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Abstract 6 

While several manipulated host behaviours are accepted as extended phenotypes of parasites, there 7 

remains debate over whether other altered behaviours in hosts following parasitic invasion represent 8 

cases of parasite manipulation, host defence or the pathology of infection. One particularly 9 

controversial subject is “suicidal behaviour” in infected hosts. The host-suicide hypothesis proposes 10 

that host death benefits hosts doomed to reduced direct fitness by protecting kin from parasitism and 11 

therefore increasing inclusive fitness. However, adaptive suicide has been difficult to demonstrate 12 

conclusively as a host adaptation in studies on social or clonal insects, for whom high relatedness 13 

should enable greater inclusive fitness benefits. Following discussion of empirical and theoretical 14 

works from a behavioural ecology perspective, this review finds that the most persuasive evidence for 15 

selection of adaptive suicide comes from bacteria. Despite a focus on parasites, driven by the existing 16 

literature, the potential for the evolution of adaptive suicidal behaviour in hosts is also considered to 17 

apply to cases of infection by pathogens, provided that the disease has a severe effect on direct fitness 18 

and that suicidal behaviour can affect pathogen transmission dynamics. Suggestions are made for 19 

future research and a broadening of the possible implications for coevolution between parasites and 20 

hosts.  21 
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Introduction 26 

Across all taxa that are involved in parasite-host relationships, a range of exploitative and defensive 27 

mechanisms have co-evolved in the respective ‘sides’.  A key question is whether some of the 28 

behaviours displayed by parasitized animals represent adaptations of the host or their parasite [1]. 29 

Behavioural changes following parasitic invasion vary greatly in their magnitude [2]; and the adaptive 30 

significance, if any, is not always clear. One possibility is that altered behaviours may simply be a 31 

response to the pathological effects of parasites, and are not necessarily adaptive to either parasite 32 

or host. However, Moore [3] warns against explaining altered behaviours as ‘side effects’ of 33 

‘pathology’, arguing that the fitness outcomes for participants in host-parasite associations, including 34 

parasite-induced behavioural alterations, will be subject to natural selection and therefore we should 35 

expect them to be more likely than not explicitly linked with the evolution of those species involved. 36 

Mostly though, studies focus on attributing behaviours to parasite adaptation or host adaptation.  37 

 38 

On the one hand, if altered host behaviours are adaptive for parasites, they should facilitate the 39 

completion of their lifecycle. This is typically achieved either by diverting the host’s energy away from 40 

their own reproduction to the parasite for growth [3-6] or by rendering intermediate hosts more 41 

vulnerable to ingestion by the parasite’s definitive host [3, 7-10]. Where the life cycle of parasites 42 

involves stages that spend some time in a particular external environment, host behaviour can also be 43 

manipulated for the successful dispersal of parasite propagules in their most suitable conditions [1, 3, 44 

11-13]. Interestingly, Poulin et al. [14] suggest that hosts may be capable of opposing some 45 

behavioural manipulation by established parasites, but the idea has received little attention. Certain 46 

host responses to infection by helminth parasites suggest that some hosts can remain at least partially 47 

in charge of their body, but lack of data is unsurprising because where infected hosts behave normally 48 

opposition to manipulation would not be differentiable from a parasite’s failure to manipulate [14]. 49 

 50 



On the other hand, hosts may benefit from behavioural changes following parasitism. Most obviously, 51 

behaviours that serve to minimise damage from an internal parasite may reduce the negative impact 52 

of parasitism on a host; such as exhibiting sickness behaviour [15], behavioural fever [16, 17] or self-53 

medicating foraging  [18, 19]. More intriguingly, a host individual may benefit by sacrificing its direct 54 

fitness for the sake of increasing its inclusive fitness [20, 21]. One fascinating, but controversial, 55 

mechanism through which this could occur is so-called “adaptive suicide” behaviours where post-56 

invasion behaviours function to eliminate the propagation of an established parasite thus protecting 57 

kin [22, 23].  58 

 59 

Adaptive suicide 60 

The host suicide hypothesis [22] proposes that a host may use its own death to increase its inclusive 61 

fitness [20, 21]. Where a parasitic infection effectively causes sterility or death, the host will be unable 62 

to improve its own reproductive fitness; suicidal behaviour could enhance its inclusive fitness by 63 

preventing the maturation of its parasite and lowering the risk of parasite infection for relatives [22]. 64 

