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Neodymium Evidence for Increased Circumpolar Deep
Water Flow to the North Pacific During the Middle
Miocene Climate Transition

Sev Kender'? (1), Kara A. Bogus™? (), Ty D. Cobb®, and Deborah J. Thomas®*

'Camborne School of Mines, University of Exeter, Penryn, UK, ?British Geological Survey, Keyworth, Nottingham, UK,
3International Ocean Discovery Program, Texas A&M University, College Station, TX, USA, “Department of Oceanography,
Texas A&M University, College Station, TX, USA

Abstract Low salinity surface water inhibits local deepwater formation in the modern North Pacific.
Instead, southern-sourced Circumpolar Deep Water (CDW) fills the basin, which is the product of water
masses formed from cold sinking centers in the Southern Ocean and North Atlantic. This CDW is responsible
for transporting a significant amount of global heat and dissolved carbon in the deep Pacific Ocean. The
history of its flow and the broader overturning circulation are widely assumed to be sensitive to climate
perturbations. However, insufficient records exist of CDW presence in the deep North Pacific with which to
evaluate its evolution and role in major climate transitions of the past 23 Ma. Here we report sedimentary
coatings and fish teeth neodymium isotope values—tracers for water-mass mixing—from deepwater
International Ocean Discovery Program Site U1438 (4.7 km water depth) in the Philippine Sea, northwest
Pacific Ocean. Our results indicate the water mass shifted from a North Pacific source in the early Miocene to a
southern source by ~14 Ma. Within the age model and temporal constraints, this major reorganization of
North Pacific water mass structure may have coincided with ice sheet build up on Antarctica and is most
consistent with an increased northward flux of CDW due to enhanced sinking of cold water forced by Antarctic
cooling. The northward extent of this flux may have remained relatively constant during much of the past 14 Ma.

1. Introduction

Overturning circulation in the modern Pacific Ocean is driven by Circumpolar Deep Water (CDW), which is
sourced from cold sinking centers around Antarctica and the North Atlantic (Ferrari et al, 2014; Talley,
2013; Talley et al., 2011). Low surface water density in the North Pacific precludes significant local convection,
and Pacific meridional overturning circulation (PMOC) is sluggish compared with the Atlantic (Ferrari et al.,
2014; Kawabe & Fujio, 2010). As CDW enters the Pacific at depth, it travels northward (Figure 1), gradually
exchanging with intermediate water before flowing back to the Southern Ocean as North Pacific Deep
Water (NPDW, sometimes referred to as Pacific Central Water) between 1 and 3 km depth (Kawabe & Fujio,
2010). Thus, CDW transports heat and dissolved carbon into the deep North Pacific, forming a major carbon
reservoir separated from the atmosphere (Ferrari et al., 2014). Changes in PMOC have the potential to impact
global temperature, moisture supply, and the carbon cycle, and there have been several attempts to
reconstruct PMOC over the Cenozoic to understand its past roles in climate change and tectonic evolution
(e.g., Butzin et al,, 2011). In particular, it is not yet known how PMOC responded to major climate transitions
such as the middle Miocene climate transition (MMCT, ~14 Ma).

Several neodymium (Nd) isotope and modeling studies have shown that the Pacific was characterized by
local overturning in the north as well as the south during much of the warmest intervals in the Paleogene,
with a major shift toward southern-sourced deep water in the north after ~40 Ma (e.g., Thomas, 2004;
Thomas et al., 2014). Modeling studies have suggested that Oligocene and Miocene ocean circulation was
different to present, with a higher salinity North Pacific due to an open Panama Strait and, perhaps in some
ways similar to the Paleogene, with possible local deepwater formation in the North (Butzin et al., 2011; von
der Heydt & Dijkstra, 2006). However, currently, there is a large data set gap with no water mass records from
the deep North Pacific with which to ascertain changes to the northward extent of CDW or local overturning
during the past 23 Ma. Existing North Pacific Nd isotope records from the Neogene are restricted to inter-
mediate water (<3 km depth) sites and deep (>5 km) central and South Pacific sites (Holbourn et al., 2013;
Le Houedec et al.,, 2016; Ling et al., 1997; Martin & Haley, 2000; van de Flierdt et al., 2004). These records
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Figure 1. Bathymetric location maps of core sites and major ocean currents. (a) Bathymetric map of the Philippine Sea with
location of IODP Site U1438 (red diamond; this study) and ODP Site 786 (blue circle). Modern Ocean currents are shown for
bottom water around 4,000 m (45.845 isobath; Kaneko et al., 2001), here referred to as Circumpolar Deep Water (CDW).
Numbers refer to Sv (volume water flow per second). The dashed lines and question marks denote uncertainty.

