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Key points:  18 

 Largest dataset of oceanic rogue waves is obtained from wave buoys. 19 

 Rogue wave occurrence displays no clear link with short-term wave statistics.  20 

 Potential predictability of rogue wave occurrence from long-term wave statistics. 21 

 22 

Abstract: 23 

Rogue waves are ocean surface waves larger than the surrounding sea that can pose a danger 24 

to ships and offshore structures. They are often deemed unpredictable without complex 25 
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measurement of the wave field and computationally intensive calculation which is infeasible 26 

in most applications, consequently there a need for fast predictors. 27 

Here we collate, quality control, and analyse the largest dataset of single-point field 28 

measurements from surface following wave buoys to search for predictors of rogue wave 29 

occurrence. We find that analysis of the sea state parameters in bulk yields no predictors, as 30 

the subset of seas containing rogue waves sits within the set of seas without. However, 31 

spectral bandwidth parameters of rogue seas display different probability distributions to 32 

normal seas, but these parameters are rarely provided in wave forecasts. When location is 33 

accounted for, trends can be identified in the occurrence of rogue waves as a function of the 34 

average seas state characteristics at that location. These trends follow a power law 35 

relationship with the characteristic sea state parameters: mean significant wave height and 36 

mean zero up-crossing wave period. We find that frequency of occurrence of rogue waves 37 

and their generating mechanism is not spatially uniform, and each location is likely to have 38 

its own unique sensitivities which increase in the coastal seas. We conclude that forecastable 39 

predictors of rogue wave occurrence will need to be location specific and reflective of their 40 

generation mechanism. Therefore, given location and a sufficiently long historical record of 41 

sea state characteristics, the likelihood of occurrence can be obtained for mariners and 42 

offshore operators. 43 

  44 
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1. Introduction: 45 

Rogue waves are transient surface gravity waves of height much greater than expected for the 46 

surrounding sea, and can severely damage ships and offshore structures (Dysthe et al., 2008). 47 

The most common method of categorising a rogue wave from a normal sea is to use a wave 48 

or crest height that exceeds a threshold in relation to the significant wave height (Haver, 49 

2000):  50 

Hmax

Hs
> 2       Eq. 1 51 

and/or 
Cmax

Hs
> 1.25     Eq. 2 52 

where Hmax  is the zero-crossing wave height, Cmax  is the crest height, and Hs  is the 53 

significant wave height, here estimated as four times the standard deviation of the sea surface 54 

elevation from a 20-minute observation period. Therefore, rogue waves are not always 55 

extreme waves, just larger than statistically expected. 56 

 57 

There are several competing theories for the physical mechanism explaining the formation 58 

of oceanic rogue waves (Forristall, 2005). First, wave energy concentration through spatio-59 

temporal wave focusing due to the dispersive nature of water waves in intermediate and deep 60 

water (Draper, 1966; Kharif et al., 2009; Slunyaev et al., 2005),  which is further enhanced 61 

by  nonlinearities (Longuet-Higgins, 1963; Tayfun, 1980, 2008). Second, modulational 62 

instability or Benjamin−Feir instability, the generation of spectral-sidebands and eventual 63 

breakup of the waveform into pulses through nonlinearity (Benjamin & Feir, 1967). Taking 64 

inspiration from rogue waves in aforementioned non-oceanic media, these nonlinear 65 

interactions have been suggested as a cause of oceanic rogue waves (Kharif & Pelinovsky, 66 

2003a). Breather solitons (Akhmediev et al., 1987) and the Peregrine soliton (Peregrine, 67 

1983), which “appears from nowhere and disappears without a trace” (Akhmediev et al., 68 

2009), have also been suggested as causes (Kibler et al., 2010) and have been demonstrated 69 
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experimentally in a one-dimensional water channel (Chabchoub et al., 2012) and in very 70 

shallow water wind waves (Costa et al., 2014). The real ocean is rarely unidirectional, and the 71 

importance of the instability is questioned with recent studies explaining rogue wave 72 

formation without the aid of modulational instability (Birkholz et al., 2016; Fedele et al., 73 

2016). Other theories suggest the importance of local physical forcing, such as the presence 74 

of ocean currents or the bottom topography in shallow waters focusing energy (T. T. Janssen 75 

& Herbers, 2009). 76 

 77 

Wave prediction using a deterministic approach typically uses radar images of the sea surface 78 

at given locations in space and time, combined with the physical laws, to predict the future 79 

sea surface elevation (Dannenberg et al., 2010). The process is heavily dependent on signal 80 

processing theory and is computationally expensive (Blondel-Couprie & Naaijen, 2012); it is 81 

therefore generally only used operationally to predict that the wave heights will remain below 82 

a threshold (Belmont et al., 2014). 83 

 84 

Precursor analysis is the identification of characteristic behaviours prior to extreme events 85 