The fitness cost associated with death becomes negligible when a host’s own expected reproduction 65 

approaches zero [23]. Provided that the host’s death (and that of its parasite) reduces the level of 66 

subsequent parasitism in its kin relative to that in non-kin, there should be a positive selection value 67 

on the behaviour. Smith Trail [22] argued that natural selection should drive the evolution of suicidal 68 

behaviour even when increases in inclusive fitness are very small, provided that: 1) the host’s 69 

individual fitness is zero, 2) that upon emergence from the host parasitoids are more likely to infect 70 

the host’s kin than non-kin, and 3) the kin’s reproductive success is increased due to the subsequent 71 

lowered risk of parasitism. 72 

 73 

In order to satisfy these requirements, adaptive suicide was predicted to be most prevalent in colonial 74 

or social host species, or in members of host populations with low dispersal rates and a relatively high 75 

degree of inbreeding [22]. Conversely, parasitoid species with relatively small search ranges or areas 76 



of discovery would be particularly vulnerable if their hosts adopted this behaviour [22]. Suicidal 77 

behaviour can include activity that makes the individual more conspicuous to predators or easy to 78 

capture [22], or causes great costs in terms of energy spent, lost feeding opportunities and  probability 79 

of death [23]. 80 

 81 

Empirical work 82 

Aggregating insects: Aphids 83 

McAllister and Roitberg [23] reported what they believed to be the first convincing evidence in support 84 

of Smith Trail’s [22] host suicide hypothesis, following their observations of pea aphids (Acyrthosiphon 85 

pisum) from different regions parasitized by the braconid wasp Aphidius ervi apparently exhibiting 86 

suicidal behaviour to different extents. Both in response to aphid alarm pheromone and approaching 87 

coccinellid predators, aphids for whom the risk of death due to heat stress and desiccation was 88 

thought to be higher dropped more frequently when parasitized whereas aphids from cooler coastal 89 

regions behaved no differently when parasitized to when unparasitized [23]. From this, McAllister and 90 

Roitberg concluded that in a habitat where alternative escape tactics result in significant differences 91 

in mortality risk (interior regions), parasitized aphids chose the riskiest behaviour. Meanwhile in the 92 

habitat where alternative escape tactics result in no apparent difference in mortality risk (coastal 93 

regions), parasitized aphids behaved no differently to unparasitized aphids. Curiously, though, in both 94 

situations, parasitized aphids did not drop from plants without mediation by predation [23]. This study 95 

received a number of criticisms from Latta [24] and Tomlinson [25] which McAllister and Roitberg [26] 96 

addressed as “misunderstandings” in a rebuttal, but the fact that adaptive suicide in this system was 97 

predator-mediated arguably suggests that the adaptation concerns more the survival of the parasitoid 98 

rather than a benefit to the aphid. If this is not the case, it makes little sense why aphids should not 99 

allow themselves to be consumed by predators. Indeed, we find in some more recent cases - discussed 100 

in greater detail later – that increasing mobility following invasion by a parasite may increase an 101 

aphid’s likelihood of being consumed by a predator [27-29].   102 



 103 

McAllister and Roitberg went on to examine adaptive suicide in parasitized pea aphids of varying 104 

reproductive potential [30]. When aphids are parasitized at the second instar stage, they have no 105 

reproductive future and will not produce any offspring prior to mummification. However, aphids 106 

parasitized in their fourth instar can expect to produce seven to eight offspring before dying, directly 107 

increasing their own fitness, and so the cost of any altruistic behaviours upon parasite invasion may 108 

increase relative to the payoff for these individuals. Aphids parasitized at the second instar were found 109 

to utilise dangerous escape behaviour (dropping) when approached by a predator, while aphids 110 

parasitized at their fourth instar behaved no differently from unparasitized individuals [30]. This result 111 

was consistent with their prediction that as the cost of altruistic behaviour increases relative to 112 

inclusive fitness payoff suicidal behaviour should disappear, however the escape behaviours were 113 

again elicited by the presence of a predator, weakening any support for a host-benefitting adaptation 114 

[30].  115 

 116 

Many aphid species disperse away from their colony mates and mummify elsewhere following 117 

parasitism, but there is not always evidence to suggest that this behaviour is host- or parasitoid-118 

mediated [31, 32].  It is also possible that both parasitoid and host benefit to an extent. Perhaps the 119 

host gains indirect fitness benefits by transporting the parasitoid away from kin, while the parasite 120 

does not suffer from this so long as it is no more challenging to find some (non-kin) aphids.; Moreover, 121 

the parasitoid might actually benefit if the move is to a safer microclimate [33]. Considering other 122 

potential evidence for altruism in non-eusocial parthenogenetically reproducing aphids, Wu and 123 

Boivin [34] looked at the smearing of cornicle secretions by cereal aphids (Sitobion avenae) onto 124 

parasitoids (Aphidius rhopalosiphi). Cornicle secretions of aphids were concluded to be altruistic 125 

against parasitoids, as they provided no direct fitness benefits to secretion-releasing individuals, only 126 

indirect fitness benefits through negatively impacting the parasitoid’s subsequent foraging time and 127 

offering some protection to neighbouring clone-mates [34]. Smearing also occurred more frequently 128 



when a greater number of clone-mates were present, increasing inclusive fitness benefits [34]. This 129 

appears to be a case of kin-directed altruistic defence outside eusocial animals. Interestingly, non-130 

social aphids also appear to possess surprising kin-recognition abilities, varying in aggregation and 131 

defensive abilities depending on the relative presence of clonemates and non-kin [35].  132 

