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Lattice strain-enhanced exsolution of nanoparticles
in thin films
Hyeon Han 1,2, Jucheol Park3, Sang Yeol Nam3,4, Kun Joong Kim1,7, Gyeong Man Choi1,5, Stuart S.P. Parkin2,

Hyun Myung Jang 1,8 & John T.S. Irvine 6

Nanoparticles formed on oxide surfaces are of key importance in many fields such as cata-

lysis and renewable energy. Here, we control B-site exsolution via lattice strain to achieve

a high degree of exsolution of nanoparticles in perovskite thin films: more than 1100 particles

μm−2 with a particle size as small as ~5 nm can be achieved via strain control. Compressive-

strained films show a larger number of exsolved particles as compared with tensile-strained

films. Moreover, the strain-enhanced in situ growth of nanoparticles offers high thermal

stability and coking resistance, a low reduction temperature (550 °C), rapid release of par-

ticles, and wide tunability. The mechanism of lattice strain-enhanced exsolution is illuminated

by thermodynamic and kinetic aspects, emphasizing the unique role of the misfit-strain

relaxation energy. This study provides critical insights not only into the design of new forms

of nanostructures but also to applications ranging from catalysis, energy conversion/storage,

nano-composites, nano-magnetism, to nano-optics.
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Nanoscale functional materials have generated a broad
interest in many fields that include electronics, optics,
magnetism, superconductivity, and catalysis due to the

possibilities of generating novel physical phenomena. Metal
nanoparticles dispersed on oxide surfaces have been extensively
investigated due to their key role in catalysis, energy conversion,
and energy storage, including batteries, fuel cells, and electrolysis
cells1–4. These metal particles have mainly been prepared by
deposition techniques. However, the deposited particles mostly
show limitations in particle size and distribution control, as well
as degraded properties resulting from agglomeration or carbon
coking5–7. The exsolution of the B-site ions from perovskite lat-
tices (ABO3) under reducing conditions is emerging as an alter-
native technique to allow for the possibility of the in situ growth
of nanoparticles. Compared to deposition methods, this process
shows better cost- or time-efficiency, good thermal stability, and
resistance to coking problems8–13. However, the exsolution from
stoichiometric ABO3 perovskites has shown (i) a limited number
of active cations, (ii) a preference for formation within the bulk
rather than at or on the surface, and (iii) a slow speed of particle
generation14–16. To overcome these deficiencies, A-site deficient
perovskites were employed to promote B-site cation exsolution on
surfaces, leading to both A-site and oxygen deficiencies that allow
for more rapid ion diffusion and electron generation during
reduction by hydrogen10–12. It was further revealed that voltage-
driven reduction is two orders of magnitude faster than con-
ventional reduction and yields a small particle size (~15 nm) with
a population density as high as ~400 particles μm−2, resulting in
outstanding electrochemical activity13.

To date, the studies of such exsolution processes have been
performed predominantly in bulk polycrystalline ceramics. Unlike
bulk systems, thin-film heterostructures can induce a lattice strain
because of the lattice mismatch between a substrate and a film,
which affects many physical properties such as ferroelectricity,
electron mobility, ionic conductivity, and electrocatalysis17–20. In
particular, thin-film oxide fuel cells are attracting renewed attention
owing to advantages of low temperature operation and portable
device applications21–24. Here, we demonstrate an unprecedently
high degree of exsolution of nanoparticles in lattice misfit strained
epitaxial thin films and achieve a particle density as high as ~1100
particles μm−2, with a size of only ~5 nm, at a temperature as low
as 550 °C. Compressive-strained films show a larger number of
exsolved metal particles than tensile-strained films. Furthermore,
we have demonstrated a wide tunability of particle growth in
strained films. The mechanism of the lattice strain-enhanced
exsolution has been revealed by thermodynamic and kinetic
models. Manipulation of nanoparticle structures using these con-
cepts can be further applied to develop nano-composite functional
films25, 26, nano-phase magnetic materials27–29, and nano-optics30.