(Hallerberg et al., 2008). For rogue waves, the detection of instabilities in their infancy before 86 

they develop can act as a predictor of rogue wave occurrence, thus alleviates the need to 87 

solve the governing equations. This was demonstrated in a computational approach, unproven 88 

in the real-ocean, by Cousins & Sapsis (2016), who analysed the interplay between nonlinear 89 

wave mechanisms that define which wave groups will focus due to modulation instabilities, 90 

and the power spectrum which defines wave group formation due to random phase difference 91 

between harmonics. They defined a critical length scale over which, the locally concentrated 92 

energy acts as a trigger of nonlinear focussing, thus deriving short-term precursors of rare 93 

events. This method still requires accurate sensing of the wave field, whereas attributing 94 
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rogue wave occurrence to sea state parameters that form part of a traditional wave forecasts 95 

could yield a computationally cheap method of predicting rogue wave likelihood, that is most 96 

useful to mariners and offshore operators.  97 

 98 

Large datasets of oceanic rogue waves, as compiled here, can be used to assess these theories 99 

of formation, and facilitate the investigation of predictability. A Baylor wave staff mounted 100 

on the Meetpost Noordwijk platform in 18-m average water depth, recorded 5000 waves in 101 

the southern North Sea in January 1998 (Tayfun, 2008). The largest waves were attributed to 102 

the constructive focusing of spectral components enhanced by second-order bound modes. 103 

Supporting this, Christou & Ewans, (2014) analysed 122 million wave profiles collected 104 

from fixed offshore platforms at 22 locations in North Sea, 5 in Gulf of Mexico, 5 in South 105 

China Sea, and one on the North-West shelf of Australia. The dataset contained 3649 rogue 106 

waves, the occurrence of which was found to be not governed by sea state parameters, but 107 

rare events of the normal population caused by dispersive focusing.  108 

 109 

Offshore of California and Oregon, wave profiles from 16 Datawell Directional Waverider 110 

buoys form a dataset with approximately 1 million waves (Baschek & Imai, 2011). Of these, 111 

2843 exceeded H > 2.0 Hs and 258 exceeded H > 2.2 Hs. The buoy locations were 112 

categorised, into deep water, representative of the open ocean; shallow water; and coastal 113 

ocean, of variable depth sheltered by islands. There are spatial differences across the region, 114 

showing that rogue wave occurrence per annum is less frequent in the shallow and the 115 

sheltered locations than in the open ocean. To estimate the likelihood of encounter on a 116 

global scale, the probability of encountering a freak wave at the five open ocean buoys was 117 

applied to global wave heights, empirically derived from 25-km resolution QuikSCAT wind 118 

speed data, yielding a world map of the extrapolated likelihood of encountering rogue waves 119 
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in the open ocean within a 24 hour period (Baschek & Imai, 2011). We include and extend 120 

the data from these buoys in our study, to compile the largest dataset to date for the study of 121 

rogue waves. 122 

  123 

Analysis of vertical displacement time series data from surface following wave buoys allows 124 

the study of waves away from the influences of offshore structures. The dataset used in this 125 

study is an order of magnitude larger than previous studies, which is important when 126 

analysing rare events.  The dataset offers a unique spatial insight into the cause of formation 127 

of rogue waves in a range of wave environments covering multiple ocean basins. Analysis of 128 

the time series data allows for the assessment of sea state characteristics as a predictor of 129 

rogue waves and to study the shape of rogue waves. 130 

 131 

This paper is organised as follows. First, we detail the measurement and the quality control of 132 

the dataset of observed rogue waves. Second, the potential causal links between rogue waves 133 

and sea state parameters is investigated. Third, we examine the average shape of rogue waves 134 

for a range of size criteria. Fourth, the spatial distribution of rogue waves is mapped. We 135 

conclude by discussing the implications of our analysis in the context of previous rogue wave 136 

studies. 137 

 138 

2. Dataset: 139 

The data analysed here consists of vertical displacement recorded by 80 Datawell waverider 140 

buoys around the coast of North America and Pacific Ocean islands, and covers diverse wave 141 

environments, from fetch-limited coastal bays to the deep ocean away from coastal processes. 142 

The earliest record began in August 1993, and the most recent data from active buoys cut-off 143 
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at February 2017, with buoy record lengths varying. In contrast to many previous wave buoy 144 

studies, the buoys are continuously measuring, not just switched on during storms.  145 

