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Abstract
The increasing trend of systematic collection of medical data (diagnoses, hospital admission emergencies, blood test

results, scans, etc) by healthcare providers offers an unprecedented opportunity for the application of modern data mining,

pattern recognition, and machine learning algorithms. The ultimate aim is invariably that of improving outcomes, be it

directly or indirectly. Notwithstanding the successes of recent research efforts in this realm, a major obstacle of making the

developed models usable by medical professionals (rather than computer scientists or statisticians) remains largely

unaddressed. Yet, a mounting amount of evidence shows that the ability to understand and easily use novel technologies is

a major factor governing how widely adopted by the target users (doctors, nurses, and patients, amongst others) they are

likely to be. In this work we address this technical gap. In particular, we describe a portable, web-based interface that

allows healthcare professionals to interact with recently developed machine learning and data driven prognostic algorithms.

Our application interfaces a statistical disease progression model and displays its predictions in an intuitive and readily

understandable manner. Different types of geometric primitives and their visual properties (such as size or colour) are used

to represent abstract quantities such as probability density functions, the rate of change of relative probabilities, and a series

of other relevant statistics which the heathcare professional can use to explore patients’ risk factors or provide personalized,

evidence and data driven incentivization to the patient.
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Introduction

Electronic medical records (EMRs)—also referred to dig-

ital medical records, or electronic health records—nowa-

days a routinely collected data resource in hospitals in

economically developed countries, offer an exciting

opportunity for machine learning-based knowledge dis-

covery which could significantly affect healthcare delivery,

its quality, and therefore intervention outcomes [1–5].

Some of the most prominent problems addressed by the

existing literature include the discovery of risk factors, the

modelling of disease progression patterns, and the devel-

opment of patient specific prognostics [6–9]. However, a

major challenge posed by the need to interface these

technological advancements with medical personnel and

patients themselves, has attracted much less research

attention [10–14]. Yet, some of the very premises of the

work on person specific prognosis include the incen-

tivization of patients [15]. Moreover, the ability to interact

with technology in an intuitive manner is a major aspect

governing its adoptability in actual healthcare practice

[16, 17].

The visualization tools we introduce in this work are

built around a recently proposed disease progression model

which has demonstrated highly promising results on real-

world data [8, 15]. This model, and indeed all models

likely to be successful on the task of comorbidity mod-

elling and prediction, is highly technical and in that sense

not readily accessible to medical practitioners or patients.

A large volume of previous work has shown that this can

be a major obstacle in the adoption of technology in the

clinical context [10, 16]. Thus, the contribution of this
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paper is a novel framework which makes a major step

towards bridging this gap of outstanding practical

significance.

Under the Hood: The Underlying Prediction
Model

For completeness herein we present a summary of the key

ideas of the adopted method. For in-depth technical details,

and the related discussion and results, the reader is referred

to the original publications [8, 18–20].

The history vector-based sequential prediction model we

adopt from the work of Arandjelović [15] treats a patient’s

medical record as comprising a sequence of hospital

admissions a1; . . .; ai; . . .; an which form a hospital admis-

sion history H:

H ¼ a1 ! a2 ! a3 ! an ð1Þ

Each ai is a discrete event coded using one of a number of

standard disease coding schemas, e.g. [21] or one of a

number of mostly related alternatives [22]. The most likely

follow-up admission a�nþ1 is calculated by likelihood

maximization from the current history:

a�nþ1 ¼ arg max
a

pðH ! aÞ ð2Þ

The method proposed by Arandjelović represents a history

as a fixed length binary history vector v ¼ vðHÞ over the

most common disease diagnoses, where 1 denotes the

presence of a specific diagnosis in the history, and 0

absence thereof. The transition probabilities between dif-

ferent history vectors pðvðH1Þ ! vðH2ÞÞ are learnt from a

training data corpus.