Results
Structural change via exsolution of nanoparticles in strained
thin films. Epitaxial thin films (100-nm-thin) were deposited on
four distinct lattice mismatched substrates via pulsed laser
deposition (PLD). The substrates chosen are (LaAlO3)0.3–
(SrAl0.5Ta0.5O3)0.7 (LSAT) (001), SrTiO3 (STO) (001), DyScO3

(DSO) (110), and GdScO3 (GSO) (110), having (pseudo-)cubic
lattice parameters of 3.868, 3.905, 3.944, and 3.973 Å, respectively.
Thin films were grown on these substrates using a La0.2Sr0.7-
Ni0.1Ti0.9O3−δ (LSNT) target having a 10% A-site deficiency. The
PLD-fabricated pristine LSNT films were then reduced in a fur-
nace by flowing dry H2 at 550 °C for 80 h. Figure 1a schematically
depicts the exsolution process of Ni particles in the strained films.
Owing to the reducing atmosphere, oxygen ions are stripped from

the oxide lattice, resulting in electron carriers as follows10, 13:

OX
O ! V ��

O þ 2e� þ 1
2
O2 ð1Þ

The electrons resulting from this process lower the oxidation
state of Ti, according to e−+ Ti4+ → Ti3+. This, along with the
loss of oxygen, results in a lattice-volume expansion. The
concomitant nucleation of Ni metal via 2e−+Ni2+ →Ni0 will
partially reverse this expansion, as it effectively removes
vacancies, resulting in a volume contraction. As the reduction
proceeds, the growth of Ni nuclei leads to exsolved particles on
the surface. To measure the structural changes of the oxide lattice,
θ− 2θ X-ray diffraction (XRD) (Fig. 1b) and reciprocal space
mapping (RSM) (Fig. 1c) was carried out. The detailed results of
the substrate-dependent strain and structural parameters are
presented in Supplementary Figure 1. The lattice misfit strain (ε)
of the pristine films is −1.5%, −0.5%, +0.4%, and +1.2% for
LSAT, STO, DSO, and GSO substrates, respectively. After the
reduction, all four LSNT films reveal a decrease in the out-of-
plane (OOP) lattice parameter but show a negligible change in the
in-plane lattice parameters owing to the substrate-clamping
effect. Interestingly, the compressive-strained films show a
reduced tetragonality (c/a ~1), returning to a stable bulk cubic-
like structure after reduction. In contrast, for the tensile-strained
films, the tetragonality moves away from 1 (c/a « 1) and the films
become unstable after reduction (Supplementary Figure 1b). It is
generally known that the exsolution in bulk ceramic systems is
accompanied by an increase in the lattice volume11–13. On the
contrary, our structural analysis based on XRD results shows that
strained thin-film heterostructures yield a contraction in the
lattice volume (Supplementary Figure 1b). This implies that the
reduction of Ni and subsequent exsolution of Ni0 dominates over
the Ti-reduction in the strained LSNT films.

Effect of lattice strain on exsolution of nanoparticles. To
explore the effects of lattice strain on the extent of Ni-particle
exsolution, scanning electron microscopy (SEM) analysis
(Fig. 1d–g) was conducted for the reduced films. These micro-
graphs clearly reveal that the population density of exsolved
particles on the surface is greatly affected by the lattice strain.
Figure 2a compares various physical characteristics of the films to
help understand the difference in population density and size of
the exsolved particles. The population density is sensitive to the
sign and magnitude of the lattice strain and increases according
to the following sequence of substrates: DSO (ε=+0.4%), GSO
(ε=+1.2%), STO (ε=−0.5%), and LSAT (ε=−1.5%) sub-
strates. On the other hand, the exsolved particle size has an
opposite tendency with the smallest size observed for LSAT.
These results indicate that compressive-strained films produce a
significantly larger number of exsolved particles with a smaller
particle size than tensile-strained films. As described previously,
the compressive-strained film transforms back towards the stable
bulk cubic structure after exsolution (c/a ~1). In contrast, the
tensile-strained film evolves towards a more highly distorted and
unstable state after the exsolution, yielding c/a « 1 (Fig. 1a). The
chemical potential change (Δμ) of the compressive-strained film
during the reduction is negative (i.e., spontaneous) yielding a
cubic-like structure with c/a ~1, while Δμ of the tensile-strained
film is positive (thermodynamically unfavorable) resulting in
c/a « 1 after the reduction (Fig. 2a). The thermodynamic struc-
tural stability is likely the cause of the higher population density
in the compressive-strained films. For a given strain type, the
exsolved particle population (density) is well correlated with the
magnitude (i.e., absolute value) of strain. In contrast, the particle
size tends to decrease with the absolute strain value. Thus, the
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LSNT film grown on the LSAT substrate is highly compressive-
strained with ε=−1.5% and yields the highest population density
of exsolved particles (1177 particles μm−2) and the smallest par-
ticle size (4.92 nm). This can be viewed as the best candidate for
catalytic nanoparticles due to the high surface coverage. These
results are very impressive when compared with the previous best
results obtained by voltage-driven exsolution from bulk materials,
for which a population density of ~400 particles μm−2 with a
particle size of ~15 nm has been reported13.

