

Cronfa - Swansea University Open Access Repository

This is an author produced version of a paper published in:

Concurrency and Computation: Practice and Experience

Cronfa URL for this paper:

http://cronfa.swan.ac.uk/Record/cronfa49975

Paper:

Walker, D., Kramer, S., Biebl, F., Ledger, P. & Brown, M. (2019). Accelerating magnetic induction tomographybased

imaging through heterogeneous parallel computing. Concurrency and Computation: Practice and Experience, e5265

http://dx.doi.org/10.1002/cpe.5265

This item is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms

of the repository licence. Copies of full text items may be used or reproduced in any format or medium, without prior

permission for personal research or study, educational or non-commercial purposes only. The copyright for any work

remains with the original author unless otherwise specified. The full-text must not be sold in any format or medium

without the formal permission of the copyright holder.

Permission for multiple reproductions should be obtained from the original author.

Authors are personally responsible for adhering to copyright and publisher restrictions when uploading content to the

repository.

http://www.swansea.ac.uk/library/researchsupport/ris-support/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Cronfa at Swansea University

https://core.ac.uk/display/196581843?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://cronfa.swan.ac.uk/Record/cronfa49975
http://dx.doi.org/10.1002/cpe.5265
http://www.swansea.ac.uk/library/researchsupport/ris-support/

Received 1October 2018; Revised 19 February 2019; Accepted ddmmyyyy
DOI:

RESEARCHARTICLE

AcceleratingMagnetic Induction Tomography Based Imaging
throughHeterogeneous Parallel Computing
DavidW.Walker1 | Stephan C. Kramer3 | Fabian R. A. Biebl†1 | Paul D. Ledger2 | Malcolm
Brown1

1School of Computer Science & Informatics,
Cardiff University, Cardiff, UK
2Zienkiewicz Centre for Computational
Engineering, Swansea University,
Swansea, UK
3Fraunhofer Institute for Industrial
Mathematics, Kaiserslautern, Germany
Correspondence
DavidW.Walker.
Email:WalkerDW@cardiff.ac.uk
Present Address
†Math2Market GmbH, Kaiserslautern,
Germany

Summary
Magnetic InductionTomography (MIT) is a non-invasive imaging techniquewhichhas applications
in both industrial and clinical settings. In essence, it is capable of reconstructing the electromag-
netic parameters of an object from measurements made on its surface. With the exploitation of
parallelism it is possible to achieve high quality, inexpensive MIT images for biomedical applica-
tions on clinically relevant time scales. In this paper we investigate the performance of different
parallel implementations of the forward eddy current problem, which is the main computational
component of the inverse problem through which measured voltages are converted into images.
We show that a heterogeneous parallel method that exploits multiple CPUs and GPUs can pro-
vide a high level of parallel scaling, leading to considerably improved runtimes.We also showhow
multipleGPUscanbeused in conjunctionwithdeal.II, awidely-used, open sourcefinite element
library.
KEYWORDS:
Computational electromagnetics, magnetic induction tomography, parallel applications

1 INTRODUCTION
Magnetic Induction Tomography (MIT) is a non-invasive imaging tech-
nique which has applications in both industrial and clinical settings. In
essence, it is capable of reconstructing the electromagnetic parameters
of an object from measurements made on its surface. These parame-
ters are the permittivity, ε, the permeability, µ, and the conductivity, σ.
An MIT device consists of two sets of coils placed around the boundary
of the object to be imaged. The first set of coils is used for the purpose
of excitation, and by passing a current through each coil in turn, a pri-
mary magnetic field is created. The second set of coils is then used for
measurement. This procedure causes an eddy current when each of the
primary magnetic fields interacts with a conducting body inducing sec-
ondary magnetic fields, and hence voltages, that are measured in the
second set of coils. In order to estimate the electromagnetic properties
of the material, (ε, µ, σ), from the induced currents and measured volt-
age, an inverse problem must be solved. In many practical applications
the distribution of one ormore of thesematerial parameters is assumed
to be constant throughout themedium of interest.

Conventional imaging techniques for imaging cerebral stroke, such
asMagnetic Resonance Imaging (MRI) and Computer Tomography (CT),
are expensive. Although MRI may be used for real-time image recon-
struction 1, it has been proposed that MIT can offer a low cost alter-
native in the first stages of diagnosis 2. However, the low conductivity
contrast between biomedical tissues presents significant challenges to
MIT, and there are considerable difficulties in employing current com-
putational techniques to solve the associated inverse problem 3,4.
Enabling MIT to take the step from being an experimental tech-

nique, which has already received some clinical interest, to become a
viable imaging technique for the detection and monitoring of condi-
tions, such as cerebral stroke, requires a step change in the quality
of the reconstruction of the passive electromagnetic parameters and,
therefore, an improvement of the computational approach used for
the solution of the inverse problem. This is not straightforward as the
inverse problem is challenging, being severely ill-posed (small changes
in measured voltages can imply large changes in ε, µ, σ) and suffering
from limited noisy measurements. Common approaches include regu-
larised Tikhonov schemes based aroundGauss-Newton strategies, such
as 5, although a variational algorithm developed by Brown and Jais 6,

2 Walker ET AL.

based on previous work by Knowles 7, may offer an alternative self-
regularising approach. It is well known that the level and type of regu-
larisation plays a crucial role in determining the accuracy of the inverse
solution, and hence the image quality. A further important factor is the
accuracy of the solution of the direct problem, which provides deriva-
tive information and is repeatedly solved to guide the inverse algorithm.
This is commonly overlooked due to the level of noise in the measured
data.
Our focus here is on the MIT direct problem, and its solution using

parallel computing systems containing multicore processors connected
to one ormore graphical processing units (GPUs). This solution involves
the eddy current approximation of Maxwell’s equations 8, which must
be solved for the electromagnetic fields in the imaging region for a given
set of current sources and distributions of µ and σ a. We formulate
the MIT direct problem according to the regularised eddy current for-
mulation proposed in 9 and employ a finite element discretisation. The
vectorial nature ofMaxwell’s equations necessitates the use of Nédélec
finite elements, and the hp–version of these elements using the basis
functions proposed by Schöberl and Zaglmayr 10 has been employed.
These basis function sets are hierarchic in nature and offer high levels of
accuracy, which is appealing in our MIT application. These hp–Nédélec
hexahedral finite elements have been implemented in the deal.IIfinite
element library 11,12, which provides the computational framework for
this project. Following element assembly, a complex symmetric linear
system of equations is assembled, which is solved iteratively by a pre-
conditioned GeneralizedMinimal RESidual (GMRES) iterative solver.
Some vector-valued problems, for instance the mechanical displace-

ments in linear elasticity, can be discretised by simple Lagrangian ele-
ments. However, problems arise when Maxwell’s equations, expressed
in vector wave equation form, are discretised by such elements. Here
the continuity requirements at material interfaces dictates that only
the tangential component of the electric and magnetic fields be contin-
uous and that the normal component be discontinuous. Application of
standard continuous elements would impose too much continuity and
result in spurious solutions. Instead, the Nédélec elements provide the
correct tangential continuity of the discrete fields and guarantee that
the curl of the gradient of a scalar field vanishes even after discretisa-
tion. For the standard Lagrange elements this is not the case in general.
Issues of multiply-connected domains are also important for eddy cur-
rent problems and the vector potential A-based formulation we employ
here overcomes these issues 9.
To numerically solve the MIT problem we use deal.II 11, ver-

sion 8.5.1, a general-purpose C++ library. It offers an infrastructure
for implementing parallelised higher-order finite element solvers on
unstructured hexahedral meshes. Parallelisation can be done either via
MPI and domain decomposition for large-scale distributed problems or

aNote that for highly conducting objects and the low frequencies of
operation, the displacement current, and hence ε, is neglected in theMaxwell
system.

