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A B S T R A C T

Stress magnitude data across the UK is limited spatially and stratigraphically with information available for only
21 sites in the latest release of the World Stress Map. This information is largely derived from geothermal
resource exploration and radioactive waste storage site assessment. Active exploration of unconventional re-
sources in the UK has highlighted a lack of information to adequately characterise the stress field, in particular in
regions underlain by potentially prospective shale formations. Understanding the in-situ stress conditions is
critical to the planning of sub surface operations and the potential extraction of unconventional resources.

Legacy stress magnitude data from 75 sites is combined with new analysis of wireline data to re-characterise
the stress field across two regions which are underlain by the Bowland Shale Formation which has resource
potential for unconventional hydrocarbons. These regions are: East Yorkshire and North Nottinghamshire, and
Cheshire and Lancashire.

Vertical stress gradients vary between 23 and 26 MPakm−1 for the regions studied. Pore pressure is similar for
both regions and is hydrostatic with a gradient of 10.19 MPakm−1. Lower bounds for the minimum horizontal
stress have been estimated from the available data and show that the magnitude of the minimum horizontal
stress is 2.6 MPakm−1 higher to the east of the Pennines.

The compiled legacy data show that the Maximum Horizontal Stress is consistently greater than the vertical
stress, which in turn is greater than the minimum horizontal stress, indicating that at depth within the two
regions, the faulting regime is predominantly strike-slip.

1. Introduction

Knowledge of the in-situ stress field is a key constraint in the ex-
ploitation of the subsurface and development of any subsurface re-
sources including, storage of carbon dioxide, radioactive waste dis-
posal, mining, unconventional hydrocarbon exploration, civil
engineering and fault stability (Nirex, 1997; Zoback et al., 2003; Tingay
et al., 2005; Williams et al., 2016). In particular, the stress field is
critical to understanding fracture mechanics. This is highly important as
the UK investigates the possibility of developing unconventional hy-
drocarbon resources which require stimulation of the rock mass
through hydraulic fracturing. Controversy around the use of hydraulic
fracturing in the UK intensified following tremors associated with the
first hydraulic fracturing operations to test shale gas resource at the
Preese Hall borehole in 2011 (Green et al., 2012; Younger, 2016). Since
2012 there have been renewed efforts to understand the UK's in-situ
stress field in response to the recommendations of the Royal Society and
Academy of Engineering (Mair et al., 2012) that “the British Geological

Survey should implement national surveys to characterise in-situ
stresses and to identify faults affecting prospective UK shale plays”.

This research highlights the state of existing published knowledge of
the UK in-situ stress field, and in particular the limited database of
stress magnitude data across the UK. The knowledgebase is then ex-
tended with calculation of the stress magnitude from newly derived
data sources to give a more complete understanding of the stress field in
those regions which are potentially prospective for shale gas.

1.1. The in-situ stress field

At depth within the subsurface the in-situ stress field can be re-
solved to three principle components (Amadei and Stephansson, 1997;
Zoback et al., 2003). The vertical stress component (Sv), also known as
lithostatic or overburden stress, the minimum horizontal stress (Shmin)
and the maximum horizontal stress (SHMax) and their respective or-
ientations which are orthogonal to each other. The final component of
the in-situ stress field is the pore pressure (Pp), the pressure of the fluid
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within the rock mass. The relative magnitudes of the three principle
stresses can also be used to determine the predominant faulting regime
within a region (Zoback et al., 2003); normal faulting where
Sv≥ SHMax≥ Shmin; strike slip SHMax≥ Sv≥ Shmin; and reverse faulting
SHMax≥ Shmin≥ Sv.

The latest edition of the World Stress Map (WSM) includes all of the
current openly available stress data for the UK (Heidbach et al., 2016)
which has been greatly expanded by recent studies (Williams et al.,
2015, 2016, 2018; Holford et al., 2016; Kingdon et al., 2016). In-
formation from the WSM has previously been used to estimate stress
magnitudes (Zang et al., 2012). Fig. 1 shows the 24 borehole sites for
which stress magnitude information is available from the WSM
(Heidbach et al., 2016) and also the technique from which the stress
magnitude was derived, either by over-coring (Bigby et al., 1992) or
hydraulic fracturing. The majority of this information was collected
between 1982 and 1997, by the National Coal Board, site character-
isation records from the previously proposed nuclear waste repository
at Sellafield (Nirex, 1997), or from research projects such as the Hot
Dry Rock Project (Parker, 1999). Since these projects there has been
comparatively little work on the magnitude of the principle stresses at
depth onshore in the UK.

