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Highlights 13 

• Increasing interests in emerging infectious diseases and parasite spillover coincide with a 14 

rise of studies reporting and comparing host specificity for multihost parasite. Intuitively, 15 

higher host specificity means less spillover risk but to date, a systematic consensus on such a 16 

relationship is lacking. 17 

• Host specificity can vary in space and time due to changing compositions of potential host 18 

species and constraints in environmental conditions. Eco-evolutionary dynamics and 19 

contemporary conditions synergistically determine ‘realized’ host specificity across regional 20 

scales. 21 

• Modelling advances to capture spatiotemporal variation in the distributions and biotic 22 

interactions of species provide the basis to quantify variation in realized host specificity and 23 

progress towards determining how this relates to spillover risk. 24 

 25 

 26 

 27 
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Abstract  28 

Host specificity encompasses the range and diversity of host species that a parasite is capable 29 

of infecting and is considered a crucial measure of a parasite’s potential to shift hosts and 30 

trigger disease emergence. Yet empirical studies rarely consider that regional observations 31 

only reflect a parasite’s ‘realized’ host range under particular conditions: the true 32 

‘fundamental’ range of host specificity is typically not approached. We provide an overview 33 

of challenges and directions in modelling host specificity under variable environmental 34 

conditions. Combining tractable modelling frameworks with multiple data sources that 35 

account for the strong interplay between a parasites’ evolutionary history, transmission mode 36 

and environmental filters that shape host-parasite interactions will improve efforts to quantify 37 

emerging disease risk in times of global change. 38 

 39 

Key words: disease spread; pathogen spillover; co-speciation; host shifting; host-parasite 40 

interactions; realized host specificity 41 

 42 

 43 

Host specificity in times of emerging infectious diseases 44 

The diversity of infectious disease affecting humans and animals are strongly determined by 45 

parasites capable of infecting multiple host species. Estimates that up to 70% of human 46 

parasites are zoonotic (i.e. shared by humans and at least one other animal species; see 47 

Glossary) showcase that multi-host parasites, as opposed to those that only infect a single 48 

host species, are the rule rather than the exception [1, 2]. Frequent identification of Emerging 49 

Infectious Diseases (EIDs) highlights the global importance of contemporary host shifting 50 

that can result in infection of novel and often immunologically naïve hosts [3, 4].  51 

 Host specificity, representing the number and/or diversity of host species a parasite is 52 

capable of infecting, is considered a key indicator of its propensity to shift hosts [5]. Host 53 

specificity is a topic of considerable interest in the fields of disease ecology and One Health 54 

that is quickly becoming a key feature of research agendas (Figure 1). Much of this work is 55 

aimed at delineating possible EID reservoirs by attempting to identify parasites that may be 56 

capable of shifting between wildlife and human hosts [6-8]. Wildlife parasitology research 57 

has uncovered a broad spectrum of host specificity ‘strategies’ for an impressive diversity of 58 

parasites. These range from haemosporidian blood parasites and feather mites that associate 59 
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with only a small number of closely-related host species [9, 10] to rabies viruses that are 60 

seemingly capable of infecting virtually any mammalian species they encounter [11]. 61 

 62 

Intuitively, one may assume that among multi-host parasites, those that exhibit low host 63 

specificity (i.e. high levels of host generalism) are more capable to shift hosts [12]. Indeed, 64 

numerous studies have identified so-called ‘generalist’ parasites that seem capable of 65 

infecting a broad spectrum of phylogenetically and sometimes ecologically dissimilar host 66 

species [5, 13, 14]. Yet whether low host specificity meaningfully reflects a higher risk for 67 

EID-related spillover remains unresolved [15, 16]. This is largely because there are multiple 68 

facets of host specificity, many of which are not captured by common metrics, and there are 69 

idiosyncratic ways in which different host species contribute to a parasite’s specificity [17]. 70 