(b) Bathymetric map of the Pacific Ocean, with locations of sites discussed in the text, and the regional path of lower CDW
influence centered around 4,500-m water depth (Kawabe & Fujio, 2010).

exhibit an approximately unchanging isotopic offset from each other with depth throughout the Neogene,
attesting that there were distinct water mass signatures somewhat similar to today (van de Flierdt et al.,
2004). They show a long-term trend of gradually more radiogenic values at all depths from ~20-3 Ma,
suggested to be the result of the Isthmus of Panama closure (Bartoli et al., 2005; Duque-Caro, 1990) gradually
cutting off the supply of nonradiogenic Atlantic water into the Pacific (Duque-Caro, 1990; Martin & Haley,
2000). Alternatively, gradual Pacific Plate movement transporting all sites toward more proximal volcanic
centers in the West Pacific has been suggested by Le Houedec et al. (2016), but we note that western sites
do not show more radiogenic values than eastern sites of a similar water depth (e.g., Sites D11-1 and
CD29-2 have similar values; Ling et al., 1997).

To address this data set gap and gain insights into deep ocean circulation dynamics of the Neogene, we mea-
sured the Nd isotopic values of fossil fish teeth and ferromanganese oxyhydroxide coatings as a water-mass
tracer from IODP Site U1438 (Figure 1) in the Philippine Sea, NW Pacific (Arculus, Ishizuka, Bogus, & Expedition
351 Scientists, 2015; Arculus, Ishizuka, Bogus, Gurnis, et al., 2015), over the past 23 Ma. The site is located at
4.7 km depth and is currently bathed in CDW.

2. Materials and Methods
2.1. Site U1438

In 2014, IODP Expedition 351 cored Site U1438 (Arculus, Ishizuka, Bogus, & Expedition 351 Scientists, 2015).
The lithology of Site U1438 consists of pelagic noncalcareous abyssal clays with discrete tephra layers and
dust in the top ~160 m (Unit I, 26 Ma to Holocene), transitioning below into coarser grained tuffaceous muds
and sands that continue down to ~305 m (Unit II, 29 to 26 Ma). The age model is robust, with nearly all
paleomagnetic reversals present, and tied to radiolarian biostratigraphy in the middle Miocene (~15 Ma)
and nannofossil biostratigraphy in the late Oligocene (at 27 Ma; Arculus, Ishizuka, Bogus, & Expedition 351
Scientists, 2015; Figure 2).

Site U1438, currently at 4.7 km water depth, has been situated below the carbonate compensation depth
(CCD) for the past 26 Ma (modern CCD depth ~4.5 km) based on the lack of carbonate throughout the
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Figure 2. Age model for Site U1438, showing the position of paleomagnetic reversals (gray circles) and biostratigraphic
data (red = planktonic foraminifera; blue = radiolaria; black = calcareous nannofossils). The lithological color refers to
average grain size. See Arculus, Ishizuka, Bogus, and Expedition 351 Scientists (2015) for further details.

whole of Unit | (<0.5 wt%; Arculus, Ishizuka, Bogus, & Expedition 351 Scientists, 2015). The CCD has been
constrained to deeper than 4.5 km throughout the Oligocene and Miocene in the equatorial Pacific (Pélike
et al,, 2012), indicating that Site U1438 was monitoring >4.5 km water depth for the duration of our 23 Ma
record. The Philippine Sea Plate, upon which Site U1438 is located, was in a position about 6° southward
of its current location at ~20 Ma (Richter & Ali, 2015; Wu et al,, 2016) and has rotated steadily northward

since then (Figure 3).
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Figure 3. Bathymetric map showing the current position of Site U1438 (this
study) and other sites referred to in the text (yellow circles) and reconstructed
approximate site positions at 20 Ma relative to the Eurasian Plate (based on
plate reconstructions from Wu et al.,, 2016). The white lines indicate plate
boundaries. The red areas are various hot spot sites active before 30 Ma (Ishizuka
et al., 2013). For details of plate reconstruction methods see Wu et al. (2016).

2.2. Use of Nd Isotopes as a Water Mass Tracer

Dissolved Nd is a robust tracer of water-mass composition owing in
part to its short residence time (~0.3-1 ka, Tachikawa et al.,, 2003) rela-
tive to oceanic mixing (~1.5 ka). Seawater Nd isotope ratios
("3Nd/"**Nd normalized to bulk Earth, expressed as &g, De Paolo &
Wasserburg, 1976) are different in each of the modern ocean basins,
as gyg varies depending on the source region of fluvial discharge,
boundary exchange, and dust sources (Arsouze et al., 2007; Jones
et al,, 1994; Wilson et al., 2013). The North Pacific is surrounded by geo-
logically radiogenic sources, and thus, shallow waters have highly
radiogenic values (—2), while underlying water is less radiogenic
because of the influence of deeper waters from the Southern Ocean
(—8). Therefore, North Pacific Deep Water has a somewhat elevated sig-
nature (—5) due to gradual exchange with intermediate water, result-
ing in a reduced but robust eyg gradient that is clearly shown in
water column measurements (Amakawa et al.,, 2009) but has proved
challenging to model (Arsouze et al., 2007). One complication with
reconstructing water masses is the radiogenic pore water flux detected
in marginal settings, such as the Oregon Margin (Abbott et al,, 2015)
and Gulf of Alaska (Haley et al., 2014) up to ~100 km from the shelf,
where seawater gyg at least in the top 3.5 km water depth is elevated
above more typical open ocean Pacific values.

