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Abstract Precipitation of energetic electrons to the atmosphere is both a loss mechanism for radiation
belt particles and a means by which the geospace environment influences the Earth’s atmosphere; thus, it
is important to fully understand the extent of this precipitation. A set of polar orbiting satellites have been
used to identify periods when energetic charged particles fill the slot region between the inner and outer
radiation belts. These suggest that electrons with energies >30 keV penetrate this region, even under levels
of modest geomagnetic activity. Those events with sufficient fluxes of particles produce enough ionization to
be detected by a ground-based radar in Antarctica; this precipitation lasts for ~10 days on average. Analysis
of these data reveals that the average precipitation penetrates to the stratopause (~55-km altitude). For
some (if not all) of these events, the likely cause of the most energetic precipitation is an interaction between
(relativistic) electrons and plasmaspheric hiss leading to little, if no, local time variation in precipitation. This
does not preclude a longitudinal effect given that all radar measurements are fixed in longitude. During
winter months the radar is under the stable southern polar atmospheric vortex. This transports atmospheric
species to lower altitudes including the ozone destroying chemicals that are produced by energetic
precipitation. Thus, the precipitation from the slot region in the Southern Hemisphere will likely contribute to
the destruction of ozone and changes to atmospheric heat balance and chemistry; more work is required to
determine the true impact of these events.

Plain Language Summary Precipitation of energetic electrons to the atmosphere is both a loss
mechanism for radiation belt particles and a means by which the geospace environment influences the
Earth’s atmosphere; thus, it is important to fully understand the extent of this precipitation. A set of polar
orbiting satellites have been used to identify periods when energetic charged particles fill the slot region
between the inner and outer radiation belts. These suggest that electrons with energies >30 keV
penetrate this region, even under levels of modest geomagnetic activity. Those events with sufficient
fluxes of particles produce enough ionization to be detected by a ground-based radar in Antarctica; this
precipitation lasts for ~10 days on average. Analysis of these data reveals that the average precipitation
penetrates to the stratopause (~55-km altitude). For some (if not all) of these events, the likely cause
of the most energetic precipitation is an interaction between (relativistic) electrons and plasmaspheric
hiss leading to little, if no, local time variation in precipitation. This does not preclude a longitudinal effect
given that all radar measurements are fixed in longitude. During winter months the radar is under the
stable southern polar atmospheric vortex. This transports atmospheric species to lower altitudes including
the ozone destroying chemicals that are produced by energetic precipitation. Thus, the precipitation
from the slot region in the Southern Hemisphere will likely contribute to the destruction of ozone and
changes to atmospheric heat balance and chemistry; more work is required to determine the true impact
of these events.

1. Introduction

The Earth’s radiation belts (or Van Allen belts) are formed by the drift orbits of energetic electrons con-
fined by the Earth’s magnetosphere and generally appear as two torus-shaped regions (Van Allen,
1959). The outer belt is highly dynamic, responding strongly to solar wind driving during geomagnetic
storms (e.g. Li et al, 1997; Ni et al, 2016; Reeves et al.,, 1998), occasionally splitting to form two rings
(e.g., Baker et al., 2013; Mann et al.,, 2016, 2018, Shprits et al., 2018). This dynamic nature is controlled
by a series of acceleration and loss mechanisms involving interactions with a range of magnetospheric
waves (e.g., Horne et al, 2006; Li et al., 2015; Ni et al,, 2015; Thorne, 2010; Thorne et al,, 2005). The outer
belt is separated from the inner by a region known as the slot region; this lies between about L = 2 and
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Table 1

POES Satellites Used in This Study With Their Operational Start and End Times
(Column 2) and Average Orbital Altitude (Column 3)

L = 3. The slot region is generally devoid of energetic electrons and is
thought to be formed by a balance between inward radial diffusion

and the pitch angle scattering loss of electrons to the atmosphere

Satellite Operational dates Altitude (km) (o g, Lyons & Thorne, 1973). This scattering is due to resonant wave-
NOAA-15 15 Dec 1998 807 particle interactions with plasmaspheric hiss (e.g., Meredith et al., 2009;
NOAA-16 20 Mar 2001 to 9 Jun 2014 849 Ni et al., 2013).

NOAA-17 15 Oct 2002 to 10 Apr 2013 810

NOAA-18 30 Aug 2005 847 Although the slot region is typically persistent, during some geomagnetic
NOAA-19 2 Jun 2009 870 storms it can be filled by energetic electrons and protons as the outer belt
MetOp-A 21 May 2007 817 is severely distorted (Baker et al., 2004). One of the biggest examples of
MetOp-B 24 Apr 2013 817 such an event occurred during the so-called Halloween storm in 2003; stu-

Note. POES = Polar Operational Environment Satellites; NOAA = National dies suggested that the slot region was filled via a combination of local
Oceanographic and Atmosphere Administration. wave-particle acceleration and inward radial transport (Loto’aniu et al.,

2006; Shprits et al., 2006). Electron fluxes remained elevated for several
weeks before decaying away and the slot region reforming. Meredith et al. (2009) showed that for the outer
slot region (2.4 < L < 3) the loss of the relativistic electron flux (2-6 MeV) can be explained via pitch angle
scattering by plasmaspheric hiss. Thus, electrons are being scattered into the loss cone and precipitating into
the atmosphere.

Precipitating energetic electrons and protons will ionize the neutral atmosphere, increasing the local elec-
tron density and driving chemical reactions such as the production of NO, (N + NO+N3) and HO,
(H + OH + H3; Rusch et al., 1981; Solomon et al.,, 1981). Both of these gases are catalysts in the reactions
that lead to the destruction of ozone, which in turn affects the radiative balance and dynamics of the
atmosphere. NO, is destroyed via photodissociation, and as such, it is long-lived in the darkness of the
polar winter and will be transported by the dynamics of the atmosphere. In the winter hemisphere the
circulation of winds generates the polar vortex over the polar region, isolating the polar air in the middle
atmosphere and drawing it downward; thus, NO, can be transported to the ozone-rich stratosphere.
Seppdla et al. (2007) showed that the Halloween storm led to the production and subsequent descent
of significant NOy levels in the Northern Hemisphere winter. NO, concentrations in the stratosphere have
been shown to be well correlated with geomagnetic activity levels (e.g., Seppéld et al., 2007; Siskind et al.,
2000), which in turn has signatures in the dynamics of the stratosphere and polar surface air temperature
(Seppala et al., 2009, 2013).

Thus, energetic charged particle precipitation is potentially important for the dynamics of the middle and
lower atmosphere. The energy of the particle is important for determining the altitude profile of NO, produc-
tion; the higher the energy, the deeper into the atmosphere a particle can penetrate before being “stopped”
(e.g., Rees, 1963). Auroral energy electrons (1-10 keV) will deposit in the lower thermosphere, whereas rela-
tivistic energies (~MeV) will penetrate to the lower mesosphere (e.g., Turunen et al., 2009). Due to their larger
mass, protons of a given energy will deposit at higher altitudes than the same energy electrons. The atmo-
sphere magnetically connected to the auroral zone and outer radiation belt is a strong source of NO, during
geomagnetic storms, depositing primarily at higher geomagnetic latitudes, though equatorward of the
polar cap.

The British Antarctic Survey (BAS) operates Rothera Research Station on Adelaide Island (at 67.57°S 68.13°W)
along the Antarctic Peninsula. During the winter months Rothera lies close to or within the polar vortex; due
to the offset of the southern geographic and geomagnetic poles, it also lies under the footprint of the radia-
tion belt slot region at L = 2.7. This places it in an ideal location for examining charged particle precipitation
from the slot region.

In this paper data from particle detectors on several polar orbiting satellites are used to identify periods of
precipitation. These detectors are nominally measuring >30 keV electrons; however, they are also sensi-
tive to MeV energy protons that may be present. The data indicate that moderate to high geomagnetic
activity can result in enhanced fluxes of particles in the slot region. Data from a ground-based radar indi-
cate that for events above a given flux threshold there is a significant ionospheric effect. This effect
extends to the very lowest altitude of the mesosphere for some events, indicating that high-energy par-
ticles, possibly relativistic electrons, are present as well as the moderate energies indicated by
the satellites.
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2. Instrumentation

2.1. Polar Operational Environment Satellites-Medium Energy Proton and Electron Detector

The Polar Operational Environment Satellites (POES) are operated by the U.S. National Oceanographic and
Atmosphere Administration (NOAA). They fly in Sun-synchronous polar orbits with a period of 102 min at alti-
tudes between 800 and 850 km. Table 1 provides a list of the satellites, their lifetimes, and their orbital alti-
tudes. POES carry the Space Environment Module-2 (SEM-2), which includes the Medium Energy Proton
and Electron Detector (Evans & Greer, 2004), which measures a range of energies. For this study data have
been primarily taken from a telescope pointing approximately in the direction of the magnetic field (0°) mea-
suring the integral electron flux (J.) above 30 keV, with a cadence of 2 s. This observes electrons that are in the
bounce loss cone for when the satellite is poleward of L ~ 1.5 (Rodger et al., 2010, Appendix A), but due to the
angular size of the detector, only a fraction of the loss cone is sampled. Thus, the measured electron flux may
differ from the actual total precipitating flux by as much as 10-15 times depending on geomagnetic activity
levels; Rodger et al. (2013) provides a very thorough analysis of this issue.

