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Abstract

We report on our 3D magnetohydrodynamic simulations of cylindrical weakly twisted flux tubes emerging from
18Mm below the photosphere. We perform a parametric study by varying the initial magnetic field strength (B0),
radius (R), twist (α), and length of the emerging part of the flux tube (λ) to investigate how these parameters affect
the transfer of the magnetic field from the convection zone to the photosphere. We show that the efficiency of
emergence at the photosphere (i.e., how strong the photospheric field will be in comparison to B0) depends not only
on B0, but also on the morphology of the emerging field and on the twist. We show that parameters such as B0 and
magnetic flux alone cannot determine whether a flux tube will emerge to the solar surface. For instance, high-B0

(weak-B0) fields may fail (succeed) to emerge at the photosphere, depending on their geometrical properties. We
also show that the photospheric magnetic field strength can vary greatly for flux tubes with the same B0 but
different geometric properties. Moreover, in some cases we have found scaling laws, whereby the magnetic field
strength scales with the local density as B∝ρκ, where κ≈1 deeper in the convection zone and κ<1 close to the
photosphere. The transition between the two values occurs approximately when the local pressure scale (Hp)
becomes comparable to the diameter of the flux tube (Hp≈2R). We derive forms to explain how and when these
scaling laws appear and compare them with the numerical simulations.
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1. Introduction

It is believed that the origin of the magnetic field of the Sun
is associated with the existence of a dynamo mechanism
operating around the base of the deep convection zone
(Parker 1955a). The magnetic fields rise from the 200Mm
deep convection zone toward the photosphere due to buoyancy
(Parker 1955b), where they can emerge and form a variety of
magnetic structures (from small-scale pores to large-scale
active regions). The expansion of the flux tubes during their
emergence within the solar interior depends mostly on the local
density of the convection zone. However, the density inside the
convection zone drops by six orders of magnitude, and the
main density decrease occurs mostly in the upper convection
zone. For example, the density drops by approximately 104 in
the upper 20Mm of the convection zone, of which a 103 drop
occurs only in the upper 10Mm. This shows that the local
pressure scale height (Hp) is large and decreases slowly at
larger depths. Therefore, deeper in the solar interior, the motion
of magnetic fields (e.g., a flux tube) is affected less strongly by
pressure variations than near the surface. This allows the flux
emergence process there to be studied using either the thin-flux
tube approximation (e.g., Spruit 1981; Fan et al. 1993; Caligari
et al. 1995; Weber et al. 2011) or the anelastic magnetohydro-
dynamic (MHD) approximation (e.g., Brun et al. 2004;
Fan 2008; Jouve & Brun 2009; Fan & Fang 2014). Closer to
the photosphere, on the other hand, Hp becomes small and
decreases rapidly. Hence, the size of the emerging structures
can become comparable to Hp and full 3D compressible MHD
is needed in order to study flux emergence in the upper
convection zone.

Toriumi & Yokoyama (2010) performed 2D MHD simula-
tions of a magnetic flux sheet positioned at z=−20Mm below
the photosphere. They reported that in order for the magnetic
field to emerge into the photosphere and above, its flux needs to

be 1021–1022 Mx. However, these fluxes were derived by
assuming the length of the magnetic flux sheet along the third
dimension. Toriumi & Yokoyama (2013) performed 3D MHD
simulations of a magnetic flux tube originating from the same
depth. They varied the initial magnetic field strength, twist, and
length of the buoyant part of the flux tube. They found that for
higher values of the magnetic field strength and twist, the flux
tube emerges faster inside the solar interior, and expands more
dynamically above the photosphere. On the other hand, the flux
tube emerges faster inside the solar interior, but expands less
dynamically above the photosphere when the buoyant part of
the flux tube is longer. These results are important for
understanding the emergence process of flux tubes in the solar
interior. However, many questions remain open. For example,
it is still unknown how the parameters of the initial subphoto-
spheric field affect the amount of flux emerging at the
photosphere.
Another interesting question is how the magnetic field

strength (B) scales with the local plasma density (ρ) during the
emergence of the flux tube within the convection zone. A
simple scaling law can be derived if we assume a flux tube with
a uniform axial magnetic field of strength B and then vary its
cross section (A), while keeping its length (L) constant
(Figure 1(a)). From conservation of mass (M=ALρ) and
magnetic flux (Φ=AB), it is easy to show that B∝ρ (or
B∝ρκ with κ=1).
Another scaling law can be derived when we vary the length

of the flux tube while keeping its cross section constant
(Figure 1(b)). Conservation of mass and flux suggests that B
and ρ will depend on the length of the flux tube. Useful
information about the scaling can be derived by assuming that
B∝ρκ. Then, κ becomes constrained to 0<κ<1 (Pinto &
Brun 2013).
Finally, the scaling of the magnetic field strength with the

local plasma density can be affected by the action of velocity
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gradients on the magnetic field. To show this, Cheung et al.
(2010) assumed a horizontal magnetic field, B xB= ˆ,
(Figure 1(c)). This field was then distorted by an asymmetric
velocity gradient, defined by
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where α is the horizontal expansion rate and ò is a parameter
describing the asymmetry of the flow in the vertical direction.
Combining the ideal induction and the continuity equations,

B
v B B v

D

Dt
2 = - +( · ) ( · ) ( )

v
D

Dt
, 3r

r= - ( · ) ( )

they found that the scaling of B with ρ is indeed affected by the
velocity gradients and that the power κ depends on the degree
of the asymmetry of the velocity gradients as
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For a purely horizontal expansion (ò=0), κ=0.5 and for
expansion transverse to the field (ò?1), κ=1, as expected
from the conservation of flux and mass (as in Figure 1(a)). For
isotropic expansion (ò=1), they found κ=2/3.

The question remains which scaling is more suitable at
different depths inside the convection zone. In the deeper parts
of the convection zone, the local pressure scale height is large.
The characteristic length of the flux tube cross section (e.g.,
radius, r) is r=Hp and the characteristic length of the
emerging part (e.g., an axial perturbation, l) is l?Hp (i.e., a
thin flux tube). This means that the axial expansion of the flux
tube would be small and its cross-sectional expansion would be
gradual and symmetric. As a result, velocity gradients along the
axis would be small and the scaling of the magnetic field with
the local density should follow κ=1.

Pinto & Brun (2013) studied the emergence of twisted flux
tubes in a global dynamo model using 3D anelastic MHD
simulations. They found that B∝ρκ, κ=0.998±0.001.
Similar behavior was found in cases without a dynamo. When
the emerging field was less buoyant, they found steeper but
similar slopes. Overall, they found values of 0.998<κ<1.002
during the emergence of the flux tubes from 0.8Re to 0.92Re.
These results suggested that the poloidal component of the
magnetic field dominated the toroidal component and that the
perturbations along the axis of the tube where indeed small.

In the upper parts of the convection zone, the length of the
flux tube can increase significantly as the Ω-shaped flux tube
rises toward the photosphere. Moreover, the flux tube expands
radially as its cross section becomes comparable to Hp. Close to
the photosphere, the flux tube experiences a significant
horizontal expansion (Spruit et al. 1987) due to the rapid
decrease of Hp. The flux tube cannot emerge above the
photosphere until its magnetic forces dominates the gas
pressure forces and triggers a magnetic buoyancy instability
(Acheson 1979; Archontis et al. 2004). When the flux tube is
below the photosphere, it therefore becomes compressed and
further expands horizontally, which increases its magnetic field
strength until it is strong enough to trigger the buoyancy
instability. In addition, the velocity gradients of the convective
flows are steeper closer to the photosphere than deeper in the
solar interior. All the above should lead to a decrease in κ.
Thus, the scaling of the magnetic field with the local density
should follow κ<1 in the upper convection zone.
Cheung et al. (2010) compared their analytical result on κ

with a 3D radiative MHD simulation of the emergence of a
toroidal flux tube, positioned 7.5Mm below the photosphere
inside a convective layer. They found a value of κ=0.5 for
the scaling of the magnetic field strength with the local density.
Cheung & Isobe (2014) suggested that the transition from

κ≈1 (similar to Pinto & Brun 2013) to κ<1 occurs
somewhere during the rise of a flux tube from the deeper parts
of the convection zone to the surface.
In this paper, we address a series of questions on the

emergence of flux tubes from the convection zone to the
photosphere. For this, we use 3D resistive and compressible
MHD and assume a horizontal flux tube positioned at 18Mm
below the photosphere. The free parameters of our model are
(a) the initial magnetic field strength at the center of the flux
tube, (b) the twist, (c) the radius, and (d) the length of the
buoyant part of the flux tube. We perform a detailed parametric
study to identify (i) how κ behaves when each of these
parameters is varied, (ii) where the transition from κ≈1 to
κ<1 occurs, (iii) the efficiency of emergence, that is, the ratio
of the photospheric field strength to the initial field strength,
and (iv) how to use the above in order to understand the initial
conditions leading to a “successful” flux emergence above the
photosphere. Furthermore, we analytically derive the condi-
tions under which κ is constant.
In Section 2 we present the model and initial conditions. In

Section 3.1 we vary only the magnetic field strength and radius
of the flux tube, in order to explore the parameter space and
identify combinations of the two parameters that lead to a

Figure 1. Three different cases of flux tube expansion discussed in the Introduction. Panel (a) shows the expansion along the cross section of the cylindrical flux tube.
Panel (b) shows the expansion along the length of the flux tube. Panels (c) shows the expansion of a horizontal magnetic field due to the presence of velocity gradients.
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“successful” emergence of the magnetic field above the
photosphere. In Section 3.2 we analytically describe the
conditions under which B scales with ρ and compare our
analysis with a numerical simulation of a “successful”
emergence. In Section 3.3 we focus on one of the “successful”
emergence cases of Section 3.1 and perform a large parametric
study to identify how each parameter affects the emergence of
the field (magnetic field strength (Section 3.3.1), radius
(Section 3.3.2), length of the buoyant part (Section 3.3.3),
and twist (Section 3.3.4). In Section 3.3.5 we discuss all the
results together, and present a borderline case that separates the
“successful” and the “failed” emergence cases. In Section 4 we
summarize and discuss our results.