2.3. Analytical Procedures

We reconstructed past water mass signatures at Site U1438 by measur-
ing eng Of fossil fish teeth and ferromanganese oxyhydroxide coatings,
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Table 1

Site U1438 Nd Isotope Data From Fossil Fish Teeth

Core Section Depth (mbsf) Age (Ma) 143Nd/144Nd Std. error (abs) engd (1)

1H 4 2.90 0.15 0.512447 0.000008 —3.7+ 0.3
3H 4 22.60 1.20 0.512405 0.000009 —4.5+ 0.3
4H 4 32.10 1.76 0.512445 0.000006 —3.8% 0.2
4H cC 35.73 1.98 0.512443 0.000003 —3.7x 0.1
5H 4 41.60 2.32 0.512458 0.000004 —3.5+ 0.2
5H cC 44.89 247 0.512444 0.000003 —3.8%= 0.1
7H 4 60.60 3.54 0.512451 0.000007 —3.6x 0.3
7H CcC 64.09 3.81 0.512469 0.000002 —3.3% 0.1
7H cC 64.09 3.81 0.512491 0.000012 —2.8% 0.5
8H 2 67.07 4,05 0.512503 0.000009 —2.6+ 0.3
8H 3 68.58 4.16 0.512444 0.000006 —3.7+ 0.2
9H 4 79.60 5.14 0.512461 0.000005 —34+ 0.2
10H 2 85.00 6.00 0.512411 0.000003 —44+ 0.1
11H 7 102.17 9.31 0.512416 0.000003 —4.3+ 0.1
12H 4 108.05 10.69 0.512417 0.000003 —4.2+ 0.1
12H CcC 111.97 11.63 0.512384 0.000010 —4.9+ 0.4
13H 4 117.55 12.73 0.512502 0.000006 —2.6+ 0.2*
13H 4 117.55 12.73 0.512398 0.000006 —4.6x 0.2
13H CcC 121.37 13.69 0.512385 0.000004 —4.8+ 0.2
15H 4 136.42 16.49 0.512417 0.000007 —4.2+ 0.3
15H cC 139.64 17.49 0.512415 0.000008 —4.2+ 0.3
15H CC 139.64 17.49 0.512416 0.000004 —4.2+ 0.2
16H CcC 148.96 20.40 0.512427 0.000009 —4.0+ 0.4
17H 5 157.05 23.23 0.512456 0.000005 —34+ 0.2

*Data point not shown on Figure 5 after repeating. It is assumed reworked or possibly affected by dispersed ash.

which record the isotopic value of bottom water at the sediment surface (Reynard et al., 1999). The fossil fish
teeth and teeth debris collected from Site U1438 sediment samples were prepared using the general
methods of Basak et al. (2011) and Xie et al. (2012). To isolate the teeth/debris, bulk sediment was
disaggregated and washed over a 63-um sieve. The retained material was dried overnight in an oven
(50°C). For analysis, approximately 15-30 specimens per sample were handpicked using a binocular

microscope and fine brush. The specimens were then washed 3 times with ultrapure water (Milli-Q).

For Fe-Mn oxyhydroxide coating analysis, bulk samples were dried overnight and were subsequently pulver-
ized and homogenized with an agate mortar and pestle. These homogenized samples were decarbonated for
2 hr using sodium acetate buffered acetic acid solution that was precleaned in cation exchange resin. The
remaining material was washed 3 times with Milli-Q. To reduce the Fe-Mn phases, the oxide fraction was

Table 2

Site U1438 Nd Isotope Data From Fe-Mn Oxyhydroxide Coatings

Core Section Depth (mbsf) Age (Ma) TBNd/ *Nd Std. error (abs) eng (1)

