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     Abstract 
    1  .  Seed dispersal is an essential, yet often overlooked process in plant ecology and 

evolution, affecting adaptation capacity, population persistence and invasiveness. 
A species’ ability to disperse is expected to covary with other life-history traits to 
form dispersal syndromes. Dispersal might be linked to the rate of life history, fe-
cundity or generation time, depending on the relative selection pressures of bet-
hedging, kin competition or maintaining gene flow. However, the linkage between 
dispersal and plant life-history strategies remains unknown because it is difficult 
to observe, quantify and manipulate the influence of dispersal over large spati-
otemporal scales. 

  2  .  We integrate datasets describing plant vital rates, dispersal and functional traits 
to incorporate dispersal explicitly into the rich spectra of plant life-history strate-
gies. For 141 plant species, we estimated dispersal ability by predicting maximum 
dispersal distances using allometric relationships based on growth form, dispersal 
mode, terminal velocity and seed mass. We derived life-history traits from matrix 
population models parameterized with field data from the  COMPADRE  Plant 
Matrix Database. We analysed the covariation in dispersal ability and life-history 
traits using multivariate techniques. 

  3  .  We found that three main axes of variation described plant dispersal syndromes: 
the fast-slow life-history continuum, the dispersal strategy axis and the reproduc-
tive strategy axis. On the dispersal strategy axis, species’ dispersal abilities were 
positively correlated with aspects of fast life histories. Species with a high net re-
productive rate, a long window of reproduction, low likelihood of escaping senes-
cence and low shrinkage tendencies disperse their seeds further. The overall 
phylogenetic signal in our multidimensional analyses was low (Pagel ’ s λ < 0.24), 
implying a high degree of taxonomic generality in our findings. 

  4  .   Synthesis . Dispersal has been largely neglected in comparative demographic stud-
ies, despite its pivotal importance for populations. Our explicit incorporation of 
dispersal in a comparative life-history framework provides key insights to bridge 
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     1  |   INTRODUC TION 

 The plant kingdom, with over 350,000 extant species (Paton et al., 
  2008  ), has evolved a myriad of strategies to overcome the implica-
tions of one of its main features: sessility. By far, the most striking 
strategy to overcome this limitation is the dispersal of propagules 
such as seeds (Howe & Smallwood,   1982  ; Janzen,   1970  ; Levin, 
Muller-Landau, Nathan, & Chave,   2003  ). Seed dispersal, the move-
ment of seeds away from the parent, is key in ecological and evo-
lutionary processes (Clobert, Baguette, Benton, & Bullock,   2012  ). 
Plants exhibit a variety of different methods to disperse their 
seeds—ingestion by animals, wind and ballistic are a few examples; 
these are inferred from fruit and seed morphology and are referred 
to as dispersal modes (Howe & Smallwood,   1982  ). Along with dis-
persal, plants have evolved a myriad of strategies to survive, grow 
and reproduce in a variety of habitats (Salguero-Gómez et al.,   2016  ; 
Silvertown, Franco, & Harper,   1997  ). Only by understanding how 
dispersal covaries with life-history traits will researchers gain a more 
complete understanding of plant life-history strategies and the abil-
ity of plant species to respond to environmental change (Ronce & 
Clobert,   2012  ; Travis et al.,   2013  ; Uemura & Hausman,   2013  ). In gen-
eral, however, seed dispersal has traditionally been excluded from 
assessments of plant life-history evolution (Bonte et al.,   2012  ). 

 Several evolutionary pressures may have selected for increased 
dispersal of seeds (Levin et al.,   2003  ). Theoreticians have used evo-
lutionary models to investigate why and how far species disperse 
(Duputié & Massol,   2013  ). Results of models show that kin compe-
tition (Hamilton & May,   1977  ; Hovestadt, Messner, & Hans,   2001  ; 
Rousset & Gandon,   2002  ; Starrfelt & Kokko,   2010  ), specialized nat-
ural enemies (Muller-Landau, Levin, & Keymer,   2003  ), and spatial 
and temporal unpredictability in the environment (e.g. bet-hedging 
Gadgil,   1971  ; McPeek & Holt,   1992  ; Snyder,   2011  ) can all select for 
a higher propensity of organisms to disperse and for longer dispersal 
distances. 

 For plants, seed dispersal can influence fitness by determin-
ing the seedscape, that is, the abiotic and biotic environment that 
 affects all later stages of recruitment, from seedling establishment 
to future reproduction (Beckman & Rogers,   2013  ). Where a seed 
is deposited determines the degree of competition (Loiselle,   1990  ; 
Spiegel & Nathan,   2012  ), the presence of natural enemies that con-
sume plants (Connell,   1971  ; Janzen,   1970  ) and the suitability of the 
environment for survival and growth (Howe & Miriti,   2004  ; Schupp, 

Jordano, & Maria Gomez,   2010  ). The spatial template created by 
dispersal influences the persistence of populations and metapopula-
tions (Jordano,   2017  ), and long-distance dispersal drives the spread 
of populations into new areas (Kot, Lewis, & van den Driessche,   1996  ; 
Neubert & Caswell,   2000  ), which is important for tracking changing 
climates (Bullock et al.,   2012  ; Loarie et al.,   2009  ) and species inva-
sions (Buckley et al.,   2005  ; Skarpaas & Shea,   2007  ). Dispersal is also 
central to the genetic diversity of populations (Hamrick, Murawski, 
& Nason,   1993  ) and their ability to adapt to new conditions (Kremer 
et al.,   2012  ). Consequently, for sessile organisms such as plants, their 
ability to disperse and adapt to new environments will influence a 
species’ persistence and migration into new areas under global 
change. 