 146 

The wave buoys are managed by, and the data freely available from, the Coastal Data 147 

Information Program (CDIP), operated by Scripps Institution of Oceanography.  Datawell 148 

waverider buoys use accelerometers to measure waves with periods of 1.6–30 s and wave 149 

heights up to 40 m with a vertical resolution of 0.01 m. The vertical displacement of the buoy 150 

is sampled at a rate of 3.84 Hz; however, data are transmitted and logged on-board with a 151 

sampling frequency of 1.28 Hz. Here we use data from the buoy’s memory card data to avoid 152 

transmission losses.  153 

 154 

Wave buoys can underestimate the wave peaks by avoiding the 3-D peak of the wave 155 

(Allender et al., 1989) or by being dragged through the crest, avoiding short-crested extreme 156 

waves (Seymour & Castel, 1998). In addition, the fluid structure interactions of a wave buoy 157 

can linearise the wave time series (James, 1986; Magnusson et al., 1999). Wave buoys are 158 

also subject to biofouling (Thomson et al., 2015), vandalism (Beets et al., 2015), and affected 159 

by tidal currents. These drawbacks in sampling using wave buoys are mitigated by the 160 

unparalleled spatial distribution, length of record, and consistency of continuous surface 161 

elevation measurement by the Datawell Waverider buoys (Casas-Prat & Holthuijsen, 2010).  162 

 163 

3. Quality control (QC) and initial processing of the dataset:  164 

 165 

Field measurements of waves are subject to errors that must be removed to obtain a high 166 

quality and reliable dataset. Therefore, a strict QC procedure is required. Furthermore, since 167 

this study is looking at extreme individual wave events, not just sea state statistics where the 168 
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occasional spike would be smoothed in the large sample, a stringent QC procedure for data 169 

failing flags was applied.  170 

 171 

Each displacement time series was split into non-overlapping 20-minute seas, the typical 172 

observational period. The buoy automatically flags questionable, bad, or missing data points 173 

in the same time domain as the vertical displacement, and CDIP also runs a shore-side QC 174 

process. Any 20-minute sea with an error flag was removed, as sufficient quantity of data 175 

allowed this rather than attempting to fix observations by removing single erroneous data 176 

points (Makri et al., 2016). For each sea, the vertical displacement time series was linearly 177 

interpolated to increase the time resolution by a factor of 10, and the zero up-crossing wave 178 

period, wave height, and crest height were calculated.   179 

 180 

Screening of erroneous values not identified by the buoy or CDIP’s QC took place using a 181 

series of filters. The entire 20-minute sea was removed if it had values in excess of the 182 

buoy’s displacement limits or failed any of the following flags based on the QC process 183 

undertaken by Christou and Ewans, (2014): 184 

 185 

Flag a) Individual waves with a zero-crossing wave period >25 seconds. 186 

Flag b) The rate of change of surface elevation, Sy, exceeded by a factor of two: 187 

𝑆𝑦 = (
2𝜋𝜎

𝑇𝑧
) √(2 ln 𝑁𝑧)      Eq. 3 188 

where  is the is the standard deviation of the surface elevation 𝜂, NZ is the number of zero 189 

up-crossing periods (Tz).   190 

Flag c) Flag b, running from time maxima to minima. 191 

Flag d) 10 consecutive data points of the same value. 192 
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Flag e) Absolute crest or trough elevation is greater than 5 times the standard deviation of the 193 

20-minute water surface elevation. 194 

Flag f) A single zero-crossing containing >1499 data points. 195 

Seas where then categorised as normal or rogue using Eq. 1 and Eq. 2. Seas not containing 196 

rogue waves are hereafter referred to as normal seas. Rogue waves were then subject to a 197 

visual QC as performed by Christou & Ewans, (2014) and  Makri et al., (2016) to ensure an 198 

erroneous wave was not included in the analysis. Although subjective, experience gained 199 

reviewing rogue waves and previous literature allowed sound identification of instrument 200 

error.  201 

 202 

4. Results: 203 

From an initial dataset size equivalent to 13.2 million 20-minute seas, 11.4 million seas 204 

(86%) passed QC. These seas contain 1.1 billion individual wave profiles; of these, 74,262 205 

were rogue waves with Abnormality Index (h/Hs; AI) of 2<AI<3, 120 with 3<AI<4, 30 with 206 