The original model described in [8, 15] facilitates

sequential prediction only. In other words, it predicts the

next diagnosis for a patient (or, equivalently, provides a

probability ranked list of diagnoses) without any associated

temporal information, i.e. it is not able to predict the timing

of this diagnosis. Herein the original model is further

endowed with a temporal predictive ability. This is

achieved by learning the cumulative distribution function

(cdf) of a transition from one history vector to another.

Considering that a appropriate probability density function

(pdf) associated with transitions is the log-normal

distribution:

ptðtÞ ¼
1

2
1 þ erf

lnðtÞ � s

r
ffiffiffi

2
p

� �� �

ð3Þ

the corresponding cdf is:

PtðxÞ ¼
1

tr
ffiffiffiffiffiffi

2p
p e

� ln t�sð Þ2

2r2 ð4Þ

where t is the temporal distance of the transition measured

from the present, and s and r the parameters of the dis-

tribution, frequently referred to as the ‘location’ and ‘scale’

parameters. The two parameters are also readily learnt

from the training data corpus using standard maximum

likelihood estimation.

Sequential, Non-temporal Visualization

As explained in the previous section, the cornerstone rep-

resentation in the model which we build our visualization

around comprises vectors with binary entries. This con-

ceptually simple representation allowed us to come up with

an elegant design which immediately draws the user’s

attention to salient features in a patient’s medical history.

The main window of our application is shown in Fig. 1. To

start, consider the bottommost row of filled circles. Each

circle corresponds to a diagnosis included in the predictive

model, as indicated by the corresponding diagnostic code

underneath. Notice that the only aspect in which the

appearance of a circle can vary is its colour. In particular,

we denote diagnoses present in a patient’s history using

dark blue and those which are not present using light blue.

Next, observe that there are multiple histories displayed

concurrently. The bottommost history, labelled ‘Initial

History’, corresponds to the history from which the space

of possible diagnostic trajectories is explored. In clinical

practice this initial history will usually be the diagnostic

record of a patient at admission. Thereafter exploration

proceeds by the user selecting a specific diagnosis (by

clicking the corresponding circle). This action changes the

history denoted ‘Current History’ which corresponds to the

current state in the exploratory process and is guided by

information in the topmost row. Unlike the three other rows

which display the same type of information, namely

diagnostic histories, the circles in this row also vary in their

size and colour which encode the probability of a specific

diagnosis given the current diagnostic history, estimated

using the model detailed in the previous section. Thus, the

user is informed in the exploratory process and can pursue

possible diagnostic futures which are more likely.

Selective Emphasis

Recall that the original work which introduced the adopted

prediction model based on the diagnostic history vector on

the 30 most common diagnoses. This is a sufficiently low

number to allow for the visualization described in Sect. 3

to appear uncluttered on most devices. However, subse-

quent work has demonstrated that the model is successful

even with the inclusion of a much greater number of
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diagnoses which can be of clinical interest [19]. Attempting

to visualize these in the same manner clearly poses prob-

lems with clutter and the ease with which diagnoses of

interest can be observed. To overcome this obstacle, we

came up with two solutions. Firstly, we allow the user to

select or deselect specific diagnoses from being visualized

(Fig. 2). Deselected diagnoses are still included in the

predictive model, but their states are not displayed in the

main window. Secondly, we make use of the hierarchical

nature of diagnostic coding. In particular, our application

supports several common coding schemes, including ICD-

10 and AR-DRG, and thus allows for diagnoses to be

grouped according to the subtree in the hierarchy. In other

words, rather than displaying related diagnoses separately,

the user can choose to unify these and visualize merely that

any of the diagnoses of a specific group are present. As

before, if more granularity is desired at any point, the

option can be changed and individual diagnoses displayed,

given that it is only the visualization which is altered and

not the underlying predictive model.

Additional Prognostics

The exploration of diagnostic futures described thus far is

local in the sense that the user can see the predictions of

short-term risks and using this information make incre-

mental moves through the tree of different possibilities.