2. Numerical Setup

To perform the simulations, we numerically solve the 3D
time-dependent, resistive, compressible MHD equations in
Cartesian geometry using the Lare3D code of Arber et al.
(2001). The equations in dimensionless form are
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where ρ, v, B, and P are density, velocity vector, magnetic field
vector, and gas pressure. Gravity is g0=274 m s−2. We
assume a perfect gas with ratios of specific heat γ=5/3.
Viscosity is included through

S e
x

, 11
j

ij ij ivisc
shocks s=

¶
¶

+( ) ˆ ( )

where v2ij ij ij
1

3
s n e d= - ( )· is the viscous stress tensor and

vl c l sij ij ij
shock

1 ms 2
1

3
s r n n e d= + - ( )( ∣ ∣) · is the shock ten-

sor. In these tensors,
v

x

v

x
ij

i

j

j

i

1

2
e =

¶
¶

+
¶

¶

⎛
⎝⎜

⎞
⎠⎟ is the strain rate

tensor, δij is the Kronecker delta, l is the distance across a grid
cell in the direction normal to the shock front, s∣ ∣ is the rate of
the strain tensor in the direction normal to the shock front, and

c c vsms
2

A
2= + is the magnetosonic speed, with cs being the

sound speed and vA being the Alfvén speed (more details, e.g.,
in Arber et al. 2001 or Bareford & Hood 2015). The viscosity
coefficients take the values ν=622 kg m−1 s−1 (0.01 in
nondimensional units),andν1=0.1 and ν2=0.5 (in non-
dimensional units). Viscous heating is added through Qvisc =

ij ij ij
shocke s s+( ).

We use constant explicit resistivity of η=0.01 (nondimen-
sional units). Joule dissipation is added through Qjoule=ηj2. The
normalization is based on the photospheric values of density

ρc=1.67×10−7 g cm−3, length Hc=180 km, and magnetic
field strength Bc=300 G. From these we derive the temperature
Tc=6230K, pressure Pc=7.16×103 erg cm−3, velocity
v0=2.1 km s−1, and time t0=85.7 s.
The computational domain has a physical size of 723 Mm on

a 6003 uniform grid. We assume periodic boundary conditions
in the y direction. Open boundary conditions are used in the x
direction. Open (closed) boundary conditions are assumed and
at the top (bottom) of the numerical domain.
The temperature of the atmosphere (z>0) follows a

tangential profile,
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where Tph=6100 K, Tcor=0.92MK, zcor=2.38Mm, and
wtr=0.18Mm. This results in an isothermal photospheric-
chromospheric layer at 0 Mm�z<1.8 Mm, a transition
region at 1.8 Mm�z<3.2Mm, and an isothermal coronal
at 3.2 Mm�z<45Mm. The atmospheric density is derived
by numerically solving the hydrostatic equation dP/dz=−gρ,
having as boundary condition ρph=1.67×10−7 g cm−3. The
atmosphere is field-free.
The solar interior (−27Mm�z<0Mm) is convectively

stable and in hydrostatic equilibrium. The temperature profile
of the interior increases linearly with depth as
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where μm=mf mp is the reduced mass, mp is the proton mass,
mf=1.2, and kB is Boltzmann’s constant. The density in the
interior is calculated by solving the hydrostatic equation with
boundary condition ρph. This stratification (sometimes with
different mf) is commonly used in flux emergence simulations
of a fully ionized convectively stable solar interior (e.g.,
Fan 2001; Archontis et al. 2004; Manchester et al. 2004;
Moreno-Insertis et al. 2008; Toriumi & Yokoyama 2011;
Leake et al. 2013; Syntelis et al. 2015, 2017). The initial
distribution of temperature (T), density (ρ), gas pressure (Pg) of
the interior, and the atmosphere is shown in Figure 2. The gas
pressure of the interior at −20Mm (−10Mm) is 1.1×104

(3×103) higher than the photospheric pressure.
We place a cylindrical flux tube at z=−18Mm, oriented

along the y-axis. The magnetic field of the flux tube is defined
as

B B r Rexp , 14y 0
2 2= -( ) ( )

B rB , 15ya=f ( )

where R is a measure of the flux tube radius, r is the radial
distance from the flux tube axis, and α/2π is the twist per unit
of length. The magnetic pressure (Pm) of a flux tube with
B0=34, R=5 is overplotted in Figure 2 (black line).
The background solar interior has a pressure, temperature,

and density profile of P0, T0, and ρ0. When the flux tube is
added, we introduce a pressure excess due to the magnetic
field. By requiring the flux tube to be in radial force balance
(i.e., ( e j B eP r r = ´) · ˆ ( ) · ˆ ), we find the excess pressure
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Pexc to be (see details in Murray et al. 2006)
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To set the flux tube in force balance with the background, we
therefore set the gas pressure inside the flux tube (Pi) to
be Pi=P0−Pexc. To initiate the flux tube emergence, we
assume that the flux tube is in thermal equilibrium with the
background (Ti=T0), and this leads to a difference in density
of Δρ=ρi−ρ0=−ρ0Pexc/P0 between the flux tube interior
and the non-magnetized background plasma (density deficit),
which causes the flux tube to become buoyant. To avoid
emergence of the whole length of the flux tube, we reduce the
density deficit toward the flanks of the flux tube by (Fan 2001)

P

P
e , 17y

0
exc

0
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where λ is thus a measure of the length of the buoyant part of
the flux tube. This ensures that the middle part of the flux tube

will be buoyant while the flanks are not. During the emergence,
the flux tube will therefore adopt the shape of an Ω loop.
The parameter values used for our parametric numerical

study are shown in Tables 1 and 2. From now on, we refer to
the dimensionless values of a variable using the subscript “d”
(e.g., B0d is the dimensionless initial magnetic field strength).

Figure 2. Initial stratification of the atmosphere in dimensionless units
(temperature (T), density (ρ), magnetic pressure (Pm of the flux tube case 10,
Table 1) and gas pressure (Pg)).

Table 1
Values of the Initial Simulation Parameters Used to Produce Figure 3

Case B0d Rd λd αd Φ

(×Bc) (×Hc) (×Hc) ( Hc
1´ - ) (Mx)

1* 3.4 3.2 100 0.1 1.1×1019

2* 3.4 5 100 0.1 2.6×1019

3* 3.4 7.6 100 0.1 6.0×1019

4* 3.4 10.1 100 0.1 1.1×1020

5* 17 3.2 100 0.1 5.3×1019

6* 17 5 100 0.1 1.3×1020

7* 17 7.6 100 0.1 3×1020

8 17 10.1 100 0.1 5.3×1020

9* 34 3.2 100 0.1 1.1×1020

10 34 5 100 0.1 2.6×1020

11 34 7.6 100 0.1 6.0×1020

12 34 10.1 100 0.1 1.1×1021

13 340 3.2 100 0.1 1.1×1021

14 340 5 100 0.1 2.6×1021

15 340 7.6 100 0.1 6.0×1021

16 340 10.1 100 0.1 1.1×1022

Note. The cases denoted with an asterisk represent “failed” emergence above
the photosphere. The other cases represent “successful” emergence above the
photosphere.

Figure 3. Initial fluxes as a function of B0 for the simulations of Table 1.
Diamonds correspond to “successful” emergence and “x” to “failed”
emergence. The dashed lines show flux tubes of the same radius. Rd denotes
the value of the radius.