 133 

With an increased awareness of the potential for aphids to recognise kin, it is interesting to consider 134 

that adaptive suicide following parasitism in the presence of predators need not involve dropping 135 

from, or leaving, an area to altruistically remove a parasite. Meisner et al. [27] demonstrated that pea 136 

aphids at earlier stages of parasitism suffer higher predation by the coccinellid predator Harmonia 137 

axyridis than unparasitized aphids. Duran Prieto et al. [28] proposed that if the behaviour of 138 

parasitized aphids was the cause of their more intense predation, it should be expected that 139 

parasitized aphids will suffer greater predation from predators other than coccinellids, especially if 140 

their behaviour has an adaptive value. They explored predation of recently-parasitized pea aphids by 141 

the hemipteran Macrolophus pygmaeus, obtaining a similar result to Meisner et al. [27]. As the 142 

predation rate was not affected by the ratio of parasitized to unparasitized aphids, the energy and 143 

nutrition obtained from both prey types can be assumed to be equal and therefore prey preference 144 

was likely down to aphid behaviour rather than physiology. Higher mobility after being parasitised was 145 

evident. It is therefore plausible that the suicidal behaviour seen in pea aphids following parasitism 146 

[23, 30], can function by increasing the rate of encounter between the predator and the parasitized 147 

prey [28]. By behaviourally offering themselves up, as well as removing the parasite from the area 148 

parasitized hosts may help satiate predators in order to protect unparasitized kin. This hypothesis is 149 

supported by the observation of Meyhofer and Klug [29] that a lacewing predator Chrysoperla carnea 150 

took significantly less time to capture a parasitized black bean aphid (Aphis fabae) as its next victim 151 

than an unparasitized one. 152 

 153 

Eusocial insects: Bees and ants 154 



Schmid-Hempel and Müller [36] reported that worker Bombus lucorum bumblebees parasitized by 155 

conopid flies remain outside the nest longer than unparasitized workers during foraging hours and 156 

may abandon the nest altogether. They suggested that this would benefit the parasitoid pupae as they 157 

might be less subject to the infections that can develop on abandoned combs in bumblebee colonies. 158 

However, Poulin [37] suggested that these changes in behaviour are more plausibly an adaptive 159 

response of the host resulting in inclusive fitness and therefore an example of the adaptive host 160 

suicide as proposed by Smith Trail [22]. Fritz [38] pointed out that natural selection should favour 161 

parasitoids that manipulate the host in ways that reduce its mortality likelihood before the parasitoid 162 

pupates, but bumblebees would in fact be more susceptible to predation, starvation and 163 

superparasitism outside the nest [37].  164 

 165 

However, the conopid-bumblebee association does not meet the conditions of adaptive host suicide 166 

as laid out by Smith Trail [22] for two reasons: 1) by the time adult conopids emerge from pupae, the 167 

host’s kin have dispersed or died; 2) adult conopid females spread widely away from their site of 168 

emergence and so would not preferentially infect the bumblebee’s kin even if the bumblebee allowed 169 

it to live [37]. McAllister and Roitberg [30], though, pointed out that early death of a parasitized host 170 

will be adaptive as long as the costs of decreased reproductive success are outweighed by the benefits 171 

of increased inclusive fitness. Poulin [37] argued that the costs of death for a parasitized bumblebee 172 

worker is in fact very low as its reproductive potential approximates zero following infection, as does 173 

its use as a forager in the colony. On the other hand, leaving the nest could increase a bee’s inclusive 174 

fitness as parasitized workers are susceptible to further attack from conopid flies, and so leaving the 175 

colony may attract fly attacks away from non-parasitised kin [37]. Additionally, by leaving a nest, a 176 

parasitized bee with lower foraging efficiency might avoid depleting the colony’s food stores for its 177 

own, unproductive survival, thus leaving more available for its kin [37] – a behaviour we here dub the 178 

“Captain Oates Effect”.  179 

 180 



Poulin’s [37] interpretation, though, was criticised in response by Müller and Schmid-Hempel [39]. 181 