There is little information regarding UK stress magnitudes, parti-
cularly in those areas and depths of current interest for unconventional
resources. To address this the authors have undertaken a reinterpreta-
tion of the stress field across two UK regions using legacy information
from boreholes drilled for hydrocarbon exploration, or boreholes

drilled by the National Coal Board, to better constrain the magnitude of
the stress field in key UK regions. Such data includes reported outputs
of measurement techniques, often without acquisition parameters or
raw data records from sources including: peer review publications, well
reports, composite logs etc.

Due to lack of data in the two regions, SHMax magnitude data have
been compiled from across the UK in order to evaluate the stress state.
This information has been sourced from: peer-review publications, data
referenced in the WSM database (Fig. 1), and records identified in the
UK National Geoscience Data Centre (NGDC) hosted by the British
Geological Survey (BGS).

2. Stress field information

Information collected during drilling, logging and testing of bore-
holes can be used to characterise the stress field. In practice in the UK,
stress field information is most commonly available from coal or hy-
drocarbon exploration and appraisal boreholes (Fellgett et al., 2017a).
In excess of 3000 coal or hydrocarbon boreholes have been drilled
across the UK during the last two centuries. This makes the archive
extremely variable and relevant information is only available for a
small subset of these boreholes, between 25% and 30% in the regions
investigated. For a full description of borehole data across the UK and
how it can be used to characterise the stress field see Fellgett et al.
(2017a).

2.1. Vertical stress

In most cases it can be assumed that vertical stress (Sv) is solely
related to the overburden (Amadei and Stephansson, 1997). Sv can then
be calculated by integrating bulk density logs with depth (Equation (1);
Zoback et al., 2003):

∫= ≈S ρ(z)gdz ρgzv

z

0 (1)

where ρ(z) is the density as a function of depth, ρ is the mean over-
burden density and g is the acceleration due to gravity. This method
requires knowledge of the density from the surface, and as a result
when using logs from hydrocarbon boreholes (which often only collect
density logs through the reservoir sections) requires estimates of den-
sities through unlogged sections. The National Coal Board however,
would often run density tools from surface, reducing the uncertainty
associated with estimation of density at shallow depths.

2.2. Minimum horizontal stress

In boreholes the magnitude of the least principle stress (Shmin) can
be estimated using leak-off tests (LOT), which are typically carried out
beneath casing shoes. These tests are carried out in a short section of
open hole where the borehole is shut in and the pressure is increased at
a constant rate. This causes a linear increase in pressure with time,
which at a critical threshold (known as the leak off point), breaks down
as a fracture is induced in the formation (Zoback et al., 2003). The
pressure required to induce leak off can be measured and thereby used
to approximate the magnitude of Shmin. If the formation is pressurised
but not taken to leak off then the test is referred to as a formation
integrity test (FIT) or a limit test (LT) (Zoback et al., 2003). These tests
can be used on a regional scale to provide an approximation of Shmin but
should not be used to determine its magnitude. There are many factors
which can affect the leak off pressure including borehole stability,
tensile strength and drilling fluids. For this study leak off tests were
collated from drilling reports which often record these tests as a single
pressure value for the leak off point without the pressure curves. This
results in uncertainties in the determination of Shmin as it is not clear if
the test has been taken to leak off or which pressure has been recorded.

Fig. 1. Map of the UK showing those boreholes with stress magnitude data from
the WSM 2016 release (Heidbach et al., 2016). Stress magnitude data source
from Hydraulic Fracturing (HF) and Overcoring (OC). The shaded zone shows
the area of interest from the BGS/DECC Bowland-Hodder Shale study, Andrews
(2013).
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Extended leak off tests (XLOTs) allow for a more reliable estimate of
Shmin (Zoback et al., 2003) however no records have been found of
these tests being conducted in the study area. For a full description of
leak off tests and how they can be used to estimate Shmin see (Addis
et al., 1998; White et al., 2002).

2.3. Pore pressure

Pore pressure relates to the pressure of fluids within the pores of a
rock. Where no information is available it is often assumed that the
pressure is hydrostatic, meaning the pressure in the pores equates to the
pressure of a column of water from the surface to the unit of interest.
When the density of the pore water is 1 gcm−3, hydrostatic pressure
increases at 10 MPakm−1 or 0.44 psift−1 (Zoback et al., 2003). Pore
pressure measurements can be taken by wireline formation testing tools
such as the repeat formation tester (RFT), or can be taken during drill
stem tests (DST).