 The repertoire of life-history traits in the plant kingdom is truly 
vast. Differential investments in maintenance result in mean life ex-
pectancies that range between weeks (e.g.  Sanguinaria ,  Arabidopsis ) 
and thousands of years (e.g.  Pinus longaeva ,  Lomantia tasmanica ; 
Peñuelas & Munné-Bosch,   2010  )  . Similarly, investments in repro-
duction can range widely too, with short-lived (e.g.  Bromus tec-
torum ) and perennial, semelparous species (e.g.  Agave ) at one end 
of the spectrum and highly iteroparous species (e.g.  Viola ), repro-
ducing several times during their life spans, at the other extreme, 
with masting somewhere in between (Piovesan & Adams,   2005  ). 
Another important reproductive trait is the number of propagules 
per individual and annum, ranging between a handful ( Cocus nucif-
era ) to millions (orchids), or the rate of individual growth, which can 
range between 91 cm/day (bamboos) or 10 cm/day (hybrid Poplar) to 
merely 10.2 cm over 150 years ( Thuja occidentalis ). Together, how an 
organism invests its limited resources into maintenance, reproduc-
tion and growth defines the type of life-history strategy that it will 
follow during its lifetime. Using matrix population models (MPMs) 
from hundreds of plant species in the COMPADRE Plant Matrix 
Database (Salguero-Gómez et al.,   2015  ), Salguero-Gómez et al. 
(  2016  ) demonstrated that these life-history strategies can be ade-
quately characterized according to two universal axes of variation: 
the pace of life of organisms (i.e. fast-slow continuum, Stearns,   1999  ) 
and their mode of reproduction (e.g. how intensively, frequently and 
for how long reproduction lasts). 

 It has been argued that dispersal may covary with life-history 
traits to produce integrated strategies or vary independently of 
other life-history traits (Bonte & Dahirel,   2017  ). Following Ronce 
and Clobert (  2012  ), we refer to the covariation of dispersal with 

the gap between dispersal ecology and life-history traits. Species with fast life-his-
tory strategies disperse their seeds further than slow-living plants, suggesting that 
longer dispersal distances may allow these species to take advantage of habitats 
varying unpredictably in space and time as a bet-hedging strategy.      

   K E Y W O R D S 

comparative demography ,    dispersal syndromes ,    fast-slow continuum ,    functional trait ,    life-
history strategy ,    life-history trait ,    matrix population model ,    phylogenetic comparative analysis     
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multiple phenotypic traits, including life-history or behavioural 
traits, as dispersal syndromes, and reserve dispersal mode for the 
method of dispersal inferred from fruit or seed morphology. While 
examining the covariation of dispersal with life-history traits, or 
lack thereof, cannot distinguish the underlying mechanisms or its 
ultimate causes, evaluating the presence or absence of dispersal 
syndromes in plants can help elucidate the joint evolution of traits 
among species and the demographic consequences of dispersal 
(Ronce & Clobert,   2012  ). The relationship between dispersal and 
plant life-history strategies has remained unclear to date due to 
the fact that quantifying seed dispersal empirically is challeng-
ing, and hence, data on dispersal tends to be limited. However, 
the availability of large volumes of open-access data on demogra-
phy (Salguero-Gómez et al.,   2015  ), dispersal (Bullock et al.,   2017  ; 
Tamme et al.,   2014  ) and functional traits (Kattge et al.,   2011  ) is 
increasing. 

 By synthesizing available data on life-history traits, as derived 
from empirical stage-based demographic models, with recent ap-
proaches to predict dispersal ability from plant traits, we incorporate 
dispersal ability into analyses of life-history strategies and examine 
whether dispersal ability covaries with life-history traits, and if so, 
how. If dispersal is independent of life-history traits, we predict an 
independent axis of variation describing dispersal will be added to 
the existing axes describing the fast-slow continuum and the mode 
of reproduction. However, if dispersal ability covaries with life-his-
tory traits, then we predict that the axes of variation describing 
life-history strategies will shift with the inclusion of dispersal. We 
evaluate the following hypotheses regarding how dispersal will co-
vary with life-history traits:

   1  .  If dispersal evolved as a bet-hedging strategy to take advantage 
of habitats that vary unpredictably in space and time, we pre-
dict dispersal distance to correlate positively with life-history 
traits indicative of fast life-history strategies (e.g. short gen-
eration times, high investments on reproduction, high individual 
growth rates; Baker & Stebbins,   1965  ; McPeek & Holt,   1992  ; 
Roff,   1975  ; Snyder,   2011  ). 

  2  .  We expect dispersal distance to correlate positively with fecun-
dity, based on classical theories that predict selection for disper-
sal to escape kin competition under the source parent tree 
(Hamilton & May,   1977  ; Hovestadt et al.,   2001  ; Rousset & 
Gandon,   2002  ; Starrfelt & Kokko,   2010  ) and selection for long-
distance dispersal to escape specialized natural enemies (Connell, 
  1971  ; Janzen,   1970  ; Muller-Landau et al.,   2003  ). 

  3  .  Dispersal distance could also be positively correlated with gener-
ation time; species with shorter generation times can maintain 
gene flow through time (e.g. they have more opportunities to ex-
change genetic information per unit time), and species with longer 
generation times are expected to maintain gene flow through 
space (Stevens, Trochet, Van Dyck, Clobert, & Baguette,   2012  ). In 
addition, organisms can evolve longer life spans when their prop-
agules disperse farther, escaping kin competition for space 
(Dytham & Travis,   2006  ).   