Bumblebees tend to intermingle with foragers from many different colonies when outside their nests, 182 

staying outside the colony and acting as a target for fly attacks is very likely to protect kin and non-kin 183 

from parasitisim to similar degrees; the benefits would not be disproportionately routed towards kin 184 

to the extent that the kin-selection hypothesis requires [39]. Müller and Schmid-Hempel [39] also 185 

argued that, from their observations, there is no evidence that parasitized bumblebees are not able 186 

to feed for themselves on flowers and so they would not necessarily depend on food stores in the hive 187 

anyway. Müller and Schmid-Hempel [40] subsequently found evidence of parasitized bumblebees 188 

exploiting cold temperatures as a defence against parasitoids. Parasitised workers stayed in the field 189 

overnight instead of their nest, where the cold temperatures could retard the maturation of the 190 

parasite, reducing its chance of successful development. In choice experiments, parasitized bees were 191 

also demonstrated to actively seek out cold temperatures [40]; although not supportive of adaptive 192 

suicide, these findings did suggest a larger role for host advantage rather than pure parasite 193 

manipulation. 194 

 195 

Unrelated to parasitism, apparently altruistic self-removal from the hive has been reported in health-196 

compromised honey bees (Apis mellifera), whose presence may be harmful to their colony [41]. Other 197 

studies have previously suggested that different eusocial insects permanently leave their colonies 198 

when infected [42, 43], but it is difficult to pick apart host adaptation from potential parasitic 199 

manipulation, or indeed pathological trauma. Through artificially compromising honey bee foragers, 200 

Rueppell et al. [41] provided experimental evidence that self-removal need not be caused directly by 201 

parasitic manipulation or related to stress-induced foraging [44] or loss of orientation abilities [43]; 202 

altruistic self-removal could be a host adaptation to increase inclusive fitness. Further, a simple model 203 

suggested that altruistic self-removal by sick social insect workers, in order to prevent disease 204 

transmission to kin, is expected under most biologically plausible conditions [41]. When occurring 205 



after infection from a parasite, self-removal from a colony might in some cases qualify as adaptive 206 

suicide. 207 

 208 

However, colony desertion following parasitism certainly does not always come from altruism. Hughes 209 

et al. [45] describe a fascinating behavioural change in the paper wasp Polistes dominulus following 210 

infection by the strepsipteran parasite Xenos vesparum which culminates in colony desertion and the 211 

formation of extranidal groups in which up to 95% of occupants are parasitized females. While 212 

altruistic desertion to reduce infection of kin would generally be a good strategy for infected social 213 

insects, this is untenable in this case because female X. vesparum parasites are only infective if 214 

inseminated and wasp copulation does not occur on the nest due to occupants vigorously attacking 215 

free-living males. The nest desertion and aggregation by infected wasps is most likely a case of 216 

adaptive parasite manipulation of host behaviour in order to facilitate parasite mating [45]. 217 

 218 

As in aphids [27-29], however, adaptive suicide in eusocial insects may not always involve spatial 219 

separation of a host from its kin; selective predation on parasitized hosts could also help hosts 220 

altruistically protect their unparasitized kin from a parasitoid. Mathis and Tsutsui [46] studied the rove 221 

beetle Myrmedonota xipe, which associates with – typically highly aggressive – Azteca sericeasur ants. 222 

Rove beetles were found to selectively locate and prey upon ants parasitized by phorid parasitoid flies. 223 

Parasitised ants acted less aggressively towards the beetles than healthy ants, meaning that rove 224 

beetles can eat them alive without interruption [46]. Unable to access the aggressive, unparasitized 225 

ants as a food resource, M. xipe appeared to almost exclusively prey on parasitized ants, but this could 226 

also benefit the infected ants as being consumed would reduce the phorid fly population free to infect 227 

their kin. On the one hand, this system seems a good candidate to meet the criteria for the host-228 

suicide hypothesis as A. sericeasur is a polygynous and polydomous social insect that forms wide-229 

spanning territories and so emerging mature parasitoids are far more likely to encounter their host’s 230 

kin than non-kin [46]. On the other hand, it may be that not all phorid fly larvae successfully mature, 231 



and so selective predation of ants that would survive parasitism would ultimately cost the colony as a 232 

whole [46]. Parasitised workers may also be active colony members during the development of the 233 

parasitoid, and in these cases the benefit of eliminating the larvae via predation may be offset by the 234 

costs to the colony incurred from losing productive parasitised workers [46]. Further work exploring 235 

the true costs and benefits of selective rove beetle predation to parasitized ants will certainly shed 236 

more light on the evolution of this system but, as Mathis and Tsutsui conclude, beetle predation may 237 

indirectly benefit ants where parasitized ants can reduce the numbers of developing parasitoids by 238 

increasing their appeal as prey. Selective predation on parasitized hosts, beyond aphids, has been 239 

demonstrated in several studies, including in lepidopterans [47] and non-eusocial hymenopterans [48] 240 

(also see  review by Rosenheim et al. [49]); exploring the possibility of this as a pre-emptive adaptive 241 

suicide strategy across different taxa will also be useful in advancing understanding of responses to 242 

parasitism.   243 

 244 

Bacteria 245 

An extreme defensive immune strategy in bacteria against phages is the deployment of  abortive 246 

infection (Abi) systems that abort phage infection but also lead to the death of the infected bacterial 247 

cell [50]. Abi systems protect neighbouring bacteria at the expense of the individual expressing the 248 

trait [51]. Altruistic deployment of Abi systems is particularly likely to be selected for where a 249 

bacterium’s neighbouring cells are kin emerging from clonal expansion or, additionally or alternatively, 250 

cells have other factors that favour cooperation, such as aggregation as part of a biofilm [52, 53]. 251 

