of this aquifer
system. It remains however to be fully characterised in some areas,
particularly the CI in the southwest of the region, where it underlies a
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The CI and the CT have been the subject of several published hy-
drogeochemical studies during the past half-century. Early isotope-
based studies in the CI are summarised by Gonfiantini et al. (1974).
These found isotope methods (stable and radioactive) to be important
in verifying the concept of flows in the CI derived from necessarily
sparse physical measurements. The majority of the data were from the
Great Eastern Erg (GEE) sub-basin, but the GWE sub-basin received
some coverage, including importantly the role played by the Neogen-
e—Quaternary Erg aquifer in locally recharging the CI. The work of
Guendouz et al. (1998) was the first to apply isotopes and noble gases to
extract palaeoclimatic information from the CI and CT of the GEE. This
was followed by the study of Edmunds et al. (2003) which followed a
presumed flow line in the CI across the northern part of the GEE from
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Fig. 1. The area covered by the north west Sahara aquifer system (NWSAS), showing the eastern and western Erg sub-basins and concept of groundwater flow
directions based on Castany (1981). Also shown is the location of the Krechba wellfield.

recharge in the Atlas Mountains to discharge in the low-lying Tunisian
Chotts area adjacent to the Gulf of Gabes (Fig. 1), and was largely de-
voted to the evolution of groundwater quality along the flowpath,
though isotopic aspects were also considered. Simultaneously,
Guendouz et al. (2003) published on the CT aquifer, which is only
present in the GEE. Other more specialised papers dealt with subjects
such as ®°Cl dating in the CI (Guendouz and Michelot, 2006), and ur-
anium series geochemistry of the CI and CT (Elliot et al., 2014). How-
ever, none of these papers considered the aquifers of the GWE, princi-
pally the CI but also the Erg. This was to be partially addressed by the
paper of Moulla et al. (2012) which released a sizeable geochemical and
isotopic database for the CI in the GWE sub-basin, but only provided a
‘broad brush’ picture of the hydrogeochemistry of the aquifer in this
sub-basin. Their study could not consider palaeo-climatic information
in any detail owing to a lack of radiocarbon or noble gas data.

The work described here contrasts with previous studies in that it
focuses on a small area of the GWE, where the existence of the Krechba
gas field has given rise to some well-constrained sampling opportunities
in the CI in connection with the development of a large-scale carbon
capture and storage (CCS) project utilising the underlying
Carboniferous gas reservoir. The study reviews a comprehensive set of
hydrochemical, isotope and dissolved gas data from the CI at Krechba
and relates it to the findings of other relevant studies of the CI within
the GWE and beyond. It also briefly considers whether CCS operations
have had any effect on the water quality of the CI at Krechba.

2. Background

The CI is a formation of Lower Cretaceous age, consisting mainly of
detrital sediments separated by intermittent layers or lenses (i.e. ‘in-
tercalations’) of clay-rich material, which give rise to locally-variable
aquifer properties (Edmunds et al., 2003). Equally, large-scale regional
water flow directions in the CI vary as a consequence of the underlying
geology and topography. Fig. 1 shows the current understanding of
conditions in the CI of Algeria (0SS, 2003): (i) Elevated recharge areas
in the northwest, south and southeast (Atlas Mountains, Tademait and
Tinghert plateaux respectively); (ii) a groundwater divide in the basin
centre unrelated to the topographic divide formed by the Mzab N-S

ridge; and (iii) the existence of discharge areas in the Chotts area of
Tunisia and at the southwestern end of the GWE by way of the ‘foggara’
system of the Adrar region. While the combination of the Tademait and
the Mzab topographically separates the two Erg (dune) areas, for the
purposes of this study the groundwater divide will be taken as the sub-
basin boundary, which also marks the southwestern limit of the CT as a
significant aquifer. On this basis, the CI and CT beneath the GEE dis-
charge to the northeast, while the CI of the GWE discharges to the
southwest (Fig. 1).

One part of the GWE with little borehole information until recent
times is the Krechba area, situated roughly equidistant from the re-
gionally important settlements of El Golea, Timimoun and In Salah
(Fig. 1). The drilling of CI monitoring wells in connection with the
development of the Krechba gas field (Fig. 2a) has led to the availability
of five deep (~400 mbgl) boreholes (kb602-kb606) screened over the
approximate depth range of 250-350 mbgl (Fig. 2b) within a block
some 250 km? in area. The CI is confined in this area by Cenomanian
mudstones (Fig. 2b); piezometric measurements suggest that flow
across the wellfield is from NE to SW (Fig. 2a), but the estimated 1:3000
the gradient is extremely low so the precise direction remains un-
certain.