 Growth form and plant size can constrain the variation of plant life 
histories, and, in combination with dispersal modes, could constrain dis-
persal syndromes. Growth form describes potential constraints due to 
anatomy (Salguero-Gómez et al.,   2016  ), while dispersal mode, growth 
form and plant height explain dispersal distances (Tamme et al.,   2014  ; 
Thomson, Letten, Tamme, Edwards, & Moles,   2018  ). Salguero-Gómez 
et al. (  2016  ) found that growth form and matrix dimension—associated 
with plant size and life cycle complexity—explained the location of spe-
cies on the axes of variation describing the fast-slow continuum and the 
mode of reproduction. We examine whether a plant ’ s mode of dispersal, 
growth form and matrix dimension help explain how species are distrib-
uted along axes of variation describing dispersal and life-history traits. If 
dispersal varies independently of life-history traits, we expect dispersal 
mode to explain a species’ location on the axis of variation that cap-
tures dispersal ability (Tamme et al.,   2014  ), and growth form to explain 
species’ locations on the axes capturing the fast-slow continuum and 
reproductive strategies (Salguero-Gómez et al.,   2016  ), while matrix di-
mension would be associated with both dispersal and life-history traits.  

   2  |   MATERIAL S AND METHODS 

 To determine how dispersal covaries with life-history traits, we 
brought together data on demography, dispersal and functional 
traits. Demographic data were obtained from the COMPADRE Plant 
Matrix Database (Salguero-Gómez et al.,   2015  ). We defined dis-
persal ability in terms of maximum dispersal distance and obtained 
measured maximum dispersal distances from Tamme et al. (  2014  ). 
The number of species that overlapped between both datasets was 
47. To include more species and improve our ability to ascertain gen-
eral patterns, we predicted maximum dispersal distances for species 
using information on functional traits, dispersal mode and growth 
form based on published relationships (Tamme et al.,   2014  ); this re-
sulted in a total of 141 species for which we were able to predict 
dispersal distances and derive life-history traits. 

 Species names across datasets were standardized using The 
Taxonomic Name Resolution Service using all available data sources 
(Boyle et al.,   2013  ;     The Taxonomic Name Resolution Service), in-
cluding Tropicos (Missouri Botanical Garden    ), USDA (USDA, NRCS    ), 
Global Composite Checklist (Flann,   2009  ), The Plant List (  2013  ) 
and the International Legume Database and Information Service    . 
Angiosperm Phylogeny Group III was used for standardization of 
family and order names ( http://www.mobot.org/MOBOT/research/
APweb/ )  . Species with unresolved taxonomic names that otherwise 
matched across datasets were retained in the analysis. We obtained a 
phylogeny by trimming down the tree made available by Zanne et al. 
(  2014  ) to the number of species used in each analysis using the pack-
age  ape  (Paradis, Claude, & Strimmer,   2004  ) in  R  (R Core Team,   2017  ). 

   2.1 |  Dispersal ability 

 Dispersal ability in evolutionary models is usually expressed as the 
propensity to disperse or a summary of dispersal distances (e.g. 
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statistical moments of distribution, non-local dispersal; Duputié & 
Massol,   2013  ; Saastamoinen et al.,   2018  ). Maximum dispersal dis-
tance is a useful metric as it represents long-distance dispersal ability, 
directly relating to the ability to colonize new areas, and due to the 
high correlation with mean dispersal distances ( R  2  = .85–.90 Tamme 
et al.,   2014  ; Thomson, Moles, Auld, & Kingsford,   2011  ), it also repre-
sents local dispersal ability relevant to within population processes. 

 We generated maximum dispersal distances using the  dispeRsal  
function (version 0.2) developed by Tamme et al. (  2014  ). The function 
predicts maximum dispersal distances using a linear mixed-effects 
model that can include information on dispersal mode (i.e. no special 
mechanism, ballistic, ant, wind, animal), growth form (i.e. herb, shrub, 

tree), seed mass or terminal velocity (i.e. velocity of the diaspore 
falling in still air, Greene & Johnson,   1992  ) as fixed effects, as well 
as taxonomic family or order as random effects. We obtained trait 
data from open-access sources as described in the  Supplementary 
Methods in the Supporting Information . A list of data sources from 
the TRY Plant Trait Database used in this study are provided in the 
Data sources section. We log 10 -transformed continuous trait values 
to meet parametric assumptions, and calculated the mean for each 
species if more than one value was reported. 

 To predict maximum dispersal distances, we chose models based 
on available information for each species that resulted in the highest 
predictive power as determined by the  R  2  reported in Tamme et al. 

  TA B L E  1   Loadings of dispersal and life-history traits on the first three principal components for 141 species. Loadings in bold (≥0.30) 
have a greater contribution to each PC axis. Descriptions sensu Salguero-Gómez et al. (  2016  ) 

 Trait  Symbol  Definition  PC1  PC2  PC3 

 Dispersal 

 Dispersal ability   D   Maximum dispersal distance  0.13   0.43   −0.19 

 Turnover 

 Generation time   T   Number of years necessary for individuals of a 
given population to be replaced by new ones 

  0.50   0.25  −0.09 

 Longevity 

 Survivorship curve type   H   Shape of the age-specific survivorship curve, 
as quantified by Keyfitz’ entropy (Wrycza & 
Baudisch,   2014  ).  H  > 1: most deaths occur at 
early ages.  H  < 1: number of deaths increases 
with age 

  0.32    −0.31    −0.43  

 Age at sexual maturity   L  
α   Number of years that it takes an average 

individual in the population to become 
sexually mature 

  0.35   0.25   −0.38  

 Growth 

 Progressive growth  γ  Mean probability of transitioning to a larger/
more developed stage, weighted by the 
stable stage distribution (SSD) 

  −0.30   −0.23   −0.30  

 Retrogressive growth  ρ  Mean probability of transitioning to a smaller/
less developed stage in the life cycle of 
species, weighted by the SSD 

 0.14   −0.47   0.10 

 Reproduction 

 Mean sexual reproduction  ϕ  Mean per capita number of established sexual 
recruits across stages in the life cycle of the 
species, SSD-weighted 