Table 2
Cases 1–15 Showing the Initial Simulation Parameters Used to Produce

Figures 8 and 5 and Cases 1–21 Showing the Initial Simulation Parameters
Used to Produce Figure 9

Case B0d Rd λd αd Φ

(×Bc) (×Hc) (×Hc) ( Hc
1´ - ) (Mx)

1* 17 5 100 0.1 1.3×1020

2* 24 5 100 0.1 1.8×1020

3 34 5 100 0.1 2.6×1020

4 68 5 100 0.1 5.1×1020

5 34 3.2 100 0.1 1.1×1020

6 34 7.6 100 0.1 6.0×1020

7 34 10.1 100 0.1 1.1×1021

8* 34 5 20 0.1 2.6×1020

9 34 5 35 0.1 2.6×1020

10 34 5 50 0.1 2.6×1020

11 34 5 100 0.15 2.6×1020

12 34 5 100 0.25 2.6×1020

13 34 5 20 0.11 2.6×1020

14 34 5 20 0.15 2.6×1020

15 34 5 20 0.25 2.6×1020

16* 34 3.2 50 0.1 1.1×1020

17* 44 5 10 0.1 3.4×1020

18* 24 5 20 0.1 1.8×1020

19* 24 5 20 0.25 1.8×1020

20 24 7.6 100 0.1 4.3×1020

21* 17 7.6 100 0.1 3.0×1020

Note.The cases denoted with an asterisk represent “failed” emergence above
the photosphere. The other cases represent “successful” emergence above the
photosphere.
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3. Results

3.1. Magnetic Flux and Emergence

First we study the emergence of flux tubes by varying their
initial magnetic flux from 1019Mx up to 1022Mx. To change
the initial magnetic flux, we vary both the magnetic field
strength and the radius of the flux tube. We select B0=1, 5,
10, 100 kG (B0d=3.4, 17, 34, 340) and R=0.6, 0.9, 1.4,
1.8 Mm (Rd=3.2, 5, 7.6, 10.1). The combination of these
values produces 16 cases, shown in Table 1. Figure 3 shows the
resulting values of the initial flux as a function of B0. In all
cases, the initial twist is low (αd=0.1). In general, increasing
the twist keeps the flux tube more coherent and assists the
emergence process (e.g., Moreno-Insertis & Emonet 1996;
Murray et al. 2006; Toriumi & Yokoyama 2011). We choose
the length scale of the buoyant part of the flux tube to be
relatively large (λd=100). As a result, the apex of the flux
tube will adopt a horizontal-like shape during its emergence.

Archontis et al. (2004) found that a flux tube will emerge
from the solar interior into the solar atmosphere when a
magnetic buoyancy instability (Acheson 1979) is triggered.
Before the instability is triggered, the emerging field cannot
penetrate the solar surface and instead significantly compresses
just below the photosphere. The increase in magnetic field
strength at this location reduces the plasma β inside the flux
tube, and the instability is triggered when the plasma β drops
below unity. In our simulations, to classify a case as
“successful” or “failed” emergence at and above the photo-
sphere, we use the following criteria. If the buoyancy instability
criterion (see, e.g., Acheson 1979; Archontis et al. 2004)
measured at the photosphere is satisfied and the photospheric
magnetic field is at least 100G, then we consider the
emergence as “successful.” If the rising flux tube reaches the
photosphere, but its plasma β remains very high (e.g., �100)
and does not decrease considerably over several (at least 100)
Alfvén times, we consider the emergence as “failed.”

Not surprisingly, all the cases with B0=100 kG emerge
“successfully” (Figure 3). Most of the flux tubes with B0=10 kG
manage to emerge “successfully,” with the exception being the
thinnest of these flux tubes (Rd=3.2). The magnetic field
strength at its center drops significantly, resulting in an internal
β≈4000 plasma just below the photosphere. For two flux tubes
with the same B0 but different radius, at r=Rlarge and r=Rsmall,

the pressure difference between the interior and the exterior of the
tube will be the same. Thus, the expansion rate of the flux tubes
will at least initially be the same. However, as the flux tubes
expand, the cross-sectional area of the smaller flux tube grows
more (as a percentage of the cross-sectional area at t=0). Due to
conservation of flux, the magnetic field strength of a flux tube
with a smaller radius will decrease more than a flux tube with a
larger radius. Therefore, its magnetic pressure will decrease faster
and it will bring higher plasma β material close to the
photosphere.
For B0=5 kG, only the largest flux tube radius manages to

emerge above the photosphere. All the B0=1 kG cases fail to
emerge. They rise very slowly and eventually reach force
balance inside the solar interior, with a very large β. In these
cases, the magnetic field brought below the photosphere is very
low and the buoyancy instability is never triggered.
We note that some cases “successfully” emerge (e.g., B0=

10 kG and Rd=5), but other cases with a similar flux but
different B0 and R fail to emerge (B0=1 kG and Rd=10.1,
B0=5 kG and Rd=7.6). Despite the substantial initial flux
(greater than 1020Mx), these two flux tubes are not buoyant
enough to emerge “successfully.” Therefore, we conclude that the
initial magnetic flux within the rising magnetic structure cannot
indicate directly whether the magnetic structure will emerge.
From Figure 3 we found that in some cases, an increase in R (for

constant B0) leads to “successful” emergence, for example, the
B0=10 kG, Rd=3.2 case, and the B0=10 kG, Rd=5 case. In
Section 3.3 we present the results of a parametric study on B, R, α,
and λ in the latter case to identify how these parameters affect the
emergence. However, it is important first to show how the
magnetic field strength varies with the local density during the
emergence of the flux tubes in the solar interior. This is discussed
in the next section.

3.2. Scaling of the Magnetic Field Strength with the Local
Density

To study how the magnetic field strength scales with the
local plasma density, we use the following approach. We
examine only the field at the xz-midplane, which is the cross
section of the middle part of the flux tube. We note that the
histogram of B and ρ at this plane, as shown in Figure 4,
evolves in time. As the flux tube emerges (panels a to c), this
histogram is shifted toward lower values of density and field

Figure 4. Histogram of B over ρ for Rd=5, λd=100, αd=0.1, and B0d=34 (case 5, Table 1). The values were sampled at the xz-midplane (plane crossing the
flux tube cross section) at (a) t=0minutes, (b) t=607minutes, and (c) t=785minutes.
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strength. To track the overall change of the field strength with
the local density, we make a histogram of all the values of B
and ρ from t=0 until the end of the simulation (an example is
shown in Figure 5(a)). We then plot the line that outlines the
uppermost part of the histogram (black line). This line
highlights how the maximum magnetic field strength scales
with the local density (the undulations of this line are due to the
snapshot frequency of the simulation: the higher the frequency,
the smoother the line). We refer to these lines as scaling curves.

We follow this process for cases 1–15 in Table 2, which
explore the B0, R, α, and λ parameter space around the Bd=34
(B0=10 kG), Rd=5 case of Figure 3. We show their scaling
curves in Figures 5(b)–(f). We note that in most of the cases
shown in Figure 5, the scaling curves consist of two main parts: a
less steep part (log 7, 6r Î - -[ ], i.e., 7 log 6r- < < - , where
ρ is in gcm−3), and a steeper part (log 5, 4.3r Î - -[ ]). We
identify the mean inclination (κ) of these parts by performing
linear fits ( B clog logk r= + ). The value of κ is shown in each
panel, inside the parentheses next to the value of the varied
parameter.

As discussed in the Introduction, Cheung & Isobe (2014)
suggested that the scaling curve will change from a steeper
(κ=1) to a less steep (κ<1) power law during the
emergence within the solar convection zone. Figures 5(b)–(e)
show a similar transition in our numerical experiments.
However, Figure 5(f) shows a number of simulations where
the scaling curves are not linear at all. Why do some of
the scaling curves develop power laws while others behave
nonlinearly? How do the steep and less steep parts of the
scaling curves develop? We first address these questions and
then discuss how the variation in each flux tube parameter
modifies the scaling curves and affects the emergence.

3.2.1. Derivation of Scaling Laws and Comparison with Simulation

In Appendix A we derive forms to explain under which
conditions the magnetic field strength scales with the local
density as B∝ρκ. Here we summarize these results.
First, we assume a velocity field with no shearing terms. We

assume that the magnetic field strength is written as B rµ k,

Figure 5. (a) Histogram of B over ρ for Rd=5, λd=100, αd=0.1, and B0d=34 (case 5, Table 1). The values were sampled at the xz-midplane (plane crossing the
flux tube cross section) during the whole simulation run (t=0–950 minutes). The solid black line outlining the uppermost part of the histogram is the scaling curve.
Panels (b)–(f) show the smoothed scaling curves of cases 1–15 of Table 2. Panel (b) shows cases with different B0, (c) cases with different R, (d) cases with different λ,
(e) cases with different α and λd=100, and (e) cases with different α and λd=20. The axis below panel (f) shows the depth inside the solar interior that is
equivalent to the density x-axis of panels (b)–(f). The legends in each panel show the specific parameters of each simulation. The value of the mean κ for the less steep
and steeper part of the scaling curves is shown in parentheses next to the value of the varied parameter, and the dash denotes a nonlinear scaling. The solid gray lines in
each panel have an inclination of κ=1, and the dashed gray lines have an inclination of κ=0.25.
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where κ is a constant. Combining the induction and continuity
equation, we obtain Equation (24), which we write again here:

B B B B ,x x y y z z
2 2 2 2k k k k= + +

where κx, κy, and κz (Equations 20(a)–(c), respectively) are
functions of the non-shear velocity gradients. We then find
solutions for κ that satisfy this equation. To do so, we focus on
the following three cases.