via a shared-memory approach using OpenMP b or deal.II’s Work-
Stream framework 13. WorkStream is a scalable C++-template frame-
work for parallelization of operations involving loops over cells of the
mesh, e.g. matrix assembly. It is based on Intel’s Threading Building
Blocks (TBB) library.
The approximated MIT direct problem is well suited to parallelisa-

tion on GPUs, whose costs have been driven down by mass produc-
tion for the computer games industry. In this paper, the parallelization
of the MIT direct problem is investigated, using both multicore CPUs
and manycore GPUs. Firstly, two approaches to multicore parallelism
are compared: OpenMP and deal.II’s WorkStream framework 13. The
WorkStream implementation is then used as the basis of a hetero-
geneous parallel code using a single GPU and several host cores (of
possibly multiple CPUs, if available). Its performance is investigated for
a number of different NVidia GPUs. Finally, the code is extended to the
general case of multiple CPUs andmultiple GPUs.
The WorkStream framework can also be combined with deal.II’s

MPI parallelisation so that each MPI process may work on a larger
subdomain. However, our MIT project aims at off-line interactive sim-
ulations, as may be necessary in a hospital, and therefore we do not
consider MPI parallelisation here. The MPI approach, combined with
OpenMP and the FreeFem++ library, has been investigated by Tournier
et al. 14, who have solved the full inverse problem using 1024 cores of
the Curie supercomputer. This approach relies on network connectiv-
ity between the MIT equipment and the supercomputer, whereas our
approach performs most of the computation on a GPU system that can
be co-located with theMIT equipment.
In Sec. 2 the mathematical formulation of the relevant computa-

tional electromagnetics problem is presented, and the solution method
is described. Sec. 3 describes how the problem is parallelised on mul-
ticore and manycore platforms. In Sec. 4 performance results are pre-
sented and discussed. Finally, in Sec. 5 conclusions and future work are
discussed.

2 MATHEMATICAL FORMULATION
The time harmonic eddy current model describes the behaviour of the
electromagnetic field for theMIT direct problem. LetΩC denote a con-
ducting object with uniform conductivity and permeability, which is
located in an unbounded free space region R3 \ ΩC . The conductivity
and permeability are given by

σ =

{
σ∗ inΩC

0 inR3 \ ΩC

, µ =

{
µ∗ inΩC

µ0 inR3 \ ΩC

,

where µ0 := 4π × 10−7 H/m. We assume that the conducting body
is excited by a divergence-free current source of amplitude ~Js and
frequency ω, located away from ΩC . Then the interaction magnetic
and electric fields, ~H and ~E respectively, satisfy the eddy current

bSee http://www.openmp.org

Walker ET AL. 3

equations 15:
curl ~E = −iωµ ~H, curl ~H = σ ~E + ~Js. (1)

The interaction fields decay at appropriate rates as |~x| → ∞ 15, which
computationally allows us to truncate the unbounded domain at a finite
distance from the object and defines the bounded domain Ω := ΩC ∪
ΩNC , where ΩNC is the truncated part of R3 \ ΩC . On the object’s
surface, ∂Ω, we apply simple zero Dirichlet boundary conditions.
We adopt the ~A-based regularised form of the eddy current model

described in 9, which has the associatedweak form: Find ~A ∈ ~V :: { ~A ∈
~H(curl) : ~n× ~A = ~0 on ∂Ω } such that∫

Ω

µrcurl ~A · curl ~wdΩ +

∫
Ω

κ̃ ~A · ~wdΩ

= µ0

∫
ΩNC

~Js · ~wdΩ ∀~w ∈ ~V , (2)

whereµr := µ/µ0, ~A is a vector potential defined as ~B := µ ~H = curl ~A
and is such that ~E = −iω ~A inΩC . The parameter κ̃ is defined as

κ̃ :=

{
iωµ0σ∗ inΩC

iε inΩNC

,

where ε is a small regularisation parameter.
We employ an hp-finite element discretisation for the solution of

Eq. (2) using the deal.II finite element library 11,12. The deal.II finite
element library allows for structured and unstructured meshes of hex-
ahedral elements, which is well suited to theMIT direct problem due to
the convenience it offers of providing a voxelated grid for approximat-
ing ~A as well as for describing σ and µ. The latter is important for future
extensions involving the solution of the associatedMIT inverse problem
for recovering thematerial coefficients σ and µ.
To correctly discretise Eq. 2 using deal.II without the so-called

"sign-conflict", the Nédélec finite element has been re-implemented by
Kynch and Ledger 12. Their implementation is based on the Nédélec
finite element basis of Schöberl and Zaglmayr 10, which offers the possi-
bility of non-uniform h (mesh) and p (polynomial) refinements. The sign
conflict problem is associated with edge and face parametrisation on
general hexahedral elements. We have ported the implementation by
Kynch and Ledger to GPUs using NVidia’s CUDA programming model.
Our CUDAversion is independent of the particular version of deal.IIc.
In the following, we only discuss uniform polynomial degrees and con-
forming hexahedral meshes to avoid the technical issue of hanging
nodes. Local refinement will certainly be crucial for resolving spatial
inhomogeneities in the material parameters while keeping the compu-
tation times within reasonable limits without sacrificing accuracy. Yet,
for benchmarking the performance, in particular of the matrix assem-
bly, this is immaterial as the complexity of the assembly depends on how
many cells there are and not on whether they are locally refined. The
matrix assembly canbe acceleratedby calculating only the real-real part
of the cellmatrices and converting them to the complex-valuedmatrices

cWe use deal.II version 8.5.1. However, the finite elements imple-
mented in plain C++ by Kynch and Ledger are part of deal.II since version
9.1

actually needed when adding the cell matrices into the global matrices.
This is possible because the problem is symmetric and in the context of
MIT it is reasonable to assume that thepermittivity and conductivity are
constant on each cell. Therefore, they can be taken out of the integrals
in the cell-wise variational form:∑

K⊂Ω

µr,K

∫
K

curl ~A · curl ~wdK + κ̃K

∫
K

~A · ~wdΩ

= µ0

∫
K

χ(ΩNC) ~Js · ~wdΩ ∀~w ∈ ~V , (3)

where µr,K and κ̃K indicate the values of µr and κ̃ on cell K , and
χ(ΩNC) is the characteristic function of the non-conducting subdo-
main. The operation count for the assembly of the cell matrices is pro-
portional to the square of the number of degrees of freedom per cell,
hence it should be possible to save a factor of 4 in execution time for
higher order finite elements or somememory, if this becomes an issue.
Following the discretisation of Eq. (2), a complex linear system of

equations
Kx = b (4)

is assembled. For its solution,weemploy apreconditionedGMRES itera-
tive solver using the block Jacobi preconditioner proposed in 9. This pre-
conditioner exploits the hierarchic nature of Schöberl and Zaglmayr’s
Nédélec basis functions, and takes advantage of their special construc-
tion, which allows the grouping of gradient and non-gradient basis func-
tions. The treatment of the former reduces to the preconditioning of a
simple elliptic operator. The resulting preconditioner has been shown to
be computationally robust with respect to κ̃ in 9. In 12, a series of further
examples is included to demonstrate the performance of this technique
within the deal.II computational framework.