  −0.41   −0.17  −0.29 

 Degree of iteroparity   S   Spread of reproduction throughout an 
individual ’ s life span as quantified by 
Demetrius’ entropy (Demetrius,   1978  ). Low 
values of  S  indicate semelparity, and higher 
values, higher iteroparity 

 −0.18  0.17   −0.43  

 Net reproductive rate   R  0   Mean number of established recruits 
produced during the mean life expectancy of 
an individual in the population 

  −0.39    0.31    −0.32  

 Mature life expectancy   L  
ω   Number of years from the mean age at sexual 

maturity ( L  
α ) until the mean life expectancy 

of an individual in the population 

 −0.21   0.41    0.39  

 Proportion variance explained      0.26  0.20  0.16 

 Cumulative proportion of variance 
explained 

     0.26  0.46  0.61 
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(  2014  ). For each species, we included growth form and dispersal 
mode as fixed effects. In addition, we included seed mass, terminal 
velocity or taxonomic information when these data were available 
for a species (taxonomic names had to match data used in the  dispeR-
sal  predictive model from Tamme et al. (  2014  ); see  Supplementary 
Methods  for details).  

   2.2 |  Life-history traits 

 We obtained demographic information from the COMPADRE Plant 
Matrix Database ( https://www.compadre-db.org , version 4.0.1). 
Life-history traits were derived from MPMs (Caswell,   2001  ). Briefly, 
MPMs are discrete time, discrete stage population models where in-
dividuals are categorized according to a mixture of age-, size- and/
or ontogenetic classes that define their rates of survival, transition 
between classes, and rates of sexual/clonal reproduction. Similar 
to Salguero-Gómez et al. (  2016  ), we included MPMs parameter-
ized with field data from natural populations representing whole 
individual (genet) plants under unmanipulated conditions, among 
other criteria described in the  Supplementary Methods . In contrast 
to Salguero-Gómez et al. (  2016  ), we only included non-clonal plants 
where sexual reproduction had been explicitly quantified as we were 
interested in movement capacity via seed dispersal by seed-bearing 
plants. Through various demographic methods described elsewhere 
(Caswell,   2001  ; Cochran & Ellner,   1992  ), multiple summary statis-
tics of vital rates and resulting life-history traits that describe the 
strategies of different species can be calculated from these MPMs. 
Nine life-history traits were calculated sensu Salguero-Gómez et al. 
(  2016  ) related to investments in population turnover ( T ), longevity 
( H ,  L  

α ), growth (γ, ρ) and reproduction (ϕ,  S ,  R  0 ,  L  
ω ) as described in 

Table  1  and Table  S1 . Specifically, the life-history traits are genera-
tion time ( T ), rate of senescence ( H ), age at sexual maturity ( L  

α ), pro-
gressive growth (γ), retrogressive growth (shrinkage; ρ), mean sexual 
reproduction (ϕ), degree of iteroparity ( S ), net reproductive rate ( R  0 ) 
and mature life expectancy ( L  

ω ).   

   2.3 |  Statistical analyses 

 We used principal component analyses (PCA) to examine how pre-
dicted maximum dispersal distance ( D ) relates with plant life-history 
traits as described in Table  1 . This allowed us to examine covaria-
tion of maximum dispersal distances with life-history traits associ-
ated with fast life-history strategies (e.g. short generation times, 
high reproduction and high progressive growth; Hypothesis 1), high 
fecundity (high net reproductive rate, mean sexual reproduction; 
Hypothesis 2) and long generation times (Hypothesis 3). We used 
parallel analysis to simulate 95th percentile eigenvalues from 100 
simulated analyses and determine the number of retained princi-
pal components (Franklin, Gibson, Robertson, Pohlmann, & Fralish, 
  1995  ; Horn,   1965  ) using the function  f a.parallel  in the  psych  package 
(Revelle,   2017  ) in  R  (R Core Team,   2017  ). 

 To control for non-independence among lineages in our study, 
we conducted a phylogenetically informed PCA using the package 

 phytools  (Revell,   2012  ) in  R  (R Core Team,   2017  ). This approach differs 
from a standard PCA in that it explicitly incorporates the phylogeny 
into the backbone of the PCA, correcting for the lack of independence 
and estimating the phylogenetic signal in the examined relationships 
at the same time. We estimated Pagel ’ s λ, a scaling parameter that 
quantifies the phylogenetic correlation among species, ranging be-
tween 0 (no role of phylogeny in determining trait covariation) and 1 
(trait covariation fully explained by phylogenic relationships, assum-
ing Brownian motion; Freckleton, Harvey, & Pagel, 2002)  . 

 We first conducted a PCA on life-history traits for the 141 species, 
not including predicted maximum dispersal distances. Subsequently, 
we conducted the PCA including life-history traits and predicted 
maximum dispersal distances to explicitly incorporate dispersal abil-
ity into the life-history strategies. We compared the PCA results 
with and without dispersal distances to examine whether and how 
variation in axes of life-history strategies shift when including dis-
persal ability. We also conducted the PCA for the 47 species that had 
measured maximum dispersal distances in Tamme et al. (  2014  ). For 
each analysis (Tables  S3 – S5 ), the phylogenetic signal as measured by 
Pagel ’ s λ was low (<0.24), suggesting a weak effect of the ancestral 
relationships among the examined lineages onto the configuration 
of life-history traits and dispersal (Freckleton,   2012  ). Hence, here 
we report the results for the non-phylogenetically informed PCA. 