In this study the POES data have been used to identify slot region filling events. Two-second observations
have been averaged to provide daily means and binned as a function of L-shell at 0.1 L resolution. Since
the aim of this work is to compare the satellite measurements with a radar at a specific location, it might
be reasonable to restrict the POES observations to the same longitude sector as the radar; however, this made
no difference to the identification of the slot region filling events beyond increasing the noise in the data.

The SEM electron data also suffer from contamination by energetic protons (Yando et al., 2011) though a
technique to remove this contamination has been developed by NOAA (Lam et al., 2010); however, for very
energetic protons such as solar protons this routine will not work, and as such during solar proton events
(SPEs), data tend to be ignored/removed. Solar protons have energies in the tens to hundreds MeV range
and as such tend to precipitate deep into the atmosphere (e.g., Reid, 1974). Their high energies and large
gyroradius also allow them to cut across magnetic field lines, until the field becomes too strong for them
to penetrate further and they reach a natural cut-off latitude (e.g., Kavanagh et al., 2004; Rodger et al.,
2006). This latitude is affected by geomagnetic activity; an increased ring current will weaken the field and
lower the cut-off latitude for a given energy proton. In general, the slot region is well removed from the
cut-off region for any but the most extraordinarily high energy (and very low flux) protons. However, there
is evidence that at the onset of large storms protons can inject much further into the magnetosphere than
simple theory predicts (e.g., Lorentzen et al., 2002; Selesnick et al., 2010); this effect and the impact on the
data will be discussed in more detail in a later section. The proton data can also be contaminated by the pre-
sence of highly energetic electrons (Yando et al., 2011), so caution must be employed when interpreting the
satellite data during very energetic events. The P6 proton channel (>6.9 MeV) on POES is susceptible to con-
tamination from electrons with energy in excess of 700 keV (Rodger et al., 2010); however, the P5 channel (0.8
to 6.9 MeV) is not sensitive to contamination, and so a comparison of the two can determine whether P6 is
responding to protons or electrons.

In this study the particle data are used only to provide an indication of when a slot region filling event occurs.
In principle, it does not matter whether it is electrons or protons that are filling the slot region and then pre-
cipitating into the ionosphere, though we will consider whether any identification can be made and the
implications for the particle energy depending on which species is responsible.

2.2. Medium-Frequency Radar

The medium-frequency (MF) radar at Rothera (67°S, 68°W) is a coherent, spaced-antenna wind profiler that
measures the horizontal neutral winds in the mesosphere and lower thermosphere using the full-correlation
analysis technique (Briggs, 1984). The radar transmits a 25-kW pulse at 1.98 MHz, and the reflected signal is
sampled on three antennas from 2-km height intervals centered between 56.5- and 102.5-km altitude with a
wind profile measurement provided every 102.4 s. The system first operated between 1997 and 1998 and
then continuously from 2002. It was initially a joint project between BAS and the University of Colorado
and is now a collaboration between BAS and GATS Inc.

As well as providing profiles of the neutral wind in the mesosphere, an MF radar can also act as a qualitative
indicator of energetic charged particle precipitation. The radar signal undergoes partial reflection from irre-
gularities in the weakly ionized D-region of the ionosphere that overlaps the mesosphere. This technique
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Electron Flux

was originally used to probe electron densities in the D-region (e.g.,

(a) Gardner & Pawsey, 1953) and later applied to wind measurements.
lonization in the D-region causes the attenuation of radio waves in the

high-frequency and MF bands, and the level of absorption is different for

the ordinary (O) and extraordinary (X) waves. Thus, by measuring inter-

> leaved O and X mode returned signals and considering the difference, it

A
100 km

Altitude

50 km

High is possible to extract the electron density without knowing the full level
of attenuation; this is known as the differential absorption technique
(b) (e.g., Thrane et al,, 1968). An electron density profile can then be used to
determine the flux-energy spectrum of precipitating particles (e.g.,
Semeter & Kamalabadi, 2005), assuming that these are the cause of excess
ionization above the background produced by solar radiation.

The Rothera MF radar transmits only the ordinary mode and consequently
cannot use the differential absorption technique to determine the electron
density and charged particle precipitation. However, by considering
changes in the signal-to-noise ratio (SNR) observed by the receive anten-
nas, it is possible to extract an indication of when precipitation is occurring
and an estimate of the peak effective energy of precipitation by considera-
tion of the lowest altitude where a change in SNR is measured. An outline
of this technique is provided below:

Returned Signal Strength

The relationship between the absorption of a signal and the electron den-
—> Low sity can be derived from the Appleton-Hartree equation for the refractive

To

L5

B Time index (e.g., Davies, 1990) of a collisional plasma and is presented here:

Figure 1. Schematic of the expected response of the signal strength mea- Nev.dl

sured by a medium-frequency radar (b) located under a region of precipita- A=46x10">(
tion indicated by the blue line in (a). At time 7o the precipitation begins

(M

W2 + (w*wy cosh)?

instigating a loss of signal at high altitudes; at 7, the precipitation begins to
reduce until at 7, the precipitation is back at pre-event level as is the where A is the absorption in decibels (dB), integrated along the path

returned signal strength.

through the ionosphere defined by dl, N, is the electron density

(m™3), v is the effective collision frequency dominated by the electron-
neutral collision frequency, @ is the angular frequency of the wave, wy is the local electron gyrofre-
quency, and 0 is the angle between the direction of wave propagation and the local magnetic field. If
we assume that the collision frequency varies much more slowly than the electron density, N, and that
the propagation is such that 6 ~ 0, then we can see that the following is true:

AxN,.dl @)

If the collision frequency is effectively constant in time, then the absorption is proportional to the electron
density at a given height. The assumption of 8 = 0 is less valid at the latitude of Rothera than at high latitudes
but is reasonable for illustrative purposes. By considering the path of a vertically transmitted signal through
the ionosphere and the temporal response of the SNR of the received signal, it is possible to develop a qua-
litative picture of the effect of varying precipitation on the radar signal.

Figure 1 is a schematic of the predicted response of the radar received power to an increase in precipitating
electron flux. Figure 1a gives the time history of the integrated electron flux: The flux increases at time 7,
remains elevated until 7; and then decays back to its original value by time 7,. This generates an enhance-
ment in electron density in the D-layer that will increase with altitude, the exact profile depending on the
flux-energy spectrum of the precipitation. Figure 1b shows the returned signal power of the radar with red
(yellow) indicating low (high) returned signal power. Prior to 7o, there is low power in the lowest altitudes
and high power above; the electron density is higher with increased stronger irregularities/gradients to scat-
ter from at the higher ranges. After 7, there is a change as the power increases in the lower altitude gates in
response to the increased electron density; the path described in equation (2) is relatively short, and so there
is small absorption. At higher altitudes the signal fades away as the transmitted and reflected waves have to
pass through a larger portion of more enhanced electron density such that the integrated path is large and
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the absorption given by equation (2) will also be large. Between 7, and 7, there is a shift back to preonset
conditions, as the power reduces in the lower range gates and increases higher up.

The following section details how events were selected from the data.

3. Observations

3.1. Event Selection

Fifty-four separate slot region filling events were identified between 2002 and 2014 in the >30 keV elec-
tron flux, J,. The criteria applied to determine the events were as follows: (i) an increase in flux at L = 2.7
of at least 40 cm~2s~"sr~ ! and (ii) an identifiable enhancement that included the range of the outer belt
and extended in L-shell to the edge of the inner belt. To determine the 40 cm ™25~ "sr™' limit, we calcu-
lated the distribution of the difference between successive points (the approximate first derivative) to
identify the noise level of the daily average. The distribution was Gaussian around 0 to +30 cm™>s™ s,
characteristic of noise, such that 40 cm~2s~"sr~" should be above the noise level. This limit essentially
acts as a filter to reduce the data that were subsequently assessed for an increase across the wider range
of L-shells; the limit was kept deliberately low to minimize any selection bias, whereby we might dismiss
weaker events. In principle, 40 cm™2s™ st~ results in an initial pool of 472 potential events; raising the
limit to 60 produces a pool of 319 potential events. However, in practice, raising the limit to 60 reduced
the number of viable events by 7, and raising it to 80 cm~2s~"-sr~' removes an additional four events—a
reduction in the data set of ~20%. Each event was inspected for data quality in the two instruments, and
five events were discarded, leaving 49 events in total. These 49 events are listed in Table 2 and are indi-

cated by the black vertical arrows in Figure 2e.

