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ABSTRACT 

 

This study investigated the impact of Regulated Deficit Irrigation (RDI) and Partial Root Drying 

(PRD) on soil moisture, dry matter, and yield and water productivity of maize grown in sandy 

soil in Egypt. The experiment was conducted in 2013 and included eight treatments of RDI and 

PRD. Four RDI treatments [100%Full Irrigation requirement, FI, (control), 80% FI, 60% FI and 

40% FI] and four PRD treatments [100% PRD, 80% PRD, 60% PRD and 40% PRD] were 

conducted. The experimental and simulated results using SALTMED model showed that maize 

yields obtained under RDI were higher than those obtained under PRD, this may be due to the 

fact that the soil is sandy soil and the PRD treatment received relatively less irrigation water. The 

latter perhaps have led to a smaller and narrower wetted soil volume within the root zone and 

possibly some of the water was partly lost below the root zone due to the high infiltration rate 

commonly associated with sandy soils. The correlation between the observed and simulated grain 

yield showed that the SALTMED model was able to simulate grain yield and water productivity 

for all treatments with high accuracy producing an average R2 of 0.98 and 0.95, respectively.  

 

KEY WORDS: regulated deficit irrigation; RDI; partial root drying; PRD; SALTMED modelling; 

soil moisture; irrigation; yield; water productivity; maize. 

 

 

                                                           
† La méthode d'irrigation par séchage partiel des racines est-elle adaptée aux sols sableux? Expérience sur 

le terrain et modélisation à l'aide du modèle SALTMED 

 Correspondence to: Abdelraouf Ramadan. National Research Centre - Water Relations and field 

Irrigation. 33 El - Behoth St., Dokki 12311, Egypt. E-mail: abdelrouf2000@yahoo.com 
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RÉSUMÉ 

 

Cette étude a étudié l'impact de l'irrigation à déficit régulé (RDI) et du séchage partiel des racines 

(PRD) sur l'humidité du sol, la matière sèche et le rendement et la productivité de l'eau du maïs 

cultivé dans les sols sableux en Egypte. L'expérience a été menée en 2013 et comprenait huit 

traitements de RDI et de PRD. Quatre traitements RDI [100% irrigation requise, FI, (contrôle), 

80% FI, 60% FI et 40% FI] et quatre traitements PRD [100% PRD, 80% PRD, 60% PRD et 40% 

PRD] étaient menés. Les résultats expérimentaux et simulés utilisant le modèle SALTMED ont 

montré que les rendements de maïs obtenus sous RDI étaient plus élevés que ceux obtenus sous 

PRD, ceci peut être dû au fait que le sol est un sol sableux et que le traitement PRD a reçu 

relativement moins d'eau d'irrigation. Ces derniers ont peut-être conduit à un volume de sol 

mouillé plus petit et plus étroit dans la zone racinaire et une partie de l'eau a été partiellement 

perdue en dessous de la zone racinaire en raison du taux d'infiltration élevé associé aux sols 

sableux. La corrélation entre le rendement en grains observé et simulé a montré que le modèle 

SALTMED était capable de simuler le rendement grainier et la productivité de l'eau pour tous les 

traitements avec une grande précision produisant un R2 moyen de 0,98 et 0,95, respectivement. 

 

MOTS CLÉS: irrigation à déficit régulé; RDI; séchage partiel des racines; PRD; Modélisation 

SALTMED; humidité du sol; irrigation; rendement; productivité de l'eau; maïs. 

 

 

INTRODUCTION 

 

Food demand across the world has been significantly increased due to the increased food demand 

for the growing population. Irrigation water has the main share of the fresh water consumption. 