4<AI<5, and 19 with AI>5 (Figure 2a). 21,682 had a Cmax/Hs ratio exceeding 1.25, 324 207 

exceeding 1.75, 137 exceeding 2.25, and 67 exceeding 2.75 (Figure 2b). The dataset covers 208 

extensive range of significant wave heights up to 14 m, peak wave heights exceeding 20 m, 209 

and crest elevations up to 14 m.  210 

 211 

4a. Sea state parameters: 212 

Assessing the occurrence of rogue waves as a function of the statistics of the sea state in 213 

which they occur could indicate the method of their generation. Furthermore, a link between 214 

forecastable wave parameters and rogue wave occurrence could facilitate a low 215 

computational-cost predictor of rogue wave events.  216 

 217 
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Wave steepness has been cited as an explanation for rogue wave formation because, under 218 

certain conditions, nonlinear interactions beyond second order can provide significant 219 

increases in wave elevation and steepness (Gibson & Swan, 2007). Plotting the common 220 

wave parameters significant wave height (Hs) and peak wave period (Tp; Figure 3), with 221 

each point representing a 20-minute sea that passed the QC procedure, gives an indication of 222 

steepness. The seas containing rogue waves primarily lie within the distribution of normal 223 

seas, and normal seas are as steep as or steeper than rogue seas therefore, steepness cannot be 224 

the exclusive causal factor in rogue event formation. The marginal PDF of Hs indicates that 225 

the majority of rogue waves occur in seas with low significant wave height, and that there is 226 

no discernible link between Hs and rogue wave occurrence when bulk analysing the dataset 227 

as a many independent seas. The marginal PDF of Tp shows a bimodal distribution for both 228 

rogue sea and normal seas, with peaks at 8 s and 14 s. Rogue seas display increased 229 

probability, relative to normal seas, in seas with Tp <6 s. We discuss the distribution of 230 

period further below. 231 

  232 

Another assessment of the role of steepness is the analysis of maximum crest height in the 233 

20-minute sea as a function of the mean sea state steepness S1 (Figure 4b):  234 

𝑆1 =  
2𝜋

𝑔
 

𝐻𝑠

𝑇1
2       Eq. 4 235 

where g is gravitational acceleration, and mean wave period 𝑇1 =  𝑚0 𝑚1⁄  calculated from 236 

the first two moments of the wave spectrum: 237 

mn =  ∫ f n S(f) ∂f
∞

0
     Eq. 5 238 

where 𝑆(𝑓) is the non-directional energy density spectrum, with 𝐻𝑠 = 4√𝑚0. 239 

 240 

As previously seen, the rogue seas mostly sit within the normal seas, and there are normal 241 

seas with greater steepness than rogue seas and the marginal PDF of S1 shows little deviation 242 
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between the rogue and normal seas (Figure 4e). Furthermore, the distributions of maximum 243 

values for rogue seas and normal seas do not form separate distributions (Figure 2). 244 

 245 

The relative importance of nonlinearities can be measured by looking at the maximum crest 246 

height as a function of wave skewness 𝜆3 (Figure 4c) and the excess kurtosis 𝜆40(Figure 4d): 247 

𝜆3 =  
𝜂3

𝜎3

̅
      Eq. 6 248 

𝜆40 =  
𝜂4

𝜎4

̅
− 3      Eq. 7 249 

where overbars denote statistical averages, and 𝜎  the standard deviation of the surface 250 

elevation 𝜂 (n.b. 𝜎2 =  𝑚0). For a Gaussian sea 𝜆3 = 0, 𝜆40 = 0. The skewness describes the 251 

effects of nonlinearities on the geometry and statistics of the sea surface, with increased 252 

skewness implying more pointed crests and shallower, more rounded, troughs (Fedele & 253 

Tayfun, 2009; Tayfun, 1980; Tayfun & Fedele, 2007). The rogue seas sit within the bounds 254 

of the normal seas (Figure 4c) and the marginal PDF of skewness shows that rogue seas are 255 

not particularly skewed (Figure 4f). Therefore, skewness cannot distinguish rogue-containing 256 

seas from normal seas.  257 

 258 

Rogue seas have increased excess kurtosis compared to normal seas (Figure 4d, g); however, 259 

by definition a sea with a rogue wave will have a wave much larger than the surrounding sea, 260 

hence an increased kurtosis, and removing the rogue wave from the 20-minute sea reduces 261 

the kurtosis (Stansell, 2004). 262 

 263 

Spectral bandwidth can be an indicator of the strength of nonlinear focusing (P. Janssen, 264 

2003). The spectral width parameters ε and ν are calculated by:  265 
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𝜀 =  √1 −
𝑚2