Figure 2 shows the daily averaged data from the POES satellites for selected electron and proton channels (a—e)
and the 1-min SYM-H index for geomagnetic context. The top two panels show the >30-keV electron flux
(Je) from (a) the 90° telescope and from (b) the 0° telescope. The next two panels show the >6.9-MeV proton
flux (Jp) from the (c) 90° telescope and the (d) 0° telescope. The y-axis gives the L-shell of the observation; this
is the Mcllwain L-shell, which assumes a simple dipole field, a reasonable assumption in the inner magneto-
sphere. The altitude of the POES orbit is such that the satellites are sampling particles that are mirroring far
away from the equator and as such do not capture the full trapped population in the 90° telescopes. As dis-
cussed above, the 0° telescopes are measuring the precipitating flux, but it is unclear whether they capture
the full distribution. The plots are limited at L = 6 though POES measure to larger L-shells. Similarly, the elec-
tron fluxes have been allowed to saturate in the plot in order to show the weaker electron fluxes that occur in
the slot region. The electron measurements show the day-to-day variability of flux in the outer belt with occa-
sional strong enhancements across the whole range of L; this is clear in the precipitating flux as well though
the background is much lower. The proton flux, particularly the precipitating flux, is much lower than the
electron flux, but it also show enhancements across all L-shells; however, not all such events show up as
the proton flux descends into the detector noise level.

Figure 2e shows J, for both the trapped (red line) and precipitating (blue line) detectors at L = 2.7. Figure 2f
displays the 5-min SYM-H index taken from the OMNI data set from 2002 to 2014 inclusive (https://omniweb.
gsfc.nasa.gov/ow_min.html). SYM-H is derived from midlatitude magnetic data and represents the longitud-
inally symmetric disturbance in the direction of the dipole-pole; this is similar to the Dst index (Sugiura &
Poros, 1971) but is derived from different stations in a slightly different coordinate system. Essentially, it is
an index that represents the level of geomagnetic storm activity.

The diamonds in each of the panels indicate the times of event identification; a significant fraction of these
occur around the time of decreases in the SYM-H. Some detail of these events can be gleaned from Figure 2b:
There is an increase in flux that stretches from the outer belt at high L to the inner belt, filling the slot region.
The magnitudes of these events vary in flux and occur across a range of SYM-H values. The majority of events
occur in the first few years when geomagnetic activity was highest in the descending phase of the solar cycle
(see the density of diamonds in up to 2006 compared with 2006 to 2011). There is a correspondingly strong
signal in the proton flux for a number of these events, but not all. This will be discussed in a later section. The
full list of these events can be seen in Table 2 along with a number of additional parameters that will be dis-
cussed in later sections.
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Table 2

List of Identified Slot Region Filling Events, Including the Peak Electron and Proton Flux Characteristics from POES, and Details of Concurrent Solar Proton Events

Peak POES electron flux

2 _—1

em 2s s ) SPE POES proton flux (cm™ “s st
Peak >10 MeV flux 90° Jp, at
Epoch 0° Je 0° AJe Start Peak (€m %s 'sr')  90°J,at peak SPE  peak 90°J, min.SYM-H Min. SYM-H (nT)
2002-04-18 601 464 2002-04-17  2002-04-17 24 17 375 33 —151
2002-05-22 497 230 2002-05-22  2002-05-23 820 29 38 33 —113
2002-09-06 728 541 2002-09-07  2002-09-07 208 33 50 33 —167
2002-10-01 977 738 = = 0 0 604 346 —153
2003-02-03 627 434 = = 0 0 67 67 -79
2003-03-30 356 133 = — 0 0 54 21 —89
2003-04-30 386 148 = = 0 0 71 50 —93
2003-05-12 460 209 = = 0 0 9% 67 —26
2003-05-28 1,289 1,085 2003-05-28  2003-05-29 121 42 727 238 —152
2003-06-17 791 457 2003-06-18  2003-06-19 24 196 196 % —162
2003-07-11 565 294 = = 0 0 79 58 —125
2003-08-17 941 613 = — 0 0 1,123 108 —138
2003-10-14 364 214 = — 0 0 29 29 —102
2003-10-23 539 320 2003-10-26  2003-10-27 466 42 79 67 -70
2003-10-28 51,488 51,251  2003-10-28  2003-10-29 29,500 742 6,167 6,167 —363
2003-11-19 126,631 126,122 2003-11-21  2003-11-22 13 2,254 2,254 171 —488
2003-12-04 437 233 2003-12-02  2003-12-02 86 146 129 129 —60
2004-01-22 434 184 = = 0 0 9% 29 —137
2004-02-10 409 245 = = 0 0 33 33 —107
2004-03-10 351 21 = = 0 0 42 4 —101
2004-04-05 272 119 2004-04-11  2004-04-11 35 29 54 21 ~96
2004-07-24 2,537 2387  2004-07-25 2004-07-26 2,086 904 2,288 88 —166
2004-11-07 39,120 38976  2004-11-07 2004-11-08 495 3,188 12,200 3,188 —393
2005-01-17 851 530 2005-01-16  2005-01-17 5,040 71 221 121 —107
2005-05-07 600 450 = = 0 0 192 29 —115
2005-05-14 3,501 3,111 2005-05-14  2005-05-15 3,140 158 735 158 —302
2005-05-28 569 222 = — 3,140 0 113 54 —43
2005-07-13 496 287 2005-07-14  2005-07-15 134 38 46 33 —56
2005-08-23 2,136 1,934  2005-08-22  2005-08-23 330 25 692 129 —174
2005-09-10 775 437 2005-09-08  2005-09-11 1,880 133 588 133 —135
2006-04-13 493 312 = — 0 0 83 33 ~110
2006-12-14 602 422 2006-12-13  2006-12-13 698 29 146 58 —206
2007-07-24 433 248 = — 0 0 63 46 -9
2008-03-31 408 224 = — 0 0 46 54 —21
2009-07-21 194 43 — = 0 0 54 54 —93
2010-04-04 244 108 = = 0 0 58 50 —66
2010-05-30 247 94 = = 0 0 54 50 —57
2010-08-08 269 110 — = 0 0 58 38 -31
2011-05-24 236 93 = — 0 0 54 33 —12
2011-07-07 287 124 2011-07-07  2011-07-07 72 33 46 38 —27
2011-08-04 371 227 2011-08-04 2011-08-05 9% 63 63 46 —104
2011-09-09 227 90 = — 0 0 71 33 -76
2011-09-25 284 104 2011-09-26  2011-09-24 35 46 46 46 —111
2011-10-25 348 205 = = 0 0 42 42 —160
2012-04-24 337 159 = — 0 0 71 71 —125
2012-07-07 39 242 2012-07-07  2012-07-07 25 46 46 25 -9
2012-10-01 269 113 2012-09-28  2012-09-28 28 33 54 38 —138
2013-01-30 307 154 = — = = — = —11
2013-04-16 372 218 2013-04-11  2013-04-11 114 33 58 29 —18

Note. Column 1 gives the epoch dates and times for each of the 49 identified slot region filling events. Columns 2 and 3 are the >30-keV electron flux from the 0°
telescope on POES and the relative change in flux from the pre-event to the peak for each event, respectively. Columns 4-6 show the start and peak times and the
peak flux (at >10 MeV) for any SPE that occurred during or before the slot region filling event, respectively. Columns 7-9 show the >6.9-MeV proton flux from the
90° telescope on POES for the time of peak SPE, peak electron flux, and day of minimum SYM-H during the events. The final column gives the value of the mini-
mum SYM-H recorded during the events. POES = Polar Operational Environmental Satellites; SPE = solar proton event. Dates are formatted as year-month-day.
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Figure 2. Daily averages of selected integral charged particle flux (cm72-571-sr71) measured by the SEM instrument on the

POES satellites, limited between L = 2.2 and L = 4, from 2002 to 2014 inclusive. Data are from (a) the >30-keV electron
90° telescope, measuring the trapped population; b) the >30-keV electron 0° telescope, sampling the bounce loss cone;
(c) the 90° trapped proton flux for energy >6.9 MeV; and (d) the 0° precipitating proton flux at >6.9 MeV. (e) The >30-keV
electron flux at L = 2.7 for the trapped (red) and precipitating (blue) detectors. (f) The SYM-H index for the same time period.
Each of the diamonds in each of the panels shows the times of a slot region filling event; these match up with the large
flux enhancements in (a) to (e). POES = Polar Operational Environment Satellites; SEM = Space Environment Module.