Around 280 million hectares of agricultural land is irrigated using freshwater that provides around 

60% of total food production worldwide (Tilman et al., 2002). 60% of the world’s food is 

produced on irrigated land and irrigation water accounts for over two thirds of the global water 

consumption (Letey et al., 2011). The agricultural water consumption has increased fivefold since 

the 1940’s and now accounts for 70 to 80% of the world fresh water use (Ragab et al., 2015). The 

availability of the water resources is not only under threat due to the increase in water demand for 

agriculture but also due to climate variability. Therefore, the gap between water supply and 

demand is expected to increase. In several parts of the world, climate variability is expected to 

reduce water availability for agriculture and subsequently for crop yield. Therefore, it is very 

important to double the food production as the world population is expected to reach 9 billion 
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(Ragab et al., 2015). Regions with limited for a sustainable agriculture (World Water Assessment 

Programme (WWAP), 2012). 

Deficit irrigation (DI) including partial root drying (PRD) are considered good water-

saving irrigation strategies (Kang and Zhang, 2004). PRD involves alternate watering to each side 

of the plant root system, this strategy induces a mild water stress to the plant leading to partial 

closure of stomata and reduction in transpiration losses without significantly affecting the 

photosynthesis and yield. PRD has been found to be a promising strategy in several crops (Kang 

and Zhang, 2004). Davies and Hartung (2004) suggested that PRD could stimulate root growth 

whereas under DI, some of the roots may die if dry conditions are prolonged. Subsequently, it 

was decided to investigate if RDI and PRD could be promising irrigation strategies to apply on 

maize grown in sandy soils of Egypt. 

Simulation models with the ability to simulate crop growth and yield under different 

irrigation managements are considered to be good tools to improve water use efficiency and 

productivity. These models can also simulate crop growth in regions where some crops have not 

been grown before or when the conditions for growing have changed. Sivakumar and Glinni 

(2002) briefly described a number of crop growth models, however, most of them were single 

crop models. Some of the models cannot be used for general application. The extension services 

usually need models that can assist them to take decisions such as what crop or even crop variety 

to use, best time to sow and harvest, when and how much to irrigate, and what yield is to expect 

under certain irrigation system or strategy when using a specific water quality. Therefore, it is 

preferable to have models with a more holistic approach that account for water, crop, climate, and 

soil and field management (Ragab, 2015) and be able to simulate different crops. The SALTMED 

model (Ragab, 2002; Ragab, 2010; Ragab, 2015; Ragab et al., 2005a, b) has been developed for 

such generic applications and has proved its ability to simulate several crops and agricultural 

situations. It accounts for different irrigation systems, irrigation strategies, different water 

qualities, different crop and soil types, N-fertilizer applications, fertigation, impact of abiotic 

stresses such as salinity, temperature, drought and the presence of shallow groundwater and a 

drainage system. The model allows simultaneous simulation of 20 fields each of which would 

have a different irrigation system, irrigation strategy, crop, soil, and N-fertilizer. The model 

simulates the dry matter production, crop yield, soil salinity and soil moisture profiles, salinity 

leaching requirements, soil nitrogen dynamics, nitrate leaching, soil temperature, water uptake, 

evapotranspiration, groundwater level and its salinity, and drainage flow. The model was 

calibrated and validated with field data Flowers et al. (2005), Ragab et al. (2005a, b), Ragab et 

al. (2015), Golabi et al. (2009), Hirich et al. (2012) and Montenegro et al. (2010).  

Therefore, the objectives of this study were, to investigate the suitability of deficit irrigation 
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strategies by regulated deficit irrigation (RDI) and partial root drying (PRD) for sandy soils, to 

study the impact of RDI and PRD on soil moisture, total dry matter and crop yield and water 

productivity of maize grown under arid Egyptian conditions through field experiments and 

modelling using SALTMED model.  

 

MATERIALS AND METHODS 

 

The experimental site 

The field experiments were carried out during 2013. Maize crop was sown at the research 

farm of the National Research Centre (NRC) in Nubaryia Region, Al Buhayrah Governorate, 

Egypt (latitude 30° 30’ 1.4’’ N, longitude 30° 19’ 10.9’’ E, and 21 m, MSL (mean sea level)). 

The area has semi-arid climate with cool winters and hot dry summers. The data of maximum and 

minimum temperature, relative humidity, and wind speed were obtained from in situ local weather 

station (Figure 1). 