 For each PCA, we used the  imputePCA  function of the  missMDA  
(Josse & Husson,   2016  ) package in  R  (R Core Team,   2017  ) to impute 
missing values. For the of 141 species, a total of 8.2% (116) of the 
1,410 possible trait values were missing. Such missing values of life-
history traits arose from outliers identified as trait values greater than 
3 standard deviations from the mean (after transformation; criteria 
for outliers sensu Diaz et al.,   2016  ; Salguero-Gómez et al.,   2016  ), as 
well as some life-history trait calculations having no solutions under 
certain circumstances, as detailed elsewhere (see Caswell,   2001  ; 
Salguero-Gómez et al.,   2016  ; Stott, Franco, Carslake, Townley, & 
Hodgson,   2010  ). Life-history traits and dispersal distances were 
transformed to meet assumptions of linearity in the PCA, as de-
scribed in the  Supplementary Methods , and then standardized by 
the mean and  SD  before inclusion in multivariate analyses. 

 To examine whether a plant ’ s mode of dispersal, growth form 
and matrix dimension (i.e. life cycle complexity) explain the loca-
tion of a species along the major principal components, we used an 
ANOVA with Type 1 SS (Hector, Von Felten, & Schmid,   2010  ) in-
cluding matrix dimension, dispersal mode, growth form and their 
two-way interactions as predictors (function  aov  in  R , R Core Team, 
  2017  ). We controlled for matrix dimension before including addi-
tional terms as it is a property of these demographic models known 
to bias demographic outputs (Enright, Franco, & Silvertown,   1995  ; 
Salguero-Gómez & Plotkin,   2010  ); the order of dispersal mode or 
growth form did not influence results and are similar to results using 
Type 2 SS (data not shown). Because of the small sample sizes across 
most combinations of growth forms and dispersal modes (Table  S2 ), 
we only include herbs and trees that are dispersed by either wind or 
animals in this analysis (59 animal-dispersed herbs, 24 animal-dis-
persed trees, 19 wind-dispersed herbs and 15 wind-dispersed trees). 
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To ensure our results were not affected by statistical dependence 
among the principal components, we conducted a permutational 
ANOVA on the first three principal components using Euclidian dis-
tance and 9,999 permutations with the function  adonis  in the pack-
age  vegan  (Oksanen et al.,   2017  ) in  R  (R Core Team,   2017  ). As the 
results for the permutational ANOVA (Table  S9 ) were the same as 
the results for the ANOVA, we report the results obtained from the 
ANOVA here. All analyses were conducted in  R  (R Core Team,   2017  ).   

   3  |   RESULTS 

   3.1 |  Life-history strategies 

 For life-history traits of the 141 species, the first three principal 
components were retained (Figure  S1 ) and explain 65% of the vari-
ation (Table  S6 ). The first axis of variation, principal component one 
(PC1), describes the fast-slow pace of life continuum (hereafter, the 
fast-slow axis), with species characterized by fast individual growth 
(γ), high mean sexual reproduction (ϕ) and high net reproductive 
rates ( R  0 ) at one end, and species that postpone their first reproduc-
tive event to advanced ages (high  L  

α ), have a low population turnover 
(high  T ) and tend to escape from senescence ( H  > 1), at the other 
end (Figure  S2 ). The second axis of variation (PC2) describes the re-
productive window and is associated with species that have a long 
reproductive window (high  L  

ω ) on one end, and species that have 
a high likelihood of escaping senescence ( H  > 1), grow fast (high γ), 
high shrinkage (high ρ) and high mean sexual reproduction (ϕ) at the 
other end. The third principal component (PC3) describes modes of 
reproduction (hereafter, the reproductive strategy axis) and is asso-
ciated with species that are iteroparous (high  S ), delay sexual matu-
ration (high  L  

α ), and have high net reproductive rate ( R  0 ) vs. those 
that are semelparous with low net reproductive rates and earlier 
sexual maturation.  

   3.2 |  Do plants exhibit dispersal syndromes? 

 After incorporating dispersal ability into the PCA for the 141 spe-
cies, the first three principal components were retained (Figure  S3 ) 
and capture 61% of the variation in life-history strategies (Table  1 , 
Table  S7 ). The first principal component is qualitatively similar to the 
above analyses that do not include maximum dispersal distances, 
and it depicts the fast-slow continuum (Figure  1 ). However, the 
value of the loadings on the second and third principal components 
shifts with the incorporation of dispersal. Specifically, net reproduc-
tive rate ( R  0 ) has a higher loading while mean sexual reproduction 
(ϕ) and growth (γ) become less important on PC2 after including dis-
persal. PC2 describes life-history strategies incorporating dispersal 
ability (hereafter, the dispersal strategy axis) and is associated with 
species that have longer dispersal distances (high  D ), tend to have a 
long window of reproduction (high  L  

ω ), and have high net reproduc-
tive rates ( R  0 ) on one end, and species that have a high likelihood 
of escaping senescence ( H  > 1) and experience high shrinkage (high 
ρ) on the other end. PC3 describes the reproductive strategy axis 

and is associated with species that have a high likelihood of escap-
ing senescence ( H  > 1), high frequency of reproductive events (high 
 S ), delay their age at sexual maturity (high  L  

α ), high net reproductive 
rate (high  R  0 ), and high rate of growth of individual plants (high γ) on 
one end and large reproductive window on the other end (high  L  

ω ). 
The results are qualitatively similar for the 47 species with measured 
maximum dispersal distances from Tamme et al. (  2014  ) (Tables  S5  
and  S8 ).   

   3.3 |  Do dispersal mode and growth form 
explain the distribution of species along dispersal 
syndromes? 

 Both dispersal mode and growth form explain variation in a species’ 
location on at least one principal component after controlling for 
matrix dimension for herbs and trees that are dispersed by either 
wind or animals. Matrix dimension is significantly larger in trees com-
pared to herbs ( F  1,113  = 27.73,  p  < .001)—corresponding naturally to 
the more complex life cycle of larger species. Matrix dimensions do 
not differ among dispersal modes ( F  1,113  = 1.49,  p  = .23) nor is the 
interaction between growth form and dispersal mode significant 
( F  1,113  = 2.18,  p  = .14; Figure  S4 ). 