Figure 3 shows daily median SNR values from receiver 3 of the MF radar from March 2002 to December 2014.
There are two patterns: (i) a seasonal variation in the SNR and (ii) a long-term change in the SNR. The seasonal
variation is due to changes in solar illumination; the signal scatters from gradients in the ionized atmosphere,
and as there is increased ionization at lower altitudes in the summer months, we observe a greater response
from those height ranges than in winter. The cause of the long-term change is more difficult to determine; it
might be a solar cycle effect, but we cannot say with certainty without a longer data set given the recent long
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Figure 3. Signal-to-noise ratio (SNR) from receiver 3 of the medium-frequency radar at Rothera from March 2002 to
December 2014 inclusive, measured in decibels. Daily median values in each range gate are presented, showing a long-
term variation and the seasonal cycle.

solar minimum. For this study it is enough to identify that there is a climatology in the SNR that must be taken
into account when looking at events dispersed in time through the data set.

3.2. Event Examples

Figure 4 shows an example of a slot region filling event that occurred on 2 October 2002. Figure 4a shows the
daily mean of J, at L = 2.7. The flux rises to 980 cm~2s~"-sr' on 2 October 2002, from a background of
300 cm™2s™ st in the preceding days. The flux slowly decayed to pre-event levels over the next 20 days,
with three minor increases occurring on 6, 13, and 18 October 2002; each of these consisted of an increase of

between 150 and 200 cm s~ -sr~ " but did not fulfill the event selection criteria on their own.

Figure 4b shows the hourly medians of the SNR from the MF radar between 55- and 95-km altitude (2-km
range gates); as the electron flux rises, it is accompanied by a reduction in SNR at the higher altitudes (above
~70 km) and an increase in SNR below 65 km, following the pattern outlined in Figure 1. However, there is a
diurnal variation in the SNR such that the change is restricted to certain times of day. Figure 4c shows the
solar elevation angle for the location of the MF radar; at the day of event onset the Sun lies at 25° above
the horizon at local noon and 20° below at midnight. The maximum effect on the SNR occurs at noon, with
the minimum at midnight. The lack of sunlight in the mesosphere has two main effects:

1. The reduction in solar ionization reduces the overall electron density. This can be seen in a standard diur-
nal variation in the MF radar SNR data (e.g., Figure 4 prior to event onset). At those latitudes where it can
occur, charged particle precipitation becomes the dominant mechanism of ionization.

2. In darkness, attachment of electrons to neutral species increases such that the mesospheric plasma is
made up of ions, electrons, and negative ions (e.g., Kavanagh et al, 2004; Rietveld & Collis, 1993).
Negative ions do not contribute to radio absorption, so the MF radar signal experiences less attenuation.
The associated reduction in electron density (and growth in negative ion density) results in a reduction of
radar targets, which in turn particularly reduces the SNR in the lower range gates.

The strong reduction in SNR above 75 km persists for the duration of the elevated flux, though there is a
change in the altitudinal profile as time progresses. After 11 October 2002, the effect is much less pro-
nounced, in terms of both the lower altitude enhancement and the reduction at higher range gates. By
the end of the event the solar elevation angle at midnight has raised to —10° with the Sun spending a shorter
time below the horizon.

3.3. Superposed Epoch Analyses

In this section a superposed epoch analysis of the MF radar SNR is presented. To compare the SNR with the
daily averages of electron fluxes from POES, an hourly median value centered on local noon is used; this mini-
mizes the impact of solar ionization (or lack thereof) on the SNR. The results do not qualitatively change if a
full daily median (or mean) is used.

For the analysis the epoch is defined as the day immediately preceding the increase in flux, and 20 days
before and 20 days afterward are presented. The MF radar data have been normalized to account for the
underlying climatology to enable a direct comparison between events and minimize the dominance of

KAVANAGH ET AL.

8006



'AND SPACE SCiENCE

Journal of Geophysical Research: Space Physics 10.1029/2018JA025890

Slot filling event on 02-Oct-2002 peakAJ =738

90 1

40
Eso =
e 20 o
p=}
£70 5
< 0

60

Solar Elevation
Angle
o

09/21 09/26 10/01 10/06 10/11 10/16 10/21
Month/Day

Figure 4. Example of a slot region filling event that began on 2 October 2002. (a) The integral electron flux for energies
>30 keV from the 0° detector (Je), with a clear enhancement on 2 October 2002 that persisted for several days. (b) The
corresponding signal-to-noise ratio (SNR) from the medium-frequency radar at Rothera. There is a diurnal variation that
changes once the precipitation begins, switching from high (low) SNR during the day (night) to a much weaker daytime
signal compared to nighttime. (c) The solar elevation angle at the site of the radar for this period.

extreme cases. This was achieved by determining the 2 days with the lowest J, within the 5 days prior to each
event and calculating the corresponding median SNR at all altitudes. The resultant profile represents the
quiet period prior to any precipitation occurring and is subtracted from all days within the analysis period
for the given event. Thus, rather than analyzing the SNR, it is actually the difference in SNR that is being
considered, denoted as ASNR. The same process was followed for J, to produce AJ,, that is, J, minus the
minimum flux prior to the epoch. This provides a baseline for all events to be compared against each other.

The 5-day span for determining the quiet period was chosen after considering the temporal distribution of the
slot region filling events: One pair of events was separated by 5 days with a further four pairs within 15 days of
each other, and nine pairs occurred within 20 days. Given that the flux can remain elevated for over 20 days
using a short period like 5 days prior to the onset to determine the undisturbed quiet values is sensible.

Figure 5 shows the results of the superposed epoch analysis of all 49 events. Figure 5a shows the median
ASNR, as a function of altitude, for all events from 20 days prior to the epoch to 20 days afterward.
Figure 5b displays the median J, (solid black line) for the same time range, with the upper and lower quartiles
of the underlying distribution (dashed lines). This is the flux measured by the 0° telescope indicating precipi-
tation. Following the epoch, there is a step in J, with the median rising from a minimum of
Jo =190 cm ™25 s~ to a peak of 400 cm™%s™ st (AJ, = 210 cm 25~ st ). The interquartile range
peaks at 350 cm ™25~ "-sr' on day 5, which illustrates the wide distribution of flux increases within the 49
events (can also be seen in Table 2). The median flux remains elevated above the pre-epoch levels until
the end of the period presented, but by day 15 it has dropped to 260 cm™2s™"sr~', which is a change of
66% of the difference between the peak and the pre-event level.

Figure 5a shows that there is a sharp change in ASNR following the epoch. Above 72.5 km there is a reduction
in ASNR that lasts for 11 days before approaching pre-event levels. Below 66.5 km the ASNR increases for the
initial 5 days. The greatest change occurs within the first 6 days, possibly associated with the more extreme
events as there is a corresponding bump in the upper quartile of the flux shown in Figure 5b. The average
increase in ASNR below 66.5 km during the first 5 days was 2.1 £ 0.7 dB, whereas above 72.5 km ASNR
reduced by —6.5 + 2.3 dB in the same period.
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Table 2 shows that there is a spread of peak fluxes throughout the 49 slot
region filling events. These included notably large geomagnetic storms,
such as the Halloween storm in 2003, as well as the previously noted
events that take place during much quieter geomagnetic conditions. The
superposed epoch analysis presented in Figure 5 is a mixture of all of these
events with no regard for the intensity of individual slot region injections.
To establish whether there is a lower limit on the ionospheric effect of the
events, a series of epoch analyses were performed using subsets of the
events limited by values of AJ. Care must be taken as introducing limits
significantly reduces the number of events in each analysis.

600 =
" SO0 () ," \-\-‘ Figure 6 shows the ionospheric response to different ranges of AJ.
:w 400 ! -] Figures 6a1-6a4 show the results of the superposed epoch analyses of
Esoo ! the ASNR for the cases where (al) AJ, < 150 cm™2s~ st ", (a2) 150-
3 300 cm s 'sr',  (a3) 300-800 cm %s s, and (ad)
3 20 R ) L N A, > 800 cm 25 ".sr™ ", Figures 6b1-6b4 show the associated super-
o an _1'; = f'5 5 s o 15 20 posed epoch analyses of the electron flux. These limits were chosen to

Days from epoch

Figure 5. A superposed epoch analysis of all 49 slot region filling events. The
zero epoch is defined as the day prior to an increase in >30-keV electron flux.
Data are shown for 20 days before and after the epoch. (a) The change in
signal-to-noise ratio (ASNR) relative to a quiet period prior to event onset; the
daily values represent the median SNR from around noon in magnetic local
time. (b) The corresponding change in >30-keV electron flux (AJe); the
black line is the median response, and the two dashed lines show the inter-
quartile range of the data.

no strongly visible response to t

retain a reasonable number of events in each group while providing a
means of investigating any transition from noneffective or weakly effec-
tive to strongly effective fluxes. The AJ, data in Figures 6b1-6b3 have been
plotted on the same scale to illustrate the differences in the levels of pre-
cipitation. Due to the large values of AJ, in the fourth group (Figure 6b4)
this panel uses an expanded Y-scale.