The first case is when the magnetic field can be described
with one component (e.g., Bi?Bj, Bk, where i, j, k are the
components of the field). Then, the magnetic field strength
scales as B∝ρκ i. For instance, when Bx?By, Bz, then
κ=κx, whereas when By?Bx, Bz, then κ=κy. The
assumption that κ is constant constrains κi to be constant as
well. Therefore, the velocity field is constrained to be

, , ,v

x

v

y

v

z
x y zc y z= = =¶

¶

¶

¶
¶
¶

where χ, ψ, ζ are constants. We
note that the expression of κ from Cheung et al. (2010; see
Introduction) is a special case of the above. For their
assumption that B xB= ˆ, the field will scale with κx. When
the velocity gradients are assumed to be in the form of
Equation (1), then Equation 20(a) will give Equation (4).

The second case is when the magnetic field can be described
with two components of the full magnetic field vector (e.g., Bi,
Bj?Bk). Then, the magnetic field strength scales as
B , 1 k

1

2
r k kµ = -k . For instance, when Bx, By?Bz, then

the magnetic field strength will scale with 1 z
1

2
k k= -

(Equation (27)). In this case, the constraint imposed on the
velocity field will be stricter ( ,v

x

v

y

v

z
x y zc z= = =¶

¶

¶

¶
¶
¶

, where
χ, ζ are constants). This constraint guarantees that the magnetic
field vector described by Bx and By does not change direction.
As a result, in a high β plasma (like a flux tube in the solar
interior), such a velocity field will force the two-component
field to behave as a one-component field. Therefore, in the
field-aligned coordinate system, this case is a special case of the
first one.

The third case is when all three components of the magnetic
field vector are important to describe the field. Then all κx, κy,
and κz are equal. The velocity field constraint then becomes

v

x

v

y

v

z
x y z c= = =¶

¶

¶

¶
¶
¶

, where χ is constant. The field strength
then only scales with the local density when the field expands
isotropically. In that case, 2

3
k = (Equation (29)). In the field-

aligned system, the three-component field behaves as a one-
component field. Therefore this is also a special case of the
first one.

From the above, we infer that in order to express the
magnetic field strength as B∝ρκ, the magnetic field needs to
have one dominant direction. Otherwise, a power law cannot be
derived in general.

In the above, we assumed that the shearing terms of the

velocity field are equal to zero, i.e.,
v

x
0i

j

¶
¶

= , i¹j. Assuming

constant κ and a velocity field with non-zero shearing terms,
we deduce that the magnetic field strength will scale with the
local density with B B

B ij i j
1

2k k= (Equation (32)), where κij is a
tensor describing the deformation of the velocity field, given by
Equation (33). Because we assumed constant κ, the compo-
nents of the tensor are required to be constant as well. Note that
the previous expressions derived for zero shear velocities are
special cases of this general expression.

So far, we have assumed a strict power law between B and ρ
(i.e., constant κ), which led to the constraint that the gradients
of the velocity field components are constants. In general, the
velocity gradients would be expected to change during the
emergence of a field. Assuming a non-constant κ, we derived
that κ can be described by Equation (35). However, if κ

changes slowly both in space and time
D

Dt
0

k
»⎜ ⎟

⎛
⎝

⎞
⎠, we obtain

that B B
B ij i j
1

2k k» . Therefore, the latter expression for κ can
describe the scaling of the B with ρ, not only when κ is
constant, but also when κ is changing slowly.
Our analysis suggests that when the velocity gradients

change rapidly in space and/or time, or when the magnetic
field cannot be adequately described by one component of the
full magnetic field vector, κ will not be constant. In that case, a
power law between B and ρ should not be expected to occur.
We now discuss where in our simulations we find conditions

that favor the formation of power laws. We focus on where the
magnetic field has a dominant component during its emergence
within the solar interior. We note that closer to the center of the
flux tube, the poloidal component of the field becomes less
significant than the axial one (Bf/By decreases for smaller r,
Equations (14) and (15)). During the emergence of the flux
tube, the shape of the field is crucial for the development of
dominant field directions. In our numerical experiments, the
length scale of the buoyant part of the flux tube (λ) is
the parameter that most strongly affects the shape of the apex of
the emerging flux tube. In the top panel of Figure 6(a), we
show a cartoon-like illustration of the upper part of a flux tube
(oriented along the y-axis) with large λ. In this case, because of
the high value of λ, the apex of the emerging tube is almost
horizontal, oriented along the y-axis. Close to the axis of the
flux tube (gray line in the top part of Figure 6(a), gray shaded
cross-sectional region in the bottom left part of Figure 6(a)), the
axial (By) component of the field will be dominant across a
length hlarge. The magnetic field in this region is therefore
expected to scale with κ=κy when the velocity field changes
slowly. It is important to note that the magnitude of the
magnetic field is stronger close to the flux tube axis
(Equation (14)). Consequently, the region around the axis
contains the bulk of the magnetic energy of the flux tube and
therefore has the most important role in the transfer of that
energy to the photosphere. Away from the center, (thick black
line in the top part of Figure 6(a), black shaded region at the
bottom right in Figure 6(a)), the poloidal component of the field
becomes important. There, the field strength should not be
expected to scale with the local density in general.
During the emergence process, the tube expands and its

radius increases. Parker (1974) showed that the radial
expansion of a flux tube causes the poloidal component of
the field to increase when the twist remains constant (i.e., for a
tube oriented along the y-axis, Bf/By increases). We do find
that Bf/By increases, in agreement with Parker. Eventually, this
effect would result in a decrease in size of the region close to
the axis that scales with κy (shaded region in the bottom left
part of Figure 6(a)).
Figure 6(b) shows an illustration of the flux tube when its

apex reaches the photosphere. The upper part of the tube
(shaded region) undergoes compression and horizontal expan-
sion. If compressed enough, this region will locally develop a
strong Bx component. The Bx component can eventually
become much stronger than the local By component of the field
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(Bx?By, Bz). Then, the magnetic field strength inside the
compressed region will scale with κ=κx (and not with
κ=κy, which was the scaling exponent during the rise of the
flux tube deeper in the solar interior, where By?Bx, Bz). Note
that the axis of the flux tube might not be inside the compressed
region. In our simulations the center of the tubes is indeed
found at lower heights.

Figure 6(c) (top) shows a flux tube that develops a highly
bent apex when λ is small. In this case, only a small segment of
the apex (with a horizontal size hsmall, Figure 6(c) bottom)
could be oriented parallel to the photosphere, adopting a
horizontal-like configuration. Moreover, because of the highly
bent apex, plasma draining is expected to be more profound in
this case, which could develop strong variations in the velocity
gradients. In this case, we therefore do not expect B and ρ to
scale with a power law, except if the tube undergoes significant
compression at the photosphere and adopts a similar config-
uration to the case described in Figure 6(b).

To use this analysis toward studying the results of the
simulations, we select an experiment with strong B0 and large λ
(case with B0=20 kG (B0d=68), λd=100, αd=0.1, and
Rd=5) and find its scaling curve (Figure 7(a), solid line). We
shift the scaling curve by Blog 0.1D = (dashed line) and
take into account all the points between the two curves. These
are the points with very high B. For these points, we plot the
distributions of the absolute value of each individual comp-
onent of the field (Bx∣ ∣ is the blue, By∣ ∣ is the magenta, and Bz∣ ∣ is
the yellow distribution, Figure 7(b)). Then, we plot the
distribution of κx, κy, 1 z

1

2
k k= - , and B B

B ij i j
1

2k k=
(Equations 20(a), 20(b), (27), and (32)), calculated directly
from the velocity field (orange, Figures 7(c)–(f)). The
diamonds show the mean value of the distributions (i.e., mean
value of κ) at each density bin, and the error bars show the
standard deviation. The black line in panels (c)–(f) shows
the derivative of the scaling curve (i.e., the κ measured from
the histogram of panel (a)).