 Dispersal mode and growth form do not influence species loca-
tion on the fast-slow axis (PC1). Species with larger matrix dimension-
ality have significantly slower life-history strategies as depicted by 
higher scores on PC1 ( F  1,109  = 13.35,  p  < .001; Table  2 , Figure  S5a,b ).  

 Growth form ( F  1,109  = 134.85,  p  < .001) and matrix dimension 
( F  1,109  = 17.83,  p  < .001) significantly explain the location of species 
on the dispersal strategy axis (PC2, Table  2 ). Generally, trees have 
higher scores on PC2 (Figure  2 a), though a significant interaction ex-
ists between dispersal mode and growth form ( F  1,109  = 5.92,  p  < .05). 
Trees generally have higher dispersal ability (high  D ), less frequent 
shrinkage (lower ρ), a long window of reproduction (high  L  

ω ), high 
net reproductive rates ( R  0 ) and lower likelihood of escaping senes-
cence ( H  < 1) on the dispersal strategy axis (PC2) compared to herbs. 
Wind-dispersed trees have the highest mean scores on the disper-
sal strategy axis (PC2), followed by animal-dispersed trees, while 
wind-dispersed herbs have the lowest mean scores on the dispersal 
strategy axis (PC2) with animal-dispersed herbs second to lowest 
(Figure  2 a). There is also an interaction between dispersal mode and 
matrix dimension ( F  1,109  = 5.75,  p  < .05). At higher matrix dimensions, 
wind-dispersed species have higher scores on PC2 than animal-dis-
persed species, and this difference becomes smaller and eventually 
reverses at lower dimensions (Figure  S5b,c ).  

 Dispersal mode ( F  1,109  = 6.28,  p  < .05) and matrix dimension 
( F  1,109  = 39.87,  p  < .001) significantly explain the location of species 
on the reproductive strategies axis (PC3, Table  2 ). Wind-dispersed 
species have consistently higher scores on the reproductive strat-
egy axis compared to animal-dispersed species (PC3, Figure  2 b). This 
suggests wind-dispersed species tend to have a large reproductive 
window (high  L  

ω ), while animal-dispersed species have a high likeli-
hood of escaping senescence ( H  > 1), high frequency of reproduc-
tive events (high  S ), delay their age at sexual maturity (high  L  

α ), high 
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net reproductive rate (high  R  0 ) and high rate of growth of individual 
plants (high γ). Species with higher matrix dimensionality have lower 
scores on the reproductive strategy axis (PC3, Figure  S5e,f ).   

   4  |   DISCUSSION 

 Our study shows that seed dispersal ability—defined as maximum 
dispersal distance—has not evolved independently of other life-his-
tory traits across plant species. Dispersal seems indeed to be an 
integral part of a complex suite of traits; dispersal and life-history 
traits covary to form dispersal syndromes (Ronce & Clobert,   2012  ), 
which have also been recognized among animals (Stevens et al., 
  2014  ). In our analyses with 141 plant species, dispersal syndromes 
comprised three main axes of variation related to the fast-slow con-
tinuum (PC1), dispersal strategies (PC2) and reproductive strategies 
(PC3). We found that species dispersal ability was related to values 
of life-history traits of species that exhibit fast life-history strate-
gies (Prediction 1). Species with high maximum dispersal distances 
tended to have a long window of reproduction, high net reproduc-
tive rates, higher rate of senescence and less frequent shrinkage. As 
dispersal was positively associated with net reproductive rate  R  0 , 
dispersal could also be a strategy to escape competition or natural 
enemies (Prediction 2). Maximum dispersal distance was not associ-
ated with generation times (Prediction 3). For herbs and trees that 

            F I G U R E  1   The ordination of the first three principal component 
axes ( PC 1,  PC 2 and  PC 3) of dispersal ability and life-history 
traits for 141 plant species (See Table  1 ) show that plants exhibit 
dispersal syndromes.  PC 1 describes the fast-slow   continuum of 
life-history strategies,  PC 2 describes the dispersal strategy axis 
and  PC 3 describes the reproductive strategy axis. Box plots show 
variation in principal component scores within growth forms (a) and 
dispersal modes (b, c) 
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are dispersed by either wind or animals, the location of a species 
on the fast-slow continuum (PC1), the dispersal strategy axis (PC2) 
and the reproductive strategy axis (PC3) was significantly explained 
by a species’ matrix dimension, and for the reproductive strategy, a 
plant ’ s dispersal mode. A species location on the dispersal strategy 
axis was additionally explained by a plant ’ s growth form and interac-
tions with dispersal mode. 

   4.1 |  Life-history strategies 

 Our decomposition of the main drivers of life-history strategies in 
plants is qualitatively similar to previous examinations (Salguero-
Gómez et al.,   2016  ). However, a few variables have shifted their 
importance on each axis of life-history variation. This is most likely 
because the 141 species included in our analyses do not capture the 
range of growth forms included in the previous study of 418 species 
(Table  S2 ). We excluded clonal species and species that did not have 
sexual reproduction quantified as we wanted to focus on movement 
ability in terms of seed dispersal by seed-bearing plants. Plant spe-
cies with a clonal strategy may differ in their life-history strategies 
compared to non-clonal species (Kroon & Groenendael,   1997  ). For 
example, clonal species may have alternative strategies to escape 
herbivory associated with tolerance (Pellissier et al.,   2016  ), different 
patterns of senescence due to the accumulation of mutations (Ally, 
Ritland, & Otto,   2010  ; Salguero-Gómez,   2017  ) and trade-offs with 
investment in sexual reproduction, influencing fecundity (Barrett, 
  2015  ).  