However, considering that the original work has demon-

strated good performance on the task of long-term pre-

diction, we also sought ways of visualizing this aspect of

the model too. This information is useful in that it can be

time saving, more incentivizing to patients, and direction

providing in incremental exploration. Hence, we provide

Fig. 1 The main window of our first visualization tool which uses only a sequential prediction model rather than one endowed with probabilistic

temporal information (see next section)

Fig. 2 Selector of diagnoses of interest. Diagnoses can be selected or

deselected for display purposes, or grouped according to the hierarchy

of the used diagnostic coding schema
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the option to display an additional type of prediction. In

particular, we sample ultimate diagnostic histories reached

from the current history and display the probability of each

diagnosis according to the proportion of ultimate histories

in which it appears. As before, probabilities are encoded

using size and colour, as shown in Fig. 3.

Inclusion of Temporal Information

The tool described in the previous section allows for the

visualization of sequential information only without any

associated temporal understanding. Yet, in the present

context time is critical – it is necessary for stratifying

patients into low and high risk categories, and for allo-

cating resources. However, the incorporation of temporal

information in an easily understandable manner is chal-

lenging. In addition to the most obvious information which

is ‘time until event’ (or rather, the probability density

function corresponding to it), the rate of change in

instantaneous risk is of importance, and different temporal

characteristics of comorbidities can effect a sequencing

change over time, which are factors which all add to the

complexity and multinationality of information which

needs to be displayed. By consulting with a number of

relevant healthcare professionals (clinicians, doctors, and

nurses) and by adopting an iterative design-test-reassess

design process, we found that different users found dif-

ferent manners of information presentation most intuitive

and easiest to understand. Consequently we developed a

combination of different visualization options which can be

readily switched between by the user.

Blob-Based Visualization

The first circle-based visualization approach resembles a

so-called blob chart [23], with equidistant blobs which

represent different disease diagnoses being distributed

horizontally, as illustrated in Fig. 4. The corresponded

diagnoses are labelled using their codes under the adopted

coding system (e.g. WHO’s diagnosis-related groups [21],

or the Australian refined diagnosis-related groups [22]). As

noted earlier, these are standard codes, used widely and

understood by healthcare professionals, and allow for the

diagnoses to be shown in a succinct, clutter free manner.

Additional information and a more detailed description of a

diagnosis can be obtained by clicking any visualization

element associated with the diagnosis (its label or the

corresponding blob, in this visualization).

The size of a particular blob encodes the value of the

cumulative density function corresponding to the occur-

rence of the respective diagnosis by the specific time in

future. This time is specified by the user and allows the

user to gain an understanding of the highest risks for the

patient within this period. Larger and thus more prominent

blobs (and hence the corresponding diagnoses) draw the

user’s attention to the most probable complications while at

the same time providing a simple way of judging relative

risks too—several large blobs immediately suggest a

cluster of comorbidities, whereas single dominant blob

highlights a specific primary diagnosis of interest.

Moreover, we encode the rate of the cdf change by a

blob’s colour, using the standard heat map. In this manner,

in addition to the instantaneous value of the cdf, we

communicate to the user the possibly uneven changes in

the probabilities of different diagnoses over time. By

including this information in our visualization, a clinician

can be alerted of a high risk increase in the near future

(relative to the currently selected date of interest). The blob

chart visualization is set as the default visualization,

whereas the other two visualization options (described

next), if selected, are displayed in modal windows.