3 PARALLELISATION
All theOpenMP results presented in this paper are for amachine named
g00 with two sockets, each containing a 2GHz Intel Xeon E5-2620 pro-
cessor. This processor has6 coreswith a256KBL2 cacheper core, and a
15MBL3cache. The systemhasa16GBmainmemoryand theoperating
system is Red Hat Enterprise Linux Server release 6.2. Version 4.8.5 of
the gcc compiler was used with the “O3" optimization flag set. This sup-
ports OpenMP 3.1. In addition, performance results for the following
types of NVidia GPU are presented:

1. Tesla K20Xmwith compute capability SM3.5, runningCUDA8.0.
This GPU has 6 GB of memory and the g00 system described
above hosts two of them.

2. GeForceGTX750Ti. ThisGPUhas2GBofmemory and is hosted
by an Intel Core i3-3240 running at 3.4 GHzwith 2 cores and a 3
MB cache.

3. GeForceGTX580. This GPUhas 1.5GBofmemory and is hosted
by an Intel Xeon E5620 running at 2.4 GHzwith 4 cores and a 12
MB cache.

4 Walker ET AL.

4. Tesla P100. This GPU has 16 GB of memory and is hosted at the
University of Göttingen by an Intel Xeon E5-2609 running at 2.4
GHz with 4 cores and a 10 MB cache. Each node of the Hawk
cluster described below also contains two Tesla P100GPUs.

5. Tesla K80. This GPU has 24 GB of memory and is hosted by an
Intel XeonE5-2609v4processor running at 1.7GHzwith8 cores
and a 20MB cache.

6. GeForce GTX 1080. This GPU has 8 GB of memory and 2560
processing cores. It is hosted by the P600 system containing two
Intel Xeon E5-2687W v4 processors running at 3.00 GHz, each
with with 12 cores and a 30MB cache.

In addition, performance results on multicore systems with up to
four GPUs are presented to demonstrate scalability with respect to the
number of GPUs used. The systems used in this part of the work are:

1. P500: a system with two CPU sockets and four NVidia Quadro
P2000 in PCIe-3.0x16 slots. Each CPU socket is occupied by one
Intel Xeon E5-2660 CPUs with 20MB of cache and 8 cores run-
ning at 2.20 GHz. The CPUs have access to 128 GB of memory.
The software environment is Ubuntu 17.10 and CUDA 9.2.

2. Hawk: a GPU node of the Hawk cluster. The Hawk cluster con-
sists of 201 nodes, totalling 8040 cores and 46.08 TB ofmemory.
Each node contains two Intel Xeon Gold 6148 processors run-
ning at 2.40 GHz with 20 cores each. Standard nodes have 192
GB of memory and GPU-enabled nodes have 384 GB. Each GPU
node contains two P100GPUs.

For both these systems the gcc-7.3.0 compiler was used with default
flags from the qmake releasemode.QtCreator 4.3 andQt 5.9were used
as a development environment.
All timing results are the average over eight executions. The stan-

dard deviationwas also calculated, but is not shown in the plots as itwas
always less than 2% of the average value.
The problem considered is the “sphere benchmark”, which provides

an approximation to the shape of a human head. The sphere bench-
mark is defined as problem 6 in 16, consisting of a conducting sphere in
an unbounded region of free space with a uniform background field of
magnetic flux density ~B0 = µ0

~H0 = (0, 0, 1)T and angular frequency
ω = 100π radians/sec. The sphere has radius R = 0.05 m and mate-
rial parameters σ∗ = 107 S/m and µ∗ = 20µ0. The tolerance used
by GMRES in the solution of Eq. (4) is 10−7. The benchmark employs
an initial mesh consisting of 19 cells, which may then be changed by
refinement. Other numerical parameters are the Nédélec degree p for
representing ~A, and the polynomial orderm of the interpolation of the
boundary of the geometry.
It should be noted that the numerical solutions of the eddy current

problemare independent of the implementation and hence are identical
for the sequential, sharedmemory, and CUDA versions.

3.1 Profiling the Sequential Code
Before parallelizing the forward problem the code was first profiled to
seewhereparallelizationwas likely to bemost effective. Twocaseswere
considered:

1. Mapping orderm = p+ 1, and the quadrature order, q = p+ 2.
This is the isoparametric case inwhich the polynomial degree for
approximating the domain boundary is the same as the degree of
the finite elements. The results are shown in Figs. 1 and 2 .

2. Mapping orderm = 2, and thequadrature order, q = 2p+3. This
will be referred to as the non-isoparametric case. The results are
shown in Figs. 3 and 4 .

It should be noted that the quadrature order is the number of quadra-
ture points per dimension, so nq = q3 for this problem; the finite
element degree is p+ 1, where p is the Nédélec degree.

0.01

0.1

1

10

100

1000

10000

1 2 3 4 5

Ti
m

e
(s

ec
on

ds
)

Nedelec degree, p

g00, profile of sequential code

Matrix Assembly RHS Assembly Solve

FIGURE 1 Time for main computational phases of the sequential code for
the isoparametric case.

0%

20%

40%

60%

80%

100%

1 2 3 4 5

Pe
rc

en
ta

ge
 t

im
e

Nedelec degree, p

g00, profile of sequential code

Matrix Assembly RHS Assembly Solve Other

FIGURE 2 Relative time spent on each phase of the sequential code for
the isoparameteric case.

The figures show that themain computational phases of the problem
are matrix assembly, right-hand side assembly, and the solution of

Walker ET AL. 5
Eq. (4). The remainder of the execution time is taken up mainly with
mesh generation, input, and output. For both cases the matrix assembly
phase dominates the execution time for p ≥ 2, and becomes increas-
ingly dominant as the Nédélec degree, p, increases. It was, therefore,
decided to focus the parallelization effort on thematrix assembly phase.
It is also apparent that for the largest value of p = 5 the execution time
is 2.7 hours for the isoparametric case, and almost one day for the non-
isoparametric case, which is too long to be useful in a clinical context.
Thus, parallelization is needed to reduce the execution time tomake the
use ofMIT for medical imagingmore practicable.
The time for the matrix assembly phase of the sphere benchmark

depends on the number of quadrature points per cell, nq, and the num-
ber of degrees of freedom per cell, ndof , which is given by 17:

ndof = 3(p+ 1)(p+ 2)2

A linear least squares fit of the timings for thematrix assembly phase
shown in Fig. 3 gives a best-fit time in seconds of:

T (p) = 8.14× 10−6n2
dof(nq + 39.97) (5)

0.1

1

10

100

1000

10000

100000

1 2 3 4 5

Ti
m

e
(s

ec
on

ds
)

Nedelec degree, p

g00, profile of sequential code

Matrix Assembly RHS Assembly Solve

FIGURE 3 Time for main computational phases of the sequential code for
the non-isoparameteric case.