 

Figure1. Maximum and minimum temperature, relative humidity, Sunshine and wind speed obtained from 

the weather station in the research farm of National Research Centre (NRC) in Nubaryia region 

 

Some physical and chemical properties of soil and irrigation water 

Irrigation water that has been supplied by the irrigation canal had a pH of 7.35 and an 

average electrical conductivity of 0.41 dS m-1. The main physical and chemical properties of the 

soil were determined in situ and in the laboratory at the beginning of the experiment (Table I). 
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Table I. The main physical and chemical properties of the soil  

Physical characteristics 

Soil layer depth (cm) 0–20 20-40 40-60 60-80 80-120 

Texture Sandy Sandy Sandy Sandy Sandy 

Course sand (%) 47.8 56.7 36.8 35.8 33.4 

Fine sand (%) 49.8 39.6 59.4 60.1 62.4 

Silt+ clay (%) 2.49 3.72 3.84 4.12 4.32 

Bulk density (t m-3) 1.69 1.68 1.67 1.69 1.65 

Chemical characteristics 

EC1:5 (dS m-1) 0.35 0.32 0.44 0.45 0.53 

pH (1:2.5) 8.7 8.8 9.3 9.0 9.2 

Total CaCO3 (%) 7.02 2.34 4.68 5.01 5.20 

Organic matter (%) 0.65 0.40 0.25 0.24 0.21 

 

Experimental design 

The planting and harvesting dates for maize were 12th of May 2013 and 12th of September 

2013, respectively. The growth period for maize crop was 122 days. The experimental design 

included eight irrigation treatments: 100% full irrigation (FI) as control treatment and three DI 

treatments (80%FI, 60% FI and 40% FI), each combined with two irrigation application strategies 

(PRD and RDI). For the RDI irrigation treatments, the driplines were placed next to the plants; 

whereas, for the PRD treatments double driplines were used with the plants placed in the mid-

point between the two driplines. In total there were 24 plots, covering the 8 treatments with three 

replicate per treatment. The area of each plot was 84 m2.. More details about RDI and PRD can 

be found in Afzal et al. (2016). The statistical design of this experiment was a split design. Profile 

probe access tubes were placed in each plot to measure the soil moisture. The experimental design 

is given in Figure 2. 

 

Irrigation requirements of the maize 

The irrigation requirements were based on the reference evapotranspiration equation of 

Penman-Monteith using daily data of the in situ weather station. Total water volumes for each 

treatment are reported in Table II. 
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Table II. Total water volumes for each treatment 

Irrigation treatments Irrigation 

no. 

Irrigation 

intervals 

Irrigation 

volumes 

Rainfall 

Treatment definition  Short 

definition 

n n m3 ha-1 m3 ha-1 

100% Fully Irrigated (FI) 100% FI 55 2 5060 0 

100% FI in initial growth stage 

+ 80% FI for whole season 

80% FI 55 2 4080 0 

100%FI in initial growth stage + 

60% FI for whole season 

60% FI 55 2 3090 0 

100%FI in initial growth stage + 

40% FI for whole season 

40% FI 55 2 2110 0 

100%FI in initial growth stage + 

PRD (50% FI for whole season) 

PRD 55 2 2600 0 

100%FI in initial growth stage + 

80% PRD for whole season 

80% PRD 55 2 2110 0 

100%FI in initial growth stage + 

60% PRD for whole season 

60% PRD 55 2 1620 0 

100%FI in initial growth stage + 

40% PRD for whole season 

40% PRD 55 2 1130 0 
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Figure 2. Layout of the experimental design  
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Model parameters  

All the required data for the model calibration and validation were collected during each 

phase over the crop growing seasons. The soil moisture was measured by the profile probe at five 

depths: 0-20, 20 – 40, 40 – 60, and 60 - 80 and 80-120 cm depth. All the required climatic data 

were collected on site from the automatic weather station. The meteorological data required by 

the model consisted of precipitation, maximum temperature and minimum temperature, the 

relative humidity, wind speed and net and total radiation. The irrigation system was drip. Dry 

matter and total leaf area, were obtained at regular intervals. At harvest, a random sample was 

taken from each plot to determine grain yield. Other plant parameters such as plant height, root 

depth, length of each growth stage and harvest index were also based on field measurements. 