Figure 7(b) shows that for log 5.4, 4.35r Î - -[ ] (meaning
5.4 log 4.35r- < < - , where ρ is in gcm−3) or in terms of

height zä[−18, −3] Mm), the strongest component of the
magnetic field is By (purple between second and third vertical
line, in comparison to cyan and yellow). The large λ ensures
that the apex will be locally horizontal along a relatively
large region, similar to Figure 6(a) Therefore, when
log 5.4, 4.35r Î - -[ ], the steep power-law segment of the
scaling law should be described by κ=κy. In Figure 7(d), the
values of κy measured from the velocity field (orange) and κ
measured from the gradient of the scaling curve (black line)
indeed agree relatively well.
The small buildup of Bx and Bz when log 5.4, 4.9r Î - -[ ]

(cyan and yellow, Figure 7(b)) is due to the expansion of the
flux tube (which increases Bf/By). However, not many points
have comparable Bx and By. We should highlight that
Figure 7(b) is a true-color image and the colors blend
proportional to the value on the histogram. When a comparable
number of points have similar Bx and By, cyan becomes purple.
Therefore, when log 5.4, 4.35r Î - -[ ], the Bf/By increase
during the expansion of the flux tube is not significant, and it
does not affect the steep power law.
For values in the range 6 log 5.4r- < < - (or zä[−3, −1]

Mm), the steepness of the scaling curve changes, revealing a
transition to another regime with a different power-law depend-
ence between B and ρ (Figure 7(a), between the first and second
vertical line). During that transition, Bx increases and becomes
comparable to By (purple). The comparison between κ, deduced
from the scaling curves, and the expression 1 z

1

2
k k= - (which

is derived when both Bx and By are important) agrees at these
depths (Figure 7(e), orange histogram and black line between the
first and second vertical lines).
For log 6r - or z−1 Mm, the apex of the flux tube is

compressed significantly and Bx becomes the strongest
component of the magnetic field (Figure 7(b), cyan before
the first vertical line, in comparison to purple and yellow), as
is schematically illustrated Figure 6(b). There, we find the
less steep power law of the scaling curve. Because Bx is
significantly stronger than the other field components, the
magnetic field strength is expected to scale with the local

Figure 6. Cartoon-like illustration showing when and where B∝ρκ in an emerging flux tube. (a) Top: flux tube with a horizontal-like apex. The thick gray (black)
lines show twisted field lines close to (away from) the axis of the flux tube. Bottom: cross sections of the flux tube; the regions are colored according to the color of the
above field lines. Bottom left: region where the axial field is stronger than the poloidal field, and the corresponding scaling law. Bottom right: region where the axial
component is comparable to the poloidal component. (b) Top: horizontal expansion of the flux tube at the photosphere. The gray shaded region shows where the
magnetic field strength increases due to compression. Bottom: cross section of the flux tube, showing the compressed region and the corresponding scaling law. (c)
Top: flux tube with a toroidal-like shaped apex. The thick gray (black) lines show twisted field lines close to (away from) the axis of the flux tube. Bottom: zoom of the
tube apex.
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density raised to the power κ=κx. In Figure 7(c), the values
of κx measured from the velocity field and the κ measured
from the scaling curve indeed agree well.

Finally, we compare κ measured from the scaling curve with
the more general expression that includes velocity shear,

B B
B ij i j
1

2k k= , calculated directly from the velocity field
(Figure 7(f)). We find that they agree overall.

It is important to note that to derive the expressions of κ,
we assumed that the velocity gradients are either constant or
change slowly. For κx, κy, and κz, we also assumed zero
shearing velocities. In the simulation, the velocity gradients
do not change slowly close to the photosphere. Furthermore,

the
v

x
y¶

¶
shear is significant when log 5.4r - . However,

the expressions of κ shown in Figures 7(c)–(f) agree with
the values measured from the scaling curve. Therefore, we
conclude that the most important parameter for the
development of the power laws is a strong, locally
horizontal field across a large region, and not the strict
velocity field constraints. However, we expect that for
significant variations in velocity gradients, which can
perturb the direction of the magnetic field, it is not possible
to form at power law.

The effects that the resolution, resistivity, and viscosity have
on the scaling curve of the studied case are discussed in
Appendix B.

3.3. Height–Time Profiles and Scaling Curves of the
Parametric Study

In the following, we study how the initial parameters of the
flux tube (e.g., B0, R, λ, α) affect the emergence to the
photosphere and above. To do this, we focus on cases 1–15 of
Table 2, which explore the parameter space around the
B0=10 kG and Rd=5 point of Figure 3. We study the
emergence, focusing on the height–time profiles and the scaling
curves of the emerging fields.
To plot the height–time profiles, we follow the rising motion

of two points of the emerging flux tubes. The first point is the
center of the flux tube, which is the point where By is maximum
and Bx changes sign, along the z-axis at the center of the
numerical box. The second point is the apex of the rising flux
tube, which we consider to be the uppermost point along the z-
axis at the center of the numerical domain, where B>0.001B0.
The profiles are plotted in Figure 8 with solid (apex) and
dashed (center) lines.

Figure 7. (a) Same as Figure 5(a), but for Rd=5, λd=100, αd=0.1, and B0d=68 (case 4 Table 2). The solid line is the scaling curve. The dashed line is the
scaling curved shifted by Δlog B=0.2. For the points between the solid and the dashed line, (b) shows the distribution of each component of the magnetic field
vector (true-color image, Bx is blue, By is magenta, and Bz is yellow), (c) shows the distribution of κ=κx, (d) shows the distribution of κ=κy, (e) shows
the distribution of 1 z

1

2
k k= - , and (f) shows the distribution of κ=κij Bi Bj/B

2. The diamonds show the mean value of the distributions at each density bin, and the
error bars show the standard deviation. The solid black line in (c)–(f) is the derivative of the scaling curve (i.e., κ measured from the scaling curve of panel (a)). The
dashed vertical lines mark changes in the inclination of the scaling curve.
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3.3.1. Variation in Magnetic Field Strength

First, we focus on the dynamics of the emerging flux tube
when the magnetic field strength is varied and the other
parameters are kept constant. We select B0=5, 7.2, 10, and
20 kG (B0d=17, 24, 34, and 68) and αd=0.1, λd=100,
and Rd=5 (Table 2, cases 1–4).

The height–time profiles are shown in Figure 8(a). It is clear
that the stronger the field strength, the faster the flux tube rises
inside the solar interior. We note that case B0d=68 emerges
almost immediately above the photosphere. In comparison,
case B0d=34 exhibits a phase of deceleration before it
emerges above the photosphere (during which the magnetic
field at the apex is locally compressed). This is consistent with
the results reported in previous studies (e.g., Fan 2001;
Archontis et al. 2004; Toriumi & Yokoyama 2013). For lower
B0, the buoyancy of the flux tubes decreases and, thus, their
center reaches lower heights in the convection zone. Cases
B0d=17, 24 “failed” to emerge.

When we scale the time as t×B0 (Figure 8(b)), we find that
the height–time profiles “cluster” closer together, indicating
self-similar behavior (Murray et al. 2006; Sturrock &
Hood 2016). Still, the clustering is not as compact as in the

previous studies. In our simulations, the flux tubes emerge from
much deeper down in the solar interior. Thus, the downward
tension force becomes higher, reducing the upward buoyancy
force.
Figure 5(b) shows the scaling of B with ρ. We focus on the

steeper part of the scaling curves. Increasing B0 decreases
the value of κ (from κ=2.2 in case B0d=17 to κ=0.76 in
case B0d=68). Therefore, flux tubes with higher B0 emerge
more efficiently. In the “failed” emergence cases, the central
part of the emerging fields reaches moderate heights within the
convection zone (around −9Mm and −5Mm for B0d=17
and B0d=24 respectively, Figure 8(a)). The apexes move
slowly upward, but never emerge through the photosphere.
Because of the lower B0, these flux tubes do not undergo a 3D
full expansion, but mainly experience a vertical stretching in
the following manner. The lower segments of the buoyant part
of the flux tubes remain almost anchored at the initial depth.
The rest of the tube emerges slowly, causing the vertical
stretching. This stretching leads to a faster decrease of the axial
field strength and as a result, to a higher κ (κ>1).
The transition to the less steep part of the scaling curves

occurs when the flux tubes are close to the photosphere (around
−4Mm or log 5.3r = -( ) ). There, the scaling curve transitions

Figure 8. Height—time profiles of the flux tube apex (solid) and center (dashed) of cases 1–15 of Table 2. Panel (a) shows cases with different B0, (b) shows the same
as (a), but the x-axis is scaled as td×B0d, (c) shows cases with different R, (d) cases with different λ, (e) cases with different α for λd=100, and (e) cases with
different α for λd=20.
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from scaling with κ=κy to scaling with κ=κx. The “failed”
emergence cases with B0d=17 and B0d=24 do not
experience significant compression, and therefore do not
develop the less steep slope.

3.3.2. Variation in Radius

Next, we focus on the dynamics of the emerging flux tubes
when their radius is varied. We select Rd=3.2, 5, 7.6, and
10.1, and αd=0.1, λd=100, and B0=10 kG (B0d=34)
(Table 2, cases 3, 5, 6, and 7). The height–time profiles of these
cases are shown in Figure 8(c). We note that the larger the
radius, the faster and higher the rise in flux tube apex and
center. At t=0, all the B0=10 kG flux tubes are equally
buoyant (buoyancy ∝B2) at their centers (where B=B0).
However, they are not equally buoyant away from their centers,
as B BR Rlarge small> when r>0 (see Equations (14) and (15)).
Thus, a larger radius tube will be more buoyant across its whole
cross section.