The median ASNR shown in Figure 6a1 is composed of 12 events and is
variable throughout. There is a hint of a response above 74.5 km, but it fits
with the variability of the rest of the period. Similarly, in Figure 6a2 there is
he precipitation below 84 km and the change above is not dissimilar to the

level of variability at other times. This ASNR is composed of 18 events.
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Figure 6. Superposed epoch analyses for four subsets of the data. The data binning was selected to balance different elec-
tron flux levels while maintaining a reasonable number of events in each subset. The top row of panels show the median

1-sr_1, and (a4) AJe > 800 cm ™

change in signal-to-noise ratio (ASNR) for (a1) AJp < 150 cm 25
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st~ ", The bottom row of panels (b1 to b4) show the cor-
responding values of AJ, (black lines) and the associated interquartile ranges.
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Figure 6a3 shows the result of limiting the events to those with a flux difference between 300 and
800 cm 25~ "-sr ! (10 events). In this instance, there is a response in ASNR on day 1; there is a —12-dB reduc-
tion above 72.5 km by day 2. At lower altitudes there is an increase (between 58 and 70 km) of at least 5 dB in
the ASNR. This lower altitude change recovers quickly (7 days) compared to the higher attitude change,
which takes about 12 days to reach pre-event levels.

In the final two panels (Figures 6a4 and 6b4) the events are limited to those with AJ, > 800 units
(seven events). The interquartile range in Figure 6b4 shows that there is a large spread of flux.
Figure 6a4 shows that once again we have a response following the epoch; there is a reduction in
ASNR above 70 km, possibly extending lower. There are hints of an enhancement in ASNR, but it is
not as well defined as in the previous case (Figure 6a3). The temporal structure seems somewhat differ-
ent for these events with a slightly shorter response; this reflects the flux in Figure 6b4 that drops away
from the peak value slightly quicker.

3.4. Significance Testing

To test the significance of the changes in ASNR presented in Figures 5 and 6, a series of two-sided
Kolmogorov-Smirnov (KS) tests were performed (Kolmogorov, 1933; Smirnov, 1948). For every altitude
and every time relative to the epoch, the underlying distribution of ASNR is compared against a ran-
domly sampled distribution drawn from the SNR data set; the null hypothesis is that the two distribu-
tions are drawn from the same underlying continuous population. This was repeated with 100 random
sets of 100 epochs for each of the cases presented in Figures 5 and 6, and we recorded the percentage
of those where the KS test indicated that the null hypothesis could be rejected at the 5%
confidence level.

Figure 7 presents the results of the KS tests for the cases of: (a) AJ, > 0, (b) AJ. < 150, (c) 150 < AJ, < 300, (d)
300 < AJ. < 800, and (e) AJ, > 800. Results are shown as a function of altitude (y-axis) and day from epoch
(x-axis); the color scale gives the percentage of tests where the 95% significance level was exceeded (i.e.,
p < 0.05).

Figure 7a, which represents all 49 events, shows that following the epoch, there is a significant difference at
nearly all altitudes that lasts for ~5 days. This suggests that the response to the slot region filling on the SNR
data is real. The remaining panels break this result down by considering the same subsets as presented in
Figure 6, based on flux limits.

Figures 7b and 7c show no evidence of a significant response. This suggests that a change in flux of less than
300 cm 25 sr s unlikely to prompt a response in the SNR of the radar; this is likely due to too low levels
of additional ionization. In Figure 7c there is a small clustering of high percentages following day 3; however,
this is similar to the cluster at day 10 and as such cannot be taken as a response to the event onset. It is worth
noting that the limits for binning the data were chosen in an attempt to provide a measure of balance to the
sample numbers for the epoch analysis while keeping the flux levels as similar as possible in each bin.
Therefore, it is possible that individual events with AJ, close to 300 em 25 ".sr'could have a small effect
in the SNR that this analysis is not revealing. In general, though, this is not the case.

There is a large swathe of significant values in Figure 7d, immediately following the epoch and lasting for at
least 7 days at 64.5 km and 12 days, perhaps as long as 18, at 80.5 km. This corresponds to the 10 events with
300 < AJ, < 800, displayed in Figure 6a3. It would appear that most of the structure in Figure 7a, which looks
at all events, is caused by this set of events. The final panel (Figure 7e) contains the most intense events
(AJ. > 800 cm™2s ™ ".sr™); the range of fluxes that contribute to this sample set is very large as can be seen
in Figure 6b4. The KS testing resulted in a significant change above 68.5 km, which lasted for 12 days at
80.5 km. Below 68.2 km there is no significant difference; this result is counterintuitive given the strong
response shown in Figure 6a4. This may be caused by a mixture of several factors: These intense events
may have an energy spectrum heavily skewed toward the lower end of J,, that is, much higher fluxes at
the lower energies; the low number of samples with a large variability of AJ, could have an effect; and for
these larger events there could be significant numbers of precipitating protons that will both lead to an over-
estimate of J, and produce a very different ionization profile. This latter issue will be discussed in a
later section.
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Figure 7. Results of a set of Kolmogorov-Smirnov tests on the medium-frequency radar change in signal-to-noise ratio (ASNR) for (a) all 49 events and (b-e) each of
the subsets described in Figure 6. The null hypothesis is that the samples are drawn from a different distribution. Each of the sets of ASNR data was tested against a
random set sampled from the medim-frequency radar data set; this was repeated 100 times for each set of data. The percentage of times that the Kolmogorov-
Smirnov test returned a p value of less than 0.05 were recorded and are presented.

4, Discussion
4.1. Response to Geomagnetic Activity

Figures 6 and 7 show that the 49 slot region filling events that have been identified fall into two categories:
those events that have zero effect on the ASNR of the MF radar (AJ, < 300 cm™2s™"sr™"), comprising the two
lower flux sets, and those that have a clear effect (AJ, > 300 cm~2s ™ ".sr '), comprising the two higher flux
sets (including the extreme events). For ease of reference these two groups will be referred to as “ineffective”
and “effective,” respectively, in the discussion, though the four flux groupings will also occasionally be

referred to when appropriate.
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This clustering of events suggest that even though high geomagnetic

Figure 8. Plot of the peak >30-keV electron daily flux as a function of geo-  activity can lead to slot region filling, sustained events can occur even
magnetic activity represented by the SYM-H index. Each circle representsa i the absence of strong storm conditions. Park et al. (2010) identified

single slot-filling event. They are color coded by the flux difference (the
difference between the peak value and the minimum value in the days
preceding event onset) and grouped into the same subsets as in Figure 6.

a non-storm-time injection of electrons and protons into the slot
region that they associated with substorm activity. This event occurred
on 24 February 2004 and lasted for less than a day; consequently, it
was not included in the events identified here. Park et al. (2010) suggested that the mechanism behind
the injection could be connected to a localized enhancement of the substorm electric field (after
Ganushkina et al,, 2000) and/or enhancements in ultralow-frequency wave activity (e.g., Liu et al,
2003). Recent work by Califf et al. (2017) has confirmed that an enhancement in the convection electric
field can lead to the energization and transport of electrons up to 500 keV in the slot region.

4.2. Electron Versus Proton Precipitation

It is not possible with the MF radar to discriminate whether the changes in ionization that cause the change
in SNR are due to proton or electron precipitation. As mentioned in section 2.1, the POES electron data suf-
fer contamination from solar protons and at the same time the presence of high-energy electrons will lead
to a false reading in the >6.9-MeV proton detector (designated as P6; e.g., Evans et al, 2008; Yando
et al, 2011).

Figures 2c and 2d show the >6.9-MeV proton flux (J,) from years 2002 to 2014 inclusive. There are clear exam-
ples where J, shows a similar signature to J; however, this is only the case for those events with a large SYM-
H value and does not occur for all events.