Water productivity of maize ‘WPmaize’ was calculated according to Equation (1), (James, 1988) as 

follows: 

 

WPmaize = Ey/Ir  (1) 

 

Where: WPmaize is the water productivity of maize (kg maize m-3
water), Ey is the economical yield 

(kg ha-1); Ir is the amount of applied irrigation water (m3
water ha-1season-1). 

 

SALTMED MODEL 

 

SALTMED model was used in this study. A detailed description of the SALTMED model is 

provided in Ragab (2002), Ragab et al. (2005a), Ragab (2015), and Ragab et al. (2015).The 

SALTMED model is a free download from the Water4Crops EU funded project web site:  

http://www.water4crops.org/saltmed-2015-integrated-management-tool-water-crop-soil-n-

fertilizers/ and from the International Commission on Irrigation and Drainage, ICID web site: 

http://www.icid.org/res_tools.html#saltmed_2015 

 

Model calibration process 

During the calibration, fine tuning of the relevant SALTMED model parameters was 

carried out against the observed data for the soil moisture, dry matter, and crop yield. In this 

analysis, 100% FI was selected for the calibration process. For the soil moisture calibration, 

different soil parameters such as soil hydraulic properties including bubbling pressure, saturated 

hydraulic conductivity, saturated soil water content and pore distribution index, ‘lambda’ were 

fine-tuned until close matching between the simulated and observed values was achieved. In 

addition to the soil parameters, other crop parameters such as the crop coefficient, Kc, which is 
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used to calculate crop evapotranspiration (ETc) and basal crop coefficient, Kcb, that represents 

the crop transpiration part of the Kc were also slightly tuned to find the best fit of the soil moisture 

against the observed soil moisture for each layer as shown in Tables III and IV. After achieving 

a good fit for the soil moisture, only fine tuning of the photosynthetic efficiency was needed for 

dry matter and crop yield. During the process of model calibration and validation, three statistical 

measures for goodness of fit, were used. 

The goodness of fit expressions were the root mean square error (RMSE), the coefficient 

of determination (R2), and the coefficient of residual mass (CRM). The RMSE values indicate by 

how much the simulations under or overestimate the measurements. 

 

𝑅𝑀𝑆𝐸 = √∑(𝑦𝑜−𝑦𝑠)
2

𝑁
 (2)  

 

Where: 𝒚
𝒐
= observed value, 𝒚

𝒔
 = simulated value, 𝑵= total number of observations. 

The R2 statistics demonstrate the ratio between the scatter of simulated values to the 

average value of measurements: 

 

𝑹𝟐 = {
𝟏

𝑵

∑(𝒚𝒐−𝒚𝒐
−)(𝒚𝒔−𝒚𝒔

−)

𝝈𝒚𝒐− 𝝈𝒚𝒔
} (3) 

 

Where: 𝒚𝒐
−= averaged observed value, 𝒚𝒔

− = averaged simulated value, 𝝈𝒚𝒐 = observed data 

standard deviation, 𝝈𝒚𝒔 = simulated data standard deviation. 

The coefficient of residual mass (CRM) is defined by: 

 

𝑪𝑹𝑴 =  
(∑ 𝒚𝒐− ∑ 𝒚𝒔)

∑ 𝒚𝒐
 (4) 

 

The CRM is a measure of the inclination of the model to over- or underestimate the 

measurements. Negative values for CRM indicate that the model underestimates the 

measurements and positive values for CRM indicate a tendency to overestimate. For a perfect fit 

between observed and simulated data, values of RMSE, CRM and R2 should equal 0.0, 0.0, and 

1.0, respectively.  
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Table III. Main calibrated and observed input parameters used in the study for maize 

Calibrated Observed Developmental stage Parameter 

   Cultivation dates 

 12 May  Sowing (date) 

    