1H ccC 7.19 0.36 0.512430 0.000004 —4.1+ 0.2
5H ccC 44.89 247 0.512443 0.000003 —3.8+ 0.1
9H cC 83.59 5.77 0.512431 0.000009 —4.0+ 0.3
9H cC 83.59 5.77 0.512394 0.000005 —4.7+ 0.2
10H cC 91.12 7.06 0.512429 0.000004 —4.0+ 0.2
10H cC 91.12 7.06 0.512413 0.000002 —4.3+ 0.1
11H 7 102.17 9.31 0.512419 0.000004 —4.2+ 0.1
12H cCc 111.97 11.63 0.512398 0.000002 —4.6+ 0.1
12H cC 111.97 11.63 0.512384 0.000003 —4.8+ 0.1
13H cC 121.37 13.69 0.512383 0.000002 —4.8+ 0.1
13H cc 121.37 13.69 0.512378 0.000003 —4.9+ 0.1
14H cC 127.88 14.84 0.512452 0.000002 —3.5% 0.1
15H CcC 139.64 17.49 0.512412 0.000004 —4.2+ 0.2
15H cCc 139.64 17.49 0.512411 0.000003 —4.2+ 0.1
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Table 3

Site U1438 Nd Isotope Data From Detrital Alumino-Silicates

Core

Section

Depth (mbsf) Age (Ma) 143Nd/1 “Nd Std. error (abs) end (1)

12H
14H
16H

CcC
CcC
CcC

111.97 11.63 0.512070 0.000016 =111+ 0.6
127.88 14.84 0.512459 0.000004 —3.5+ 0.1
148.96 2040 0.512077 0.000011 —10.7% 0.4

leached in 14 ml of 0.02 M hydroxylamine hydrochloride (HH) in 20% acetic acid buffered to a pH of 4. The
samples in HH solution were placed on a rotary shaker and left for 2 hr. Once the samples were leached, they
were centrifuged, the supernatant decanted into a separate clean tube and centrifuged for an additional 1 hr,
then decanted and dried. The samples were digested in concentrated HNO3 overnight and then placed in 2 N
HNOs for column chemistry.

Given the presence of disseminated ash throughout the sediment sequence, we also analyzed a few, tar-
geted samples to characterize the detrital sediment (alumino-silicate fraction) Nd isotopic composition.
The detrital silicate fraction was taken from the remaining material once the supernatant was decanted.
These were placed back in HH for 1.5 hr and rinsed 3 times with Milli-Q before being left for 4 hr in HH.
The samples were then rinsed 3 times with Milli-Q and dried overnight. The dried samples were homoge-
nized and placed in 23 M HF for ~5 days until completely digested. They were dried down and placed in con-
centrated HNO3-HCI-HNOj3 before finally being placed in 2 N HNOs in preparation for column chemistry.

All samples were then dissolved in 500 pL of 2 N HNOs. The rare Earth elements (REEs) were isolated using Tru
Spec column chemistry (isolating the REE suite from the bulk sample) and the samples collected with 3 ml of
0.05 N HNOs in Teflon beakers and dried down. The samples were then dissolved in 200 pL of 0.18 N HCl and
placed on a 100°C hotplate overnight. The Nd fraction was isolated from the bulk REE via Ln Spec column
chemistry by sequentially separating out the bulk REE. Once dried down, the remaining Nd portion was
loaded onto a degassed rhenium filament (0.76 mm width, 25 um thickness) using 1 pL of 2 N HCl and ana-
lyzed on a Thermo Scientific Triton thermal ionization mass spectrometer as Nd+. The ion beams analyzed ran-
ged from 1to 10 x 10™"" A, depending on the amount of Nd loaded and geometry of the double filament
assembly, which was not tightly controlled (Pin et al., 2014). A run consisted of blocks of 16, each block cycled
8 times (collecting individual measurements), and a background measurement every 2 blocks; the gain was
recalibrated after every 5 blocks. External precision was 15 ppm (2c) with a value of 0.512104 based upon ana-
lysis of JNdi-1 standard (n = 34). Samples were only used if the absolute error was <107°. Values higher than
this were discarded, with the exception of 7HCC; the eyqg errors of these samples were all within acceptable
range (Tables 1-3). Several duplicates (from different samples) were run throughout to ensure reproducibility.

2.4. Calculation of gygy(t)

-4.2
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€Nd 1) (coatings)

4.8

-4.6 1
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The gng (t) values were calculated using the age model of Site U1438
(Arculus, Ishizuka, Bogus, & Expedition 351 Scientists, 2015) and
representative '*’Sm/'**Nd values. For fish teeth/debris eng(t), a
1475m/"**Nd value of 0.131 was used (e.g., Thomas, 2004). Based on
the average Fe-Mn crust values in Ling et al. (1997), a '*’Sm/"**Nd
value of 0.115 was used for the Fe-Mn oxide coatings. A '¥’Sm/"**Nd
value of 0.109 was used for the detrital silicate gyg(t) values established
from upper crustal average concentrations of Sm and Nd (Taylor &
McLennan, 1985). The fish teeth/debris and Fe-Mn coating values were

m
t

plotted together when they were analyzed from the same sample and

'/.

show similar values (R* = 0.92; Figure 4).