Makarova et al. [52] hypothesised that immunity and suicide systems in bacteria are coupled and that 252 

complex decision-making involving sensing the course of a viral infection may determine whether the 253 

response to a virus involves induction of dormancy, an immune response, or suicide in the face of 254 

immune system failure. Works investigating recently discovered Class 2 CRISPR-Cas (Clustered 255 

Regularly Interspaced Palindromic Repeats and CRISPR-associated genes) systems [54-56] have since 256 

found the most direct link between immunity and programmed cell death in microbes discovered yet 257 



[57]. It is thought that immunity-suicide coupling is favoured in situations where a system includes 258 

dual function components that are involved both in immune and in suicidal activities [58]; this could 259 

be the case for some Cas proteins [57]. 260 

 261 

The ‘decision’ to commit adaptive suicide in bacteria likely involves diverse signal transduction 262 

pathways [52]. In eukaryote yeast cells (Saccharomyces cerevisiae), natural programmed cell death is 263 

thought to hinge on the degree of damage to genetic material, with its critical value determined by 264 

quorum-sensing machinery [59]. Quorum-sensing is also an important process in prokaryote bacteria 265 

cell-cell communication, wherein extracellular signalling molecules are produced, detected and 266 

responded to [60, 61]. Quorum sensing has been found to be important in the sporulation-267 

competence decision in Bacillus subtilis [62, 63], and Hazan et al. [64] recently described a novel 268 

quorum-sensing-regulated bacterial mechanism that controls self-poisoning of the respiratory chain 269 

in Pseudomonas aeruginosa, providing a fitness benefit to the microbial collective. A mechanism 270 

involving quorum-sensing is likely to be an important element in the mechanics of adaptive cell death 271 

following infection in bacteria [52]. 272 

 273 

Beyond sensing population levels by quorum-sensing, proteins that can sense damage and ‘predict’ 274 

the outcome of infections will also be important in mediating Abi systems and toxin-antitoxins [65, 275 

66] that colocalise with immunity genes [57]. The exact mechanisms and structures that forecast the 276 

course of virus infections remain to be fully elucidated, but it is thought that whenever dedicated 277 

sensor molecules indicate an attack is manageable the cell mobilises its immune system, while if the 278 

indications of attack are dire then self-afflicting programs are triggered [57]. Switching from the 279 

immune mode to the suicidal mode of defence may be in part governed by sensors determining the 280 

level of damage inflicted on a cell [57]. Intriguingly, though, type VI-A CRISPR-Cas systems appear to 281 

take a short-cut in the cell’s usual response relay by simplifying – or even skipping – the damage-282 

sensing step and employing the main immune effector as the suicide effector as well, but these 283 



systems are rare in bacteria perhaps suggesting that foregoing damage-sensing is costly [57]. 284 

Predictive and damage-sensing signals read and responded to by various sensors likely differ between 285 

defence systems (see [57] and references therein for details). 286 

 287 

Several studies suggest that spatial structure and migration are important to the evolution of bacterial 288 

suicide upon infection as they impact relatedness and therefore the relative benefits of kin selection 289 

[67-71]. For example, Fukuyo et al. [69] competed  altruistic Escherichia coli with an artificially 290 

engineered suicide mechanism against wild-type bacteria in the presence or absence of the phage λ. 291 

They found that in a spatially structured soft agar environment, altruistic suicide had a selective 292 

benefit for the bacteria, but this was not the case in a well-mixed liquid environment. Using the 293 

naturally-occurring Abi mechanism ‘Lit’ in E. coli, Berngruber et al. [67] varied the amount of mixing 294 

in environments more continuously and found again that spatial structuring was needed for the 295 

evolution of altruistic suicide but also that too little mixing might prevent the evolution of abortive 296 

infection due to the reduced parasite spread under those conditions. A further study by Refardt et al. 297 

[70] confirmed these findings using the best characterised Abi system, ‘Rex’ in λ-lysogenic E.coli strains 298 

[50]. Refardt et al. [70] demonstrated that adaptive suicide can evolve even when genetic similarity 299 

between neighbouring strains is relatively low in their study of E. coli responding to the attack of an 300 

obligately lytic phage.  301 

 302 

Theoretical work and evolutionary predictions 303 

As discussed above, interpretations of empirical data that support the host suicide hypothesis [23, 28, 304 

30, 37] have often been criticised [24, 25, 39]. The adaptive significance of host suicide in particular 305 

has been challenged because the main supporting studies involved clonal aphids that aggregate [23, 306 