Columns 5 to 7 of Table 2 provide information on SPEs that occur around the slot-filling events. Column 5
gives the start time of the SPE, when the >10-MeV proton flux measured in geostationary orbit by the
GOES (Geostationary Operational Environmental Satellites) satellites surpasses 10 cm™%s~"-sr'. Column 6
gives the time of maximum >10-MeV flux, and column 7 gives the corresponding flux value. These values
were obtained from the list (ftp://ftp.swpc.noaa.gov/pub/indices/SPE.txt) maintained by the NOAA Space

Weather Prediction Center.

Solar protons (with energies greater than MeV) will cross magnetic fields lines and penetrate the magneto-
sphere; the extent is dependent on their energy, and eventually, they will reach a cut-off L-shell, beyond
which they cannot travel. These cut-offs are dependent on the magnitude of the magnetic field, and during
storms when the ring current is enhanced this can lead to a weakening in the field and suppression of the cut-
off, allowing protons to cross to lower L-shells. Kress et al. (2004) used particle simulations to show that pro-
tons with energy >25 MeV could access within L = 4 when there is a high-density solar wind impulse acting
on the magnetosphere. This matched observations of proton injections into the slot region during the 24
November 2001 storm made by the Highly elliptical orbit (HEO) 1997-068 (also known as HEO-3) spacecraft.
Thus, for events with a large SYM-H (indicating enhanced ring current) that coincide with an SPE there is a
likelihood that energetic protons are also being injected into the slot region.
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Of the 49 slot region filling events, 25 did not occur with or during an SPE (just over 50%). For the remaining
24 events the peak >10 -MeV flux measured at geostationary orbit can be compared with the flux of >6.9-
MeV protons (J,) measured by POES on the same day. In general, there is a slight tendency for the higher
POES flux to correspond with the higher GOES flux; however, the two parameters are not strongly correlated
(R = 0.1), with significant scatter. Thus, it is not compelling evidence that the ionization changes detected by
the MF radar are consistently caused by the precipitation of newly injected protons.

Selesnick et al. (2010) used detectors on the HEO-3 satellite to study the flux of protons with energies
between 27 and 45 MeV, earthward of L = 4. The HEO-3 satellite is in a highly elliptical orbit, and measure-
ments were made close to perigee, which at the start of 2002 was at ~1.31 Earth radii, or ~1,900-km altitude,
but was moving earthward such that by mid-2002 it was at ~1,800-km altitude. This is approximately double
the orbital altitude of the POES (see Table 1). The paper presented observations between 1998 and 2005
(inclusive) providing 4 years of overlap with our data set and covering 17 of the SPEs; of the remaining six,
only one had significant peak flux at geostationary orbit and was associated with a SYM-H value that could
suggest a suppressed cut-off. Figure 2 of Selesnick et al. (2010) shows the extent of L reached by the 27- to
45-MeV protons and only two of the events between 2002 and 2005 directly penetrated within L = 3: 29
October 2003 (event 15 in Table 2) and 7 November 2004 (event 23 in Table 2). The former is the well-known
Halloween storm (e.g., Baker et al., 2004), where studies have shown that the slot region contains energetic
electrons following the storm onset as well as protons. The latter was not such a large SPE (in terms of the
peak flux), but both of these events were toward the top end of the distribution of J, events.

The event on 7 November 2004 recorded a value of J, = 3,188 cm™2s7 st~ on the day the SPE reached its

peak, subsequently rising to 12,200 cm ™25~ "-sr~". This coincided with J, = 39,120 cm~%s~"-sr ', and it might
be assumed that the electron channel is being contaminated. However, the POES proton fluxes are much
higher than the peak >10 MeV measured by GOES at geostationary orbit (496 cm™%s ™ -sr~"). This discre-
pancy seems too large to simply be due to a difference in calibration between the two detectors. It seems likely
that the high J, flux is actually due to contamination by energetic electrons (>700 keV). Unfortunately, a
comparison with the lower-energy proton channel, P5, will not be conclusive in this case: If the geomagnetic
cut-off is not sufficiently suppressed, the lower-energy protons will not penetrate to these low L-shells.

As well as directly identifying the SPE penetration, Selesnick et al. (2010) identified events where the pro-
ton flux increased and decreased significantly; this included two SPEs on 8 September 2005 and 16
January 2005 that coincided with events 30 and 24, both of which recorded high J, from POES, suggest-
ing that they included significant proton fluxes. One noteworthy increase identified by those authors
occurred prior to the onset of our data set; on 23 November 2001 there was a large SPE associated with
a large increase of flux in the slot region, effectively swelling the inner proton belt (see Figure 1 of
Selesnick et al, 2010) beyond L = 2.7. According to the HEO-3 data, the belt remained swollen until
the Halloween storm in October 2003, which caused a significant loss of protons. Throughout this period
the omnidirectional flux of protons was between approximately 4 and 20 protons/s; the authors opted to
use these unnormalized data units throughout due to an uncertainty with the sensor geometry
factor (~0.5 cm? sr).

Over the same time interval the POES proton data do not record an increase in the background flux.
There is also no corresponding signal in the electron flux, and so it is unlikely to be having a significant
contamination effect. Zou et al. (2011) used the omnidirectional proton detectors on the POES spacecraft
to examine the response of high-energy protons (35-70, 70-140, and 140-500 MeV) within L = 3 to large
geomagnetic storms between 1998 and 2005 inclusive. Their study overlapped with the period analyzed
here, and they identified a storm response; however, for the energies in question the proton flux is con-
sistently low at L = 2.7, agreeing with the POES observations for the >6.9-MeV proton channel. The dif-
ference in orbits between the two satellites could account for some part of this; for example, Fennell et al.
(2005) found that electron fluxes were an order of magnitude larger at higher altitudes on the same
L-shell, and consequently, the background proton flux at the altitude of POES may be significantly smaller
and within the noise of the instrument. It is also important to note that each of the events that have been
identified in the >30-keV electron flux is associated with an increase in flux in the precipitating and
trapped fluxes, and so the increased ionization seen by the MF radar cannot be caused just by the loss
of an existing proton population.
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A subset of the slot region filling events were associated with increases in proton flux connected to an SPE.
However, several events with an ionospheric counterpart did not have protons present, indicating that ener-
getic electrons are precipitating into the atmosphere above Rothera. For those events associated with large
absolute values of SYM-H there is likely to be a mix of electrons and protons that have gained access due to a
suppressed geomagnetic cut-off. There is no evidence for the sustained proton background identified by
Selesnick et al. (2010) at the orbital altitudes of POES.

4.3. Local Time Variation in Precipitation

The MF radar passes through all local times and as such can be used to probe the variation in precipitation in
magnetic local time (MLT). Figure 4 demonstrates that there are local time effects in the ASNR due to solar
illumination/photochemistry effects in the D region; these need to be removed from the data to see the resi-
dual precipitation variation. The average local time response can be determined by removing data when the
solar elevation angle is beyond a given threshold at which photochemical effects start to become important.
Collis and Rietveld (1991) used incoherent scatter radar measurements to examine changes in electron den-
sity over twilight; although there were differences between sunset and sunrise, there was a near-linear rela-
tionship between the solar zenith angle (y) and the decrease/increase in electron density beyond y = 90°,
even though the mesospheric altitudes were illuminated. Therefore, periods have been selected only when
x < 90° to examine the MLT effect of precipitation.

Figure 9 presents hourly data, binned as a function of MLT. Figures 9a-9c show the median ASNR as a func-
tion of MLT and day from epoch for three altitude gates: 60.5, 74.5, and 90.5 km. In an attempt to ensure that
these plots represent electron precipitation, the data are limited to effective events with maximum solar pro-
ton flux <100 cm ™25~ "sr~" and a minimum SYM-H index >150 nT. This leaves 11 events that contribute to
the median ASNR; areas shaded in gray are when no data are available, and this is due to the solar zenith
angle limit. Each altitude slice shows a response following the zero epoch; ASNR is broadly uniform in MLT
at each altitude and lasts for 10 days. The data beyond day 10 are somewhat noisier, indicative of some
events having a longer duration. At 60.5 km there is a hint of an MLT dependence with the precipitation max-
imizing between dusk and dawn, but it is small and inconclusive. The lack of data close to midnight (23-01
MLT) means that nothing can be concluded about the precipitation at these times.

To further analyze the MLT variation in altitude, the average of the first 5 days following the epoch is taken;
this is presented in Figure 9d1. For comparison the average with no y limitation is shown in Figure 9d2; this
shows a local time effect due to the solar illumination (as described in section 3.2) that agrees with the find-
ings of Collis and Rietveld (1991): Change begins below 80 km with an asymmetry between the
sunrise/sunset transitions.