As discussed in Section 3.1, the magnetic pressure of flux
tubes with smaller radius will decrease faster. This can be seen
in the steeper part of the scaling curves in Figure 5(c). We note
that κ decreases as Rdincreases, both at the steeper (κ=2.3,
0.98, 0.86, and 0.77 for the Rd=3.2, 5, 7.6, and 10.1 cases,
respectively) and at the less steep part of the scaling curve
(κ=0.23, 0.16, and 0.15 for the Rd=5, 7.6, and 10.1 cases).
Overall, higher R leads to more efficient emergence. This is
also reflected in the time needed for the flux tube to emerge
above the photosphere. For instance, in Figure 8, the Rd=10.1
(green) flux tube emerges almost directly in comparison to case
Rd=5 (blue). This shows that the radius of the tube is an
important parameter that affects the emergence dynamics.

We note that the point where the scaling curves transition from
the steeper to the less steep power law is different for each case. It
can be traced approximately at log 5.3, 5, 4.7r = - - -( ) , where
Hp≈2R (local pressure scale of Hpd=9, 14, and 22) for cases
Rd=5, 7.6, and 10.1, respectively).

3.3.3. Variation in λ

We now focus on the dynamics of the emerging flux tubes
when the length of their buoyant part is varied. We select
λd=20, 35, 50, and 100 and αd=0.1, B0d=34, and Rd=5
(Table 2, cases 3, 8, 9, and 10).

The buoyant part of the flux tube becomes more strongly
bent for smaller λ, resulting in higher downward magnetic
tension at its apex. This causes flux tubes with smaller λ to
emerge more slowly (Figure 8(d); e.g., Schuessler 1979;
Longcope et al. 1996; Moreno-Insertis & Emonet 1996). The
λd=35, 50, and 100 results are consistent with the results of
previous studies (e.g., Fan 2001; Syntelis et al. 2015).

However, case λd=20 (Figure 8(d), black line) behaves
differently. This is a case of a “failed” emergence. Initially, the
flux tube rises for a time period of about t=1000minutes
(black solid and dashed line). Then, the emerging flux system
enters a short phase of deceleration (i.e., from t=1000
minutes until t=1400 minutes), during which the downward
tension force of the envelope field lines becomes comparable to
the magnetic pressure force. At the same time, plasma draining
from the apex of the tube toward its flanks becomes more
efficient as a result of the highly curved shape of the flux tube.
The draining causes the flanks to become significantly heavier
than the surrounding material. Thus, while the apex continues

to emerge, the flanks start to submerge. The submergence
modifies the geometrical shape of the emerging field further,
causing the apex of the flux tube to curve even more strongly
and in turn further enhancing the plasma draining. Eventually
(after t=1400 minutes), the middle part of the flux tube loses
enough mass to become buoyant again, and therefore continues
to rise and to expand. This complicated process affects the
overall horizontal and vertical expansion the flux tube,
resulting in a reduced magnetic field strength. Thus, when
the flux tube reaches the photosphere, it carries very high β
plasma. Furthermore, the compression rate of the field below
the photosphere is very low. As a result, the field fails to
emerge.
The greatest difference between λ=20 and higher λ cases

is found at the scaling curves (Figure 5(d)). Case λ=20 does
not scale with a power law. We also note that the magnetic field
strength B is significantly reduced as the field rises. Interest-
ingly, the variation in λ from 35 to 100 does not greatly affect
the scaling curves.

3.3.4. Variation in α

We now focus on the dynamics of the emerging flux tubes
when the twist is varied. We showed that small λ significantly
affects the plasma draining along the field lines. The twist is a
parameter that affects the efficiency of the draining because
more strongly twisted field lines have dips that can trap dense
plasma. We study the effects of varying the twist using both
large and small λ to capture the effect of the twist on the
draining along the field lines.
First, we select values of αd=0.1, 0.15, and 0.25 and

λd=100, B0d=34, and Rd=5 (Table 2, cases 3, 11, and
12). The larger twist flux tubes emerge slightly faster
(Figure 8(e)). This is consistent with previous studies (e.g.,
Murray et al. 2006). We also note that their scaling curves
behave similarly deeper in the convection zone (steeper slopes
in Figure 2(e)). Closer to the photosphere, the higher the twist,
the lower the value of κ (κ=0.23, 0.13, and 0.11 for
αd=0.1, 0.15, and 0.25). This is expected because (i) the
radial magnetic tension from the twist keeps the flux tube more
coherent, bringing stronger field below the photosphere and (ii)
flux tubes with higher twist have a stronger poloidal field
component, which is further enhanced during the compression
below the photosphere. Overall, the flux tubes with higher twist
therefore emerge more efficiently.
Now, we select cases with a smaller λd=20 and αd=0.1,

0.11, 0.15, and 0.25, B0d=34, and Rd=5 (Table 2, cases 8,
13, 14, and 15). In the low-λ cases, we find some unexpected
results.
Cases with αd=0.1, 0.11, and 0.15, at t≈1000 minutes

stop rising for a short time-period (Figure 8(f)). Then they
again start to rise until they become decelerated by the
photosphere. This is similar to case λ=20 in Section 3.3.3.
The net effect of this motion is enhanced plasma draining,
leading to a complicated horizontal and vertical expansion.
However, the αd=0.25 flux tube behaves differently (green
lines). There, the higher twist prevents the enhanced draining
that occurs in the lower αdcases. This flux tube emerges
without the complicated horizontal and vertical expansion that
is present in cases with weaker twist. As a result, its internal
magnetic pressure is less strongly reduced during its emer-
gence. However, the high downward magnetic tension and the
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lack of draining eventually reduces the emergence rate of case
αd=0.25 (t=1200–2500 minutes, green line).

For the cases with the enhanced draining (αd=0.1, 0.11,
and 0.15), increasing α led to more efficient emergence
(Figure 5(f)). We do not find power laws deep in the
convection zone for these cases. A less steep linear power
law appears only for αd=0.11 and 0.15, when they compress
below the photosphere. However, for αd=0.25, due to the
deceleration of the flux tube, the compression below the
photosphere is weaker. Thus, the less steep part of the scaling
curve has a higher κ value than the values for the weaker
twisted cases. Therefore, we find that for λd=20, the
higher twisted flux tube emerges less efficiently than the
weaker twisted cases.

3.3.5. All Cases

We now plot all the scaling curves (Table 2, cases 1–15) in
Figure 9(a). We also plot some additional cases that mostly
describe “failed” emergence (cases 16–21). The blue lines are
the cases that “successfully” emerge above the photosphere
(non-asterisk cases in Table 2) and the red lines are the cases
that “fail” to emerge above the photosphere (asterisk cases).
We note that there is a clear separation and clustering of the
blue and the red lines. The green line is the scaling curve of the
“failed” emergence of case 8 (discussed in Section 3.3.3),
which acts as a borderline between the bulk of the “success-
fully” emerged cases and those that “failed” to emerge.

In Figure 9(b) we again plot again the borderline case (green
line). We color the region above that line in blue and below it
in red. We note that when the leftmost part of scaling curve of
the flux tube is located inside the blue region, then parts of the
flux tube will eventually emerge above the photosphere (case
20, blue line, Figure 9(b)). When it ends inside the red region, it
will eventually fail to emerge (case 17, red line). Using these
comments and how κ behaves when B0, R, and α are varied, we
were able to estimate flux tube parameters needed for a

“successful” or “failed” emergence, and roughly estimate the
value of the magnetic field below the photosphere.
An interesting result is that in Figure 9(a), most of the blue

lines originate from the same point because they initially have a
B0=10 kG field. However, the photospheric field is very
different. Therefore, the emergence efficiency (ratio of the
maximum photospheric field strength over B0) is different. For
instance, case 15 has an efficiency of 0.02, while case 7 has an
efficiency of 0.1. The rest of the “successful” emergence cases
starting with B0=10 kG have intermediate efficiency values.
This difference in the efficiency is due to effects of the field
geometry (twist, radius, curvature) on the emergence.
Figure 9(b) is another example of the effect of the geometry
on the emergence. Case 17 (red line) is a case with B0d=44
(B0=13200 G) that “fails” to emerge because of its very small
λd=10. However, case 20 (blue line), which has a similar flux
to case 17, but only about half the magnetic field strength
(B0d=24 (B0=7200 G)), emerges “successfully” because of
the larger radius and the larger λ.
The physical meaning of these findings is that in order for a

flux tube to emerge above the photosphere, it must bring with it
the necessary amount of magnetic field strength and flux. If its
geometry and twist do not favor the efficient emergence of this
field, then even an initially strong field will fail to emerge. On
the other hand, weaker fields can emerge above the photo-
sphere if their geometry results in a more efficient emergence.
Our borderline case is a numerically derived limit that separates
the two states.