Figure 4. Comparison of gng(t) from fossil fish teeth and of Fe-Mn oxyhydroxide

1 1 1 1 1 1 1 1
-52 -5 -48 -46 -44 42 -4 -3.8 -3.6
‘C'Nd(t) (fish debris)

coatings in the same samples.

3. Results and Discussion
3.1. Isotope Values and Potential Ash Influence
The gng values (Tables 1 and 2) at Site U1438 fluctuated from —3.4 to

—4.2 between 15 and 23 Ma, before dropping by 1.2 ¢ units to —4.7
by 14 Ma (Figure 5). Over the next 9 Ma, gyg Vvalues exhibit modest
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Figure 5. Summary of Philippine Sea Site U1438 g\g data (red diamonds; 4.7-km water depth; this study) against other
records. (a) Approximate time period over which the Isthmus of Panama closed is after Duque-Caro (1990). (b) The
global deep ocean benthic foraminiferal oxygen isotope composite (Zachos et al., 2001). (c) Various gng data from
Circumpolar Deep Water equatorial Pacific sites D137-1 (lower pink circles with 2-point smoothing spline; van de Flierdt
et al., 2004) and VA13-2 (middle black circles with 2-point smoothing spline; Ling et al., 1997); North Pacific Deep Water
North Pacific sites D11-1 (Ling et al., 1997), CD29-2 (Ling et al., 1997) and 786A (Martin & Haley, 2000; upper blue dots with
5-point smoothing spline); and equatorial Pacific Site 807A (green crosses; Le Houedec et al., 2016). The yellow bar indicates
modern seawater gng at 5-km water depth from West Pacific sites LM-2, LM-6/11 (Amakawa et al.,, 2009). The Miocene
“climatic optimum” is shown as a vertical orange bar during minima in Neogene deep ocean oxygen isotopes, and the
middle Miocene climate transition (MMCT) is shown as a vertical dashed line at 13.8 Ma (Zachos et al., 2001).

variability (0.5 units) and show a gradual long-term increase to —4. From 5 Ma toward the most recent
samples, long-term gyq values increase to around —3.5 but show greater variability ranging between —2.7
and —4.5 units. The highest values occur in the Pliocene at ~4 Ma.

The active eruptive phase of the proximal and extinct proto-lzu-Bonin volcanic arc—the Kyushu-Palau Ridge
(Figure 1a)—had ended by the late Oligocene (Arculus, Ishizuka, Bogus, Gurnis, et al., 2015; Ishizuka et al.,
2011), as evidenced at Site U1438 by the lithological change from Unit | to Il (Figure 2) and the drastic
change in sedimentation rate. We regard it as unlikely that upward flow of pore waters from the underlying
>1-km-thick volcaniclastic sediment package (Units Il to IV; see Arculus, Ishizuka, Bogus, & Expedition 351
Scientists, 2015), deposited by the active proto-lzu-Bonin arc, could have been extensive. Pore water
chemistry results show the boundary between Units | and Il (at 160 mbsf; Figure 2) is a very low-permeability
clay-rich layer (Arculus, Ishizuka, Bogus, & Expedition 351 Scientists, 2015). However, background Neogene
volcanism within the Philippine Sea region had the potential to contribute sedimentary radiogenic Nd to
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Figure 6. The gyg(t) of fish teeth and Fe-Mn oxyhydroxide coatings from
Philippine Sea sites U1438 (this study) and nearby 786A (Martin & Haley, 2000),
compared with ash layers from U1438. Note that none of the samples from
U1438 (this study) was taken directly at ash layers.

Site U1438 through ash. Although we avoided sampling the discrete
ash layers at our site (37 ash beds over 23 Ma; Figure 6), studies have
shown that dispersed ash occurs in deepwater sites east of the Izu-
Bonin Arc (Scudder et al., 2014; Figure 1a). Dispersed ash in Unit | could
hypothetically have impacted the Nd signal of the fish debris and Fe-
Mn coatings by either postdepositional authigenic growth in ash-rich
pore waters (Martin & Haley, 2000), ash-rich pore water migration into
oceanic bottom waters (Abbott et al.,, 2015; Martin & Haley, 2000), or
through oceanic exchange with dissolving dust or volcanic sediments
on the seafloor (Wilson et al., 2013). The water column gyg profile in
the Oregon Basin, NE Pacific (black symbols, Figure 7a), has been
argued as partially controlled by upward flux of pore fluids (Abbott
etal, 2015), a process that could account for the positive offset of these
(and samples from the Gulf of Alaska; white symbols, Figure 7a) from
values more typical of the North Pacific (pink shading, Figure 7a).
Although Site U1438 in the Philippine Sea is more distal from the con-
tinental shelf (~400 km) than these marginal sites, there is the possibi-
lity that pore water ash could impact bottom water gyg values.
However, gng values at Site U1438 over the last 24 million years are
mostly lower than either the Gulf of Alaska or Oregon Basin (red sym-
bols, Figure 7a) and more in line with typical water values at 4.7 km

depth from a range of stations in the North Pacific. There is, however, a need for future pore water studies
on NW Pacific margin sediments and water and at depths greater than 3 km.