Moreover, there is a great deal of uncertainty about whether any retrospective summary of 71 

observed host ranges into host specificity measures, which basically reflect the accumulation 72 

of historical host-parasite interactions, translate into a parasite’s potential for contemporary 73 

host shifting [18].  74 

 75 

Here, we summarize the state of current research on host specificity and highlight how such 76 

work can play a role in advancing our ability to quantify host shifting capacity. We extend 77 

previous reviews of how novel species communities may relate to shifting host ranges and 78 

variation in parasite transmission dynamics [4, 17, 19] by discussing challenges in the use of 79 

host specificity metrics and outlining frameworks that align common data structures to 80 

relevant modelling tools. 81 

 82 

The eco-evolutionary backbone of host specificity 83 

Specialization of species in parasitic or mutualistic interactions is assumed to be tightly 84 

linked to the levels of adaptation exhibited by interacting partners [20]. Host-parasite 85 

interactions often require highly tuned transmission modes and adaptations by the parasite to 86 

survive and reproduce in the host environment [21]. It therefore comes as little surprise that 87 

much of the emphasis surrounding investigation of host-parasite interactions has been placed 88 

on host-parasite co-evolution. Co-speciation, whereby a parasite species evolves into two 89 

distinct species in response to host speciation, has long been used to explain apparent 90 

congruence in host and parasite phylogenies. The prevailing reasoning is that a parasite’s 91 

evolutionary history sets the stage for host specificity by introducing phylogenetic and 92 
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ecological barriers to host shifting [22, 23]. Host shifting requires parasites to be exposed to 93 

new hosts that exhibit certain levels of physiological and/or behavioural overlap with 94 

previous hosts (ecological fitting), as this allows circumvention of barriers caused by 95 

variation in host competence or immunity [22, 24].  96 

An expanded line of thought, primarily derived from studying mutualisms such as 97 

animal-plant interactions, suggests that host shifting is probabilistic and relies on opportunity 98 

for hosts and parasites to interact under variable environmental conditions [4, 25]. A 99 

prominent example involves herbivorous insects introduced as biocontrol agents into 100 

different environments, which showcases that regional host ranges are largely determined by 101 

local environmental conditions such as plant community composition, relative abundance and 102 

phenology in response to climate variation [26, 27].  103 

By analogy, we argue that similar environmental forces will also be important for 104 

shaping host-parasite interactions [4, 28-30]. This idea that a parasite’s capacity for host 105 

shifting can vary in response to environmental conditions (Figure 2) presents a new forefront 106 

of research on spillover risk in times of global change [4, 31-34]. Fortunately, a burst in 107 

analytical tools designed to explore spatiotemporal variation in species interactions [35-37] 108 

make it possible to characterize how host specificity changes across environmental gradients. 109 

Consistent frameworks are now needed to disentangle the evolutionary and ecological aspects 110 

of host-parasite interactions that should be considered when judging host specificity.  111 

 112 

A niche perspective on host specificity 113 

Developing a framework to assess host specificity, and to begin relating specificity to 114 

potential spillover risk, relies first on developing a consistent definition for host specificity. 115 

This is particularly necessary when considering the staggering diversity of advocated indices 116 

and metrics (Table 1). The most common of these focus on the range of hosts a parasite is 117 

observed to infect and in which it can persist and/or complete its life cycle. The simplest way 118 

to do this is to count the number of host species a parasite infects [10]. But this provides little 119 

information about the diversity of host ‘habitats’ that comprise a parasite’s niche. Authors 120 

have more recently recognized that adapting ecological niche concepts to host specificity can 121 

improve understanding of a parasite’s host range using concepts from a widely-supported 122 

theoretical framework [13, 32]. An important aspect of niche theory distinguishes between 123 

potential resources (resources that a species could utilise if it encountered them) and 124 

surrounding conditions that determine whether resources are available and can be utilized 125 
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(environmental filtering). Recent advances in ecological niche modelling have capitalized 126 

on the concept of potential resources to expand our understanding of niche filling by 127 

differentiating between a species’ fundamental niche and its realized niche. Here, the 128 

fundamental niche refers to resources that can be used in the absence of any restrictive 129 

conditions, while the realized niche refers to regional consumer-resource dynamics that are 130 

observed under local environmental conditions [38].  131 

Translated to multi-host parasites, the fundamental niche describes a parasite’s 132 

capacity to explore different host species independently of conditions that may restrict its 133 

exposure to these potential hosts. The realized niche, in turn, is based on the regional 134 

diversity of host species a parasite is actually observed to infect [39](Figure 2). 135 