4. Summary and Discussion

In this work we studied the emergence of flux tubes from
18Mm below the photosphere using 3D MHD numerical
simulations. We performed a detailed parametric study on (i)
the magnetic field strength, (ii) the twist, (iii) the radius, and
(iv) the length of the buoyant part of a flux tube. Initially, we
varied the radius and the magnetic field strength (while keeping
the twist and the length of the buoyant part constant) to study

Figure 9. (a) Scaling curves of all cases in Table 2. Blue lines show cases that “successfully” emerged, and red lines show cases that “failed” to emerge. The green line
show the “failed” emergence of case 8 in Table 2, which separates most of the “successful” and “failed” emergence cases. (b) Zoom of the green line in panel (a). We
color the region above the green line in blue (inside which most “successful” emergence cases are located) and the region below the green line in red (inside which
most “failed” emergence cases are located). The blue line shows the scaling of B with ρ of the “successful” emergence of case 20 in Table 2. The red line shows the
scaling of B with ρ of the “failed” emergence of case 17.
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whether the initial amount of subphotospheric magnetic flux is
a good indicator for “successful” emergence (Figure 3). Then,
we focused on the scaling of the maximum magnetic field
strength with local density. We identified the curve that
describes the maximum B as a function of ρκ (scaling curve).
The scaling curve had a part with steeper slope (larger κ, where
κ is the power of the density such that B∝ρκ), and this
developed in the deeper part of the solar convection zone.
Close to the photosphere, B scales with ρκ with a smaller κ.
However, in a few cases, the curves did not follow such power
laws. We identified under which conditions the scaling curve
can form a power law, and derived expressions for κ that
approximately describe the scaling. Finally, we studied the
scaling curves and the height–time profiles for a number of
different initial conditions (Table 2) by keeping three of the B0,
R, α, and λ constant and varying the remaining variable
(Figures 5 and 8).

Our results are summarized as follows:

1. Magnetic flux alone is not sufficient to estimate whether
the magnetic field will emerge, especially below
1021Mx.

2. B scales as ρκ when the magnetic field has one dominant
direction (the apex of the emerging flux tube is locally
horizontal along a large enough segment) and the spatial/
temporal changes of the velocity gradients and shear are
not significant. In its most general form, a constant κ can
be described by Equation (32).

3. The steeper part of the scaling curves develops when the
flux tube apex is horizontal-like and is located deeper in
the solar interior (similar to Figure 6(a)). The less steep
part of the scaling curves develops because the flux tube
is compressed just below the photosphere (similar to
Figure 6(b)). The transition from the less steep to the
steeper part of the scaling curve occurs approximately
when the characteristic radial size of the emerging tube is
similar to the local pressure scale height (2R≈Hp in our
case). Some parameters (such as twist) can affect this
characteristic length because they affect the rate of the
flux tube expansion. For flux tubes whose apex is not
horizontal-like, the field strength does not scale with the
local density deeper in the solar interior (similar to
Figure 6(c)). However, a power law can be developed
below the photosphere if such a flux tube is significantly
compressed.

4. The magnetic field is more efficiently transferred upward
when B0 or R is increased. In most cases, this also applies
to the twist.

5. A highly curved flux tube (small λ) with low twist
emerges less efficiently than a lower curvature flux tube
(large λ) with similar twist.

6. In a highly curved flux tube, increasing the twist increases
the efficiency of the emergence to a certain extent.
Eventually, the higher twist obstructs the plasma draining
by maintaining a local dip in the magnetic field, the flux
tube remains heavy, and the emergence efficiency is
reduced. As a result, a more strongly twisted flux tube can
eventually bring less magnetic field closer to the photo-
sphere than a more weakly twisted flux tube.

7. The combined effect of all the above (Figure 9(a)) shows
that the efficiency with which the magnetic field is
brought upward is a significant aspect of the emergence
of buoyant magnetic fields in the solar interior. For

instance, high-B0 (weak-B0) fields may fail (succeed) to
emerge to the photosphere, depending on their geome-
trical properties.

Based on our results, it is clear that there is neither a specific
κ for which B∝ρκ everywhere in the solar interior nor a
specific κ that describes the field close to the photosphere.
Deep in the solar interior, Pinto & Brun (2013) found in their

dynamo simulation that κ≈1. They showed that the poloidal
expansion dominated the axial expansion. This is in agreement
with our analysis. When we assume a strong axial field oriented
along the x-axis, the field would scale with κx. Then, for

negligible axial expansion
v

x
0x¶

¶
»⎜ ⎟⎛

⎝
⎞
⎠, from Equation 20(a) we

derive that κ≈1. If the axial expansion is not negligible in
comparison to the poloidal one, the value of κ can be different.
Cheung et al. (2010) studied κ in the case of the emergence

of a highly twisted toroidal flux tube inside a convective layer
and found κ=0.5. We consistently find lower values than this,
meaning that the magnetic field is transferred more efficiently
upward in our simulations. It is possible that this is due to the
lack of a fully developed convective envelope in our
simulation. Convective motions are expected to deform the
flux tubes to a certain extent and reduce the efficiency of
emergence. Thus, the effect that convective motions have on
emerging flux tubes is very important for studying the scaling
of B with ρ.
These effects cannot be easily estimated. However, the

comparison between the buoyancy force and the drag force has
been proposed as a measure for identifying whether convective
motions will have a destructive effect on a flux tube. Moreno-
Insertis (1983), Fan et al. (2003), and Cheung et al. (2007)
showed that the flux tube will not be fragmented by the
convective motions if its magnetic field strength is

B
H

R
B , 18

p
eq ( )

where Beq is the equipartition value of the magnetic field strength
with the local kinetic energy density (B ueq downflowmr= , where
udownflow is the local velocity of downdrafts). To estimate Beq, we
need the velocities of the local vertical flows.
In helioseismology, vertical velocities are calculated by

averaging data across large regions (e.g., Komm et al.
2004, 2011). Therefore, the local fast upflows and downflows
are smoothed, and these vertical velocities estimate the mean
value across these large regions. Moreover, comparisons
between models and helioseismology methods have posed
questions about the accuracy of vertical velocity measurements
below certain depths (Zhao et al. 2010). As a result, we cannot
use vertical velocities from helioseismology to estimate Beq in
Equation (18). To estimate Beq, we could assume some values
for the vertical velocities. For instance, we can assume that the
vertical velocities are on the order of the horizontal velocities
derived from helioseismology (e.g., Greer et al. 2015). Another
approach could be to use the vertical velocities at different
depths given from models (Stein et al. 2011). Using either the
vertical velocity root mean square from (e.g., Stein et al. 2011)
or the horizontal velocity root mean square from Greer et al.
(2015), we find that our selected B0 values satisfy
Equation (18). This means that our flux tubes would not be
fragmented by the downdrafts, at least deeper in the interior.
However, as the flux tubes expand closer to the photosphere,
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we expect that the convective motions will deform these flux
tubes, reducing the magnetic field strength. We would also
expect to find the opposite of the deformation. In a fully
developed convective layer, weaker fields can intensify locally
due to convective intensification (e.g., Parker 1978;
Spruit 1979). The actual degree of deformation and intesifica-
tion, their effect on κ, and whether they could significantly
impact the emergence of magnetic elements above the photo-
sphere are unknown. 3D compressive simulations with fully
developed convection zones are required to estimate these
effects.

We note that we do not aim here to identify conditions where
flux tubes will form an active region (of any size). Our aim is to
study the scaling and identify cases where the field emerges
above the photosphere, even when the photosheric magnetic
field strength is low.

In most 3D flux emergence simulations, the flux tube is
initially located close to the photosphere, around −5Mm to
−1Mm (e.g., Fan 2001; Magara & Longcope 2001; Archontis
et al. 2004; Manchester et al. 2004; Murray et al. 2006; Fan
2009; Hood et al. 2009; MacTaggart & Hood 2009; Leake et al.
2013; Moreno-Insertis & Galsgaard 2013; Toriumi &
Yokoyama 2013; Fang et al. 2014; Lee et al. 2015; Syntelis
et al. 2015, 2017; Takasao et al. 2015). For instance, in the
parametric study of Murray et al. (2006), the flux tube is placed
at −1.7Mm, whereas in our simulation, the flux tube is placed
at −18Mm. We found that the previous results are consistent
with the results of flux tubes placed deeper in the interior.
However, our work shows that additional effects are also
important during the emergence of flux tubes from deeper in
the interior, associated mostly with the plasma draining along
the field lines. Toriumi & Yokoyama (2013) performed 3D
simulations of flux tubes placed at −20Mm. They did not find
the effects on the plasma draining that we identified in our
simulations when we varied λ and the twist, probably because
they did not explore the same parameter space of low λ and
twist. For flux tubes similar to theirs, our results agree with
theirs. On the other hand, they showed that for higher values of
λ (e.g., λd=400) than those that we used, the flux emerges
slightly more slowly than in the cases with lower λ (e.g.,
λd=100). They attributed this behavior to very slow plasma
draining. We do not find a similar behavior in our simulations,
but it is possible that the further increase of λ could lead to
similar results.