2

𝑚0𝑚4
     Eq. 8 266 

𝜈 =  √
𝑚2𝑚0

𝑚1𝑚1
− 1        Eq. 9 267 

where m0, m1, m2, and m4 are the zeroth-, first-, second-, and fourth-order spectral moments, 268 

respectively, calculated from Eq. 5. For narrow bandwidths ε and ν approach zero, and the 269 

wave energy is concentrated near the peak frequency, as individual waves have similar 270 

frequency with differing amplitudes modulated by the wave envelope. Values of ε and ν 271 

approaching 1 are due to a wide spectrum, with wave energy distributed over widespread 272 

frequencies. 273 

 274 

Typical values for wave conditions during a storm are 𝜈 ≈ 0.3-0.5 (Massel, 2013), and 275 

normal seas form a distribution about this with a peak at 0.45. The distribution of 𝜈 indicates 276 

that although the most likely spectral bandwidth is similar for rogue and normal seas (Figure 277 

5a), the probability of getting rogues increases in seas with a higher bandwidth. The 278 

distribution of 𝜀 (Figure 5b) supports this by indicating rogue waves with an AI>2 are more 279 

likely to occur at higher spectral widths, and this would suggest that these rogues are unlikely 280 

to be generated by modulational instability.  The distribution for the crest height criterion 281 

differs from this however, showing higher probability in seas with narrow spectral 282 

bandwidth.  283 

 284 

The spectral width parameter 𝜈  is preferred to 𝜀  because 𝜀  depends on the fourth order 285 

moment of the spectrum (Eq. 8) and tends to infinity logarithmically with the high-frequency 286 

cut-off (Tucker & Pitt, 2001). Although 𝜈 also depends on a high frequency cut-off, 𝑓𝑐, the 287 

variation is less than 10% for 𝑓𝑐 × 𝑇𝑝 > 5 (Rye, 1977). The wave buoys apply a low-pass 288 

filter of 1.5 Hz due to geometric attenuation, when the wave wavelength becomes 289 
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comparable to the buoy dimensions, and the buoy can no longer follow them. Therefore, for 290 

Tp > 3.33 s the variation in 𝜈 is less than 10%.  291 

 292 

4b. Average wave shape: 293 

Mariners describe the shape of rogue waves as “walls of water” or “holes in the ocean” 294 

(Gibbs & Taylor, 2005), fitting the crest height (Eq. 2) and wave height criteria (Eq. 1), 295 

respectively. A rogue crest would appear as a “wall of water” above the mean surface level, 296 

and for a height criteria rogue, the ship would fall into a deep preceding trough, far below the 297 

mean surface level, appearing as a “hole in the ocean”.  The buoys store surface elevation 298 

continuously, allowing an analysis of the shape of rogue waves (Figure 6).  299 

 300 

When averaged, the waves that exceed the crest elevation criterion (Eq. 2) have an average 301 

crest elevation of 1.48, exceeding the 1.25 threshold. This average rogue wave shape has a 302 

larger crest and shallower preceding trough than the average shape of the largest 1% of 303 

normal waves, as described by Walker et al., (2004). This differs from the shape seen by 304 

Christou & Ewans, (2014), which had deeper troughs and a peak of equal height.   305 

However, waves that exceed the wave height criterion (Eq. 1) do not exceed their individual 306 

threshold when averaged. This thought to be a consequence of the normalising and averaging, 307 

which smooths out the troughs, making them shallower.  308 

 309 

We examine this more closely in Figure 7, and try to improve the normalisation by 310 

normalising by Twave rather than Tp where: 311 

𝑇𝑤𝑎𝑣𝑒 = 𝑇𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔 𝑡𝑟𝑜𝑢𝑔ℎ − 𝑇 𝑝𝑟𝑒𝑐𝑒𝑑𝑖𝑛𝑔 𝑡𝑟𝑜𝑢𝑔ℎ   Eq. 10 312 

Furthermore, we now average the waves by using the median, a more stable average than the 313 

mean, as it is less sensitive to outliers, allowing an improved representation of the average 314 
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shape. With an input AI of >2 (Figure 7a), the AI of the average wave is 1.9. This is due to 315 

troughs not perfectly aligning and becoming smoothed in the median averaging. 316 

The trough preceding the peak is deeper than that following. To get an average AI of 2, then 317 

AI≥2.136. Increasing the input to AI≥3 the average AI exceeds the input, with AI=3.336. In 318 

this case, the trough following the peak is deeper than that preceding. This trend continues 319 

with input AI≥4 and AI≥5, with the following trough getting deeper, relative to the preceding 320 

trough, and displays increased noise, likely due to the reduction in the number of samples 321 

with high AI. A deeper trough following a high crest could result in an experience like falling 322 

into a “hole” in the ocean that mariners report.  323 

 324 

As expected, the crests are peaky and the troughs more rounded, this evidencing the non-325 

linearity despite the wave buoys linearising the sea (Longuet-Higgins, 1963; Tayfun, 1980). 326 