0%

20%

40%

60%

80%

100%

1 2 3 4 5

Pe
rc

en
ta

ge
 t

im
e

Nedelec degree, p

g00, profile of sequential code

Matrix Assembly RHS Assembly Solve Other

FIGURE 4 Relative time spent on each phase of the sequential code for
the non-isoparameteric case.

with a correlation coefficient of r = 0.9984. The form of Eq. (5) is
as expected from the loop structure of the matrix assembly code, as
explained in Sec. 3.2.

3.2 Multicore ParallelismwithOpenMP
The structure of the nested loop that dominates the computation in the
matrix assembly phase is shown in Alg. 1. The loops over i and j give rise
to then2

dof term inEq. (5), and the inner loop to thenq term. Thenumber
of degrees of freedom per cell ranges from about 100 up to over 1000
as p varies from1 to 5, so itwas decided to parallelize the algorithmwith
OpenMP just over the i loop. This will expose sufficient parallelism for
execution on a few multicore processors. In addition, the range of the j
loop depends on the loop index of the i loop and there is no standard
way in OpenMP of parallelizing over a doubly nested loop of this type.

Algorithm 1 Loop structure of matrix assembly phase.
foreach active cell do
for (i = 0; i < ndof ; i++) {
for (j = i; j < ndof ; j++) {
... for (k = 0; k < nq; k++) {
Accumulate contributions to element (i,j) of cell matrix

}
...

}
}
Add contributions from cell matrix to global stiffness matrix

end

3.3 Multicore Parallelismwith theWorkStream
Framework
In Sec. 3.2, parallelism is exploitedbydistributing theouter loopover the
degrees of freedom of a cell to a set of threads, which are then sched-
uled by theOpenMP runtime. The threads evaluate the contributions of
a cell to the cell matrix, which are then added into the global stiffness
matrix by the master thread. An alternative approach to the assembly
of the global stiffness matrix is to make use of deal.II’s WorkStream
framework, which is based on Intel’s Threading Building Blocks (TBB)
library 18, for anefficient sharedmemoryparallelization. This distributes
the assembly of the cell matrices over several worker threads that put
their results into a circular buffer. Each thread is responsible for a set of
cells, so the parallelization is at the outer level in Alg. 1. This is sketched
in Alg. 2. To avoid unnecessary synchronization there is exactly one con-
sumer thread. It retrieves cell matrices from the buffer and adds their
elements to the global stiffness matrix. The complexity of computing
a cell matrix is O(n2

dofnq) while adding the cell matrix to the global
stiffness matrix is only O(n2

dof). Taking into account the number of

6 Walker ET AL.

cells ncells the total costs for matrix assembly isO(ncellsn
2
dofnq)while

solving an (elliptic) problem takes only O(ncellsndof) in the optimal
case. Since the number of quadrature points grows with the polynomial
degree of the finite element functions this is effectively the competi-
tion between cubic and quadratic complexity, i.e. for high orders it is the
computation of the cell matrices which will dominate the run time.

Algorithm2 Loop structure of parallelized assembly phase of a symmet-
ric matrix on the CPU. Each worker thread computes the cell matrices
for a subset of cells and stores them in a circular buffer. The first step
for each cell is the evaluation of the needed FE data on the real cell, i.e.,
shape values and/or gradients (symbolized by thematrixU), quadrature
weights times the Jacobian of the reference-to-real cell mapping times
the value of the PDE coefficient at the quadrature point (summarized
as the diagonal matrixD). The actual assembly of the cell matrixKcell is
a matrix-matrix-matrix product. Finally, the consumer thread takes the
cell matrices from the circular buffer and adds the entries of the cell
matrices to the global stiffness matrixK.
foreach thread do
if thread.type == worker then
for (cell∈ {cells assigned to thread}) {
[U,D] = fe_values.reinit(cell)
Kcell = U ·D ·UT

Kcell.push_to(circular_buffer)
}

end
if thread.type == consumer then
for (cell∈ circular_buffer) {

K += Kcell

}
end

end

Each thread assembles the cell matrices for only a subset of cells and
thus this approach can be considered as a kind of domain decomposi-
tion, although each thread still has access to the whole triangulation,
stiffness matrix and right-hand side.

3.4 GPUParallelismwith CUDA
In order to port the forward solution of theMIT simulation toCUDAone
has to recall a fewbasic facts aboutdeal.II. First of all, due to its object-
oriented nature, the port to CUDA can be split into several independent
tasks. In particular, the linear algebra classes are completely indepen-
dent from theproblemof assembling the stiffnessmatrix and right-hand
side, i.e., from the implementation of the finite elements and their eval-
uation on a cell. Porting deal.II’s linear solvers to the GPU basically
amounts to passing aGPU-capable vector class as a template parameter

that fulfills the interface implicitly defined by the way the vector type
is used inside the solver classes. For further discussion of this issue the
reader is referred to our paper 19.
As shown in Sec. 3.1, the execution time is dominated by the assem-

bly of the global stiffness matrix, particularly for higher order finite
elements. As the most costly operation in assembling a cell matrix is
the matrix-matrix-matrix product, UDUT , a further speedup may be
gained by offloading this data-parallel computation to one or more
GPUs. The computation of one matrix-matrix product in the cell matrix
assembly does not fully utilize one GPU, and therefore several host
threads can share one GPU without performance losses as GPUs are
able to execute several kernels concurrently. Tominimize the amount of
CPU-to-GPU copy operations the finite element data is pre-computed
on the GPU, so it is necessary to copy only the quadrature points on
each cell from the CPU to the GPU. In the case of the Nédélec elements
the orientations of the edges and faces must also be copied to the GPU.
Only then can the evaluation of the shape functions and their deriva-
tives be completed. To compute the values of the shape functions and
their derivatives on a GPU it is necessary to port deal.II’s finite ele-
ment frameworkeither toCUDA (or to analternative suchasOpenCLor
OpenACC). deal.II’s finite element framework consists of two parts:

1. The classes that describe the finite elements,
2. The classes that take care of evaluating a finite element and
mapping it to a real cell.

(stores real cell data on host)
FiniteElementRelatedData FiniteElementRelatedDataCuda

(stores real cell data on GPU

FEValues FEValuesCuda

(ref. cell data on host)
InternalDataBase

FiniteElement
(abstract)

 (ref. cell data on GPU)
InternalDataBaseCuda

FE_CUDA
(abstract)

(ref. cell data on host)
InternalData

FE_Nedelec

(ref. cell data on GPU)
InternalDataCuda

FE_Nedelec_CUDA

stores stores

inherits

stores stores
orders

computation
of shape data

orders
computation

of shape data

stores

gets copy of
precomputed
shape data

inherits inherits

FIGURE 5 Dependency graph of the finite element classes in deal.II
since version 8.4 (left side), and our classes for extending deal.II’s
finite element framework to CUDA.