2.4. Maximum horizontal stress

In boreholes SHMax is extremely difficult to estimate as the techni-
ques require knowledge or assumptions of: pore pressure, rock strength
(tensile or unconfined compressive strength), formation breakdown
pressure and Shmin.

There are three main techniques used to estimate SHMax in bore-
holes: hydraulic fracturing, overcoring and borehole failure mechan-
isms. Determining SHMax from hydraulic fracturing uses a similar pro-
cess to a leak off test however these are conducted in isolated sections
of borehole after drilling rather than as the borehole is being drilled.
The test pressurises a borehole to what is termed the formation
breakdown pressure (Pb), the pressure at which a hydraulic fracture
propagates away from the borehole wall. This pressure can be related to
the principle stresses for impermeable rocks using Equation (2) and
permeable rocks using Equation (3) (Hubbert and Willis, 1957;
Haimson and Fairhurst, 1967, 1970; Amadei and Stephansson, 1997;
Zoback, 2010):

= − − +P 3 s S P Tb hmin HMax p 0 (2)
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where: T0 is the rock tensile strength, v is the rock poisons ratio and α is
the Biot constant. Both techniques assume an isotropic medium and by
multiplying Shmin by three triples the error on this parameter which can
lead to errors in excess of± 6MPa (M Tingay personal communication,
April 2018).

Overcoring is a technique which is typically used in mine and shaft
walls though it can also be used in boreholes. For a full description of
this method see Leeman and Hayes (1966); Becker and Davenport
(2001). The method involves drilling a vertical or horizontal pilot hole
into the rock and inserting a strain gauge which is fixed in place with
resin. The strain gauge and a section of the rock are then drilled out as
part of a larger core. The strain gauge measures the stress relaxation of
the rock which can be used to estimate the magnitudes of the principle
stresses. There are several issues associated with this technique in-
cluding poor adhesion of the resin to the rock and the generation of
friction heat when extracting the core (Farmer and Kemeny, 1992).

Hydraulic fracturing has been used to determine the magnitude of
SHMax for a number of sites across the UK including: Morley Quarry,
Rosemanowes Quarry and the Wray borehole (Evans, 1987; Parker,
1999; Heidbach et al., 2016). This method was also utilised by the coal
industry for a number of boreholes drilled across the UK between 1980
and 1992. There are several issues associated with the use of hydraulic
fractures to measure SHMax; hydraulic fracturing operations need to be
carried out in smooth circular holes with no pre existing fractures but

this is not always verified (Zoback, 2010). However the biggest problem
with this technique is uncertainty in the pressure at which a hydraulic
fracture forms at the borehole wall (Zoback, 2010), which can lead to
uncertainties in excess of 10MPa as documented in Pine et al. (1983).

Borehole failure mechanisms include borehole breakouts and dril-
ling induced tensile fractures (DIFs) which are predominantly used to
characterise the orientation of the horizontal stresses (Plumb and
Hickman, 1985; Tingay et al., 2008; Heidbach et al., 2016). However
they can also be used to calculate SHMax using equations (2) and (3)
(Barton and Zoback, 1988; Moos and Zoback, 1990; Zoback et al.,
2003).

For borehole breakouts:

=
+ + + − +

−

ΔS (C 2P P σ ) S (1 2 cos 2θ )
1 2 cos 2θ

Δ

HMax
0 P

T
hmin b

b (4)

where = −2θ π Wb bowhere C0 is the rock strength usually from uniaxial
compressive strength (UCS) tests, though it can be estimated using
wireline log data if it is correlated to core (Chang et al., 2006). Wbo is
the breakout width, ΔP is the difference in pressure between the pore
fluid pressure and the pressure exerted by a column of mud in the
borehole. The thermal stress induced by the difference in temperature
between the drilling fluid and formation fluid is: σ ΔT. An alternative
method of estimating horizontal stresses in granite using breakout
width and depth was proposed by Shen (2008).

For DIFs:

= − − − −ΔS 3S 2P P T σ Δ
HMAX hmin p 0

T (5)

Both Equations (4) and (5) have significant uncertainties associated
with them including the assumption that there are no variations in
downhole pressure during drilling (Ramirez and Frydman, 2006). The
use of breakout width been shown to overestimate SHMax by up to 18%
(Ramirez and Frydman, 2006).

Despite the numerous studies identifying borehole wall failure
(breakouts and DIFs) there is insufficient information available to es-
timate SHMax across the UK as rock strength or an estimate of rock
strength is required. There are laboratory studies of rock strength and
strength criterions which are used to estimate rock strength for specific
lithologies (Chang et al., 2006), however the UK strata from which
majority of the stress field information is available, is highly hetero-
geneous and a single strength criterion would not be representative of
the rock strength across the area of Interest.