The average rogue wave by (crest height criterion only) shape from the Christou and Ewans, 327 

(2014) database revealed equal minimum elevation of troughs preceding and following the 328 

peak, and the shape of six rogue waves, including the Draupner wave, revealed no 329 

relationship (Benetazzo et al., 2017).  330 

 331 

4c. Spatial variations: 332 

The frequency of occurrence of rogue waves is not the same everywhere (Baschek & Imai, 333 

2011). The spatially diverse dataset compiled here allows for the novel analysis of rogue 334 

wave occurrence as a function of averaged sea state parameters (Figure 8). 335 

 336 

Rare hazardous events occur at a range of intensities, with the occurrence rate being a 337 

decreasing function of their intensity, and often follow a power law rate-intensity relationship 338 

With increasing rogue wave prevalence, the height of freak waves (Figure 8a), the significant 339 
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wave height (Figure 8b), and the zero-crossing period (Figure 8c) of the seas in which they 340 

occur, decrease. Zero crossing wave period bifurcates (Figure 8c), with buoys in the Atlantic 341 

showing a stronger dependence on wave period compared to those in the Pacific, with Pacific 342 

wave period greater than Atlantic locations. This is likely the explanation of the bimodal 343 

distribution in the marginal PDF of Tp (Figure 3). 344 

 345 

In the Pacific Ocean, rogue wave occurrence shows a relationship with spectral bandwidth 346 

parameters and could be indicative of the generation mechanism at specific sites (Figure 9). 347 

The distribution of percentage rogue wave occurrence shows that rogue waves are more 348 

prevalent in the Southern Californian Bight (SCB; Figure 9). The wave climate in the region 349 

is complex (Adams et al., 2008; O’Reilly et al., 2016). Aleutian low sourced waves, approach 350 

the SCB from the northwest during La Niña, and more from the west during El Niño (Adams 351 

et al., 2008; Graham & Diaz, 2001). There is Northwest swell generated along the California 352 

coast, tropical storms formed off Mexico (Inman et al., 1996; Inman & Jenkins, 1997), 353 

Southern Hemisphere swell during summer months with small wave height and long period, 354 

sea-breeze waves, and Santa Ana wind waves (Adams et al., 2008; Guzman-Morales et al., 355 

2016). The complexity is further compounded by wave refraction, diffraction, and sheltering 356 

by Point Conception, at the northern end of the SCB, which blocks waves from >315°, the 357 

complex bathymetry of the California Borderlands, and the Channel Islands (Adams et al., 358 

2008; Pawka, 1983; Pawka et al., 1984). It is therefore logical to have high average 𝜈 in the 359 

region (Figure 9), confirming that the role of instability in forming the rogues in the SCB is 360 

likely minimal. Additionally, Kaumalapau, Lanai, Hawaii (CDIP buoy 146) shows high 361 

rogue wave occurrence and a large 𝜈.  362 

 363 
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In contrast, there is high rogue wave occurrence in the Cook Inlet, Alaska (CDIP buoys 175 364 

and 204) but low average 𝜈. The Cook Inlet, has a tidal range of 8-9 m, forcing currents about 365 

1–2 ms
-1

 during full tidal flow, and currents are also generated by wind and baroclinic forcing 366 

(Singhal et al., 2013). Wave height and steepness could increase due to a strong opposing 367 

current (Kharif & Pelinovsky, 2003b; Onorato et al., 2011; Toffoli et al., 2003). Currents can 368 

also alter the dispersion relation and spatially focus wave energy, forming rogue waves 369 

(Heller et al., 2008; Lavrenov, 1998; Peregrine, 1976).  370 

 371 

In the Southern Gulf of Alaska, Ocean Station Papa (50°N, 145°W) is situated on the 372 

southern edge of the cyclonic northeast Pacific subpolar gyre (Pelland et al., 2016). The 373 

currents are weak in the low energy Gulf of Alaska (Freeland, 2007) and hence the site is 374 

representative of the open Pacific Ocean. The site has low average spectral bandwidth and 375 

low freak wave prevalence, further indicating that coastal processes enhance rogue wave 376 

occurrence likelihood.  377 

 378 

The buoys on the Eastern seaboard of North America are located on the continental shelf and 379 

have prevailing offshore winds, explaining a lower average significant wave height compared 380 

to the West coast. The prevalence of rogue waves here is greater but their cause of formation 381 

difficult to define with the available data. Spectral bandwidth is average in the southern sites 382 

and narrows with increasing latitude (Figure 9).   383 

 384 

5. Discussion 385 

 386 

Wave forecasts provide the characteristic sea state parameters (Hs, Tp, Tz, etc.), and a 387 

relationship between them and rogue wave occurrence would provide mariners a 388 
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computationally cheap tool to assess the likelihood of rogue waves; however, when analysed 389 

as a dataset of 1.1 million individual 20-minute seas, no clear link can be found, supporting 390 