At Krechba, the CI is divided into an upper 500 m of largely sandy
sediments (the Krechba Formation), and a lower 200 m of much more
heterogeneous material (the In Salah Formation). The geology of these
formations is described in detail in Newell et al. (2015).

In addition to the five monitoring boreholes kb602-606, three long-
reach CO, injection boreholes kb501, kb502 and kb503Z (locations in
Fig. 2a) penetrate to the Carboniferous gas reservoir, whose storage
performance since injection of CO, during 2004-2011 has been mon-
itored (e.g. Oye et al., 2013; Ringrose et al., 2013; White et al., 2014).
These injection boreholes are necessarily cased off from the CI. While
these were not sampled, drill cuttings from one of them (kb502) were
examined for information about the mineralogy of the CI by Newell
et al. (2015).
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Fig. 2. (a) Krechba wellfield map with estimated groundwater head contours in metres above sea level, (b) simplified geological cross-section showing borehole

screen intervals.

3. Methods

3.1. Sampling

Waters were sampled in October 2014 from kb602-606 following a
minimum of 7h test pumping and therefore the abstraction of ap-
proximately nine well-volumes before sampling. Following the collec-
tion of data for field parameters (temperature, pH, specific electrical
conductivity, dissolved O, and alkalinity), samples were collected after
filtration (0.45um) for hydrochemistry (major, minor and trace spe-
cies) and isotopes (880, 8°H, 8'3Cp;c and *Cpc) in PTFE bottles, for
dissolved reactive gases (N,, CO, and CH,) in 50 mL double-ended
stainless steel cylinders, and for dissolved noble gases in copper tubes of
~7 mL capacity.

3.2. Analysis

All non-field measurements were carried out in the laboratories of
ANRH and BGS Keyworth (hydrochemistry), BGS Keyworth (stable O, H

and C isotopes) and BGS Wallingford (reactive and noble gases), except
for radiocarbon (**C) which was analysed by RCD Radiocarbon Dating
of Wantage, UK. Techniques used included ICP-MS and ion chromato-
graphy (hydrochemistry), isotope ratio mass spectrometry (stable iso-
topes), accelerator mass spectrometry (radiocarbon), and gas chroma-
tography and quadrupole mass spectrometry (gases).

A subset of drill cuttings from the CI in borehole kb502 was ob-
tained for the purposes of whole-rock 8'°C.,,, analysis. Samples were
ground to < 355 um grain size and dissolved in anhydrous phosphoric
acid, with the resulting CO, being measured for 8'3C at BGS
Wallingford by isotope ratio mass spectrometry.

4. Results
4.1. Hydrochemistry
The data in Table 1 reveal well-oxygenated Ca-Na-HCO3-Cl waters

of low salinity, with SEC (specific electrical conductivity) values lying
in the range 458-602uS/cm. This is consistent with the very clean
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Table 1

Hydrochemical data from CI aquifer of the Krechba wellfield.

Na mg/L K mg/L HCO3 mg/L Cl mg/L SO4 mg/L NO3-N mg/L Si mg/L NPOC mg/L F mg/L

Mg mg/L

SEC uS/cm DO mg/L Ca mg/L

pH

Temp °C

Date

Site ID

0.27
0.30
0.24
0.24
0.28

2.15
4.41
0.72
1.54
0.65

6.84
6.95
7.57
7.76
5.91

4.85
5.38
4.26
4.21
4.94

58.2

63.8

88.7

7.05
6.96
5.66
6.00
6.38

39.0

43.0 14.4

6.8
7.7

6.1

534
602
458
477
533

7.96
8.02
7.85
7.90
7.96

07-Oct-14 33.7

kb602

62.4

81.7

91.7

50.8

17.5

38.8

05-Oct-14 33.2

kb603

50.0

46.3

84.8

30.7

12.5

34.2

05-Oct-14 35.6

kb604

53.1

49.4

88.3

36.9 13.5 33.4

6.5
6.8

34.9

11-Oct-14
11-Oct-14

kb605
kb606

58.8

66.0

86.8

37.1

13.6

39.0

33.7

U pug/L

Zn pg/L

B ug/L Br pg/L Ba pg/L Sr ug/L Mn pg/L Fetot ng/L As pg/L Se ug/L Cd pg/L Cr pg/L Ni pg/L Cu pg/L Pb pg/L