To consider the Nd isotopic composition of the alumino-silicate fraction (and hence any potential ash that
might contribute dissolved Nd to the pore waters or overlying bottom waters), we measured the alumino-
silicate component of several targeted samples in the middle Miocene section of most significant change
(Table 3). The extracted alumino-silicate fractions from samples at 11.63, 14.85, and 20.4 Ma have gyq values
of —11.1, —3.5, and —10.7, respectively (triangles in Figure 7b). These values generally reflect continental
weathering inputs (possibly dust from East Asia) with the exception of —3.5, which indicates a proportion
of andesitic-type sediment. While the alumino-silicate value of —3.5 is similar to the fish tooth analysis
recorded at this interval, it is much lower than the sediment (and pore water) values at the Oregon margin
(ranging from —2 to O; Abbott et al., 2015) considered necessary to positively offset bottom waters by ~1 ¢
unit from typical Pacific values at those depths (—3.5 to —3). Therefore, if the fish tooth sample at
14.85 Ma was controlled by radiogenic sediment and associated pore water flux, we would expect to see
an alumino-silicate fraction value higher than the fish teeth value.

Overall, the gng of sediment from ash-rich deposits proximal to volcanic island arc centers of the North Pacific
is much higher (most commonly ranging from —2 to +8 ¢ units; Figure 7b) than our alumino-silicate samples.
The range of gyg values at U1438 is more typical of Pacific deepwater compositions (box-and-whisker plot,
Figure 7b), indicating an overriding water mass control on the fish teeth samples at U1438. This lack of evi-
dence for a large ash influence at U1438 is also indicated by the broadly similar values and trends recorded
at nearby Site 786 (Martin & Haley, 2000; Figures 1 and 6), which is also far lower than for typical Pacific vol-
canic margin sediments (Figure 7b) and Oregon Margin sediments and pore waters. The most radiogenic
values occur in the Pliocene interval, which does coincide with the greatest number of discrete ash layers
(Figure 6), and we cannot with our data discount a volcanic ash influence here. However, these elevated
Pliocene values are also seen at distal Site 807 (Le Houedec et al., 2016; Figures 1 and 5) and so we suggest
they may be reflecting changing seawater values in the West Pacific region. Although hot spot activity in the
Philippine Sea (e.g., Benham Rise; Figure 3) had ended by 35 Ma (Ishizuka et al.,, 2013), we cannot rule out the
influence of volcanic activity in that region.

3.2. Water Mass Changes During the Neogene

When compared with other available data from Pacific Ocean sites (Figure 5), with no clear ash influence
(from comparison with ash-rich zones, Figure 7), our results from U1438 signify likely changing deepwater
sources to the Philippine Sea as the predominant control on gygy values. North Pacific sites from ~10 to
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Figure 7. The gng (1) of fish teeth and Fe-Mn oxyhydroxide coatings from Site
U1438 (this study) compared with various modern North Pacific Ocean water
and sediment samples. (a) Modern water sample gng data (black symbols, with
7-point black smoothing spline and +1c gray area) from the marginal Gulf of
Alaska (Haley et al., 2014) and Oregon margin (Abbott et al.,, 2015). Data show a
significant positive offset from NE Pacific modeled seawater (dark pink zone;
Abbott et al.,, 2015) and from measured NW and NE Pacific seawater (light pink
zone; sites BO-3, BO-5, LM-2, LM-6/11, TPS 24 271-1, and TPS 24 76-1; Amakawa
et al., 2009). Site U1438 data, spanning the last 24 Ma, largely sit within the
expected range of seawater. (b) Modern eng values for sediment collected close
to island arcs (Jones et al., 1994), considered influenced by radiogenic volcanic
material. The gng (t) of fish teeth and Fe-Mn oxyhydroxide coatings from Site
U1438 (red box-and-whisker), and detrital alumino-silicates (black triangles), do
not show a strong radiogenic signal, but rather a typical range for intermediate
and deep North Pacific seawater (shown as pink bar).