Christou & Ewans, (2014) finding that “rogue waves are not governed by sea state 391 

parameters”.  When the data is examined as 80 spatially differing time series, the rogue wave 392 

occurrence likelihood at the location can be examined as a function of the average sea state 393 

characteristics. This yields power law relationships between occurrence and mean Hs and 394 

mean Tz (Figure 8). This would allow the likelihood of rogue wave occurrence to be 395 

predicted at a location given the long-term average sea state characteristics. Furthermore, the 396 

application of machine learning tools on the dataset may find novel links based on these 397 

parameters by building predictive models that extract patterns from large datasets. To the 398 

author’s knowledge, this has not been undertaken on an ocean wave dataset and will be 399 

performed in a follow-up study. 400 

 401 

The spectral width parameter  could provide a novel indicator of rogue wave occurrence: 402 

seas with a high spectral bandwidth may have increased rogue wave likelihood. This finding 403 

is in contrast to that of Christou and Ewans, (2014) who showed that freak waves were more 404 

narrow-banded. Wave groups in seas with narrow spectral bandwidth stay coherent for a 405 

longer period than a broadband spectrum; thus, nonlinear instabilities, such as the Benjamin-406 

Feir instability or modulational instability, are more effective. Rogue waves occurring in seas 407 

with a broad spectral bandwidth indicates that Benjamin-Feir instability may not be the cause 408 

of rogue wave occurrence. 409 

 410 

Spatial analysis is complex as wave characteristics at a local scale cannot fully be understood 411 

by solely looking at the local conditions as both the locally generated waves, the wind sea, 412 

and swell waves from distant storms need to be understood, but this is beyond the scope of 413 
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our present analysis. In addition, the buoys provide some directionality information through 414 

their north and west displacement, which has not been incorporated into this study due to 415 

computational constraints. This information could allow the investigation of crossing seas 416 

and spreading angle as a rogue wave generation mechanism with the statistical power that 417 

this large dataset provides. Again, this is left to a future study.  418 

 419 

The cause of formation of rogue waves differs with location: In the Southern Californian 420 

Bight, rogues occur with high spectral bandwidth, and therefore mariners may be able to use 421 

this as a statistical predictor. In the Cook Inlet however, this would not yield a suitable 422 

warning, as entirely different processes may generate the rogue waves. Therefore, it is 423 

unlikely that a predictor can be based on one parameter, and any predictors will need to be 424 

region specific.  425 

 426 

Rogue wave occurrence is low at Ocean Station Papa, the most open-ocean like buoy in the 427 

dataset. This suggests that coastal processes amplify the number of rogue waves. However, 428 

deep open ocean areas are under-sampled, and hence under-represented in this, and all 429 

previous studies, due to the complications of offshore mooring systems for buoys in deep 430 

waters and the cost of maintenance.   431 

 432 

Wave buoys provide a single point time series and therefore only capture rogue waves 433 

occurring at that point, but whether or not a wave is breaking cannot be determined from the 434 

time series. It is possible that rogue waves could occur nearby but not directly at the buoy’s 435 

locations and hence the likelihood of rogue waves is under represented by buoys (Benetazzo 436 

et al., 2015; Fedele et al., 2013). This can be investigated numerically with simulations of 437 

high-order spectral calculations of the Euler equations for water waves (Dommermuth & 438 
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Yue, 1987; Fedele et al., 2016), and experimentally using stereo imagery to form spatio-439 

temporal records of 3D wave fields (Benetazzo et al., 2012; Gallego et al., 2011). A recent 440 

study by Benetazzo et al., (2017), used this method to show that the probability of 441 

encountering rogue waves in space and time is at least an order of magnitude larger than 442 

when restricting the analysis to a point time series. Additionally, the spatial element is 443 

important when considering the rogue wave encounter likelihood for ships and offshore 444 

structures which have a spatial footprint rather than simply being at a point (Benetazzo et al., 445 