Date

Site ID

0.44
0.51
0.42
0.42
0.44

10.9
3.1

0.21

10.2
1.8

4.1

0.4

10.2

0.05
0.02
0.03

1.0
1.0
1.0
1.0

0.8

1.21
1.23
1.44
1.73
1.35

10.7 36.0

8.5

411
531

61 79.3 62.5
70
54
56
63

07-Oct-14

kb602

< 0.02

0.13
0.04
0.22

0.6

13.6

11.0
182

63.8

87.5

05-Oct-14

kb603

6.0
1.1
8.5

0.9

11.0

16.2
8.3

375
411

64.1

62.1

05-Oct-14

kb604

0.8
5.2

<0.1
0.2

16.3

< 0.01
0.02

32.0
421

76.0

65.8

11-Oct-14
11-Oct-14

kb605
kb606

15.3

16.8

390

65.8

80.9

280
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quartz sands noted in the CI drill cuttings from kb502 by Newell et al.
(2015).

The inorganic water quality is good, with all relevant species (NO5-
N, As, B, Ba, Cd, Cu, Cr, F, Ni, Pb, Se and U) being present at sig-
nificantly below WHO recommended limits. The persistence of nitrate,
presumably derived from natural processes rather than of anthro-
pogenic origin (Stone and Edmunds, 2014 and references therein), can
be attributed to oxidising conditions enduring in this part of the CI.

A multi-plot of selected species versus chloride (Fig. 3) shows minor
but often consistent variations across the wellfield. There are examples
of apparent binary mixing (e.g. Na, SO4, NO3-N, temperature) but also
some instances where this is less apparent. (e.g. Ca, Ba and Si). The
reason for this is presumably solubility control: a table of saturation
indices (Table 2) shows that the waters are all at or near saturation with
respect to calcite, SiO, and barite, while they are well below this level
for gypsum, anhydrite and halite. Clearly ions such as Na, SO, and NOs-
N are, like Cl, behaving as conservative tracers. The implications of this
are considered in 5.1 below.

4.2. Isotopes

O, H and C stable isotope values are reported together with radio-
carbon (**G) activities in Table 3. The O and H stable isotopic com-
positions of the borehole waters lie far from the composition of present-
day rainfall in the region and cannot be derived from it by any likely
process of modification (Fig. 4). They also plot well below the Global
Meteoric Water Line (GMWL - Craig, 1961) and so must be assumed to
contain water which has undergone evaporative fractionation (Clark
and Fritz, 1997). The O and H stable isotopes confirm the indications
based on hydrochemistry that binary mixing is taking place within the
wellfield (Fig. 3), which is also suggested by '*C.

By contrast, carbon stable isotopes (Table 3) show less consistent
variation across the wellfield (Fig. 3). This is presumably the result of
the 8'3Cpyc values being linked to the carbonate system which, as de-
monstrated in 4.1, behaves less conservatively than 8'®0 or tracer ions
like Na and Cl.

Drill cuttings from kb502 gave whole-rock 8'*Ceoy, values ranging
from +0.3 to —8.6%o (Fig. 5). Somewhat counter-intuitively, the least
variation was seen in the In Salah Formation which, as stated earlier, is
much more heterogeneous than the overlying Krechba Formation. The
implications of these 8'3C., results for radiocarbon age correction are
discussed in 5.1 below.

4.3. Dissolved gases

Table 4 gives results for the major dissolved gases N5, O, and CO»,
plus CHy4. The dominant dissolved gas is N,, which is presumably de-
rived entirely from the atmosphere since redox conditions do not favour
denitrification (4.1. above). Concentrations of O, represent ~110%
saturation for the present-day mean annual air temperature (MAAT) of
~24°C at Krechba. At ~2 mg/L, CO, is low in concentration compared
to many oxidising groundwaters (e.g. Hem, 1985), implying a soil zone
poor in respiratory activity. Methane concentrations are at or below the
detection limit of 0.2 ug/L.

Concentrations of the noble gases He, Ne, Ar, Kr and Xe are reported
in Table 5. In groundwaters, He can vary considerably in concentration
due to accumulation over time from in situ production from U-series
decay and/or leakage from adjacent formations. In the case of the
Krechba wells, however, the He concentrations averaging 1.1 X 10~7
cm>STP/g are only slightly above those expected from simple equili-
brium with the atmosphere (~4.6 x 1078 cmBSTP/g), and therefore
show evidence of only minor He addition. This is consistent with low
concentrations of uranium and the clean quartz sand lithology already
noted in connection with the water quality (4.1 above).