When the y < 90 limitation is imposed (Figure 9d1), the MLT variation disappears. The transition from positive
to negative ASNR occurs consistently between 68- and 76-km altitude; some spreading in altitude is expected
due to the mixing of events that may contain different energies of precipitating particles. The MLT pattern in
ASNR appears symmetric about noon and is uniform in the transition region. Above and below the transition,
there is an increase in ASNR at both high and low altitudes between 07 and 17 MLT. It is important to note
that the amount of data contributing to the medium varies from 11 events at noon to 5 at dusk and dawn
to 1 at 02 and 22 MLT. This introduces some uncertainty into the measurement, and so caution must be
applied in interpreting the MLT pattern. The most likely conclusion is that the change with MLT is a combina-
tion of the low number of events coupled with a photoionization effect that is not completely removed by a
x < 90 limit. If the dayside/nightside change was due to a precipitation effect, one should expect ASNR to
reduce (increase) at higher altitudes as it increases (decreases) at lower (see section 2.2). Similarly, one would
expect the height of transition to vary.

Although it is not possible to resolve the full precipitation pattern in MLT, there is enough information avail-
able to limit the possible causes of the precipitation. The chief mechanism for the precipitation of particles
from the radiation belts is scattering into the loss cone through interaction with electromagnetic waves.
Several waves interact with energetic electrons and modify their pitch angles, and the three primary natural
candidates are whistler mode chorus, hiss, and electromagnetic ion cyclotron waves (e.g., Thorne, 2010);
magnetosonic waves will also modify electron pitch angle distributions though they tend to accelerate elec-
trons and not lead to precipitation. Recent work has suggested that the combined scattering from hiss and
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Figure 9. Magnetic local time distribution of change in signal-to-noise ratio (ASNR) for those events where
AJe > 300 cm %s” st Data are in hourly averages and have been restricted to those events with a solar proton flux

of <100 cm 25~ "sr~ ' and a minimum SYM-H of —150 nT. The data are further restricted by a solar zenith angle (y) limit of

90°. Eleven events contribute to the median ASNR though this tapers to zero at the edges. The top three panels show
ASNR (color scale) at three heights for magnetic local time on the y-axis and the epoch time on the x-axis: (a) at 60.5 km,
(b) at 74.5 km, and (c) at 90.5 km. The lower two panels show the average ASNR calculated from the 5 days following the
onset. (d1) The result with the y criterion imposed. (d2) The result with no limit on y, showing the natural variation that
masks the precipitation effect.

magnetosonic waves can lead to a slowdown in loss of ~100-keV electrons (Ni et al., 2017) from the
magnetosphere such that magnetosonic wave may have a role in the process.

The distributions of waves in the magnetosphere are both MLT and L-shell dependent, but at L close to the
radar site (L = 2.7) whistler mode chorus tends to occur from pre-midnight, through dawn to postnoon, and
electromagnetic ion cyclotron waves lie from midnight to dusk. These local time variations do not match the
MLT pattern of SNR observed by the MF radar. However, considering our comments on the number of data
points behind Figure 9 and the caution that must be observed, we cannot completely rule out chorus as a
possible factor. It is more likely that hiss is the dominant wave driving the precipitation. Thorne (2010)
describes hiss as “an incoherent whistler-mode emission confined within the dense plasmasphere.” It has
been mooted as the primary cause of the formation of the slot region during quiet times (e.g., Lyons &
Thorne, 1973). Meredith et al. (2007) examined the electron e-folding loss timescales in the slot region and
considered both hiss and lightning-generated whistler mode waves. They found that the timescale for 2-
MeV electrons to be lost due to hiss propagating at small wave normal angles at L = 2.5 is 1-10 days. This
is consistent with the timescale of average precipitation during these slot region filling events. They also
showed wave intensities as a function of L, MLT, and geomagnetic activity using data from the Combined
Release and Radiation Effects Satellite (CRRES) satellite (Anderson et al., 1992). For moderate and active geo-
magnetic conditions (as measured by the AE* index, where AE* is the maximum value of AE in the previous
3 hr) the average wave intensity is strongest on the dayside at the L-shell corresponding to the radar mea-
surements. Thus, the local time distribution of ASNR is consistent with plasmaspheric hiss being the principal
cause of precipitation. It is worth noting that the pattern of Hiss intensity shown in Figure 1 of Meredith et al.
(2007) matches the MLT distribution of ASNR very well; however, given the uncertainty attached to the

KAVANAGH ET AL.

8014



Journal of Geophysical Research: Space Physics 10.1029/2018JA025890

65

peak production
minimum production
O

64

(o] (o] [} (o]
o - N w

Altitude [km]

a
©

[6)]
oo

(4]
J

500 1000 1500 20 40 60
ASNR [dB] % of P<0.05 Energy [keV] Energy [MeV]

Figure 10. (a) Height profiles of change in signal-to-noise ratio (ASNR) for days 0, 2, 3, and 4 of the epoch. (b) The equiva-
lent Kolmogorov-Smirnov test results as described for Figure 7. This value is used to determine at what height the preci-
pitation effect disappears. The minimum height of deposition (blue line) and height of peak ionization (black line) as a
function of energy for (c) electrons and (d) protons. The shaded regions indicate the spread of data from all of the events
that contribute. The horizontal dotted lines show the boundaries of the range gate centered on 58.5-km altitude.

measurements on the nightside, more data are needed to confirm whether this is more than coincidence. We
cannot absolutely rule out chorus, or the influence of magnetosonic waves, though the lack of variability in
ASNR amplitude would suggest that there is no damping of the interaction (unless it occurs at all MLT) or a
change in the scattering process. Given that the MLT distribution of ASNR does not show a variation in
altitude, it would appear that the precipitation mechanism (whether that be interaction with hiss or
something else) is moderately independent of energy.

4.4. Energy Estimates

The altitude profile of the perturbation in the SNR detected by the MF radar provides information on the peak
energy of the precipitation. In practice, this is limited by the lowest energy flux that generates ionization that
is detectable by the radar, a quantity that is currently unknown. Consequently, an estimate of peak energy
from the radar can be considered as the minimum possible value of the peak energy of precipitation; higher
energies may be present at low flux levels beyond the ability of the radar to detect them. A key factor in ana-
lyzing the radar response is determining the height at which there is confidence that the radar is responding
to the precipitation.

Figure 10 shows how the minimum peak energy can be estimated for the average of events with
300 < AJ, < 800 cm™ 25~ ".sr™"; this excludes the largest events. Figure 10a shows the median ASNR of the
>300 cm~%s ™ -sr ! events below 65-km altitude for the day of the epoch (black dashed lines), day 2 (blue
line), day 3 (red line), and day 4 (green line). Day 1 from the epoch was not included as this will contain a
mix of preonset and postonset effects depending on the actual universal time of the onset of precipitation
and the local time of the radar. The largest perturbation occurred in the 60.5-km (day 4) or 62.5-km (days 2
and 3) range gates, before reducing at lower altitudes. The median ASNR does not reach pre-event levels
within detectable range. Figure 10b shows the results of the significance tests for the corresponding days.
The x-axis shows the percentage number of tests where the p value was below 0.05. For days 2 to 4 the p value
was below 0.05 over 90% of the time above 58.5 km, dropping rapidly to zero by the next altitude range gate
of the radar (56.5 km). The dotted black lines represent the edges of the 58.5-km range gate at 2 km wide.

A charged particle precipitating through the atmosphere will produce an ionization profile (e.g. Rees,
1963; Semeter & Kamalabadi, 2005) that is primarily dependent on three parameters: the mass of the par-
ticle, the density profile of the atmosphere through which the particle travels, and the energy of the pre-
cipitating particle. As the particle descends through the atmosphere, the ionization increases, until it
peaks at some altitude and rapidly drops to zero. Due to the dependence on the neutral atmosphere
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density the profile for a monoenergetic beam of electrons will change depending on the time of year.
The magnitude of the ionization profile is dependent on the flux of precipitating particles.

Figures 10c and 10d show energy versus altitude for electrons (Figure 10c) and protons (Figure 10d)
hitting the atmosphere. The black line shows the minimum altitudes of penetration (when the ioniza-
tion drops back to zero), and the blue line shows the altitudes of the peaks of the ionization profiles
as a function of energy (x-axis). These are the median values calculated for all events in the selected
energy range. These curves have been generated using the calculations for ionization rates outlined
in Rees (1963). These combine a neutral density profile with an estimate of the range of electrons in
air for given energies. The neutral density profile is provided by NRLMSISE-00 (Picone et al., 2002); this
introduces a time-of-year effect, and so the shaded regions around each line indicate the spread of
values due to this. The range of electrons in a standard atmosphere for electrons and protons have
been calculated using data provided by the National Institute of Standards and Technology Physical
Measurements Laboratory (https://www.nist.gov/pml/stopping-power-range-tables-electrons-protons-and-
helium-ions).