In deal.II all finite element classes describing the polynomial
space are derived from FiniteElement, which defines their com-
mon interface. Using this general interface the classes derived from
FEValuesBase manage the evaluation of a given finite element and its
derivatives on a real cell. Their interdependence, and how they have
been extended to CUDA, is illustrated in Fig. 5 .

Walker ET AL. 7
The type of finite element determines how much data can be pre-

computed in advance on the reference cell. For instance, the standard
Lagrange elements allow the pre-computation of the function values of
the polynomials at the given quadrature points and only need to recom-
pute derivatives for each real cell. For Nédélec elements, on the other
hand, not even the shape values can be completely pre-computed on the
reference cell due to the sign problem 12.
For the CUDA implementation, we define a class structure following

that of deal.II. The resulting class diagram is asymmetric as we reuse
those data from the CPU implementation that have to be computed
only once, e.g., the shape values of the Lagrange elements as mentioned
above. Analogously to dealii::FiniteElement we define a new base
class FiniteElementCuda that defines the interface for all CUDA-based
FE classes. Since it is desirable to re-use the already existing CPU imple-
mentation for data that has to be computed only once, the new base
class has to store a pointer to its CPU counterpart. Using our re-write of
the FE classes, the matrix assembly only requires the insertion of a few
copy operations on the host side. This is sketched in Alg. 3.

Algorithm 3 Parallelized assembly phase of a symmetric matrix on the
GPU.Now, the circular buffer storesmatrix objectswhose data is stored
on the GPU. The additional step is the copy operation the consumer
thread has to perform in order to transfer the final cell matrices to the
CPU.
foreach thread do
if thread.type == worker then
for (cell∈ {cells}) {
[Ugpu,Dgpu] = fe_values_cuda.reinit(cell)
Acell

gpu = Ugpu ·Dgpu ·UT
gpu

Acell
gpu.push_to(circular_buffer)

}
if thread.type == consumer then
for (cell∈ circular_buffer) {

Acell = Acell
gpu

A+ = Acell

}
end

end
end

The values and derivatives of the finite-element shape functions on
the host are managed by the dealii::FEValues class. Consequently,
wedefine a class FEValuesCuda that inherits dealii::FEValues so that
it is capable of handling the evaluation of shape functions on the host
as well as on the GPU. This entails some additions, which will now be
described.
First of all, during its initialization, dealii::FEValues calls the

function get_data of the finite element it is supposed to manage.

Thereby, it receives the reference cell shape values and derivatives
from the finite element in the FE_Nedelec::InternalData structure.
Our new class FEValuesCuda exploits this mechanism. Its base class
dealii::FEValues computes the values and derivatives of the shape
functionswith respect to the reference cell on the CPU, and then copies
the result to the GPU, since the initialization is done only once and is
thus not time-critical. The corresponding data are contained in a struc-
ture InternalDataCuda, which is visible on the host side but internally
stores data in GPUmemory.
During the cell assembly, dealii::FEValues calls the

fill_fe_values function (or a similar function) of its finite ele-
ment in order to get the values and derivatives of the shape
function on the real cell. These are stored in the structure
dealii::internal::FEValues::FiniteElementRelatedData.
Thereby, the finite element is provided with the instance of
FE_Nedelec::InternalData that was previously initialized.
In addition, in the CUDA case, the finite element gets the
FE_NedelecCuda::InternalDataCuda and an instance of the class
FiniteElementRelatedDataCuda. The latter is the GPU counterpart
of dealii::internal::FEValues::FiniteElementRelatedData. This
is necessary, because the Nédélec element cannot fully compute the
reference cell shapes, since the orientations of the edges and faces of
neighboring cells have to be matched, i.e., the edge- and face-related
shape values from the reference cell are multiplied by ±1 depending
on the relative orientation of a cell’s edges and faces with respect to
its neighboring cells. Hence, the Nédélec element (or other finite ele-
ments) may need to use information stored on the host, and is allowed
to decidewhat to calculate on the CPU or on theGPU, andwhat to copy
from the host to the GPU. The goal is to calculate as much as possible
on the GPU, while trying to limit the copying of data between host and
GPU. Finally, the shape values and derivatives are stored on the GPU,
and can be used for the cell assembly using CUDA. From a mathemati-
cal point of view, for vector-valued PDEs the assembly of a cell matrix
amounts to forming the products of higher-order tensors. As tensors
can be unrolled into block matrices, the matrix-matrix products from
the BLAS standard suffice.

4 RESULTS
4.1 Multicore Results
The performance of the OpenMP code on the g00 system was inves-
tigated for up to 12 threads and for a range of chunk sizes for guided,
dynamic, and static scheduling. Piece-wise linear boundarieswere used.
For dynamic scheduling it was found that the best performance was
for a chunk size of 5 for both the isoparametric and non-isoparametric
cases. Performance depends less on chunk size for larger values of the
Nédélecdegree,p, becauseasp increases sodoes thenumberofdegrees
of freedom and the degree of parallelism. Similar results were found for

8 Walker ET AL.

guided d and static scheduling, and hence we present here only results
for static scheduling with a chunk size of 5. We further restrict our
attention to the isoparametric case since this is of most practical inter-
est. Performance results are shown in Figs. 6 and 7 . As expected, the
parallel efficiency is highest for the largest problem size, p = 5, for
which an efficiency of approximately 55% is achievedwith 12 threads.

0.1

1

10

100

1000

10000

1 2 4 8 16

Ti
m

e
(s

ec
on

ds
)

Number of threads

OpenMP on g00

p = 1 p = 2 p = 3 p = 4 p = 5

FIGURE6Execution timeof theOpenMPcode formatrix assembly as a
function of the number of threads for different Nédélec degree, p. The
results shown are for the isoparametric case for static scheduling and
a chunk size of 5. The number of cells is 152.

0

0.1
0.2

0.3
0.4

0.5

0.6
0.7

0.8
0.9

1

1 2 3 4 5

Pa
ra

lle
l E

ffi
ci

en
cy

Nedelec degree, p

OpenMP on g00

nthreads=2 nthreads=4 nthreads=6 nthreads=8 nthreads=10 nthreads=12

FIGURE 7 Parallel efficiency of the OpenMP code for matrix assembly
as a function of Nédélec degree, p, for different numbers of threads.
The results shown are for the isoparametric case for static scheduling
and a chunk size of 5. The number of cells is 152.

Performance results for theWorkStream implementation described
in Sec. 3.3 are shown in Figs. 8 and 9 . These figures show the matrix
assembly time for 152 cells as in the OpenMP results in Fig. 6 , and
also for the 1216 cells produced by one further level of mesh refine-
ment. Figures 8 and9 show results for the following two versions of the
WorkStream implementation:

dNote that for guided scheduling the chunk parameter gives the mini-
mum chunk size.

• WS1: ThisWorkStream implementation closely follows the orig-
inal sequential andOpenMP implementations.

• WS2: This WorkStream implementation differs from WS1 by
computingoneach cell the curl-curl andmassmatrices fromreal-
valuedNédélec elements, and thenusing these toobtain thefinal
complex-valued cell matrix (see Eq. 3). In the WS1 implementa-
tion complex values are used throughout the computing of the
cell matrices.