The remaining noble gases Ne, Ar, Kr and Xe have solubilities that
are strongly dependent on recharge temperature (RT). Using the CE
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Fig. 3. Multiplot of selected determinands versus Cl for the Krechba boreholes kb602-kb606. Plots are divided into indicators of simple mixing, solubility-control,

and selected other indicators.

(closed-system equilibration) approach of Aeschbach-Hertig et al.
(2000) via the iterative spreadsheet calculator of Matsumoto (2015), an
RT range of 14.3-17.6 °C is indicated (Table 6).

5. Discussion
5.1. Age and origin of the groundwater in the Krechba wellfield

The correction of groundwater radiocarbon activities to allow for
dilution by ‘dead’ mineral carbon in order to obtain an indication of
mean residence time is a well-established practice (Clark and Fritz,
1997, and references therein). For this study, the most consistent results
were obtained using the approach of Han and Plummer (2013), based
on the following assumptions: firstly, soil CO, with a §'3C value of
—20%o (typical semi-arid to arid value: Clark and Fritz, 1997), and

secondly aquifer matrix carbonate values of 0%o, —4%o or —5.0%o
respectively. The latter values are based on three different scenarios for
the source of dead carbon, (i) the conventional assumption in ground-
water dating that the carbonate is marine-derived, (ii) the mean of
carbonate in kb502 over the approximate screened depth range of
250-350 mbgl in kb602-606, (iii) the mean from the whole depth of
the Krechba Formation in kb502 (Fig. 5). Table 7 shows the results of
these assumptions. The fact that much of the Krechba sequence of the CI
appears to be of terrestrial origin (Newell et al., 2015) makes option (i)
look the least likely to be valid. The difference in ages between options
(ii) and (iii) averages 1.1 ka and therefore is of little significance to any
palaeo-environmental interpretations.

It is estimated from the pumping test and recovery water level data
that groundwater flow velocity across the wellfield lies in the range
4-20 m/a. Over the model age range of ~13.5-19.3 ka indicated by
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Table 2

Saturation indices for groundwaters from the CI aquifer of the Krechba well-

field.
Mineral Formula kb602 kb603 kb604 kb605 kb606

Saturation indices

Calcite CaCO3 0.19 0.20 0.00 0.09 0.14
Aragonite CaCO3 0.05 0.06 —-0.14 —0.05 0.00
Dolomite CaMg(CO3), 0.33 0.48 0.01 0.17 0.25
Quartz SiO, -0.10 —0.08 —-0.08 —0.06 —-0.02
Chalcedony SiO3 —-0.50 —-0.49 —-0.47 —0.46 —-0.56
Gypsum CaS042H20 —-2.01 —2.04 —-2.14 —-2.09 —2.04
Anhydrite CaSO4 -2.19 —2.22 —-2.31 —2.28 —-2.21
Halite NaCl -7.19 —-6.97 —-7.43 -7.37 -7.20
Strontianite SrCO3 —1.42 —-1.24 —-1.55 —1.46 —1.45
Celestite SrSO4 —-2.29 -2.17 —-2.36 —-2.31 —-2.30
Barite BaSO4 —-0.14 -0.11 -0.19 —-0.09 -0.11
Witherite BaCO3 —-3.18 —-3.12 -3.27 —-3.14 -3.17

Table 3

Stable isotope (5'%0, §2H and 8'3Cp,c) and radiocarbon (**C) data from the CI

aquifer of the Krechba wellfield.

Site ID 8'%0 §°H 8'3Cpyc MCpic
%0 VSMOW %0 VSMOW %o VPDB pmc® +
kb602 —5.05 —51.0 —5.66 4.93 0.07
kb603 —-4.79 —48.4 -5.40 5.53 0.06
kb604 —5.34 —50.3 —6.41 4.55 0.07
kb605 —-5.35 —50.5 —-7.25 4.53 0.07
kb606 —4.98 —-50.4 -5.35 4.76 0.07
2 Percent modern carbon.
-20 —
Assekremw td. mean rainfall 2
-30
Palaeo MWL
(Moulla et al., 2012) //
-40
g e
= e
T -0 ®® Krechba
[§] -
o)
-60 s .~ <—— Evaporation slope
VPie
70 ﬁi— Likely palaeo-rainfall
/
/
V
_&) L 1 1 1 1 1
-10 -9 -8 -7 -6 -5 -4 -3
580 %o

Fig. 4.Plot of 8'%0 vs 8°H for waters from the Krechba boreholes
kb602-kb606, showing the relationship to the GMWL, palaeo-MWL and
modern rainfall in Algeria (Assekrem station of the GNIP network: https://
nucleus.iaea.org/wiser).