30] or eusocial Hymenoptera [36], where complex life histories have made it difficult to exclude 307 

alternative explanations or carry out rigorous analysis of fitness [70]. Even in Euphydras phaeton 308 

caterpillars and their parasitoids – suggested by Smith Trail [22] as an appropriate system for testing 309 



the hypothesis of host suicide – adaptive suicide has not yet been demonstrated to be more plausible 310 

than the behavioural changes serving to increase the parasitoid’s chance of escaping predation and 311 

parasitism itself [72]. Yet theoretical work has convincingly revealed the conditions required for host 312 

suicide to evolve [22, 30, 71]. 313 

 314 

Smith Trail’s original hypothesis [22] logically suggested that adaptive suicidal behaviours would 315 

increase the inclusive fitness of a parasitized host if the following conditions were met: 1) suicidal 316 

behaviour prevents the parasite’s maturation and emergence; 2) the mature parasite is more likely to 317 

infect the host’s kin than non-kin; and 3) the benefit to the host, in terms of the increased fitness of 318 

the kin, is greater than the cost of the suicide, measured in terms of the loss of the host's own 319 

reproductive fitness. If not all of these conditions are met, early death of the host may still be adaptive 320 

as long as the costs of decreased reproductive success are outweighed by the inclusive fitness benefits 321 

[30]. One of the key points here is perhaps that the parasite infection must have a severe, if not lethal, 322 

consequence for the host’s future reproductive success to ensure that swapping direct fitness benefits 323 

for kin-selected benefits would result in a net gain for the infected host. Debarre et al. [71] illustrated 324 

via modelling how suicide upon infection can be an adaptation, but only in response to extremely 325 

harmful parasites and in spatially structured environments. 326 

 327 

Shorter and Rueppell [73] suggested that eusocial insects, rather than just aggregated clonal insects, 328 

may provide the best test systems for adaptive suicide due to the high relatedness and relative 329 

strength of kin selection. While this may prove to be true, empirical work on bacteria appears to lend 330 

the greatest support for adaptive suicide so far, even in conditions of relatively low relatedness. Where 331 

suicide carries very low cost for committers in structured environments, because infected cells are 332 

moribund with no opportunities for further reproduction, apparent altruism can evolve if such an act 333 

provides a large benefit to survivors that then avoid extinction [70]. Conversely, in unstructured 334 



environments self-sacrificial suicide would be futile as it would not preferentially protect relatives and 335 

so in these situations individual-based resistance is the best tactic for bacteria to combat phages [68]. 336 

 337 

Selection for adaptive suicide in bacteria will likely be affected by ecological factors too. Refardt and 338 

Kümmerli [68] found that in structured environments suicidal host defence was slightly less efficient 339 

than individual-based resistance in withstanding phages. They proposed that the putative lower 340 

efficiency of abortive infection might be compensated by a lack of pleiotropic costs compared with 341 

those usually associated with individual-based resistance mechanisms. Lion and Gandon [74] further 342 

suggest that selection for altruistic suicide should be maximised at low host dispersal and at 343 

intermediate parasite dispersal, due to their roles in spatial structuring. Horizontal transfer of altruistic 344 

suicide Abi systems may also play an important role in their evolutionary success [74]. However, it 345 

remains unclear how adaptive suicide can outcompete simpler bacterial defence strategies preventing 346 

initial infection [74] and selection for adaptive suicidal behaviours is yet to be convincingly 347 

demonstrated in more complex organisms. 348 

 349 

If there are instances where suicidal behaviours will be selected for in infected hosts, this raises the 350 

question of how adaptive suicide persists evolutionarily if the parasite species would consistently lose 351 

out. One of Tomlinson’s [25] issues with McAllister and Roitberg’s first study concerning adaptive 352 

suicide in aphids [23] was that natural selection on parasites would favour the subversion of such 353 

suicidal behaviour that benefitted their hosts, and that “in any ensuing ‘arms race’, asymmetries of 354 

selection should favour the parasite.” Blower et al. [75] describe a fascinating means by which a 355 

bacteriophage counter-evolved to avoid having its replication blocked by an infected cell’s premature 356 

suicide. Here, they found the bacteriophage evolving sequences that mimicked the cell’s antidote to 357 

its own toxins, allowing it to continue replicating without being destroyed by its host’s defensive 358 

system. However, there are in fact some conditions in which selection on a parasite might not be able 359 

to override selection for host-benefitting suicidal behaviour. Firstly, if suicidal behaviour is triggered 360 



by a complex set of stimuli then the likelihood that selection for variation in parasite traits could occur 361 

just so in order to subvert such a complex behaviour is perhaps very low [26]. Secondly, in situations 362 

where the costs of maintaining such strong control over hosts would be high relative to the payoff 363 

parasitoids may not be selected to overcome host behaviours. McAllister and Roitberg [26] give the 364 

example of parasites with exceptionally high fecundity, for whom the cost of providing each offspring 365 

with sufficient neurotoxins to alter the behaviour of every host would be exceedingly high. 366 