Biogeographic structuring of host assemblages across regional scales will constrain 136 

opportunities for host-parasite interactions. In other words, variation in the diversity of 137 

potential hosts occurring in regional species pools can ensure that a parasite’s fundamental 138 

host specificity is not completely realized [40]. Empirical support for this can be derived 139 

from a number of field studies from diverse host-parasite systems. Biogeographic structure in 140 

host species distributions likely narrows the realized host specificity of chewing lice infecting 141 

toucans, particularly when closely related host species are spatially disconnected [41]. Host 142 

range expansions by relatively fast evolving (RNA) rabies viruses depend on local 143 

compositions of bat assemblages, as different virus lineages often cannot cross species 144 

barriers to infect distantly related host species [11]. Regional climate conditions that 145 

influence vector habitats are associated with observed host specificities for widespread avian 146 

malaria parasites [34]. Experimental studies that artificially increase the host range accessible 147 

to a parasite further support the concept of fundamental vs realized host specificity: the set of 148 

hosts that can be infected experimentally can be much larger than the actual range observed 149 

under natural conditions, even for parasites that are only observed to infect a single host 150 

species [42]. This increasing recognition that local variation changes the suite of hosts to 151 

which a parasite is exposed and pre-existing capacity enables host shifting upon newly 152 

arising opportunities has been raised by a number of recent studies that collectively 153 

contribute to a meta-theory called the Stockholm Paradigm [32]). 154 

 155 

Inferring host specificity  156 

Ecological dynamics impact the host specificity of parasites across local and regional scales 157 

[43, 44]; this has important ramifications for formulating concepts to gather inferences about 158 
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explanatory mechanisms. Identifying factors that influence opportunities for novel host-159 

parasite interactions, and how these shape realized host specificity, are vital steps to begin 160 

uncovering the true fundamental host specificity (see Box 1). This requires an understanding 161 

of how host communities are shaped and how resources are utilised, both of which have 162 

strong parallels in community ecology. A growing consensus states that a suite of factors 163 

such as evolutionary contingencies, speciation, adaptive plasticity, dispersal capacity, 164 

environmental filters and biotic interactions [45-48] act in concert with stochastic processes 165 

[49] to shape communities. Accounting for plasticity in resource utilisation helps to align 166 

ecological modelling approaches to reality for understanding shifts in species’ habitat use, 167 

geographical ranges, or trophic interactions across environmental gradients [20, 50]. 168 

Moreover, tractable modelling concepts that can untangle the effects of environmental 169 

forcing and species interactions on resource utilisation have recently been developed [51-54]. 170 

 Note that in most situations, sufficient empirical and experimental evidence is 171 

necessary to infer aspects of fundamental host specificity (see Box 2 for some considerations 172 

about matching data to study questions and models). We now outline a number of important 173 

modelling approaches that are available to begin understanding how host specificity is shaped 174 

across scales. 175 

 176 

Trait-based approaches to host specificity 177 

Trait-based approaches, which group species of interest according to attributes such as 178 

phylogenetic relationships, body size, diet, climate tolerance or distributions, are increasingly 179 

adopted to study species ecological preferences and their potential responses to global change 180 

[55, 56]. In the context of host specificity, there are at least two trait-based approaches that 181 

have received considerable attention recently.  182 

First, indices of functional and phylogenetic diversity are used to delineate host 183 

specificity according to the observed (or estimated) variation in traits exhibited by competent 184 

host species [5]. Often, such measures are based on pair-wise distances that are calculated 185 

among all possible combinations of viable host species [57, 58]. For instance, phylogenetic 186 

trees, which depict evolutionary relationships among host species, can be used to generate 187 

indices of phylogenetic host specificity [17, 59, 60]. In a similar way, distance-based 188 

diversity measures can be generated using host species’ ecological traits [14, 61], with 189 

supporting computational algorithms readily available in open-source software such as R 190 