30°N (Ling et al,, 1997; Martin & Haley, 2000) at intermediate NPDW
depths (ranging from 1.8 to 3.1 km) exhibit generally higher radiogenic
values over the past 25 Ma, with averages from —4 to —3 (Figure 5c).
Equatorial Pacific Site 807 is monitoring a more southerly extent of
NPDW today (2.8 km), and its greater variability (averages from —4.5
to —2.5) has been interpreted as due to alternating contributions of
Upper CDW and NPIW (Le Houedec et al., 2016). We observe the major-
ity of the Site 807 record from 25 Ma to Recent overlaps with NPDW
end member values (Figure 5), although some of the less radiogenic
values may not represent pure NPDW. Equatorial Pacific Site VA13-2
(4.8 km water depth; Ling et al., 1997), which does monitor CDW today
(Figure 8a), exhibits relatively less radiogenic values with gyg ranging
from —5.5 to —4 (Figure 5). Finally, Equatorial Pacific Site DC137-01
(van de Flierdt et al., 2004), at an abyssal depth of 7.2 km and most
impacted by CDW today (Figure 8a), shows the least radiogenic eng
values ranging from —6.5 to —5.5 since 25 Ma (Figure 5).

With the Neogene evolution of Pacific intermediate and deepwater
mass values thus constrained (Figure 5), the gyg results from U1438
can be seen as indicating changes in the relative contribution of CDW
to the deep Philippine Sea. Before ~14.8 Ma (Figure 8c), Site U1438
was bathed in local intermediate NPDW (gng Values closer to intermedi-
ate water), and between ~13.7 Ma and present (Figure 8b), CDW pene-
trated further northward into the deep North Pacific, lowering eng
values. Our results therefore indicate a major deep ocean reorganiza-
tion occurred in the Pacific Ocean between 14.8 and 13.7 Ma. This gyg
shift of >1 is comparable to the 1.5 & unit shift of NPDW in the North
Pacific during the Paleogene, interpreted as caused by local deepwater
formation (Thomas, 2004). The Philippine Sea Plate modest 6° of lati-
tude gradual movement northward away from the CDW source over
the last 20 Ma (Figure 3) could not explain the negative gyg changes
at Site U1438, as this movement would have distanced Site U1438 from
the less radiogenic southern-sourced water mass.

3.3. Tectonic Influences

Between ~15 and 23 Ma, our results show that, remarkably, the deep
NW Pacific (>4.7 km) was bathed in NPDW (Figure 8c), not CDW as it
was after 14 Ma (Figure 8b) and as it is today (Figure 8a). Ocean circula-
tion modeling by Butzin et al. (2011) and von der Heydt and Dijkstra
(2006) shows that a continental configuration change from the
Oligocene to Miocene, which included a more restricted Isthmus of
Panama (Figure 5a) and less redistribution through the Tethys circume-
quatorial flow, caused North Pacific overturning to become more lim-

ited and southern component deepwater to penetrate further northward into the Pacific. Thus, if this
modeling is correct, it is possible that the enhanced CDW flux since 14 Ma was the result of restricted
Atlantic high salinity inflow, and lower North Pacific salinity causing stifled North Pacific overturning.
However, if this process does explain the gradual increase in both deep and intermediate Pacific Ocean water
€ng (€.9., Martin & Haley, 2000), it is then less able to explain the abrupt evolution of Site U1438 gyq values as
they show a different trend to other sites (Figure 5). This leads us to favor nontectonic processes for the
increased CDW flux to the Philippine Sea in the middle Miocene.

Another significant tectonic change impacting the Pacific, the closure of the Indonesian Gateway by 14 Ma
(Gourlan et al., 2008), prevented the flow of less radiogenic water (gng below —7) into the Pacific and could
thus have resulted in a trend toward more radiogenic values in the Pacific. Therefore, this gateway closure
could not have directly caused the negative gyq shift at U1438. We note, however, that it is possible the
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Figure 8. Pacific Ocean profiles through time, with locations of major water
masses and sites discussed in the text. (a) Modern Pacific Ocean seawater 8'3¢
profile (based on GLODAP data set; Key et al., 2004), overlaid with modern
ocean deepwater currents and water masses modified from Kawabe and Fujio
(2010), and the position of core sites discussed in the text. (b) Schematic
representing water mass structure in the Pacific Ocean after the middle Miocene
climate transition at ~14 Ma. (c) Before ~14 Ma. NPDW: North Pacific Deep
Water; CDW: Circumpolar Deep Water; AAIW: Antarctic Intermediate Water.

diversion of Indian Ocean deepwater southward around Australia
(Gourlan et al., 2008) could have had some unconstrained influence
on source waters for CDW. In the West Pacific, Le Houedec et al.
(2016) hypothesize irregular seafloor tectonic reorganization to explain
the pseudo cyclic 7-11 Ma variations in gyq at Site 807 from 35 Ma
onward. If tectonic variations did occur, they may have controlled the
rate of margin volcanism in the West Pacific. Although our record is
of lower resolution than 807, there are similar changes to U1438 from
14 Ma onward (Figure 5), in particular a positive excursion in the
Pliocene, which may be indicative of greater margin activity around
the Philippine and Japan margins (Le Houedec et al., 2016). However,
as the relatively abrupt negative gyg shift to Site U1438 at ~14 Ma is
counter to the more positive NPDW records (including Site 807), regio-
nal margin activity does not appear to be a plausible cause of the less
radiogenic shift at ~14 Ma.