According to XPS analysis (Fig. 2b and Supplementary
Figure 2), a significant amount of exsolved Ni0 appears after
reduction, with the Ni0 fraction (as compared to the total Ni in
the LSNT film) ranging from ~49% to ~56% depending on the
substrate used. In contrast to this observation, the fraction of Ti3+

ions does not show a substantial change even after reduction.
These XPS results clearly support our previous assumption based
on analysis of the XRD lattice-volume changes.

To further examine the strain-dependent exsolution, scanning
transmission electron microscopy (STEM) analysis and high-
angle annular-dark-field (HAADF) TEM studies were carried out
on the reduced films (Fig. 2c, d and Supplementary Figure 3). The
SAED patterns (Supplementary Figure 3c, d) reveal that the
deduced c/a ratios accord well with the estimated tetragonality
(c/a) obtained from the XRD data (Supplementary Figure 1b).
The STEM images and the corresponding EDS results (Fig. 2c, d,
Supplementary Figure 3e-j, and Supplementary Figure 4g-i), show
that Ni clusters are found on the surface and also suggest that

some may also be found in the interior region. Notably, a bright-
field STEM image of the socketed particle (900 °C, 12 h, dry H2)
shows a ~50% submergence into the perovskite surface (Fig. 2e),
implying a strong particle–substrate interaction and high
resistance to agglomeration and coking. Interestingly, despite a
large lattice mismatch between the exsolved particles (3.5 Å) and
perovskite lattice (3.9 Å), they show a well-defined crystal
orientation relationship at the interface (Fig. 2f). The atomic d-
spacing of the exsolved particle coincides with the lattice
parameter of Ni (3.5 Å), which is distinct from that of NiO
(4.2 Å).

Tunable exsolution in thin films. The degree of lattice strain can
also be controlled by adjusting other parameters such as the film
thickness (Fig. 3a and Supplementary Figure 5). As the film
thickness of the LSNT/STO heterostructure increases from 100 to
1300 nm, the OOP tensile strain decreases due to relaxation of the
strain. After the strained films are reduced (900 °C, 12 h), all the
OOP lattice parameters decrease and reach nearly the same value.
The thickness-dependent exsolution result reveals that the OOP
strain can be well correlated with the population density of
exsolved particles (Fig. 3a). The phenomena appear on all films
and even on YSZ substrates (Supplementary Figure 5). It is
interesting to note that the strain remains almost conformal even
at a thickness as high as ~1.3 μm, as shown in the RSM data of
Supplementary Figure 5a. This can be attributed to the structural
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softness involving octahedral rotation or tilting in perovskite
oxides during growth31, 32, resulting in a remarkably high
population density of exsolved particles even at μm-range
thicknesses.

We have further investigated the tunability of exsolution in
thin films by controlling the reducing conditions such as
reduction temperature and time (Fig. 3b, c and Supplementary
Figure 6). At 550 °C, the particle population density tends to
increase gradually with the reduction time, but the particle size
changes slightly (Fig. 3b). However, at 900 °C (Fig. 3c), the
population density tends to decrease gradually with the reduction
time while the particle size increases, indicating a coarsening
process at a higher temperature. Notice that the LSNT/LSAT film
with ε=−1.5% (“ε=−1.5% film” hereafter) reveals a fast
exsolution with a population density of more than 500 particles
μm−2 obtained in just 10 min at 900 °C, suggesting that the strain
formed in the film is rapidly relaxed during the reduction, thereby
accelerating the metal-particle exsolution.

Thermodynamic and kinetic aspects of the strain-enhanced
exsolution. The role of lattice strain in the exsolution process can
be explained by exploiting thermodynamic and kinetic theories.
The exsolution in a strained thin film can be described by the
following three steps: (i) metal nucleation and growth, (ii) dif-
fusion of nuclei to the surface, and (iii) coarsening of the exsolved
particles.