The WorkStream framework of deal.II has two main parameters:
chunk_size and queue_length. For the single-GPU results we have
used the default values, i.e., queue_length is twice the number of
threads and chunk_size= 8. For the multi-GPU benchmarks we used
chunk_size= 4 as this leads to amoreequal distributionofwork among
the GPUs.
Figures 8 and 9 show results for piece-wise linear boundaries and

Nédélec degree p = 1, 3, and 5, although we have also performed
timings forp = 0, 2, and4 that showthe samegeneral trends. TheWork-
Stream results show that for smaller problems (small Nédélec degree
and/or number of cells) the scope for effective parallelisation is limited.
For example, for p = 1 and 152 cells no performance gain arises from
usingmore than 4 threads for theWS1 implementation. It is also appar-
ent from the figures that the WS2 implementation is faster than the
WS1 implementation, with performance improvements of up to 55%. It
was not possible to run the case for p = 5 and 1216 cells on g00 due to
lack of memory for the sparcity pattern.
Comparison between the OpenMP timings in Fig. 6 and the Work-

Stream timings in Figs. 8 and 9 shows the OpenMP implementation is
slower than both the WS1 and WS2 implementations by factors of up
to 2. This is due to the differences in the granularity of parallelisation
of the OpenMP and WorkStream implementations. As shown in Alg. 1,
for the OpenMP implementation the outer loop over cells is handled
by the master thread and parallelism is exploited only at the next loop
level. Thus, there is overhead incurred in spawning threads within the
loop over cells, although race conditions are avoided when adding the
cell matrices into the global systemmatrix as this is done by the master
thread. For theWorkStream implementation, shown in Alg. 2, paralleli-
sation is over the outer cell loop, with each thread handling a set of
cells. Each thread gets a larger chunk of work to do than in theOpenMP
implementation and there is less overhead in creating threads. A single
thread is responsible for adding the cell matrices into the global system
matrix thereby avoiding any race condition.
Figures 10 and 11 show the times for matrix assembly on the P600

system forup to24 threads.As expected, theperformance is better than
for g00, although the same general trends are exhibited.

4.2 GPUPerformance results
This section presents performance results for the matrix assembly
phase for GPU systems in which:

1. One core of amulticore system submits work to a single GPU.

Walker ET AL. 9

0.0001

0.001

0.01

0.1

1

10

100

1 2 4 8

Ti
m

e
pe

r c
el

l (
se

co
nd

s)

Number of threads

g00: WS1
152 cells, p = 1 1216 cells, p = 1
152 cells, p = 2 1216 cells, p = 2
152 cells, p = 3 1216 cells, p = 3
152 cells, p = 4 1216 cells, p = 4
152 cells, p = 5

FIGURE 8 Execution times of the WS1 implementation on the g00
system as a function of the number of host threads.

0.0001

0.001

0.01

0.1

1

10

100

1 2 4 8

Ti
m

e
pe

r c
el

l (
se

co
nd

s)

Number of threads

g00: WS2

152 cells, p = 1 1216 cells, p = 1
152 cells, p = 2 1216 cells, p = 2
152 cells, p = 3 1216 cells, p = 3
152 cells, p = 4 1216 cells, p = 4
152 cells, p = 5

FIGURE 9 Execution times of the WS2 implementation on the g00
system as a function of the number of host threads.

2. Multiple cores submit work to a single GPU.
3. Multiple cores submit work tomultiple GPUs.

4.2.1 Performance Results for a Single CPU andGPU
Figures 12 -15 show the execution time for the isoparametric case
with 152 cells for the GTX 750 Ti, GTX 580, Tesla K80, and Tesla P100
GPUs, and their respective hosts. The total execution times are shown,
together with:

1. The time to evaluate the values and the curl of the trial functions
and the quadrature weights of the Jacobian at all quadrature
points (FeValues).

2. The time to perform the triple matrix product,UDUT (MMM).
This includes the time to transfer the necessary data between
the host and the GPU.

As expected, the timings in Figs. 12 -15 confirm that the triplematrix
product dominates the execution time for the sphere benchmark.

0.0001

0.001

0.01

0.1

1

10

100

1 2 4 8 16 32

Ti
m

e
pe

r c
el

l (
se

co
nd

s)

Number of threads

P600: WS1

152 cells, p = 1 1216 cells, p = 1
152 cells, p = 2 1216 cells, p = 2
152 cells, p = 3 1216 cells, p = 3
152 cells, p = 4 1216 cells, p = 4
152 cells, p = 5

FIGURE 10 Execution times of the WS1 implementation on the P600
system as a function of the number of host threads.

0.0001

0.001

0.01

0.1

1

10

100

1 2 4 8 16 32

Ti
m

e
pe

r c
el

l (
se

co
nd

s)

Number of threads

P600: WS2
152 cells, p = 1 1216 cells, p = 1
152 cells, p = 2 1216 cells, p = 2
152 cells, p = 3 1216 cells, p = 3
152 cells, p = 4 1216 cells, p = 4
152 cells, p = 5

FIGURE 11 Execution times of the WS2 implementation on the P600
system as a function of the number of host threads.

Figure 16 shows the total times for the complete code on the GPUs
and on the host computers, while Fig. 17 shows the corresponding
speed-up values. For compute-intensive problems (larger p) the newer
P100 GPU is substantially faster than the other GPUs used. For all the
GPUs, for p ≥ 1 large speedups are achieved, and for the P100 the
speedup up when p = 6 exceeds 1000, which validates the approach
taken in parallelising the code using deal.II.

4.2.2 Performance Results forMultiple CPUs and a Single
GPU.
TheWS2 code, inwhich each host thread is responsible for a set of cells,
has been extended as described in Sec. 3.4 to give a CUDA implementa-
tion that performs the matrix triple product,UDUT, on a single GPU.
The GPU which is supplied with work by multiple host threads. Figures
18 and 19 show the matrix assembly times for a single GPU of the
g00 and P600 systems, respectively, for 152 and 1216 cells. Once again,
piece-wise linear boundaries are used.

10 Walker ET AL.

0.001

0.01

0.1

1

10

100

1000

10000

100000

0 1 2 3 4 5 6

Ti
m

e
 (s

ec
on

ds
)

Nedelec degree, p

GTX 750 Ti with Intel i3-3240 host

CPU total

CUDA total

FEValues CPU

FEValues CUDA

MMM CPU

MMM CUDA

FIGURE 12 Isoparametric case: execution time of the CUDA and CPU
codes as a function of the Nédélec degree, p, for an Intel i3-3240 host
and GTX 750 Ti GPU.

0.001

0.01

0.1

1

10

100

1000

10000

100000

0 1 2 3 4 5 6

Ti
m

e
(s

ec
on

ds
)

Nedelec degree, p

GTX 580 with Intel E5620 host

CPU total

CUDA total

FEValues CPU

FEValues CUDA

MMM CPU

MMM CUDA

FIGURE 13 Isoparametric case: execution time of the CUDA and CPU
codes as a function of theNédélec degree, p, for an Intel E5620 host and
GTX 580GPU.