Table 7, this would equate to a mean flowpath length of 60-400 km,
assuming conditions remained constant over time and space. The upper
figure of 400 km fits better with the overall dimensions of the GWE sub-
basin (Fig. 1); the lower figure of 60 km would imply that water pre-
sently arriving at Krechba should be '*C-dead. Therefore flow velocity
across the wellfield seems likely to lie in the upper part of the estimated

282
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Fig. 5. Plot of 8'3C_uy, vs depth in metres below ground level for drill cuttings
from the kb502 injector borehole. Dashed lines indicate the approximate screen
depth interval in boreholes kb602-kb606.

Table 4

Reactive gas data from the CI aquifer of the Krechba wellfield.
Site ID N, mg/L O, mg/L CO, mg/L CH4 pg/L
kb602 19.4 6.8 1.8 <0.2
kb603 16.9 7.5 2.1 0.2
kb604 17.5 6.3 2.0 < 0.2
kb605 17.2 6.2 1.8 <0.2
kb606 18.3 6.5 2.0 < 0.2

range.

The calculated noble gas RT values of 14.3-17.6 °C (Table 6) are
significantly below the present-day MAAT in the Krechba area of
~ 24 °C. There are minor differences in RT depending on notional mean
recharge elevation, assumed here to lie between 500 and 800 m above
sea level (Krechba is at ~450 m asl). There is evidence for a limited
contribution of ‘excess air’ (EA), incorporated mainly due to fluctua-
tions in the water table at the time of recharge, from ~1 to 6 ccSTP/kg.
This is well within the range of EA values noted for sandstone aquifers
(Wilson and McNeill, 1997; Aeschbach-Hertig et al., 2002) and does not
appear to indicate recharge under conditions favouring high EA, such as
large annual water table fluctuations.
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Table 5
Noble gas data from the CI aquifer of the Krechba wellfield.
Site ID He + Ne + Ar + Kr + Xe +
em>STP/g x 1078 cm>STP/g x 108 em®STP/g x 107° ecm>STP/g x 1078 ecm>STP/g x 10~°
kb602 8.284 0.126 21.27 0.421 32.87 0.399 7.832 0.141 9.556 1.913
kb603 7.521 0.103 19.64 0.354 32.89 0.428 7.145 0.232 9.990 0.329
kb604 12.24 0.183 19.85 0.325 32.91 0.388 7.245 0.133 8.968 1.824
kb605 12.80 0.169 22.30 0.309 33.13 0.430 7.160 0.234 9.913 0.327
kb606 12.92 0.216 28.07 0.452 34.80 1.405 7.741 0.276 10.25 0.445
Table 6 2
Groundwater recharge temperatures and excess air calculated from noble gas 100 | ? Erg aquifer
data. D
Site ID Recharge T °C + Excess air cmgsTP/kg + 15 1 /
/
Recharge at 500 m asl 80 E .// 603
kb602 15.6 0.16 1.63 0.04 % 10 4 /
kb603 16.2 0.16 1.15 0.05 2 7
kb604 16.3 0.19 1.22 0.04 r 606
kb605 17.6 0.18 2,51 0.04 < 60 | 5 ) 602
kb606 17.5 0.22 5.65 0.16 (o)) /
Recharge at 800 m asl = / 605
kb602 14.3 0.15 1.89 0.05 6 0
kb 15. .22 1.82 . 604
603 5.0 0 8 0.05 a0 | 8 7 8 5 4 /
kb604 15.0 0.18 1.92 0.04 5120 % /
kb605 16.4 0.18 3.23 0.08 - /
kb606 16.3 0.19 5.91 0.13 ,/
20 / CI water in the
Krechba region
Table 7
Groundwater model ages (uncalibrated) calculated from carbon isotope data W s ) Original CI recharge
(Table 3) for different rock matrix 8'3Ceap, values (see text). Percentage error
L L ! L
based on'*C measurement precision alone. 0
-9 -8 -7 -6 -5 -4
Site ID Corrected'*C age Corrected'*C age Corrected'*C age
0180 %
/00
§'3Cearb = 0%o §'3Cearb = —4%o §'3Cearb = —5%o . 18
Fig. 6. Plot of " °O versus Cl showing the Krechba borehole waters lying on a
ka + 0 ka + 0 ka + 0 mixing line between notional CI and Erg aquifer end members. Inset: histogram
of 8'80 values in the GWE sub-basin based on the data of Moulla et al. (2012).
kb602 19.0 0.62 16.3 0.72 15.1 0.81
kb603 17.7 0.58 14.8 0.64 13.5 0.67
kb604 20.6 0.62 18.3 0.70 17.4 0.76 information about the end-member compositions can be obtained from
kb605  21.5 0.59 19.3 0.66 18.6 0.70 a plot of 8'80 vs Cl (Fig. 6). This suggests that for a Cl concentration of
kb606 19.0 0.64 16.1 0.76 14.8 0.87