[62]. The central aim when using these measures is to determine whether the distribution of 191 

pairwise distances between infected host species (observed distances) is different to a 192 
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distribution of distances between potential host species (expected distances). Here, an 193 

observed distance distribution that is statistically smaller than expected indicates that infected 194 

hosts are more closely related than expected by chance. It is worth noting that such metrics 195 

largely depend on sample size (i.e. the number of host species recorded) and thus are 196 

potentially subject to sampling bias [63]. Null model permutation approaches [64] and more 197 

recently, hierarchical models [40], have been proposed to account for sampling bias while 198 

comparing observed and expected distance distributions. Recent studies have put these ideas 199 

into practice by demonstrating that host functional traits are as important as phylogenetic 200 

relationships for assessing whether primates share the same parasites [15] and by showing 201 

that host phylogenetic relationships appear to strongly shape the host ranges of avian malaria 202 

lineages [14]. Moreover, a recent multi-taxa study deciphered that phylogenetic specialization 203 

among prospective hosts is more pronounced for helminths and viruses than for other parasite 204 

groups [65]. Finally, similar trait-based measures were used to show that fleas with certain 205 

traits are more likely to infest the same subsets of phylogenetically and functionally related 206 

mammalian host species [66], showcasing that evolutionary history and ecological fitting 207 

synergistically drive the realized host specificity of these ectoparasites. 208 

Trait-based regression models have also gained popularity for analysing whether the 209 

presence-absence of parasites in a suite of host species is linked to host traits [6-8]. Such 210 

approaches are of relevance for host specificity measures as model-based estimates of a 211 

parasite’s associations with particular host traits can enable projections onto unmeasured host 212 

species, enabling prediction of unknown interactions [67]. Generalised linear models (GLMs; 213 

readily estimated using Maximum Likelihood or Bayesian frameworks through available R 214 

packages; [68-70]) or machine-learning regression trees [71] are the methods of choice as 215 

they estimate associations using data from a variety of outcome distributions. Prominent 216 

examples have found that higher proportions of zoonotic viruses occur in mammals that are 217 

closely related to humans [8], whereas studies of rodents have shown that hosts with faster 218 

life histories have higher occurrences of zoonotic viruses [6]. Another study found that the 219 

intensity of helminth parasite sharing between humans, domestic animals and wildlife 220 

appeared to be predominantly driven by dietary traits of wildlife species [7]. At the species 221 

level (i.e. presence-absence of a particular parasite in a suite of host species), however, we 222 

stress again that such regressions are only useful if the underpinning data include sufficient 223 

numbers of both presence and absence records to allow meaningful inference.  224 

 225 
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Network approaches to study host-parasite interactions 226 

Ecological networks summarize biotic interactions among groups of species that live in 227 

trophic or symbiotic relationships [72]. Amongst the many useful insights gained from such 228 

community-scale analysis, they allow users to draw conclusions about the preference 229 

(specialization) of species towards a suite of potential partners [73]. Networks can be 230 

constructed as bipartite graphs that denote whether species interact or not (e.g., binary 231 

‘presence-absence’ data of interactions between combinations of host and parasite species) or 232 

the frequencies of interactions (e.g., the number/proportion of individuals from a given pool 233 

of host species infected with the concerned parasites). A simple measure of a parasite’s 234 

specialization derived from binary networks can be the proportion of host species infected 235 

[74], an index that resembles host specificity without taking link strengths into account. This 236 

measure can be linked at the community scale when used in combination with null model 237 

analysis [75], allowing users to ask which parasites are more or less specialist. In contrast, 238 

many network measures of species-level host specificity, such as the species-specific 239 

specialization index d’ [76], are based on both the link distributions as well link strengths. 240 

Such community-scale analysis acknowledges the fact that every single interaction is 241 

embedded in a network of species interactions and depicts a parasite’s 242 

preference/specialization on particular hosts relative to both the overall host availability and 243 

the host utilisation by other parasites. Such an approach was recently used to explore network 244 

compositions of fish parasites and mammalian fleas across a number of regions [74]. The 245 

authors showed that specialist parasites tended to interact with hosts that harboured high 246 

richness of parasites, and that hosts with high parasite richness also tended to be more 247 

abundant. However, given the fact that network specificity indices are commonly derived 248 

from a finite set of community-scale observations, their utility for predicting fundamental 249 

host specificity needs to be carefully evaluated. This is because host specificity is a species-250 

specific attribute, and we argue that host specificity is not necessarily shaped by the 251 

specificities of other parasites in the community. Moreover, networks assembled under 252 

particular regional conditions will only yield measures of realized host specificity and thus do 253 

not necessarily provide accurate insights about host specificity under novel (unsampled) 254 

environmental conditions. Nevertheless, advances in techniques to model how ecological 255 