Bar Chart-Based Visualization

The second visualization option uses the well-known bar

chart encoding with the height of bars representing the

corresponding value of the cumulative distribution function

Fig. 3 Ultimate condition weighted prognosis shows the proportion of ultimate histories in which different diagnoses appears
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at the specific date of interest, as illustrated in Fig. 5. As

before, bar colours communicate the rate of change of the

cumulative distribution function across time and the

smaller rectangles underneath the bars represent the pres-

ence (or lack thereof) of different diagnoses in the current

history vector. Fundamentally this visualization conveys

the same information as the other two alternatives, namely

the blob-based and radial chart-based visualizations shown,

respectively, in Figs. 4 and 6, but its different way of

encoding this information was found to be preferred by

Fig. 4 Blob chart visualization is the default visualization in our

application. Each blob represents a disease diagnosis with the blob

size encoding the value of the corresponding probability density

function at the selected instance in time. In the example shown in this

figure all history vector entries are set to 0, indicating the absence of

any diagnoses in the patient’s medical history

Fig. 5 Bar chart visualization

was found to be preferred by

some users. Fundamentally it

conveys the same information

as the other two alternatives,

shown in Figs. 4 and 6 but

differently encoded
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some users. Hence we found it to be a useful alternative to

include.

Radial Chart-Based Visualization

The third and final visualization we developed resembles a

radial chart with rectangles spreading out radially, as

shown in Fig. 6. During the course of our interviews with

the target users, we found that some of them preferred this

layout to the two described previously due to its symme-

try—the lack of symmetry in the first two visualizations

suggested to some users some differentiation between

different diagnoses which is neither intended nor present in

the underlying method or its output. As with the previous

visualization, the radial length and colour of rectangles are

used to represent the value of the corresponding cumulative

distribution functions and their rates of change. We found

that with this visualization the users also clearly associated

the circles that represent the binary history vector entries

(i.e. the presence of specific diagnoses in a patient’s EMR

history) with the corresponding diagnoses.

Interactive Features

In all of the visualizations, by selecting any cdf encoding

element the user can open a window which displays further

detailed information and allows for the status of the

diagnosis to be changed, as illustrated in Fig. 7. A fast way

of flipping the status of a diagnosis (present or not present)

is also provided—a user can simply click on the green

(add) or the red (remove) buttons. This effects a history

vector transition which in turn triggers a change in the

corresponding visual representations (e.g. blob size and

colour). This feature allows the healthcare practitioner to

explore how different potential diagnoses (e.g. those that

the patient may be at the greatest risk of developing) affect

the patient’s health state further in the future. This can be

used as a powerful incentivization tool. For example, the

patient can be shown how a specific ailment that he/she is

at the risk of developing due to lifestyle choices (e.g.

smoking, excessive food intake, etc), would influence other

health-related outcomes (e.g. lung cancer, diabetes,

hypertension, etc).

Help, Hints, etc.

To facilitate instantaneous help and a ready understanding

of different visual elements in our visualizations, when the

cursor hovers over any of the relevant geometric entities,

all associated information is emphasized. For example, as

illustrated in Fig. 7, after hovering over the blob repre-

senting the first disease included explicitly in the model

[15], a line connecting the blob with the corresponding

Fig. 6 Radial chart visualization

was found to be preferred by

some users. Fundamentally it

conveys the same information

as the other two alternatives,

shown in Figs. 4 and 5 but

differently encoded
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value of the probability density function is shown. Further

guidance on the features accessible from the main window

of the application is also available, see Fig. 8, as well as a

thorough step-by-step tutorial with comprehensive usage

information, see Fig. 9. Furthermore, in addition to the

disease code, a full description of the diagnosis is shown

both above the cursor and at the bottom of the window. To

avoid so-called change blindness, further animations

emphasize transitions between history vectors or changes

to the date of interest. This feedback uses highlighting and

increased contrast against the beige coloured background

of the current visualization after 0.5 s.