The existence of significant concentrations of dissolved O, in the CI
at Krechba has been noted (4.3). However, assuming the noble gas RTs
in Table 6 to be reasonably accurate, the water drops from being ap-
parently oversaturated in O, to ~66% saturation. It seems feasible that
O, concentrations could have fallen by one-third for waters of this
apparent age (Table 7), even in a ‘clean’ aquifer like this part of the CI.
Indeed, in the confined conditions under the edge of the Tademait
Plateau where the wellfield is situated, it is perhaps surprising that
dissolved O, concentrations have not declined further.

The indications from the '*C data for mean residence times of the
order of 13-19 ka (Table 7) places recharge in the late Pleistocene. This
would imply wetter and cooler conditions than at present, the latter
consistent with the ~8°C drop in recharge temperature suggested by
the noble gases. As mentioned, the §'%0 and 8°H values of the borehole
waters do not appear to be related to modern recharge (Fig. 4), which in
any case would be extremely low or absent in the Krechba region (mean
rainfall ~30 mmy/a, potential evaporation > 4000 mm/a). The water
must therefore have been recharged under a different climate, which
would be consistent with the information provided by radiocarbon and
the noble gases.

The plots of ions and other determinands versus Cl in Fig. 3 indicate
that simple binary mixing is taking place across the wellfield. Some
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~20 mg/L, among the lowest recorded from the CI of the GWE (Moulla
et al., 2012), the corresponding 880 value would be ~ —6%o. The
other end-member would necessarily have an enriched isotope com-
position, the source of which seems most likely to be leakage from the
Erg aquifer. This is not well characterised hydrogeochemically, with
8'80 estimates ranging from ~ —4.5%o (Conrad and Fontes, 1970)
to ~ —2%o (Moulla et al., 2012). These values would equate to Cl
concentrations in the range 95-240 mg/L. A reported mean Cl value for
the Erg aquifer of 90 mg/L (Merzougui et al., 2007) suggests the
—4.5%o figure is more generally applicable. This is also supported by a
histogram of GWE-wide CI §'80 values based on data in Moulla et al.
(2012) which shows a markedly bimodal distribution, with the less
negative peak between —4 and —4.9%o presumably representing
leakage from the Erg aquifer into the CI (inset, Fig. 6).

Given the evidence for evaporation provided by stable isotopes,
suggestive of recharge to the Erg aquifer from surface water flow via
ponding, it seems likely that the Erg water would be more mineralised
than the CI water.

5.2. The Krechba wellfield results in the context of previous studies of the
Great Western Erg

5.2.1. Groundwater evolution and mixing
The mixing discussed in 5.1 above means that, in contrast to what
was inferred for the northern GEE sub-basin by the study of Edmunds
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Location Elm 02 Cl mg/L HCO3; mg/L
o o112 O 140
G34 m [ ] 20 m
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O Moulla et al. (2012)
B Gonfiantini et al. (1974)
® Krechba (this study)
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Fig. 7. Maps showing location (a) of the Krechba boreholes in relation to other boreholes upflow of the wellfield, including values (where known) of (b) Cl, (c) HCOs3,
(d) 8'%0 and (e) '*C. A schematic of mixing between water from the Continental Intercalaire (CI) and leakage from the Erg aquifer is shown in (f). Data from this

study, Gonfiantini et al. (1974) and Moulla et al. (2012) as shown in (a).