network properties respond to environmental variation [36, 77] may provide promising 256 

opportunities to estimate fundamental host specificity in future research. 257 

 Ecological network concepts have also been employed to detect the centrality of key 258 

host species and/or the modularity of interaction compositions in observed host-parasite 259 
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networks [78]. These approaches aggregate host-parasite interactions into adjacency matrices 260 

to depict focal species that share similar sets of interactions (i.e. two host species that are 261 

infected by similar parasites may be connected within the network; [78, 79]). This of course 262 

comes at the cost of losing information about species identity, but can nevertheless be helpful 263 

for identifying roles that different host species may play for facilitating parasite spread or for 264 

understanding whether host-parasite interactions exhibit a modular or nested structure. 265 

 266 

Identifying environmental filters related to realized host specificity 267 

Despite the examples outlined above, few studies have examined how changes in host 268 

specificity relate to spatiotemporal changes in environmental conditions [80, 81]. Capturing 269 

the complex ways in which environmental filtering can affect realized host specificity is a 270 

looming challenge that calls for integrative approaches to consolidate the synergies between 271 

species distributions and biotic interactions [46]. For example, if variation in realized host 272 

specificity is linked to changes in regional host composition [40], a comprehensive 273 

understanding of how environmental filters impact realized host specificity requires 274 

disentangling their effects on host species occurrence and on host-parasite interactions (i.e. by 275 

influencing epidemiological factors such as host susceptibility, parasite survival and 276 

transmission potential). Some first step towards capturing this process have been taken by 277 

applying statistical models that estimate how realized host specificity changes in relation to 278 

the variation in host community compositions [40, 82] and environmental filters such as 279 

climate [34]. These approaches expand on the trait-based methods described above by 280 

comparing suites of ecological and/or phylogenetic distances among infected pairs of host 281 

species to distances that describe all potential host species within each region that a parasite 282 

occupies. Results have provided promising new insights. For example, Wells et al. [40] 283 

showed that helminth parasites generally exhibited the lowest phylogenetic host specificity in 284 

regional ‘hotspots’ that showed high variation in prospective host diversity; despite being 285 

globally distributed, some parasites still infected less functionally diverse hosts than 286 

expected, indicating limited potential to infect hosts from different ecological niches. Fecchio 287 

et al. [34] showed that avian malaria parasites are more constrained in their capacity to 288 

exploit a diversity of host species in regions with pronounced rainfall seasonality and wetter 289 

dry seasons. Other recent developments can account for biotic interactions within 290 

multivariate community models, which can be helpful to understand how host-parasite 291 

interactions may change across environmental gradients [52]. While we are unaware of these 292 

models being used to assess changes in realized host specificity, their ability to detect 293 
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associations among different parasites opens exciting avenues for uncovering how host 294 

specificity is shaped across regional scales. 295 

 296 

The need to capture uncertainty: probabilistic tools and an outlook on forecasting host 297 

shifting 298 

Because observational data dominates the host specificity literature, the above sections stress 299 

that taking advantage of contemporary modelling tools for best-possible inference offers 300 

significant improvements over simply drawing conclusions from finite observations at hand. 301 

We also urge the use of probabilistic methods when applying such tools, as they can 302 

distinguish drivers of host-parasite interactions from underlying observation processes to 303 

obtain model-based estimates [83-85]. Probabilistic sampling approaches have a number of 304 

benefits that make them suitable to host specificity research, including: (1) Capturing 305 

uncertainty and sampling bias in infection and host-parasite association data, and allowing for 306 

random data imputation/augmentation (i.e. for poorly sampled host species there might be a 307 

certain probability this species is infected, even if records of such associations are missing); 308 