 367 

It is also worth considering whether host-parasite interactions may have coevolved over time such 368 

that suicidal behaviours in hosts may sometimes benefit both the host and their parasite. As 369 

mentioned earlier, it seems plausible to us that there may be cases where a parasite is either neutral 370 

towards or may benefit from an infected host dropping or otherwise moving away from its kin. So long 371 

as it is possible to encounter hosts of some sort, kin or not, after its emergence, the parasitoid does 372 

not need to lose out from the host’s behaviour, while the host still gains inclusive fitness benefits from 373 

protecting its kin. In fact, if the move away from the host’s kin also moves the parasitoid offspring to 374 

a safer microclimate for maturation and emergence then perhaps both ‘sides’ of the interaction 375 

benefit from the altered behaviours. It is also not much of a stretch to consider that some of the 376 

instances where infected hosts make themselves more vulnerable to predation, either through 377 

conspicuous behaviour or movement to particular locales, might aid parasites with particular life 378 

histories that require transmission from intermediate to definitive host while also sating predators to 379 

protect the host’s kin. While it would be difficult to parse out whether a host’s kin truly benefit from 380 

these sorts of scenarios, given that the parasite evidently succeeds in being transmitted to its 381 

definitive host, we consider it likely that the benefit of a host’s behaviour to either the host or the 382 

parasitoid is context-dependent. As an example, nest abandonment by bumblebees could benefit the 383 

host more than the parasite in cases where the parasite is highly abundant and virulent and nest 384 

cleaning behaviours will be overwhelmed; this is discussed further in the next section. It is important 385 

that the full population dynamics at play are considered where possible. 386 



 387 

In which situations might adaptive suicide evolve? 388 

While the focus of this paper has been on host adaptations following infection by parasites, because 389 

previous work in this field has focussed on parasitism, we see no reason why cases of infection by 390 

disease should not also lead to the evolution of suicidal behaviours that benefit the hosts. The key 391 

aspect to both diseases and parasites that can potentially provoke the evolution of adaptive host-392 

suicide is that they must have a severe effect on direct fitness, otherwise it is unlikely that a 393 

behaviour will evolve to compromise direct fitness in order to boost indirect fitness. A major means 394 

by which pathogens or parasites can impact direct fitness is by being highly virulent. If virulence is 395 

not high, then a behaviour that sacrifices a host’s direct fitness to favour enhancing indirect fitness 396 

would not evolve. If virulence is high, the evolution of this behaviour is more likely, but the host 397 

behaviour must also be able to affect the transmission dynamics of the pathogen or parasite – this 398 

rules out some parasites, but also some highly virulent pathogens. It is easy to imagine how the 399 

transmission of helminths and the like can be affected by host behaviours, but for biting insects that 400 

just collect a blood meal and do not lay their eggs in or on a host, host behaviours will not influence 401 

their transmission.  402 

 403 

Considering as an example, then, adaptive suicide should not develop in humans as a response to 404 

parasites like tsetse flies because they are not virulent enough. Nor would it develop in response to 405 

the protozoa that use the tsetse fly as a vector and cause sleeping sickness [76]. Even though 406 

sleeping sickness is highly virulent, killing virtually anyone untreated, the pathogen is spread only 407 

when another biting insect takes a blood meal from the infected person [76]. An infected individual 408 

could kill themselves as soon as they realised they were infected, thereby reducing their appeal to 409 

further tsetse flies as their body cools. However, it is not obvious that this reduction in pathogen 410 

prevalence would benefit kin in any meaningful way because the lifecycle of the pathogen in the fly 411 



takes three weeks (from feeding on one person to being able to be spread to another), during which 412 

time the tsetse fly will have travelled a long distance; there is little likelihood that  the tsetse fly 413 

would spread the pathogen from you to your kin. 414 

 415 

On the other hand, other taxa may be expected to evolve host suicidal tendencies when infected 416 

with particular pathogens and infections, as well as with certain parasites. We have already touched 417 

upon earlier cases where ants infected by fungal disease isolate themselves from their colonies [42], 418 

but while entomopathogenic fungi may experience increased transmission from their host’s 419 

dispersal [41, 77] this behavioural manipulation by the disease may be a co-option of host adaptive 420 

suicide. While nest hygiene behaviours in ants – e.g. removal of infected individuals or sequestering 421 

of individuals within the nest before individuals reach the infective stage – are typically a more 422 

effective fitness-enhancing strategy in the face of infections, adaptive suicide could evolve where 423 

infection rates are rapid and so extensive that the hygienic response is overwhelmed [78, 79].  424 