0.001

0.01

0.1

1

10

100

1000

10000

100000

0 1 2 3 4 5 6

Ti
m

e
(s

ec
on

ds
)

Nedelec degree, p

Tesla K80 with Intel E5-2609V4 host

CPU total

CUDA total

FEValues CPU

FEValues CUDA

MMM CPU

MMM CUDA

FIGURE 14 Isoparametric case: execution time of the CUDA and CPU
codes as a functionof theNédélecdegree,p, for an Intel E5-2609V4host
and Tesla K80GPU.

When the Nédélec degree, p, is 1 there is no advantage in using the
GPUbecause the amount of computationalwork doneby theGPU is not
enough to amortize the time taken to move data between the host and

0.001

0.01

0.1

1

10

100

1000

10000

100000

0 1 2 3 4 5 6

Ti
m

e
(s

ec
on

ds
)

Nedelec degree, p

P100 with Intel E5-2609 host

CPU total

CUDA total

FEValues CPU

FEValues CUDA

MMM CPU

MMM CUDA

FIGURE 15 Isoparametric case: execution time of the CUDA and CPU
codes as a function of the Nédélec degree, p, for an Intel E5-2609 host
and P100GPU.

0.1

1

10

100

1000

10000

100000

1000000

0 1 2 3 4 5 6

Ti
m

e
(s

ec
on

ds
)

Nedelec degree, p

Intel Core i3-3240

Intel Xeon E5620

Intel Xeon E5-2609

GTX 750 Ti

Tesla K80

GTX 580

P100

FIGURE16Execution times of theCUDAandCPUcodes as a function of
the Nédélec degree, p, for the complete code in the isoparametric case.

0.1

1

10

100

1000

10000

0 1 2 3 4 5 6

Sp
ee

du
p

Nedelec degree, p

GTX 750 Ti

Tesla K80

GTX 580

P100

FIGURE 17 Speedup as a function of Nédélec degree, p in the isopara-
metric case. These values equal the time for theCPUcodedivided by the
time for the CUDA code running on the associated GPU.

the GPU. For p ≥ 3 the GPU-enabled code runs faster than the WS1
and WS2 implementations, giving quite substantial speedups in some
cases. For example, when p = 5 and the number of cells is 152, the

Walker ET AL. 11

0.001

0.01

0.1

1

1 2 4 8

Ti
m

e
pe

r c
el

l (
se

co
nd

s)

Number of threads

g00: Tesla K20Xm
152 cells, p = 1 1216 cells, p = 1
152 cells, p = 2 1216 cells, p = 2
152 cells, p = 3 1216 cells, p = 3
152 cells, p = 4 1216 cells, p = 4
152 cells, p = 5

FIGURE 18 Execution times of the CUDA implementation on one GPU
of the g00 system as a function of the number of host threads.

0.0001

0.001

0.01

0.1

1

1 2 4 8 16 32

Ti
m

e
pe

r c
el

l (
se

co
nd

s)

Number of threads

P600: GTX 1080
152 cells, p = 1 1216 cells, p = 1
152 cells, p = 2 1216 cells, p = 2
152 cells, p = 3 1216 cells, p = 3
152 cells, p = 4 1216 cells, p = 4
152 cells, p = 5

FIGURE 19 Execution times of the CUDA implementation on one GPU
of the P600 system as a function of the number of host threads.

speedup is 45.5 and 22.3, respectively, on the g00 and P600 systems
when one thread is used. As the number of threads feeding work to the
GPU increases the timings decrease at first but then begin to rise or
remain approximately constant. As the number of threads increases we
expect the rate at which work is sent to the GPU to also increase, which
accounts for the initial fall in the execution time. However, as the num-
ber of threads increases further the GPU reaches a point at which it is
unable to execute the work received any faster.

4.2.3 Performance Results forMultiple CPUs andMultiple
GPUs
To investigate whether using more than one GPU results in better per-
formancewe have further extended the code to give an implementation
in which multiple threads of a multicore machine feed work to multiple
GPUs. Results for the P500 system when four GPUs and multiple CPU
threads are used are shown in Fig. 20 , and corresponding results for
the WS2 multicore implementation are shown in Fig. 21 . For Nédélec
degreep ≤ 4weshowresults for1216cells and9728cells, respectively.

For higher degrees and 9728 cells the sparsity pattern of the global
stiffness matrix does not fit intomemory of the host (128GB).
Figures 22 , 23 , and 24 present results for one node of the Hawk

cluster in which timings are shown for a single GPU, two GPUs, and
the WS2 implementation. The Hawk node contains two P100 GPUs,
which aremorepowerful than theQuadroP2000GPUsof theP500 sys-
tem (single precision floating-point peak performance is 3 TFlop/s and
11 Tflop/s for the Quadro P2000 and Tesla P100, respectively). How-
ever, while on Tesla P100 the double-precision performance is 50% of
the single-precision value, on the Quadro P2000 the double-precision
performance is only 3% of the single-precision value.
Themain results are:
• Further acceleration of the matrix assembly by moving the
matrix-matrix-matrix product to the GPU requires a minimal
number of cells which is higher for lower Nédélec degree. An
example is this behavior for Nédélec degree p = 1 can be seen in
Fig. 20 .

• The CPU-only version scales well until all physical cores are
occupied. Increasing the number of cells smooths the data, but
otherwise has little effect on the wallclock time needed for com-
puting a cell matrix.

• The speedup due to CUDA is multiplicative as long as the num-
ber of host threads is less than or equal to twice the number of
GPUs. This reflects the fact that GPUs are able to concurrently
compute and copy data.

• The additional CUDA parallelization scales with respect to the
number of GPUs, i.e., doubling the number of GPUs reduces the
assembly time roughly by a factor of 2 until there are twice as
many host threads as there are GPUs, i.e., GPU computing and
CPU-GPUmemory transfers are concurrent

• In its current state the WorkStream+CUDA implementation is
inefficient for low polynomial orders and low numbers of mesh
cells. The reason is the low computational work per cell in this
case and frequentmemory transfers of only tiny amounts of data
between GPU and CPU. Nevertheless, the higher the Nédélec
degree the more CPU cores are needed for the CPU-only ver-
sion to achieve the same performance as the hybrid version.
This could be addressed by batchingmemory transfers and com-
putation of cell matrices, but this is beyond the scope of this
paper.

5 SUMMARYANDCONCLUSIONS
The research presented here has shown that:

1. Onmulticore systemsdeal.II’sWorkStreamapproach toparal-
lelisation usually results in faster execution times comparedwith
the use of OpenMP. This is because the WorkStream approach

12 Walker ET AL.

0.0001

0.001

0.01

0.1

1

10

1 2 4 8 16 32

Ti
m

e
pe

r c
el

l (
se

co
nd

s)

Number of threads

P500 system: WS2 + four Quadro P2000s
1216 cells, p = 1 9728 cells, p = 1
1216 cells, p = 2 9728 cells, p = 2
1216 cells, p = 3 9728 cells, p = 3
1216 cells, p = 4 1216 cells, p = 5

FIGURE 20 Execution times of the CUDA code on the P500 system for
four GPUs as a function of the number of host threads.