2.5. Orientation of the UK stress field

The orientation of the UK and UKCS stress field has been studied
extensively (Williams et al., 2015, 2016, 2018; Holford et al., 2016;
Kingdon et al., 2016; Fellgett et al., 2017b)). Kingdon et al. (2016)
reported that the orientation of SHMax across the UK landmass is
150.9° ± 13.1°, which is the result of ridge-push forces associated with
the Mid Atlantic Ridge (Klein and Barr, 1986; Gölke and Coblentz,
1996).

3. Areas of interest

Two regions were chosen for the initial compilation of stress field
information: East Yorkshire and North Nottinghamshire, and Cheshire
and Lancashire (Fig. 2). This was based on the numbers of deep bore-
holes available and the resource potential for unconventional resources,
highlighted by Andrews (2013).

The areas and available borehole data are shown in Fig. 2. Over 180
boreholes across the two regions were identified as potentially having
stress field information available (Fig. 2), with stress magnitude data
available for 75 of these.
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4. Results and discussion

When no stress field information is available it is common to assume
a vertical stress gradient of 23 MPakm−1 (Tingay et al., 2005) and a
hydrostatic pore pressure with a gradient of 10 MPakm−1, however
these figures correspond to the Tertiary Deltas of the Gulf of Mexico
(Tingay et al., 2003). Due to variability in the stress field this in-
formation should always be validated using in-situ stress data (Tingay
et al., 2003).

Results from the density log inversion method (Fig. 3) show the

vertical stress is between 23 and 26 MPakm−1 with the average gra-
dients increasing by two MPakm−1 from East Yorkshire and North
Nottinghamshire to Cheshire and Lancashire. This may be a result of the
stratigraphy sampled by each of the borehole rather than a regional
trend. In East Yorkshire and North Nottinghamshire the deepest bore-
hole: Marishes 1 contains a thick sequence of Jurassic and Triassic se-
diments. The Carboniferous strata are found at depths of ≈1700m. In
contrast the Ince Marshes borehole in Cheshire and Lancashire typically
intersects Carboniferous strata at significantly shallower depths of
≈400m.

Fig. 2. Map showing the two areas of interest and the available deep borehole data. Boreholes shown in red have information to characterise stress magnitude data.
The hatched zone shows the area of interest from the BGS/DECC Bowland-Hodder Shale study, Andrews (2013). (For interpretation of the references to colour in this
figure legend, the reader is referred to the Web version of this article.)

Fig. 3. Vertical Stress results from density log inversion method of Zoback et al. (2003), dashed black lines correspond to a gradient of 23 MPakm−1. Left; results
from East Yorkshire and North Nottinghamshire. Right; results from boreholes in Cheshire and Lancashire. After Fellgett et al. (2017a).

M.W. Fellgett et al. Marine and Petroleum Geology 97 (2018) 24–31

27



The results of the density logs and pore pressure measurements
show no evidence of overpressure in either region (Fig. 4). The majority
of the pore pressure measurements are close to hydrostatic pressure, 10
MPakm−1.

Values of Shmin from LOT and FIT data from 91 tests across the two
regions are shown in Fig. 5. Eighty of the LOT and FIT tests show that
Shmin ˂ Sv. Eleven of the LOT and FIT measurements exceed the lower
bound of Sv, 23 MPakm−1. Of these 11 measurements nine were taken

in the highly heterogeneous Permo – Triassic strata which may be a
factor in the variation in Shmin due to variations in lithology and rock
strength (Fellgett et al., 2017a).

Linear gradients representing regional estimates of a lower bound
for Shmin were calculated from LOT data using the method of Addis
et al. (1998) and may not be representative of Shmin values at specific
sites (Fig. 5). For information on determining in-situ stress at specific
sites see: Zang and Stephansson (2010); Stephansson and Zang (2012).

Fig. 4. Pore pressure measurements for the areas of interest from drill stem test and repeat formation tests for the regions of interest. Pore pressure values are
hydrostatic and plot close to the 10 MPakm−1 line.