 122  Harvest (days after sowing) 

   Growth stage duration, days  

 19  Initial  

 32  Development 

 40  Middle 

 30  Late 

   Crop inputs 

0.4  Initial Crop coefficient, Kc  

1.1  Middle  

0.8  End  

0.3  Initial Transpiration crop coefficient, Kcb 

0.7  Middle  

0.6  End  

 0.1 Initial Fraction cover, Fc 

 0.7 Middle  

 0.5 End  

 0.3 Initial Plant height, h (m) 

 1.8 Middle  

 1.7 End  

 1 Initial Leaf area index, LAI 

 5 Middle  

 4 End  

 0  Minimum root depth (m) 

 1  Maximum root depth (m) 

 8.54  )1-Unstressed crop yield (t h 

2   Photosynthesis efficiency (g MJ-1) 

0.75  Initial Water uptake threshold, % 

0.75  Middle  

0.75  End  

 0.65  Harvest index 
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Table IV. Main calibrated and observed input parameters used in the study for sandy soil 

Parameter Observed Calibrated 

Saturated moisture content (m3m-3) 0.30  

Field capacity (m3 m-3) 0.14  

Wilting point (m3 m-3) 0.03  

Lambda pore size index  0.3 

Residual water content (m3 m-3)  0.0 

Root width/length factor 0.15  

Saturated hydraulic conductivity (mm day-1) 3000  

Max. depth for evaporation (mm)  60 

Bubbling pressure (cm)  10 

 

 

RESULTS AND DISCUSSION 

Soil moisture  

Initially the soil moisture was calibrated with the 100% FI treatment and validated against 

all the other treatments, 80% FI, 60% FI, and 40% FI, PRD, 80% PRD, 60% PRD and 40%PRD. 

The model has shown a good fit for all layers 0-20, 20-40, 40-60, and 60-80 and 80-120 cm depth 

of the simulated soil moisture when compared with the observed soil moisture for RDI and PRD 

treatments as shown in Figures 3, 4, 5, 6, 7, 8, 9 and 10, respectively. The simulated soil moisture 

content was slightly lower in the initial and middle period and slightly higher in the late period in 

comparison to the observed soil moisture. This is mainly due to the high water uptake by the 

plants in the beginning and during the peak of the growth season. Figures 3, 4, 5, 6, 7, 8, 9 and10 

show that, both simulated and observed soil moisture have the same trend through the maize 

season. Overall the model predicted well the observed data both during the calibration and 

validation stages. These result are consistent with those obtained by Pulvento et al. (2013), 

Pulvento et al. (2015), Hirich et al. (2012), Silva et al. (2013) Ragab et al. (2015), Fghire et al. 

(2015) and Rameshwaren et al. (2015). 

Overall the simulated and the observed soil moistures for all treatments showed strong 

correlation between the observed the simulated soil moisture with good R2 values as shown in 

Table V with an overall average R2 of 0.87. In general, SALTMED proved its ability to simulate 

the soil moisture changes under different irrigation treatments. 
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Figure 3.Observed and simulated soil moisture for 0-120 cm depth under 100% Full irrigation 
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Figure 5. Observed and simulated soil moisture for 0-120cm depth under 60% Full irrigation 
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Figure 4. Observed and simulated soil moisture for 0-120 cm depth under 80% Full irrigation 
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Figure 6. Observed and simulated soil moisture for 0-120 cm depth under 40% Full irrigation 

  

  

 

Figure7. Observed and simulated soil moisture for 0-20 cm depth under PRD 
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Figure 8. Observed and simulated soil moisture for 0-120 cm depth under 80% PRD 
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Figure 9. Observed and simulated soil moisture for 0-120 cm depth under 60% PRD 

  

  

 

Figure 10. Observed and simulated soil moisture for 0-20 cm depth under 40% PRD 
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Table V. The coefficient of determination, RMSE and CRM for soil moisture in the layers from 0-120 cm 

Irriga

tion  

strate

gy 

Treatmen

t 

Soil layer, cm 

0-20 cm 20 – 40 cm 40 – 60 cm 60 – 80 cm 80 – 120 cm Overall 

0-120 cm 

R
2
 

R
M

S
E

 