To minimize the chance of human error and assist the

user in interaction, input checking and succinct, timely, and

informative notification messages inform users of their

interactions with our application. Notifications appear for

example in case of validation errors (e.g. date needs to be

in the future) or if the date or the history vector is changed

Fig. 7 In this example, a chemotherapy diagnosis is present in the

patient’s history vector. By selecting the corresponding blob, the user

can open a modal window from which the diagnosis status can be

changed. A line connecting the value of the probability density

function corresponding to the diagnosis and the date selected (2016-

10-11 in this case) is shown so as to emphasize this information

Fig. 8 Succinct and easily understood explanations is readily displayed for all features
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due to an added diagnosis, as illustrated with a few

examples in Fig. 10. The selected date of interest is visible

inside an interactive button below the visualization that can

be clicked to make adjustments. After clicking on the

Fig. 9 Comprehensive help and guide for in-depth detail on the use of the application and its features

Fig. 10 Examples of notification messages displayed as feedback
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Fig. 11 Three visualizations as seen on a 3.5-in. screen in Mobile Safari 9 in an IOS 9.3.1 environment on a cell (mobile) phone
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button, a modal window is opened which allows the user to

change the date using the familiar calendar view.

Automatic Time Lapse and Long-Term Outcome
Simulations

Our application also provides further interactive features,

activated using buttons placed below the main visualization

space. These buttons resemble the widely known and hence

intuitively understandable functions of a media player,

such as ‘play’, ‘pause’, ‘stop’. These buttons provide

effortless navigation through time via simulations of pos-

sible temporal trajectories through the space of possible

diagnoses. Temporal transitions predicted by the adopted

model are accompanied by the automatic visualization of

the corresponding disease progression. The forward and

backward buttons allow for manual time jumps. Such time

jumps change the date of interest and update the visual-

ization accordingly. The duration of such time jumps (e.g.

days, months or years) can be specified in the ‘date

selection’ modal window.

Clicking the play button opens a modal window where

users can also choose the length of time jumps, the real

time between predicted transitions (e.g. every 2 s), and

whether diagnoses should be added automatically upon

exceeding a certain probability of occurrence (i.e. the

corresponding cdf value). In the latter case, the play

function can add future diagnoses deterministically by

using maximum likelihood prediction or non-deterministi-

cally by pdf weighted random sampling (ensuring that

more likely diagnostic paths are simulated with the corre-

spondingly higher frequency). Once the play function is

activated in the modal window, our application repeatedly

makes forward temporal jumps (as explained earlier, their

duration can be set by the user). If deterministic prediction

is selected, diagnoses are added to the visualized medical

history if the corresponding cdf exceeds a probability

threshold which too can be specified by the user. Random

sampling adds diagnoses using cdf-based weighting, thus

allowing the clinician to explore multiple future disease

progression patterns with repeated activation of the func-

tion. When the play function is running, for clarity the

‘play’ button disappears, and is replaced by the ‘pause’

button. The click event of the pause button puts the play

function on hold to enable users to explore the currently

displayed simulated healthcare record in detail. Clicking

the stop button terminates the play function and resets the

date of interest to its default value (the present date).

Note on Implementation

Our visualization was implemented as a web application

using the D3 Javascript library d3.js thereby offering high

portability across different devices and operating system

environments; see Fig. 11 for an example. Additional

advantages offered by its web-based implementation

include the simplicity of deployment, as no installation or

configuration is needed, and an immediate sense of

familiarity for non-technical users.

The d3.js-based circles and rectangles used to visualize

blobs and bars are nested in a scalable vector graphics

(svg). Their radii and lengths are calculated using d3.js

scale functions. Heat map colouring uses chroma.js inter-

polation between four plain colours and scaling with d3.js

to calculate the corresponding mapping between the pdf

rate of change values and the computed colour palette. To

switch from the default blob chart to another visualization

format, JQueryUI-based modal functions append HTML

code to the interface.

Summary

In this paper we introduced an intuitive visual interface

built around a recently proposed computational model of

disease progression, aimed at making the model’s predic-

tions accessible to health professionals in their daily work.

A range of interactive features allows the user to explore

patient specific risk across time. To the best of the authors’

knowledge, this is the first attempt at bridging the gap

between increasingly complex machine learning-based

algorithms and the realm of heathcare practice. We trust

that our contribution will facilitate increased adoption of

technology in healthcare delivery, empowering both the

medical community and patients in understanding risk and

how to address it. Moreover, we hope that our work will

inspire future research in this realm.
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