Fig. 5. Graph showing all Shmin esti-
mates in the areas or interest from FIT
and LOT tests with regional estimates
of the minimum bound of shmin for both
Cheshire and Lancashire and East
Yorkshire and North Nottinghamshire.
The regional estimates are derived from
the leak off tests for each region using
the method of Addis et al. (1998).
Range of vertical stress values from
23–26 MPakm−1 shaded in purple. (For
interpretation of the references to
colour in this figure legend, the reader
is referred to the Web version of this
article.)
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These gradients show a similar trend to the vertical stress gradients
with the magnitude of the least principle stress 2.6MPa per kilometre
higher in Cheshire and Lancashire (17.42 MPakm−1) compared to East
Yorkshire and North Nottinghamshire (14.75 MPakm−1).

There are only four sites across the two regions where the magni-
tude of SHMax has been determined. To characterise the faulting regime
required the use of legacy data to assess SHMax, Shmin and Sv. Legacy
SHMax data were collected from 33 sites across the UK (Fig. 6), these
sites have variable lithology and stratigraphic successions so cannot be
used to estimate the magnitude of SHMax within the two regions. These
data were collected using overcoring, borehole wall failure and hy-
draulic fracturing (Fig. 7). There are several studies which look at
combining and interpreting data from these techniques (Ask, 2006;
Zang and Stephansson, 2010). These studies require the use of raw data
records to derive a standard deviation for each measurement. Due to
the nature of the legacy data compiled this information was not avail-
able. Consequently Fig. 7 provides a qualitatively assessment of the
relationship between SHMax, Shmin and Sv. rather than the determina-
tion of the magnitude of SHMax.

With five exceptions all of the SHMax data plots above the minimum
bound of Sv (23 MPakm−1) with only ten results plotting below the
upper Sv boundary of 26 MPakm−1, indicating that SHMax > Sv. As the
Shmin approximated from LOT and FIT indicates that Sv > Shmin, the
overall stress state of SHMax ˃ Sv ˃ Shmin characterises the UK as a

predominantly strike-slip faulting environment. However at depths of ˂
1 km there is greater uncertainty in the relation between Sv, Shmin and
SHMax and SHMax estimates in particular can be highly unreliable at
shallow depths. Stress magnitude data from the Triassic appears to
show a greater variation than data from Carboniferous successions
(Fellgett et al., 2017a).

Earthquake focal plane mechanisms in the UK show a pre-
dominantly strike slip/reverse faulting regime (Baptie, 2010) which
supports the overall stress state of SHMax ˃ Sv ˃ Shmin. Earthquake focal
plane mechanisms have shown wider evidence of thrust faulting in
areas of Lincolnshire and central Wales (Baptie, 2010). These areas are
outside the regions of interest and are from considerably greater depths
of 3–18 km. As a result they may not be representative of the stress state
in the area of interest and at depths less than 2 km. Stress detachments
have been observed offshore (Williams et al., 2015) and proposed on-
shore (Evans, 1987) though detachments are not expected within the
study area.

5. Conclusions

Density log inversion methods show the vertical stress to be be-
tween 23 and 26 MPakm−1 for the two regions, with vertical stress
values two MPakm−1 higher in the Cheshire and Lancashire region to
the west of the Pennines when compared with East Yorkshire and North
Nottinghamshire region to the east. This trend is also reflected in the
lower bounds of Shmin calculated for the two regions with gradients of
17.42 MPakm−1 in Cheshire and Lancashire compared to 14.75
MPakm−1 in East Yorkshire and North Nottinghamshire.

Formation testing data have shown that the pore pressure is hy-
drostatic with a gradient of 10.19 MPakm−1 with little difference be-
tween the two regions. SHMax magnitude data were only available for
five locations across the two regions and more information is required
to better characterise it.

The combination of legacy data with newly calculated stress com-
ponent data highlights that within the two regions the faulting regime is
predominantly strike-slip. This has implications for borehole stability
and hydraulic fracturing operations. A strike-slip stress state implies
that any induced fractures will propagate vertically and will strike in
the orientation of SHMax (150.9° ± 13.1°; Kingdon et al., 2016).
Therefore horizontal boreholes should optimally be deviated SW-NE to
maximise the surface area of those fractures. This in turn has implica-
tions for borehole stability which will need to be monitored with great
care during the drilling process with particular attention paid to mud
weights etc. The regional-scale information available for stress field
characterisation described in this study is, however, constrained both
geographically and stratigraphically. This data is only indicative of the
subsurface stress within the areas of interest and is not predictive of the
principle stresses at greater depths. Detailed site specific data is re-
quired for a more detailed assessment of individual sites.

To gain a more complete understanding of the stress field requires
extended leak-off test data to provide better estimates of Shmin. When
combined with core, utilising borehole imaging for core log-integration
this would allow for a more detailed study of the magnitude of SHMax

and its variation with depth.
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