et al. (2003), the hydrochemistry of the Krechba waters cannot be in-
terpreted in terms of sites lying on a single evolutionary flowline.
Nevertheless, some general points relating to the Krechba water quality
can be made. The mineralisation of the waters is significantly lower
than found by Edmunds et al. (2003) only a few tens of km away from
their assumed recharge area, presumably due to the presence of more
halite, gypsum and other minerals in the CI of the GEE. One of the few
species present at Krechba in comparable concentrations to the GEE is
Si, presumably related to solubility controls. The mean Si concentration
at Krechba of 7 mg/L is not reached in the GEE until a distance of
250-300 km down the flowline (Edmunds et al., 2003). All things being
equal, this implies that the Krechba waters could have travelled a
comparable distance, which given the size of the GWE sub-basin (Fig. 1)
is certainly possible. Concentrations of NO3-N at Krechba are compar-
able to those in the oxidising portion of the GEE flowline, but this most
likely reflects a soil-zone vegetation-related origin in both cases. No
dissolved O, measurements are available from the wider GWE, but the
persistence of NOs in all the CI waters reported by Moulla et al. (2012)
suggests the existence of oxidising conditions throughout the sub-basin.
This would be in contrast to the GEE, where the onset of reducing
conditions occurs some 350 km down the flowline (Edmunds et al.,
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2003).

Assuming the piezometric contouring shown in Fig. 2 is broadly
correct, flow in the CI is entering the Krechba wellfield from the NE.
This is presumably the consequence of an initially southeasterly flow
from the foothills of the Atlas Mountains being diverted by the shape of
the sub-basin, resulting in the curved flowpath depicted in Castany
(1981) and on Fig. 1. The mixing across the wellfield described in 5.1
above must therefore result from a combination of water recharged
directly to the CI, with leakage from the overlying Erg aquifer arriving
from a broadly similar direction. The fairly steep mixing gradient across
the relatively small area of the wellfield suggests a relatively sharp
boundary between Erg and CI water bodies. This may well be a regional
rather than local phenomenon, as there is no evidence from the kb
borehole logs for preferential flow pathways such as river palaeo-
channels in the Krechba Formation (Newell et al., 2015).

There are rather few boreholes with any recorded hydro-
geochemical data situated in the vicinity of, or upflow from, the well-
field. Where data exist, they are shown on Fig. 7. Stable isotope values
are generally similar to those in the wellfield, but two sites give §'%0
results closer to —7%o (Fig. 7d). These would not fit the wellfield
mixing line which predicts a minimum 880 value of — 6%o; indeed it is
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Fig. 8. Conceptual diagram of flow to the Krechba wellfield. Vertical ex-
aggeration X 100.

known that CI waters in the GWE have values as low as —9%o
(Gonfiantini et al., 1974; Moulla et al., 2012) reflecting their origin as
recharge on the slopes of the Atlas Mountains. This implies that even
before the CI flow component enters the wider Krechba area, it has
already mixed with isotopically heavier water leaking from the Erg
aquifer, implying a form of exponential mixing of Erg water with CI
water (Fig. 7f).

This mixing may have a three-dimensional aspect: for example, the
neighbouring boreholes Elm 02 and G34 in the vicinity of El Golea have
contrasting HCO3; and 8180 values (Fig. 7c and d). However, without
details of screen depths in those boreholes it is not possible to be more
specific about this in terms of flow horizons.

5.2.2. Recharge age

It is apparent from Fig. 6 and Table 7 that the higher TDS, iso-
topically heavier water derived from the Erg aquifer must be younger
than the directly-recharged CI component, which would be consistent
with the shorter flowpath of leakage from the Erg aquifer. If the re-
presentation of mixing in Fig. 6 is combined with the '*C ages of
Table 7, then end-member ages might be of the order of 12 ka for the
Erg recharge and =22 ka for the CI. While there are clearly consider-
able uncertainties over these ages, they would broadly fit with available
evidence for pluvial periods in and around the Atlas Mountains (Fontes
et al., 1985; Rhoujjati et al., 2010; Youcef and Hamdi-Aissa, 2014).