At the beginning of the reduction process, Ni atoms exsolve
from the oxide matrix and form nuclei. Classical nucleation
theory can be used to account for the phenomena thermo-
dynamically33. A nucleus stabilizes after it overcomes a critical
nucleation barrier (ΔG�

n). The total Gibbs free-energy change
during the nucleation (ΔGn) is balanced by several factors; the
surface/interface energy ðγncÞ and the bulk free energy (ΔGb) due

to the bulk chemical-potential difference between the newly
formed nucleus and the matrix phase. Because of the solid–solid
phase transformation, the elastic strain energy (ΔGs) between the
nucleus and the oxide matrix should be considered. Moreover, in
the case of a strained film matrix (e.g., hetero-epitaxially grown
film), we have to further consider the relaxation of the effective
misfit-strain energy (ΔGr). For the nucleation/growth of a
spherical particle with the radius r, ΔGn can thus be written as

ΔGn ¼ 4πr2γnc þ
4
3
πr3 ΔGb þ ΔGs þ ΔGrð Þ ð2Þ

The interface energy ðγncÞ and the elastic strain energy (ΔGs)
are positive contributions, while both the bulk free energy (ΔGb)
and the misfit-strain relaxation energy (ΔGr) are negative
contributions for nucleation/growth. The critical nucleation
barrier (ΔG�

n) and the corresponding critical radius (r�) for the
irreversible growth can be obtained by differentiating ΔGn with

respect to r and setting it to 0 (dΔGn
dr

���
r�
¼ 0), resulting in

r� ¼ � 2γnc
ðΔGb þ ΔGs þ ΔGrÞ

ð3Þ

ΔG�
n ¼

4
3
πγncðr�Þ2 ð4Þ

Having obtained an expression of ΔG�
n, one can further obtain

an expression of the nucleation rate (dN=dt) in terms of ΔG�
n

using the Arrhenius-type kinetic equation:

dN
dt

¼ A exp �ΔG�
n

kBT

� �
ð5Þ

where N is the number of particles formed, A is a pre-exponential
factor, and kB is the Boltzmann constant. According to the
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transition-state theory of rate processes34, A is not a constant but
is given by kBT

h , where h denotes the Planck constant.
From Eq. (3), it is clear that the critical radius (r�) for

irreversible growth will decrease as the degree of misfit-strain
relaxation (ΔGr) increases (i.e., more negative). In other words,
the relaxation of the misfit strain tends to decrease the critical size
of nuclei formed during the beginning stage of exsolution. Then,
as can be deduced from Eq. (4), a decrease in the nucleation
barrier is expected with the decrease in the size of the critical
radius. According to Eq. (5), the relaxation of misfit strain also
greatly expedites the production rate (dN/dt) of Ni nuclei from
the oxide matrix owing to an exponential nature of Eq. (5). Thus,
the misfit-strain energy can play a vital role in obtaining small
sized metal nuclei with a high population density during
exsolution.

Let us now examine the second step. When the nucleus grows
beyond the critical size, the nucleus interacts with the surface
leading to the formation of a pit. This diffusion step leads to the
formation of embedded particles in a pit structure. A model of
particle emergence from the bulk was proposed by Oh et al.35,

although the following considerations could equally apply to
other mechanisms also involving surface reorganization. The
surface-energy term (γex) is negative for the exsolution, in
contrast to the nucleation step. On the other hand, the surface
free energy due to pit formation (γpit) can be considered to be a
positive term. In the exsolution of an unstrained bulk system, a
favorable free-energy contribution to the particle emergence is the
relaxation of the misfit-strain energy between the nucleus and the
surrounding oxide matrix ðΔGnr<0Þ. Thus, the nucleation at the
surface can be determined from the interplay between the surface
energy and the elastic strain energy35–37. Considering these three
factors, one can write the net Gibbs free-energy change associated
with the particle exsolution or emergence (ΔGex) as

ΔGex / 4πr2γex þ ΔAγpit þ
4
3
πr3ðΔGnrÞ ð6Þ

where ΔA is the increase in the surface area due to the pit
formation, and r is the radius of the nucleus. In the case of a
hetero-epitaxially strained film, one should include one additional
term related to the relaxation of misfit-strain energy. This term
(ΔGmr) is caused by the elastic relaxation of the lattice misfit-
strain arising from the lattice mismatch between the oxide matrix
and the substrate and this term further accelerates the particle
emergence. Accordingly, two distinct elastic-strain terms con-
tribute to ΔGex for a hetero-epitaxially strained film, and, in this
case, Eq. (6) can be modified as