   4.2 |  The dispersal syndromes of plants 

 We found evidence for dispersal syndromes across plant species as 
the axes of variation of life-history strategies based on life-history 
traits shifted with the inclusion of maximum dispersal distances. 
Specifically, we found that high dispersal ability was related to fast 
life-history strategies. Previous studies in plants have provided 
evidence for dispersal syndromes based on phenotypic traits, such 
as plant height, seed mass and dispersal structures (Tamme et al., 
  2014  ; Thomson et al.,   2011  ,   2018  ). Across animal species, Stevens 
et al. (  2014  ) found that dispersal ability was consistently associated 
with high fecundity and survival, and, in aerial dispersers, with early 
maturation, but the strength, direction and functional form of these 
relationships varied within taxonomic orders. Across animal and 
plant groups, species seem to have converged on similar dispersal 
syndromes that relate high dispersal ability with aspects of fast life-
history strategies, including high reproductive rates for all organisms 
studied, early maturation for aerial-dispersing terrestrial animals and 
a long window of reproduction for terrestrial plants. This could have 
arisen from two potential mechanisms: (1) a suite of traits evolv-
ing as a bet-hedging strategy in response to unpredictable habitats 
(Prediction 1) or (2) dispersal evolving in response to the negative 
impacts of high fecundity on fitness via increased kin competition or 
mortality due to specialized natural enemies (Prediction 2). In each 
case, dispersal has evolved in tandem with life-history traits. 

 For this analysis, we predicted dispersal distances for 141 spe-
cies using dispersal mode and growth form, including functional 
traits and taxonomic names when possible, to increase the number 
of species included in the PCA. This approach seemed to capture 
the covariation in dispersal and life-history traits as the results 
were qualitatively similar for the 47 species for which there were 
measured dispersal distances available in Tamme et al. (  2014  ). In 
previous analyses, major habitat was a significant predictor of the 

  TA B L E  2   Results of ANOVA including matrix dimension, 
dispersal mode and growth form as predictors for the first three 
principal components including life-history traits and dispersal 
mode for 117 species 

 Variable   df   SS  MS   F  

 Fast-slow continuum (PC1) 

 Matrix dimension 
(MD) 

 1  29.33  29.33      13.35*** 

 Dispersal mode 
(DM) 

 1  1.23  1.23  0.56 

 Growth form (GF)  1  8.11  8.11      3.69† 

 Matrix dimension * 
dispersal mode 

 1  1.51  1.51  0.69 

 Matrix dimension * 
growth form 

 1  0.14  0.14  0.06 

 Dispersal mode * 
growth form 

 1  2.20  2.20  1.00 

 MD * DM * GF  1  0.12  0.12  0.05 

 Residuals  109  239.47  2.20   

 Dispersal strategy (PC2) 

 Matrix dimension  1  15.37  15.37      17.83*** 

 Dispersal mode  1  0.94  0.94  1.09 

 Growth form  1  116.25  116.25      134.85*** 

 Matrix dimension * 
dispersal mode 

 1  4.95  4.95      5.75* 

 Matrix dimension * 
growth form 

 1  0.62  0.62  0.72 

 Dispersal mode * 
growth form 

 1  5.11  5.11      5.92* 

 MD * DM * GF  1  0.34  0.34  0.40 

 Residuals  109  93.97  0.86   

 Reproductive strategy (PC3) 

 Matrix dimension  1  41.38  41.38      39.87*** 

 Dispersal mode  1  6.51  6.51      6.28* 

 Growth form  1  0.01  0.01  0.005 

 Matrix dimension * 
dispersal mode 

 1  0.35  0.35  0.34 

 Matrix dimension * 
growth form 

 1  3.90  3.90      3.75† 

 Dispersal mode * 
growth form 

 1  1.07  1.07  1.03 

 MD * DM * GF  1  0.65  0.65  0.63 

 Residuals  109  113.14  1.04   

   *** p  < .001, ** p  < .01, * p  < .05,  †  p  < .1.   
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position of plant species on the fast-slow axis of life-history strate-
gies (Salguero-Gómez et al.,   2016  ). Dispersal ability of a plant spe-
cies may also vary by habitat as the mode of dispersal can depend 
on precipitation, temperature and altitude (Almeida-Neto, Campassi, 
Galetti, Jordano, & Oliveira-Filho,   2008  ; Chen, Cornwell, Zhang, & 
Moles,   2017  ). As data for dispersal and demography continue to 
grow, future studies can examine how these relationships and dis-
persal syndromes vary by major habitat. 

 Here, we have measured but one component of the dispersal 
process—the maximum dispersal distance of seeds. However, dis-
persal is made up of several phases, including pre-departure, depar-
ture, transfer and settlement. The maximum dispersal distance of 
seeds is most related to the transfer phase. Each of these phases 
incur some costs to dispersing (Bonte et al.,   2012  ; Clobert, Le 
Galliard, Cote, Meylan, & Massot,   2009  ), and selection will act to 
optimize fitness by minimizing costs associated across these multiple 
phases of dispersal (Bonte et al.,   2012  ; Travis et al.,   2012  ). Both the 
pre-departure and departure phases include costs associated with 
the investment in dispersal structures, from no specialized struc-
tures to plumes or wings for dispersal by wind to fleshy fruits for 
dispersal by animals. Each of these may have different energy re-
quirements and developmental times, which may covary with other 
life-history traits, such as traits related to reproduction and growth. 
During these phases, plants may incur costs from predators and 
pathogens that reduce their ability to disperse seeds (Tewksbury 
& Nabhan,   2001  ; Tiansawat, Beckman, & Dalling,   2017  ). A plant ’ s 
ability to deter reductions in dispersal due to predation would be 
related to its ability to develop and disperse fast enough to escape 
predation (related to growth strategies), satiate predators (related to 
number of seeds produced) or otherwise defend themselves. After 
the settlement phase, seedlings will have to grapple with the local 
environment, competition with their neighbours, and mortality due 
to natural enemies which may be related to growth strategies (e.g. 
tolerance vs. defence) and turnover. 