3.4. Antarctic Glaciation at 13.8 Ma

We conclude that the rather abrupt appearance of CDW in the
Philippine Sea between 14.8 and 13.7 Ma could not have been caused
by gradual tectonic closure of the Isthmus of Panama or the closure of
the Indonesian Gateway (which would have elevated West Pacific eng
values). An alternative explanation is Antarctic glaciation at 13.8 Ma,
increased deepwater formation around Antarctica, and increased
export of CDW further north into the Pacific. The approximate temporal
coincidence of increased CDW flux to the Philippine Sea with the rapid
(<100 ka) ice sheet build up on East Antarctica and sea level fall (Lear
et al, 2010) at the MMCT (Figure 5) indicates that greater production
of CDW may have resulted from Antarctic processes, although we
acknowledge that higher resolution records are needed to test this
temporal link. Greater production of CDW in the Southern Ocean dur-
ing the MMCT was interpreted from increased glacial offsets in §'20
with depth at various sites east and west of New Zealand (Flower &
Kennett, 1995), and significantly strengthened overturning circulation
in the Southern Ocean during the MMCT was modeled from sea level
fall, ice sheet growth, and CO, reduction (Huang et al,, 2017). In that
study, Antarctic ice sheet growth, declining temperatures, and a
greater extent of sea ice particularly in the Ross and Weddell Seas pro-
moted AABW formation during the MMCT (Huang et al., 2017). Despite
no change in gyg at equatorial Pacific intermediate sites over the
MMCT, and a modest positive shift in anomalously unradiogenic inter-
mediate water in the South China Sea (Ma et al., 2018), Holbourn et al.

(2013) suggested that enhanced benthic §'3C gradients between Pacific intermediate and deep sites were
caused by an invigorated PMOC at 13.8 Ma and that increased benthic §'20 offsets were caused by cooling
NPDW. In the context of our new eyg data, the rapidity of these 8'>C and 5'20 changes and approximate coin-
cidence with the MMCT (Holbourn et al., 2013) suggests that the CDW expansion detected at Site U1438 was
possibly caused by enhanced CDW formation and northward flux in response to Antarctic glaciation since the
MMCT, the largest Antarctic climate switch of the past 25 Ma.

4. Conclusions

New Nd isotopic data from IODP Site U1438 in the Philippine Sea (4.7 km water depth) provide the first
constraints on the evolution of deep water in the abyssal North Pacific over the Neogene. Although there
is a need for future studies of NW Pacific marginal marine sediments and pore waters near volcanic cen-
ters, comparisons with available gyy data from these settings, and from open Pacific sites, suggest that
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changing ocean water values rather than pore waters were the principal driver of the data set. Our results
indicate that the water source for the deep Philippine Sea remained relatively stable for the majority of the
last 23 Ma, as gng Values follow the gradual trends that are present in both intermediate and deepwater
sites in the Pacific Ocean attesting to its long term stratification. The gradual increase toward more radio-
genic values in all Pacific intermediate and deep sites from ~15 to ~5 Ma may be due to a gradual decline
in Atlantic Ocean inflow through a closing Isthmus of Panama (Martin & Haley, 2000). However, a unique
change in gyg at Site U1438, expressed as a secular drop of 1 & unit compared to other Pacific sites,
occurred between 14.8 and 13.7 Ma which signifies a likely northward expansion of CDW into the abyssal
Philippine Sea. It is possible that a stifled inflow of saline Atlantic water through a restricting Isthmus of
Panama reduced North Pacific surface water salinity and inhibited local deepwater formation. However,
the coincidence of this increased northward flux of CDW with global cooling and ice sheet expansion at
the MMCT (13.8 Ma) could be explained by enhanced formation of CDW source waters in a cooling
Southern Ocean (Huang et al.,, 2017) causing a greater flow of CDW into the deep North Pacific. Higher
temporal resolution records from other North Pacific sites are now required to constrain the timing and
extent of this expanded CDW flow. A smaller change in our records occurred at 5 Ma, with a 0.5 ¢ unit
increase that is mirrored in West Pacific Site 807, and could be a regional radiogenic water mass signal
or possibly the coincidental influence of dispersed ash. Our records suggest that PMOC responded to
the most significant long-term climate change event of the Neogene. By contrast, outside of this interval,
PMOC appears to have been relatively stable, within the resolution and sensitivity of the records, for much
of the Neogene. Our results have implications for future studies aiming to constrain global carbon cycle
changes over the MMCT, as an increased carbon-rich CDW flux to the deep North Pacific may have
replaced local NPDW ventilation before 14 Ma.
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