ΔGex / 4πr2γex þ ΔAγpit þ
4
3
πr3ðΔGnr þ ΔGmrÞ ð7Þ

Since ΔGmr<0; the lattice misfit-strain term greatly expedites the
diffusion of nuclei toward the surface. This consequently leads to
a fast exsolution [dN=dt ¼ Ae�ΔG�

ex=kBT] and a small particle size

or a high population density [r� ¼ � 2ðγexþkγpitÞ
ðΔGnrþΔGmrÞ] of the exsolved

particles, where we assume that ΔA ¼ kr2 with k being a
proportionality constant. As we have experimentally demon-
strated (Fig. 3), the compressive-strained films have favorable
structural stability during the reduction, as compared with the
tensile-strained films. Thus, the compressive-strained film shows
a higher degree of the strain relaxation (more negative ΔGmr),
which results in a larger number of nanoparticles within a shorter
reduction time (Fig. 3).

In the third final step, large particles grow at the expense of
small ones, leading to particle coarsening. As shown in Fig. 3c, the
size of nanoparticles increases with the reduction time, but the
population density shows a reverse trend. It can be driven by the
reduction of total energy because of the decrease in the overall
surface-to-volume ratio, i.e., Ostwald ripening. This is a
thermodynamic process governed by kinetic parameters such as
atomic diffusion constants. The time evolution of isothermal
particle coarsening can be described by a following self-limiting
model form38, 39:

GðtÞ � G0 ¼ ðGmax � G0Þ 1� exp � t
τ

� �h i
ð8Þ

where G(t) is the average grain size at time t, G0 is the initial grain
size, Gmax is the limited grain size, and τ is the characteristic
relaxation time (at 0.63 Gmax). Then, the diffusion coefficient (D)
at a fixed temperature (T) can be written as

D ¼ Gmax � G0ð Þ2
4τ

ð9Þ

The surface diffusion coefficient of Ni at 900 °C for the
compressive-strained films is 4:9 ´ 10�23 m2 s−1, and that of the
tensile-strained films is 8:1´ 10�23 m2 s−1. These values are much
smaller than that of the conventionally deposited Ni particles
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(10�8 � 10�12m2 s−1 at 900–1000 °C)40–42. The estimated small
atomic diffusion coefficient indicates slow particle coarsening and
high resistance to the agglomeration.

Figure 4 illustrates high resiliency to thermal coarsening and
carbon coking in the strain-driven exsolved particles. We are able
to etch the Ni particles in HNO3 for both compressive- and
tensile-strained films after the reduction (900 °C for 80 h),
resulting in many pits (Fig. 4a, b). The socketed structure of
the 3D AFM profiles (Fig. 4c) implies a strong interaction
between the Ni nanoparticles and the oxide surface, which leads
to high thermal stability throughout the reduction process. In
addition, we have examined the stability of exsolved particles to
carbon coking in a hydrocarbon environment (pure CH4, 800 °C,
5 h) (Fig. 4d–f). Due to the strong interaction between the
embedded metal particles and the oxide support, “base growth” of
the carbon fiber proceeds without particle uplifting. All four thin
films show this phenomenon of “base growth” rather than “tip
growth”12, indicating a strong coking resistance of the exsolved
Ni-nanoparticles. This interesting observation can be correlated
with the smaller size of exsolved nanoparticles in thin films, as
compared with bulk ceramic systems12. These are the main
advantages of exsolved particles for high-temperature applica-
tions such as fuel/electrolysis cells, compared to conventionally
deposited nanoparticles.

On the basis of thermodynamic and kinetic considerations,
we deduce that the misfit-strain relaxation energy plays a
significant role in the reduction process and leads to (i) a
decrease in both nuclei size and nucleation barrier and (ii) an
increase in the nucleation rate, resulting in a larger number of
nuclei with a smaller particle size. The misfit-strain relaxation
energy in a strained film (ΔGmr) can further promote the
diffusion of nuclei to the surface, leading to a high population
density of the exsolved nanoparticles. The extremely low
diffusion coefficient during the coarsening process is attributed
to the strong particle–perovskite oxide interaction of the
embedded particle in a pit structure.