C
R

M
 

R
2
 

R
M

S
E

 

C
R

M
 

R
2
 

R
M

S
E

 

C
R

M
 

R
2
 

R
M

S
E

 

C
R

M
 

R
2
 

R
M

S
E

 

C
R

M
 

R
2
 

R
M

S
E

 

C
R

M
 

 

 

RDI 

100% FI 0.98 0.00 -0.03 0.93 0.01 -0.11 0.92 0.01 -0.10 0.91 0.02 -0.15 0.94 0.01 -0.06 

0
.8

7
 

0
.0

1
 

-0
.0

6
 

80% FI 0.93 0.01 -0.05 0.93 0.01 -0.11 0.91 0.01 -0.11 0.89 0.01 -0.12 0.95 0.01 -0.02 

60% FI 0.97 0.00 -0.02 0.87 0.01 -0.09 0.88 0.01 -0.09 0.88 0.01 -0.09 0.95 0.01 -0.08 

40% FI 0.90 0.01 0.09 0.92 0.01 0.08 0.91 0.01 0.04 0.82 0.02 0.11 0.92 0.01 0.10 

 

PRD 

 

 

 

PRD 0.88 0.01 -0.10 0.81 0.01 -0.12 0.81 0.01 -0.12 0.86 0.01 -0.07 0.85 0.01 -0.11 

80% 

PRD 

0.83 0.01 -0.03 0.88 0.01 -0.13 0.83 0.01 -0.14 0.81 0.01 -0.08 0.83 0.01 -0.11 

60% 

PRD 

0.86 0.00 -0.03 0.83 0.01 -0.06 0.83 0.01 -0.06 0.83 0.01 -0.06 0.86 0.01 -0.07 

40% 

PRD 

0.87 0.01 -0.08 0.87 0.01 -0.08 0.87 0.01 -0.08 0.87 0.01 -0.08 0.87 0.01 -0.08 

RDI: Regulated Deficit Irrigation, RMSE: Root Mean Square Error, CRM: Coefficient of Residual Mass FI: Full Irrigation, PRD: Partial Root Drying, R2:is the 

coefficient of determination 

 



18 
 

Dry matter 

The time series of observed and simulated dry matter under different irrigation treatments 

for the maize crop are shown in Figure 11. The observed and the simulated dry matter for RDI 

and PRD treatments were very close. In general, there was a good correlation between simulated 

and observed dry matter for all treatments. The correlation between the observed and simulated 

dry matter for maize crop shows that the model was able to simulate the total dry matter with R2 

of 0.99 for the 100%FI and 80%FI treatments; 0.98 for the 60%FI, 40%FI and 80% PRD 

treatments; 0.97 for the PRD treatment; and 0.96 for both the 60% PRD and 40% PRD treatments. 

The model also showed a good fit for dry matter for all treatments put together where the average 

R2 was 0.96 (Figure 12). 
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Figure11. Observed and simulated dry matter for treatments 

 

Figure12.Overall observed vs simulated dry matter for all treatments 

 

Grain yield  

The impact of deficit irrigation by RDI and PRD on yield and water productivity of maize 

under sandy soil conditions is shown in Table VI. There were significant differences between the 
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the decrease of irrigation water applied under RDI and PRD strategies. The yield values under 

RDI were higher than the yield values under PRD. This may be due to the lower irrigation water 

quantity applied under PRD, hence, increasing the drought stress under PRD conditions where 

the amount of irrigation water was less than 50% of the water amount applied under full irrigation. 

The higher yield under the 100% FI than PRD treatments is attributed to the higher soil moisture 

content stored within the root zone, hence decreasing the plant water stress. 