We note that in Figure 9(a), the vast majority of the
“successfully” emerged cases (blue lines) starts with the same
B0 and differs in flux, twist, and λ. Just below the photosphere,
however, the magnetic field strength ranges from 200 to
1000 G. Therefore, the magnitude of the photospheric magnetic
field does not contain sufficient information to infer the
magnetic field strength of the initial flux tube. To estimate B0,
information about the radius and shape of the flux tube are
needed. This information, along with some estimate of
the subphotospheric velocity vector, can assist in estimating
the value of κ close to the photosphere and the depth where the
scaling curve changes behavior. Hence, this could be used to
estimate the magnetic field strength deeper in the interior. For
such a calculation, further work is needed in many aspects. For
instance, using 3D flux emergence models, it is important to
identify whether the photospheric values of twist and the length
scale of the emerged field can be correlated with the
corresponding subphotospheric values. If no such relation

exists (similar to our result for B0 and photospheric B and
similar to the results for twist of Knizhnik et al. 2018), then
using the photospheric values of twist, B, and the size of an
active region would provide little information about the
conditions below the photosphere. To understand the nature
of the magnetic fields below the photosphere, information
about the subphotospheric magnetic field strength and the sizes
of the typical emerging structures is required. Such parameters
are essential to further develop our understanding of solar flux
emergence and to pose constraints on numerical models.
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grant ST/N000609/1. The authors acknowledge support by the
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Appendix A
Derivation of Scaling Laws

A.1. Velocity Field without Shearing Terms

Assuming a velocity field with no shearing i j0,v

x
i

j
= ¹¶

¶
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the components of the ideal induction equation (Equation (2)) can
be written as
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Combining Equations 19(a)–(c), we obtain
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To study the conditions under which the magnetic field strength
will scale with a power of the local density, we assume that the
magnetic field strength can be written as

B B , 220
0

r
r

=
k⎛

⎝⎜
⎞
⎠⎟ ( )

where κ is constant and B0, ρ0 are the values of B and ρ at
t=0. By solving the above for ρ, substituting that expression
into the continuity equation (Equation (3)), and then multi-
plying by 2B, Equation (3) becomes

v
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Equations (21) and (23) are consistent only if

B B B B . 24x x y y z z
2 2 2 2k k k k= + + ( )

We now identify the possible solutions of this equation.

A.1.1. Case 1: B B B,x y z

In this case, we assume that the magnetic field has one
dominant direction, say along the x-axis. Then, the magnetic
field can be described locally only by the Bx component of the
full magnetic field vector. Hence, Equation (24) suggests that
the magnetic field strength will indeed scale with the local
density and that

. 25xk k= ( )

Because we have assumed κ to be constant, κx needs to be
constant as well, and the velocity field is constrained such that
(see Equation 20(a))
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where χ, ψ, and ζ are constants. The constant velocity gradients
guarantee that the magnetic field will have the same direction
as the initial field.

If Bx is the dominant magnetic field component, then the
field will scale with κx. If By or Bz is the dominant magnetic
field component, the field will scale with κy or κz, respectively.

A.1.2. Case 2: B B Bx y z~ 

Now we assume that the magnetic field has two dominant
directions (e.g., along the x-axis and y-axis), and the magnetic
field can be described locally by two components of the full
magnetic field vector. Then, from Equation (24), we obtain that
κ=κx=κy because the magnitude of the magnetic field is
B B Bx y

2 2 2= + . Adding them, we obtain
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In order for κ=κx=κy and κ to be constant, the velocity
gradients are required to be
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where χ, ζ are constants.
Therefore, if the magnetic field can be described using two

components of the full magnetic field vector, its strength will
scale with the local density only when the field expands at the
same rate in these two directions. If the important components
are Bx and By, then the field will scale as 1 z

1

2
k k= - . For

Bx and Bz (By and Bz), the field will scale with k =
1 y

1

2
k- ( 1 x

1

2
k k= - ).

In general, such a 2D field will not scale with the local
density. The velocity field restriction is such that it forces the
magnetic field to maintain the direction of the total magnetic
field vector. As a result, the restriction forces the 2D magnetic
field to behave as 1D in the field-aligned coordinate system.
Thus, in the field-aligned system, the magnetic field behaves
according to Case 1.

A.1.3. Case 3: B B Bx y z~ ~

Now we assume that all the magnetic field components are
needed to describe the magnetic field. Then, from Equation (24),
we derive that κ=κx=κy=κz in order for the magnitude of the
magnetic field to be B B B Bx y z

2 2 2 2= + + . Adding these terms
gives that
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In order for κ=κx=κy=κz and κ to be constant, the
velocity gradients are required to be

v

x

v

y

v

z
,x y z c

¶
¶

=
¶

¶
=

¶
¶

=

where χ is constant.
Therefore, a general magnetic field can scale with the local

density with a constant κ only if it expands isotropically. In
general, a 3D field will not scale with the local density. As in
case 2, the velocity field restriction is such that the magnetic
field maintains the direction of the total magnetic field vector.
Therefore, this restriction causes the magnetic field in the field-
aligned coordinate system to behave as 1D.

A.2. Velocity Field with Shearing Terms

We now include the shearing terms of the velocity field.
Following the same steps as before, we obtain from the
induction equation that
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Combining this with Equation (23), we obtain the generalized
expression of Equation (24):
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This can be written compactly as
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where i, j are indices corresponding to the x, y, z coordinates,
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where Eij
v

x

v

x

1

2
i

j

j

i
= +¶

¶

¶

¶( ) is the strain rate tensor. As Eij, κij is

symmetric. Its diagonal elements can also be expressed in terms
of the strain rate tensor, so that I E

vij ij
1k = -

 ·
, where I is the

identity matrix. Therefore, κij is, as Eij, a metric of the
deformation of the velocity field. Equations (25), (27), and (29)
are special cases of Equation (32).

The only assumption made to derive Equation (32) was that
κ is constant (in Equation (23)). In order for κ to be constant,
all terms of κij and Bi have to be independent of position
and time.

A.3. Non-constant κ

We now assume that κ is not constant, but a general function
of x, y, z, and t (i.e., κ(x, y, z, t)). Substituting Equation (22) in
Equation (3) and multiplying by 2B, we obtain

v
DB

Dt

B B

B

D

Dt
B2 ln 2 . 34

2 2

0

2
k

k
k- = -

⎛
⎝⎜

⎞
⎠⎟ · ( )

This is the generalization of Equation (23). We now write

Equation (30) compactly as v
DB

Dt
B B2 ij i j

2
k= - · and

substitute it in the previous equation. We obtain that

vD

Dt B
B B

1

ln

1
. 35

B

B

ij i j2

0


k

k
k k= -⎜ ⎟⎛

⎝
⎞
⎠( )

· ( )

We note that in order for κ to be constant, the term on the right-
hand side needs to be zero, which gives the previous result for
constant κ (Equation (32)). If κ changes slowly, so that
D

Dt
0

k
» , then B B

B ij i j
1

2k k» . Therefore, Equation (32) can

describe both the scaling of the magnetic field strength with the
local density when κ is constant and also when κ changes
slowly in time and deviates slightly from a power law.

Appendix B
Resolution, Resistivity, and Viscosity Effects

We examine the effect of the resolution on the scaling
curves. To do so, we choose case 4 in Table 2 to be our
reference simulation because this case is examined in detail in

Section 3.2.1 when we explained the formation of the scaling
laws. We perform simulations with the same initial conditions
and physical domain, and vary the number of grid points. In
Figure 10(a) we plot the scaling curve of the reference
simulation (solid line, 6003 grid points) and compare it with
simulations of lower (the dot–dashed line shows 4003 grid
points and the dotted line shows 5003 grid points) and higher
(dashed line, 7003 grid points) resolution. We find that the
scaling curve is only weakly affected by the change in
resolution.
We also examine the effect of the viscosity on the scaling

curves by performing a simulation with ν3=0. We do not set
the shock viscosity coefficients (ν1 and ν2) to zero to ensure the
numerical stability of the simulation. In Figure 10(b) we plot
the reference simulation (solid line) and the ν3=0 simulation
(dashed line). The two curves overlap mostly.
Finally, we examine the effect of the resistivity on the

scaling curves by performing a simulation with no explicit
resistivity (η=0). We plot its scaling curve in Figure 10(b)
(dotted line). We find that the scaling curve of this simulation is
different from the reference simulation by some degree.
The effect of the resistivity on the scaling curves can be

estimated analytically by extending the analysis of Appendix A.
Instead of the ideal induction equation, we use the nonideal
induction equation with uniform resistivity:

B
v B B v B

D

Dt
. 362  h= - + + ( · ) ( · ) ( )

Using this in our analysis, Equation (30) becomes

v
DB

Dt
B B B B2 2 . 37ij i j i i

2
2k h= - + · ( )

Combining this with Equation (23) gives

vB
B B

B B

B

1
. 38ij i j

i i
2

2

2
k k

h
= -


·

( )

This shows that resistivity will have an effect on the value of κ.
The second term of this equation for the reference simulation is
on the order of 0.01–0.1 during the simulation, and this is
approximately the difference we find between the solid and
dotted curves in Figure 10(b).

Figure 10. (a) Effect of lower (dotted and dot–dashed lines) and higher (dashed line) resolution on the scaling curve of case 4 in Table 2 (solid line). (b) Scaling curve
of case 4 in Table 2 (solid line) in comparison to simulations with the same initial conditions, but with η=0 (dotted line) and ν3=0 (dashed line).
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