2017). 446 

 447 

The scientific definition of a rogue wave (Eq.1 and Eq.2) form somewhat arbitrary thresholds 448 

that do not account for the sudden and severe characteristics of a real rogue wave as reported 449 

by mariners. Further work is required to formulate an improved definition that better 450 

encompasses the severity and unexpected nature of rogue waves as reported by mariners. It 451 

would then be valuable to assess the likelihood of exceeding this improved definition using 452 

extreme value analysis.  453 

 454 

6. Summary and conclusions 455 

 456 

We collated and quality controlled the largest dataset of individual wave profiles for the 457 

investigation of rogue waves. The large size still did not yield a discernible link between 458 

rogue wave occurrence and the statistics of the 20-minute seas in which they occurred. When 459 

the data was assessed as 80 separate locations with a long record of seas, power law 460 

relationships of rogue wave occurrence and the average rogue wave height, max wave height, 461 

significant wave height and zero crossing wave period were found. With increasing rogue 462 
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wave prevalence, the height of freak and highest waves, and the significant wave height and 463 

zero-crossing period of the seas in which they occur, decrease. 464 

 465 

Looking spatially at percentage rogue wave occurrence and the average statistics for each 466 

buoy showed that the generation mechanisms for rogue waves is not the same everywhere, 467 

and rarely seem to be due to modulational instabilities. The high rogue wave occurrence in 468 

the southern California Bight are likely generated by a complex crossing wave fields, 469 

whereas in the semi-enclosed seas in Alaska, tidal currents are likely the main mechanism. 470 

Therefore, predictors of rogue wave occurrence will need to be region specific. 471 

 472 

Future work will use machine learning algorithms to search for novel links between sea state 473 

characteristics that have not been sought using the traditional analysis of this paper. 474 

Furthermore, the directionality data from the buoys will also be analysed to better understand 475 

the influence of crossing seas.  476 

 477 
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 686 

Figure Captions: 687 

Figure 1: Map showing the location and name of the 80 Datawell waverider buoys used in the 688 

study. The point colour indicates the water depth at the buoys location.  689 

 690 

Figure 2: Grey points represent normal seas and black rogue seas and display: a) the 691 

maximum wave height of each 20-minute sea that passed QC as a function of the significant 692 



 26 

wave height, with the degrees of abnormality index (h/Hs) marked; and b) the maximum crest 693 

elevation in each 30-minute sea as a function of significant wave height, with degrees of 694 

abnormality (Cmax/Hs) displayed. 695 

 696 

Figure 3: a) Probability density function of significant wave height for seas containing a 697 

rogue wave (black dashed line) and normal seas (grey fill). b) Significant wave height with 698 

peak period, indicating wave steepness, for 20-minute samples of rogue seas (black points) 699 

and normal seas (grey points). c) Probability density function of peak period height for rogue 700 

seas (black dashed line) and normal seas (grey fill). 701 

 702 

Figure 4: a) The probability density function of the maximum crest height of the 20-miniute 703 

sea for rogue seas (black dashed line) and normal seas (grey fill).  Maximum crest height as a 704 

function of b) sea state steepness S1, c) skewness, and d) excess kurtosis. Probability density 705 

functions of e) sea state steepness S1,  f) skewness, and g) excess kurtosis for rogue seas 706 

(black dashed line) and normal seas (grey fill). 707 

 708 

Figure 5: Probability density functions of spectral bandwidth parameters a) 𝜈 and b) 𝜀 for 709 

normal seas (grey fill), rogue seas – crest criteria (black dot), and rogue seas height criteria 710 

(black dash). 711 

 712 

Figure 6: The average height and period normalised wave shape of rogue waves with a crest 713 

height greater than 1.25 Hs (red), rogue waves with a wave height greater than 2 Hs (blue), 714 

and the highest 1% of normal waves (green).  715 
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  716 

Figure 7: The average shape of the peak aligned and normalised (with Hs and Twave) sea 717 

surface elevation for a range of input AI: a) 2, b) 2.136, displaying an average AI of 2, c) 3, 718 

d) 4, and e) 5. One standard deviation about the median is shown in grey shade.  719 

 720 

Figure 8: Logged statistical average (denoted by overbar) of a) freak wave height, b) 721 

significant wave height, and c) zero up-crossing wave period, as a function of logged 722 

percentage rogue seas for each of the 80 wave buoys. Water depth at the buoy location is 723 

denoted with point colour and ocean by shape: squares for Pacific Ocean and circles for 724 

Atlantic Ocean. Linear regressions and associated parameters are displayed. 725 

 726 

Figure 9: Map of the percentage rogue seas (marker size) and the average spectral bandwidth 727 

parameter   (marker colour). 728 