 425 

Conclusions and suggestions for future research 426 

There is a lack of consensus on adaptive suicide. On the one hand, the behaviour seems theoretically 427 

very plausible as a highly effective host adaptation given an extremely harmful parasitized state and 428 

fate of significantly reduced direct fitness opportunities. On the other hand, empirical work has so far 429 

received much criticism and teasing host adaptation apart from alternative explanations has proven 430 

difficult to do definitively. The best evidence, theoretical and empirical, for the selection of adaptive 431 

suicide in infected individuals originates in studies of bacteria and Abi systems.  432 

 433 

One useful approach for future research – highlighted by Müller and Schmid-Hempel [39] in relation 434 

to parasitized bumblebees but true of any study on behavioural alterations upon parasitic invasion – 435 

would be for detailed measurements of costs and benefits for both the host and its parasitoid to be 436 



carefully analysed, along with any influence physiological stress may have. Including a consideration 437 

of the wider population dynamics and ecological context may be an important component of weighing 438 

up the net benefits to host and parasitoid. Elucidating the proximate mechanisms underpinning 439 

alterations of host phenotype [80], wherever possible, would also be valuable where they could help 440 

identify parasite manipulation – or indeed rule it out in favour of host adaptation or pathology. More 441 

behavioural studies on generally self-destructive behaviours in social insects, including cost-benefit 442 

analyses and mechanistic studies, are also needed [73] and comparisons between disease-related, 443 

condition-related and parasite-related behavioural changes may then shed more light on the potential 444 

for adaptive suicide upon infection relative to other explanations.  445 

 446 

With regards to non-eusocial species that tend to aggregate with clonemates, Duran Prieto et al. [28] 447 

propose a convincing explanation of how suicidal behaviours may lead to increased predation of 448 

parasitized aphids. Further studies should seek to investigate whether predation rates on 449 

unparasitized kin decrease thanks to parasitized aphids substantially increasing their own personal 450 

risk of predation by performing particular behaviours. It would be of great interest whether further 451 

studies could prove that, at an early stage of parasitism, greater susceptibility of parasitized aphids to 452 

predation is a common phenomenon [28]. 453 

 454 

From a different perspective, it would be interesting to explore whether there are any host-parasite 455 

systems that result in an infected individual decreasing its own fecundity in order to prevent parasites 456 

producing infectious units that could then infect its kin. This would perhaps be considered adaptive 457 

“reproductive suicide”, wherein all future reproduction and direct fitness is cut off, but perhaps where 458 

an individual could continue to assist kin without infecting them, thus, it need not dispose of itself 459 

entirely. The reduction of host fecundity following parasitic invasion has previously been suggested as 460 

an adaptive strategy for damage limitation in some cases [81]. Hurd [82] describes how female host 461 

fecundity reduction in the association between metacestodes of the rat tapeworm (Hymenolepsis 462 



diminuta) and a beetle intermediate host (Tenebrio molitor) can benefit both parasite and host. Here 463 

the host’s rate of egg production is slower upon infection but this is traded off with a longer life span 464 

that might ultimately allow lifetime fecundity to equal or exceed that of uninfected females. The 465 

parasite can also gain from this if greater life span increases the probability of the beetle being 466 

predated, thus increasing the parasite’s transmission [82]. Beyond a merely reduced host fecundity, if 467 

there are cases where a host ends its fecundity rather than increasing its mortality, a shutting down 468 

of reproductive effort could represent an entirely host-benefitting adaptation that might act to 469 

protect its kin from multiplied infectious units. Any exploration into such “reproductive suicide” could 470 

give a further perspective on extreme kin-selected adaptations in the face of parasitism. 471 

 472 

Modelling work exploring the precise relationship of costs and benefits involved in adaptive suicide in 473 

social insects could also be of great use in trying to understand in which situations the evolution of 474 

suicidal behaviours as a host adaptation could be more plausible than parasite manipulation and/or 475 

pathology. In the case of bacteria, future work developing understanding of how altruistic suicide can 476 

outcompete simpler defences that prevent infection in the first place would be hugely valuable [74]. 477 

Further details on the nature of the switching signals in immunity-suicide coupling in bacteria, the 478 

relevant threshold values, and the determinants of these are all intriguing avenues open for future 479 

studies [57]. The longer-term effects of adaptive suicide in bacteria on the complexity [83] and 480 

evolution of microbial populations will also be interesting to further explore. Broadening the 481 

theoretical framework to include awareness of spatial structuring and the diversity of host and 482 

parasite life cycles would allow the production of more informative models, and further empirical 483 

studies to validate theoretical predictions regarding selection under different spatial structures could 484 

also be hugely valuable [74]. The coevolutionary implications of adaptive suicide by bacteria to avoid 485 

population-wide infection in spatially structured environments remains ripe for empirical testing [84]. 486 

Greater consideration across taxa of where some behaviours could potentially benefit both host and 487 



its parasite – and explorations of where this may apply to cases of infection by pathogens too – could 488 

also yield interesting results. 489 
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