Discussion
Epitaxial thin films show a strong correlation between lattice
strain and exsolution of metal nanoparticles. Interestingly, the
films maintain their single-crystallinity under highly reducing
and high-temperature conditions. Because the film is strongly
clamped to the substrate, the film undergoes a lattice contraction
along the OOP direction. We judge that the unidirectional lattice
change in strained thin films is accompanied by the relaxation of
misfit-strain energy (ΔGmr) and consequently leads to a promo-
tion of the nanoparticle nucleation with a large population den-
sity. This lattice strain-enhanced exsolution in thin films can be
readily controlled by adopting various lattice mismatched sub-
strates. It can be further controlled by adjusting deposition/
reduction temperatures, film thickness, and so on. The deep
submergence (~50%) of nanoparticles on the surface implies
strong particle–oxide interaction and remarkable resistance to
thermal agglomeration and carbon-coking problems. Further-
more, due to the robust strain effect on exsolution, the exsolution
occurs well even at a low temperature of 550 °C, which is the
target operating temperature of thin-film solid oxide fuel cells
(SOFCs). The fairly vigorous particle-exsolution even at µm
thicknesses represents suitable applicability to µ-SOFCs. This
concept of the lattice strain-enhanced exsolution (ΔGmr<0) can
be potentially extended to other oxide and nano-composite sys-
tems. Moreover, the tunable nanoparticles can be applied to not
only electrochemical devices but also nano-electronics, nano-
magnetism, and nano-optics.

Methods
Thin-film fabrication. La0.2Sr0.7Ni0.1Ti0.9O3−δ (LSNT) thin films were grown on
various lattice mismatched substrates using PLD. These substrates include (i)
(LaAlO3)0.3–(SrAl0.5Ta0.5O3)0.7 (LSAT) (001), (ii) SrTiO3 (STO) (001), (iii) DyScO3

(DSO) (110), and (iv) GdScO3 (GSO) (110). Oxygen partial pressure, deposition
temperature, laser fluence, and repetition rate were fixed at 50 mTorr, 700 °C, 1.5 J
cm−2, and 5 Hz, respectively. The film quality was determined by their crystallinity,
uniformity, and smoothness. The LSNT target used for the PLD was calcined at
1300 °C, sintered at 1500 °C for 5 h in air by solid-state reaction method.

b
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Fig. 4 Thermal stability and coking resistance of the exsolved particles. SEM micrographs of a the reduced “ε=−1.5% film” (900 °C, 80 h), b after etching
particles in HNO3, and c the corresponding 3D AFM images of pit. d, e SEM images after the coking test (pure CH4, 800 °C, 5 h), and f the corresponding
EDS micrograph. Green color was used for the perovskite lattice, yellow for Ni metal, red for carbon. Scale bars, 100 nm
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Film reduction. The reduction of the deposited thin films was then performed in a
controlled-atmosphere furnace with dry H2, at 550 and 900 °C, with the heating
and cooling rates of 5 °C min−1. The coking test was carried out at 800 °C by
flowing pure CH4 for 5 h.

Characterizations. The structural analysis was performed based on symmetric
XRD scans and RSM using a high-resolution X-ray diffractometer (D8 Discover,
Bruker) under Cu Kα radiation operated at 40 kV and 40 mA. Microstructural and
chemical information of thin films was obtained by using a field-emission scanning
electron microscope (FE-SEM) equipped with an energy-dispersive X-ray (EDX)
spectrometer (JSM-7800F PRIME, JEOL Ltd.). Atomic-scale structures of thin films
were examined by employing high-resolution TEM method (JEM-ARM200F, JEOL
with a Cs-corrector) under 200-kV acceleration voltage. Elemental composition
and valence near the surface were measured using XPS (AXIS Ultra DLD, Kratos.
Inc.), and the data were analyzed using XPSPEAK software. We have analyzed the
Ni 3p peaks instead of Ni 2p peaks because the Ni 2p3/2 peak overlaps significantly
with La 3d3/2 peak in the binding energy range of 850–860 eV. We used the Shirley
background for the peak fitting. Surface morphology was examined by AFM
(VEECO Dimension 3100). Particle analysis (size and density) was carried out
using ImageJ software as shown in Supplementary Figure 7.

Data availability
The data that support the findings of this study are available from the corresponding
authors upon request.
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