0.0001

0.001

0.01

0.1

1

10

1 2 4 8 16 32

Ti
m

e
pe

r c
el

l (
se

co
nd

s)

Number of threads

P500 system: WS2

FIGURE 21 Execution times of the WS2 implementation on the P500
system as a function of the number of host threads. The legend is the
same as in Fig. 20

exploits parallelism at a higher level of granularity and avoids
much of the thread overhead incurred in our naive OpenMP
implementation.

2. GPUparallelisation results in substantial reductions in execution
time across awide variety of GPUs, particularly on the P100 sys-
tem. Even on relatively inexpensiveGPUs the performance gains
are impressive for problemsof interest (p ≥ 2). This supports the
view that GPUs are capable of reducing execution times for MIT
imaging to clinically relevant values.

3. The use ofmultiple NVidia GPUs, using CUDA, can be integrated
into the deal.II library, resulting in a heterogeneous parallel
implementation usingmultiple CPUs and GPUs.

0.0001

0.001

0.01

0.1

1

10

1 2 4 8 16 32

Ti
m

e
pe

r c
el

l (
se

co
nd

s)

Number of threads

Hawk system: WS2 + one P100

1216 cells, p = 1 9728 cells, p = 1 1216 cells, p = 2

9728 cells, p = 2 1216 cells, p = 3 9728 cells, p = 3

1216 cells, p = 4 1216 cells, p = 5

FIGURE22Execution times of theCUDA code on theHawk system for
a single GPU as a function of the number of host threads.

0.0001

0.001

0.01

0.1

1

10

1 2 4 8 16 32

Ti
m

e
pe

r c
el

l (
se

co
nd

s)

Number of threads

Hawk system: WS2 + two P100s

1216 cells, p = 1 9728 cells, p = 1 1216 cells, p = 2

9728 cells, p = 2 1216 cells, p = 3 9728 cells, p = 3

1216 cells, p = 4 1216 cells, p = 5 77824 cells, p = 1

77824 cells, p = 2

FIGURE23Execution times of theCUDA code on theHawk system for
twoGPUs as a function of the number of host threads.

Futureworkwill investigate the performance and scaling of our code
on larger GPU clusters. For problems with large Nédélec degree and a
large number of cells the pre-computation of the sparsity pattern may
take longer than the matrix assembly, so future work will attempt to
reduce the time to find the sparsity pattern and to parallelise it. Further
opportunities for optimization of the GPU kernels will also be investi-
gated, in particular the efficient use of resources such as registers to
improve thread occupancy. Furthermore, we shall apply the techniques
used to produce the multi-GPU version of the code to other areas, such
as additive manufacturing. We shall also consider the use of the CUDA
CUBLAS library within deal.II as a way of further reducing execution
times.

Walker ET AL. 13

0.0001

0.001

0.01

0.1

1

10

1 2 4 8 16 32

Ti
m

e
pe

r c
el

l (
se

co
nd

s)

Number of threads

Hawk system: WS2

FIGURE 24 Execution times of the WS2 implementation on the Hawk
system as a function of the number of host threads. The legend is the
same as in Fig. 23

ACKNOWLEDGEMENTS
This research was partially supported by the UK Engineering and Phys-
ical Sciences Research Council (EPSRC) through grant EP/K024078/1:
Inverse Problems for Magnetic Induction Tomography. We are also
grateful to the University of Göttingen for access to their GPU systems,
and to Dr. Ross Kynch who wrote the sequential code that served as
a basis of our parallel codes. We also acknowledge the support of the
Supercomputing Wales project, which is part-funded by the European
Regional Development Fund (ERDF) via theWelsh Government.

References
1. Uecker M., Zhang S., Voit D., Karaus A., Merboldt K., Frahm J.
Real-time MRI at a resolution of 20 ms. NMR in Biomedicine.
2010;23(8):986-994.

2. Zolgharni M, Ledger P. D., Griffiths H. Forward modelling of mag-
netic induction tomography: a sensitivity study for detecting haem-
orrhagic cerebral stroke.Medical & Biological Engineering & Comput-
ing. 2009;47:1301–1313.

3. Zolgharni M., Griffiths H., Ledger P. D. Frequency-difference MIT
imaging of cerebral haemorrhage with a hemispherical coil array:
numerical modelling. Physiological Measurement. 2010;31(8):S111.

4. Zolgharni M., Ledger P. D., Armitage D. W., Holder D. S., Grif-
fiths H. Imaging cerebral haemorrhage with magnetic induc-
tion tomography: numerical modelling. Physiological Measurement.
2009;30(6):S187.

5. SoleimaniM., LionheartW.R.B.AbsoluteConductivityReconstruc-
tion inMagnetic Induction Tomography Using a NonlinearMethod.
IEEE Transactions onMedical Imaging. 2006;25(12):1521-1530.

6. Brown B. M., Jais M. A variational approach to an electromagnetic
inverse problem. Inverse Problems. 2011;27(4).

7. Knowles I. A variational algorithm for electrical impedance tomog-
raphy. Inverse Problems. 1998;14(6).

8. Rodriguez A. A., Valli A. Eddy Current Approximation of Maxwell
Equations. Springer-Verlag; 2010.

9. Ledger P. D., Zaglmayr S. hp-Finite element simulation of three-
dimensional eddy current problems on multiply connected
domains. Computer Methods in Applied Mechanics and Engineering.
2010;199(49):3386 - 3401.

10. Schöberl J., Zaglmayr S. High order Nédélec elements with local
complete sequence properties. The International Journal for Com-
putation and Mathematics in Electrical and Electronic Engineering.
2005;24(2):374-384.

11. Bangerth W., Heister T., Heltai L., et al. The deal.II library, Version
8.3. Archive of Numerical Software. 2016;4(100):1–11.

12. Kynch R. M., Ledger P. D. Resolving the sign conflict problem for
hp-hexahedral Nédélec elements with application to eddy current
problems. Computers & Structures. 2017;181:41-54.

13. Turcksin B., Kronbichler M., Bangerth W. WorkStream – A Design
Pattern for Multicore-Enabled Finite Element Computations. ACM
Trans. Math. Softw.. 2016;43(1):2:1–2:29.

14. Tournier P.-H., Bonazzoli M., Dolean V., et al. Numerical Modeling
andHigh-Speed Parallel Computing. IEEE Antennas and Propagation.
2017;59(5):98–110.

15. Ammari H., Buffa A., Nédélec J. C. A Justification of Eddy Cur-
rents Model for the Maxwell Equations. SIAM Journal of Applied
Mathematics. 2000;60:1805-1823.

16. Turner L. R., Davey K., Emson C. R. I., Miya K., Nakata T., Nicolas A.
Problems and workshops for eddy current code comparison. IEEE
Transactions onMagnetics. 1988;24(1):431-434.

17. Zaglmayr S. High Order Finite Elements for Electromagnetic Field
Computation. PhD thesisInstitute for Numerical Mathematics,
Johannes Kepler University, Linz, Austria2006.

18. Reinders J. Intel Threading Building Blocks. O’ReillyMedia; 2010.
19. Kramer S. C., Hagemann J. SciPAL: Expression Templates and Com-

position Closure Objects for High Performance Computational
Physics with CUDA and OpenMP. ACM Trans. Parallel Comput..
2015;1(2):15:1–15:31.