 This study suggests that dispersal syndromes exist across plant 
species, but more work needs to be done in terms of individual vari-
ation where dispersal is predicted to be an independent axis (Bonte 
et al.,   2012  ). Saastamoinen et al. (  2018  ) showed that dispersal is a 
complex process arising from several interacting traits and a com-
plex genetic architecture; they found that although some genes in-
fluence certain aspects of dispersal with moderate to large effect, 
dispersal traits are typically polygenic. Studies on the genetic cor-
relations of dispersal tend to be scarce, and the topic requires fur-
ther study. In contrast, within species correlations among dispersal 
traits as well as between dispersal traits and other traits under se-
lection are more common in animals (Saastamoinen et al.,   2018  ), but 
less well studied in plants. Future research on the drivers of variance 
in dispersal distances within species will give additional insight into 
the fitness benefits of dispersal and potential trade-offs or synergies 
with life-history traits. 

 Finally, selection for longer dispersal distances will influence the 
ability of plant species to invade new habitats (Hastings et al.,   2005  ), 
track changing climates (Travis et al.,   2013  ) and persist in fragmented 

landscapes (Williams, Kendall, & Levine,   2016  ). As dispersal ability 
covaries with life-history traits to form dispersal syndromes, the se-
lection for dispersal in response to global change may be constrained 
by or indirectly influence the evolution of life-history traits. For ex-
ample, evolving populations of  Arabidopsis thaliana  in experimen-
tal landscapes spread much faster in fragmented than continuous 
landscapes due to the selection for dispersal and competitive toler-
ance (Williams et al.,   2016  ). How global change events influence the 
evolution of dispersal syndromes requires further investigation and 
will improve our ability to manage and conserve populations under 
global change.  

   4.3 |  Dispersal mode and growth form explain 
how species are distributed along the strategies of 
dispersal syndromes 

 Matrix dimension, growth form and dispersal mode significantly ex-
plained variation of a species’ location on at least one of the main 
axes of plant dispersal syndromes of herbs and trees dispersed by 
either wind or animals. Matrix dimension represents the number of 
life-history stages of an organism. The number of life-history stages 
represents model complexity based on the informed-decisions of 
the researchers who assembled the matrices, and, in this study, plant 
size, as trees had significantly higher matrix dimensionality than 
herbs. Matrix dimension explained a significant amount of variation 
across all three axes of variation. On the fast-slow continuum (PC1), 
species with higher matrix dimensionality, mostly represented by 
trees, had significantly slower life-history strategies, while species 
with lower matrix dimensionality, mostly represented by herbs, had 
significantly faster life-history strategies. These results are similar to 
previous analyses (Salguero-Gómez et al.,   2016  ). 

 Growth form and dispersal mode partly determined the dispersal 
strategy exhibited by different species as depicted by their mean 
scores on the dispersal strategy axis (PC2). Trees tended to have 
higher scores on the dispersal strategy axis compared to herbs, sug-
gesting higher dispersal ability of trees compared to herb species. 
Higher dispersal ability of trees is in-line with previous studies that 
show, all else being equal, taller plants tend to disperse their seeds 
farther regardless of dispersal modes (Tamme et al.,   2014  ; Thomson 
et al.,   2011  ), and trees tend to be the tallest plant species as plant 
height increases across growth forms (herbs < shrubs < trees; Moles 
et al.,   2009  ). While taller plants are more likely to invest in the pres-
ence of dispersal structures, height alone is a better predictor of 
dispersal distances (Thomson et al.,   2018  ). In addition, taller trees 
may have a higher likelihood of dispersing further distances because 
they produce more seeds (Moles, Falster, Leishman, & Westoby, 
  2004  ). We found wind-dispersed trees had higher mean scores on 
the dispersal strategy axis (PC2), suggesting higher dispersal ability, 
compared to animal-dispersed trees. These patterns could partly be 
due to wind-dispersed species being taller than animal-dispersed 
species as plant height increases across dispersal modes (unassisted 
< ant < vertebrate < wind; Thomson et al.,   2018  ). For wind-dispersed 
species, plant height per se can increase dispersal distances due to 
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canopy wind conditions (Augspurger, Franson, Cushman, & Muller-
Landau,   2016  ; Soons, Heil, Nathan, & Katul,   2004  ). 

 Dispersal mode was partly related to the reproductive strat-
egy exhibited by different species as depicted by their mean scores 
on the reproductive strategy axis (PC3). Wind-dispersed species 
tended to have higher scores on the reproductive strategy axis (PC3) 
than animal-dispersed species, suggesting wind-dispersed species 
have a longer reproductive window, lower frequency of reproduc-
tive events, earlier age of sexual maturity and lower net reproductive 
rate compared to animal-dispersed species. We are unaware of stud-
ies that have compared the life-history traits among plants differing 
in dispersal modes. These results suggest further research should 
investigate the reproductive strategies and allocation patterns of 
plants differing in dispersal modes.   

   5  |   CONCLUSIONS 

 Here, we describe the dispersal syndromes of plants by quantifying 
the global variation in dispersal ability and life-history traits for 141 
species. While dispersal syndromes have been previously described 
based on phenotypic traits, we show that high dispersal ability is re-
lated to aspects of fast life-history strategies. These results may be 
broadly generalizable across plant species as the phylogenetic signal 
in our multivariate analyses were low and follow previous findings in 
patterns of dispersal syndromes across animal species. Growth form 
and dispersal mode significantly explained variation in species’ loca-
tions along the major axes of variation in dispersal syndromes, and this 
may potentially be driven by differences in plant height across growth 
form and dispersal mode. Understanding the covarying responses of 
dispersal and life-history traits to selection pressures will be crucial 
for predicting plant species responses to global change events.  
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