If the MF radar responds to a change in ionization at a given altitude, the corresponding energy on the black
line indicates the minimum energy that could cause that ionization. Particles with energy below this thresh-
old will deposit above that altitude and so will not contribute to the ionization. In practice, the drop from the
peak to zero point is such that a detectable change in the MF radar SNR is likely to be associated with an
energy on the curve between these points.

72- 71.

From Figure 10 it can be seen that for 300 < AJ, < 800 cm™%s™ "-sr™! the minimum altitude where the radar
detected a measurable change in ASNR was the 58.5-km range gate. Thus, the minimum peak energy
inferred from the height of minimum deposition (blue line in Figure 10c) is 670 + 50 keV. This rises toward
1170 = 90 keV when the peak altitude of ionization is considered (black line in Figure 10c). For completeness,
protons have been included in Figure 10d, and if this is the dominant source of ionization, then the minimum
peak energy lies between 24.2 + 7.5 and 37.4 + 11.5 MeV, which would be in line with the observations
described by Selesnick et al. (2010). Of the 12 events that made up the selected range, five had no SPEs,
two had an SPE with low peak flux (both 24 cm ™25~ ".sr™ "), and one with 466 cm™2s™"sr~' was accompa-
nied by a minimum SYM-H of —70. Thus, eight out of the 12 were highly unlikely to have high fluxes of
protons present such that electrons are likely to have been dominant. The estimated minimum peak value
(670-1170 keV) suggests that relativistic energies are present and are in line with the increased precipitating
Jp flux being due to contamination.

The superposed epoch analysis technique is a good means of extracting the average behavior, especially
when the input data are somewhat noisy, but it masks responses away from the average. The events were
selected based upon their integral flux level, and consequently, no spectral information was considered.
Consequently, considering the average (whether mean or median) of those events will ignore the potential
for more energetic precipitation.

Figure 11 presents two examples of 300 < AJ, < 800 cm~2s~"-sr" events. The two left-hand panels show

the SNR from the day prior to precipitation onset (black line) and the day after onset (blue line) for 2
October 2002 (Figure 11a) and 24 August 2005 (Figure 11d). These are analogous to before and after the
dashed line at t = 74 in Figure 1: Pre-precipitation, the SNR increases with altitude as the electron density
increases before reducing again as either the signal is absorbed or the scattering efficiency decreases (black
line); with precipitation the increased electron density at low altitudes leads to increased SNR with a drop-off
in signal at increasing altitudes as the signal undergoes absorption (blue line). Thus, from the model of the
radar response to precipitation, one would expect to see two points of convergence between the lines:
The highest altitude point is where the upward trending SNR (quiet day) passes the downward trending
SNR (active day). The lowest altitude convergence therefore gives an indication of the lowest altitude limit
where an increased electron density can be detected.

The right-hand panels show the corresponding energy deposition heights, where the blue line is the height
of peak deposition for a given energy and the red line is the minimum height of deposition for a given
energy. These have been calculated for the day after onset in each case. In Figures 11a and 11d the SNR value
is the hourly median (at each height) around noon; the error bars are determined from the median absolute
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Figure 11. Two example events on 2 October 2002 and 24 August 2005. (a and d) The height profiles of the signal-to-noise
ratio (SNR) on the day prior to onset (black) and the day after onset (blue); error bars are derived from the median
absolute deviation. (b and e) The minimum height of deposition (red line) and peak altitude of ionization (blue line) for
electrons as a function of energy. (c and f) The same for protons. The horizontal dashed line in the top row indicates the
center of the lowest radar altitude bin where the SNR converges.

deviation. For each event there is a similar pattern: a reduction in SNR at higher altitudes with an increase at
the lower ranges (e.g., as suggested in Figure 1); the height of transition changes between the events, and
this is likely due to a number of factors that include the seasonal differences in the background
ionosphere and the spectrum of precipitation. In Figure 11a the two profiles converge below the 58.5-km
range gate, as shown by the horizontal dashed black line. This corresponds to an energy of 640 + 50 keV,
perhaps as high as 1,120 + 90 keV. In Figure 11d the profiles do not converge within the radar height
range, suggesting that for this event the electron are penetrating deep into the lower mesosphere below
54.5-km altitude (the bottom of the lowest range gate). The bottom of the radar range corresponds to
630 + 50 keV with an 1,110 + 80 keV peak deposition.

The proton curves have been added for completeness (Figures 11c and 11f); the 24 August 2005 event
was accompanied by a modest SPE that peaked on the day prior to the flux increase (max
flux = 330 cm™2s™ st ). The minimum SYM-H value was —174 nT, which is not particularly strong but
means that an injection of energetic protons cannot be ruled out. If protons are responsible, this would
be between 25 and 40 MeV. For 2 October 2002 there was no SPE during this event such that the corre-
sponding increase in J. for both the trapped and precipitating detectors could not be due to an influx of
protons. Although this was in the period where Selesnick et al. (2010) noted an extant proton population,
this cannot explain the apparent increase in both trapped and precipitating electron fluxes. The event did
record an increase in the trapped and precipitating J,; this is indicative of contamination by energetic
electrons (upward of 700 keV).

The uncertainties in this technique arise from several sources. Semeter and Kamalabadi (2005) provide a
good discussion of the inputs to the ionization calculation. For example, the final ionization curve depends
on the assumed pitch angle distribution of incident electrons; for lower-energy electrons (few keV) the isotro-
pic distribution has been found to better reflect reality (e.g., Semeter et al., 2001). Given that higher-energy
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electrons tend toward isotropic, this is the distribution we adopt. Uncertainties will always arise due to the
choice of atmospheric density profile, but in the absence of direct measurements NRLMSISE-00 is the best
option. Finally, the greatest uncertainty in the estimate is where to on the ionization curve the bottom edge
of the change in ASNR corresponds. Is it closer to the peak of ionization or to the point where the ionization
curve drops to zero? In the absence of a means of answering this question we must present a range of ener-
gies to represent the minimum peak energy of precipitation.

Thus, in combination with an ionization profile model the MF radar at Rothera can provide a minimum esti-
mate of the most energetic electrons precipitating from the slot region. This technique provides a ground
truth to confirm the observations from the POES that during these events, when the slot region is filled by
>30 keV electrons, there is a steady loss to the atmosphere that lasts an average of 10 days. Although the
MF radar cannot discriminate between the sources of additional ionization it is important to note that it pro-
vides a clear indicator of precipitation occurring down to the stratopause. This precipitation does not appear
to be confined in MLT and can occur during moderate geomagnetic activity.

When considering the atmospheric response to charged particle precipitation, it is important to ensure that
the slot region is included as a source. This is particularly true in the Southern Hemisphere with the large
separation of the geographic and geomagnetic poles. Rothera, located on the Antarctic Peninsula, is at a rela-
tively high geographic latitude while being at quite a low geomagnetic latitude. During winter months it is
usually within the stable southern polar vortex. The precipitation from the slot region, whether it be electron
or proton, is depositing energy close to the stratopause, generating NO, that can be transported further down-
ward to where ozone is more abundant. Further analyis is required to determine the impact of these events.

5. Conclusions

Between 2002 and 2014 inclusive, the POES satellites detected 54 instances when the radiation belt slot
region was filled for more than 1 day by fluxes of electrons with energy in excess of 30 keV. Of these events,
20 were also detected by an MF radar located at Rothera in Antarctica at L = 2.7. The radar observed a change
in the SNR during these events caused by changes in the local ionization due to the precipitation of charged
particles. An analysis of these events leads to the following conclusions:

1. Significant energetic precipitation into the ionosphere occurs from the slot region at times when it is
filled. The duration of precipitation is ~10 days on average.

2. Slot region filling events are not uncommon, and consequently, geomagnetic storms have a larger area of
precipitation than just the auroral zones and outer radiation belts. Thus, atmospheric models that include
energetic precipitation must include the slot region.

3. There is a weak dependence on geomagnetic storm strength (as indicated by SYM-H); however, a large
number (18 out of 49) of slot region filling events occur for moderate activity (minimum SYM-
H > —100 nT).

4. The precipitation is energetic, penetrating into the lower mesosphere, potentially to the stratopause (50-
to 55-km altitude).

5. In some cases there is a mixture of high-energy electrons and protons; however, for some events electrons
are likely to be the dominant species. The height of deposition suggests that these electrons are in excess
of 640 keV, perhaps higher than 1 MeV.

6. The distribution of the precipitation in MLT is consistent with scattering by plasmaspheric hiss.

The MF radar can provide a ground truth to indicate times when energetic precipitation is occurring and can

provide bounds on the peak energy of precipitation, when used in conjunction with an atmospheric ioniza-

tion model.
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