Dissolved He is sometimes used as a semi-quantitative long-term age
indicator on the assumption that concentrations increase linearly with
age owing to gradual escape of He produced by decay of U and Th in
aquifer minerals (Andrews and Lee, 1979). While there are no previous
He data from the CI of the GWE, a comparison with the dataset of
Guendouz et al. (1998) for the GEE reveals that concentrations are
significantly lower at Krechba. This presumably reflects U concentra-
tions being an order of magnitude below those from the oxidising part
of the CI in the GEE (Edmunds et al., 2003; Elliot et al., 2014). Con-
sideration of the plots of *C and He vs Cl in Fig. 3 suggests a negative
correlation between He and '“C, indicative of He accumulation over
time. More He and radiocarbon data might enable a simple '“C-He age
calibration to extend He dating back beyond the limit of groundwater
radiocarbon dating (~ 30 ka). However, the available 14¢C data from the
wider GWE do not fall below 1 pmc (Gonfiantini et al., 1974), so it may
be that the GWE sub-basin does not store water much more than 30 ka
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in age (or that mixing with younger water is concealing the true age of
the old component).

5.2.3. Recharge temperature

There are no noble gas data from the wider GWE, but a limited
dataset is available from both the CI and CT in the GEE sub-basin
(Guendouz et al., 1998). Excluding outliers and sites on the S-N flow-
line from the Tinghert plateau (Fig. 1), an RT range of 14.3-17.8°C is
reported, very close to the range from Krechba (Table 6). While this is
doubtless partly coincidental, it will be recalled from Fig. 1 that re-
charge to both the GWE and northern GEE is derived from the foothills
of the Atlas Mountains, so similar RTs would be expected. (By contrast,
the CI and CT sites on the Tinghert flowline give higher RTs because of
recharge on the Plateau at lower elevation and latitude.)

5.3. The lack of evidence for leakage into the CI aquifer from the underlying
gas field

Studies of carbon capture and storage (CCS) projects typically look
for evidence for leakage of gases into the overlying aquifer(s) in order
to demonstrate the degree of integrity of the reservoir into which the
CO, is injected (e.g. Smyth et al., 2009; Rostron and Whittaker, 2011;
Jenkins et al., 2012). Krechba has been the site of one of the largest CCS
projects yet carried out (White et al., 2014). The low concentrations of
CO,, CH, and He measured in waters from the kb monitoring boreholes
(see 4.3) suggest that any leakage from the Carboniferous reservoir into
the CI was either not present at all at the time of sampling (October
2014), or at least had not reached the 250-350 mbgl level tapped by
boreholes kb602-606. This is supported to some extent by the lack of
evidence for the mobilisation of the organic carbon or heavy metal-rich
brines (see 4.1) likely to be present in the reservoir (e.g. Kharaka et al.,
2006; Stenhouse et al., 2009), though these would be expected to lag
behind the gases in terms of diffusion and advection rates. However,
possible point-source leakage from the reservoir might not be detected
in any of the kb borehole waters if the resulting plume were deflected
away from the existing boreholes by the regional flow gradient. An
improved knowledge of hydrogeological conditions across the wellfield
is required to constrain this possibility further.

6. Summary and conclusions

The existence of a wellfield at Krechba has provided a window into
groundwater conditions in the transboundary Continental Intercalaire
(CD) aquifer in an area of central Algeria with otherwise sparse data. A
comprehensive hydrogeochemical dataset including chemistry, gas and
isotopic data has allowed a number of conclusions to be drawn re-
garding not only the wellfield, but also its context within the wider
Great Western Erg (GWE) sub-basin of the NWSAS:

— Water quality (inorganic) is good, meeting the relevant WHO
guidelines.

— Binary mixing between CI and Erg aquifer waters takes place across
the wellfield.

— A significant proportion of the wellfield water has been recharged
from surface ponding at some point in the past.

— Mean residence times based on radiocarbon lie in the range
13.5-19.3 ka, though it is probable they reflect mixing of late-
Pleistocene (CI) and earliest-Holocene (Erg) waters.

— Noble gas thermometry on the waters indicates recharge tempera-
tures in the range 14.3-17.6°C, consistent with a proportion of
pluvial-epoch recharge.

— There was no geochemical evidence at the time of sampling
(October 2014) for fluid contamination from the underlying
Krechba CO, storage reservoir.

A summary diagram for groundwater flow in the GWE is presented
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in Fig. 8, based on the present focused research and earlier basin-wide
studies. Fig. 8 in general supports the concept of flow developed more
than 50 years ago, but is able to add some detail unknown at that time.
Inevitably there is a degree of speculation involved; it is recommended
in particular that much more radiocarbon and screen depth data should
be gathered from boreholes and wells across the GWE in order to gain a
better understanding of 3-D groundwater flowpaths through the basin.
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