The observed and simulated total yield for the maize crop under different irrigation 

strategies is shown in Figure 13. The results show different yields are obtained under different 

irrigation strategies. The highest yield, 8.54 t ha-1, was obtained under the 100% FI treatment 

where 5063 m3 irrigation water was applied per ha per season. The lowest yield, 4.05 t ha-1, was 

obtained under the 40% PRD treatment, where the amount of irrigation water applied was 1126 

m3 ha-1 per season. This means there was a 52% reduction in the yield between 100%FI and 40% 

PRD. The yield under PRD was 27% lower than under 100% FI. This is due to the fact that, under 

PRD, much less water was added (2062 m3 per ha per season), which under the sandy soil 

conditions led to a much reduced wetted soil volume. In addition, the wetted soil width and depth 

at the peak of the season’s water requirements were 60 and 70 cm, respectively, for the 100%FI 

treatment, but were only 30 and 35 cm, respectively, for PRD and 15 and 20 cm, respectively, for 

the 40% PRD treatment. 

The correlation between the observed and simulated grain yield shows that the model was 

able to simulate grain yield very well, with R2of 0.98 for all treatments (Figure 14). 
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Water productivity 

The water productivity was calculated as the amount of grain yield produced, in kg, per 

cubic meter of irrigation water applied. The results show that, for maize crop, the water 

productivity was slightly higher under PRD (Figure 15). The amount irrigation water applied for 

PRD treatments was 50% lower than the amount irrigation water for RDI treatments. Overall the 

water productivity in relation to irrigation strategy showed that the water productivity of maize 

crop for PRD treatments was higher than the values for RDI treatments (Figure 15). The highest 

water productivity of maize, 3.6 kg m-3, was obtained with the 40% PRD treatment and the lowest 

value, 1.69 kg m-3, for the 100% FI treatment. Although, the highest water productivity of maize 

occurred under the 40% PRD treatment, the yield under 40% PRD was very low (4.05 t ha-1). This 

pseudo high productivity, if associated with a small yield, merits careful interpretation in more 

economic and revenue terms.  

The correlation analysis between the observed and the simulated water productivity shows 

that the model gave a good fit when simulating water productivity, with R2 of 0.95 for all 

treatments (Figure 16). 
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Table VI. Impact of RDI and PRD on Harvest index, % relative error and observed and simulated yield and water productivity of maize 

Irrigation water 

application 

strategy 

Treatment HI Yield, t ha-1 

 

observed simulated 

Relative 

error, 

% 

Irrigation 

water, m-3 

Water productivity, 

kg m-3 

observed simulated 

 

 

 

RDI 

100% FI 

(Control) 

0.65 8.54 a 8.72 

(Calibration) 

-2.1 5060 1.69 1.72 

80% FI 0.61 8.09 b 8.18 -1.1 4080 1.98 2.01 

60% FI 0.5 6.85 c 6.71 2.0 3090 2.21 2.17 

40% FI 0.42 5.15 e 5.63 -9.3 2110 2.44 2.67 

 

 

 

PRD 

PRD 0.48 6.21 d 6.43 -3.5 2600 2.39 2.47 

80% PRD 0.38 4.81 f 5.06 -5.2 2110 2.28 2.40 

60% PRD 0.32 4.46 g 4.22 5.4 1620 2.76 2.61 

40% PRD 0.3 4.05 h 3.9 3.7 1130 3.60 3.46 

RDI: Regulated deficit irrigation, PRD: Partial root drying, FI: Full irrigation 
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CONCLUSION 

 

The study concluded that the yields obtained under RDI were relatively higher than those obtained 

under PRD, this may be due to the fact that the soil is sandy soil and the PRD treatment received 

less irrigation. The latter perhaps have led to a smaller and narrower wetted soil volume within 

the root zone and possibly some of the water was lost below the root zone due to the high 

infiltration rate commonly associated with sandy soils. 

For most treatments, the SALTMED model was able to predict the soil moisture for all 

layers reasonably well. The correlation analysis between the observed and simulated grain yield 

shows that the SALTMED model was able to simulate grain yield very well, with R2 of 0.98 for 

all treatments. 

The correlation analysis between the observed and the simulated water productivity showed 

that the SALTMED model was able to simulate water productivity very well, with R2 of 0.95 for 

all treatments. Although, the highest water productivity of maize was associated with the 40% 

PRD treatment, the yield was very low. This pseudo high productivity, if associated with a small 

yield, merits careful interpretation in more economic and revenue terms. 
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