(2) Utilising a diversity of data sources such as host-parasite association data, trait variables 309 

and spatiotemporal environmental data in consistent model frameworks; (3) Capturing the 310 

hierarchical nature of realized host specificity by conceptualizing conditional dependencies 311 

such as ‘the probability a host species contributes to realized host specificity, conditional on 312 

its presence and compatibility under regional conditions’. The ability to capture uncertainties 313 

is particularly imperative for forecasting the possible infection of a novel host species under 314 

future or as yet unexplored environmental conditions, which is the basis for mitigating the 315 

public and animal health risks posed by EIDs. Given the importance of plasticity in host 316 

specificity, quantitative solutions require developing and applying tractable forecasting tools 317 

to answer questions such as ’how likely is a parasite to shift from one host species to another 318 

under XYZ regional conditions?’. This can be a challenging task for a large range of parasites 319 

that affect only a small number of host species and/or for which retrospective data on host 320 

shifting events are rare. 321 

 Despite these challenges, novel modelling frameworks offer a foundation for 322 

prediction about when and in which host species a parasite may occur. Correlative 323 

approaches in species distribution and ecological niche modelling, for example, aim to 324 

estimate species persistence under a range of surveyed environmental conditions (aiming to 325 

describe the pattern but not necessarily the underlying mechanism) and then project species 326 
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distributions across larger environmental space [86]. The trait-based regression models 327 

discussed above fall into this category, and may be useful for prediction as they generally 328 

have moderate data needs, including the presence-absence of host-parasite associations and 329 

information about host traits and environmental conditions. However, projecting models to 330 

estimate a parasite’s fundamental host range (and to predict host shifting events) across 331 

gradients of substantial spatiotemporal change might significantly violate model assumptions 332 

and could be hampered by poor transferability [87]. Only for parasites with invariable 333 

realized host specificity across environmental gradients would one expect to obtain 334 

reasonable accuracy in projected host specificity under unsampled conditions. This raises the 335 

need for detailed sampling regimes that cover much (if not all) of the parasite’s known 336 

distribution. In light of the potential drawbacks of correlative predictions, a key aim for future 337 

research could be to use historical data on true host shifting events to see if any patterns of 338 

realized host specificity prior to the shift could have been informative for prediction. Using 339 

such hindcasting approaches to evaluate our capacity to forecast future EIDs could tell us 340 

whether any of our metrics have any real value, or whether other situational aspects (such as 341 

rapid changes in contact rates, the emergence of new host-host contacts or the stochastic 342 

emergence of new strains) are more important. 343 

In contrast to correlative approaches, processed-based methods explicitly model the 344 

important processes underlying patterns [88, 89]. In terms of host-parasite interactions, such 345 

models may aim to predict and reproduce host shifting events from a suite of eco-346 

epidemiological factors that jointly drive system dynamics, including variation in contact 347 

opportunities among host species and spatiotemporal environmental variation. Perhaps a 348 

promising move towards predicting fundamental host specificity and forecasting EIDs could 349 

be the establishment of so-called hybrid models. Hybrid models synthesise correlative and 350 

process-based models by combining static projections from correlative approaches with 351 

simulation of key processes; in species distribution modelling, these processes include 352 

aspects such as species abundances, the realistic co-occurrence of interacting species and 353 

dispersal events [90]. Hybrid models can improve the transferability of correlation-based 354 

approaches by more realistically accounting for key processes while avoiding specification of 355 

a large number of parameters [91]. For our purposes, such models could aim to capture the 356 

most essential dynamics underlying host shifting, such as possible range shifts of key hosts, 357 

expected variation in host community composition in relation to climate change [92] or the 358 

emergence of species invasion ‘hotspots’ [93]. 359 

 360 
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Concluding Remarks 361 

A large body of research on human, animal and plant parasites uses host specificity to gauge 362 

the risk of EIDs and spillover events. However, in times of global change and the large-scale 363 

spread of parasites across former geographic barriers, drawing conclusions about a parasite’s 364 

host shifting capacity using simple specificity indices may not be suitable to predict such 365 

events under novel conditions. Host specificity cannot be considered a fixed trait, as 366 

environmental conditions cause considerable variation in realized host specificity. The task of 367 

predicting host shifting events must rely on tractable modelling frameworks that sit at the 368 

core of ecological forecasting [94]. Ultimately, accounting for plasticity and uncertainty in a 369 

parasite’s realized host specificity may be a worthy step to better predict disease emergence 370 

and host shifting events (see Outstanding questions). But identifying the multifaceted 371 

processes involved in multi-host parasite transmission is laborious and will require 372 

considerable empirical and quantitative research. Along the way towards understanding such 373 

complexities, we should not ignore the fact that disease emergence inevitably means parasites 374 

often have a hidden potential to infect novel host species. Initial conclusions based on 375 

realized host specificity alone need to be carefully revisited as more data becomes available. 376 

This will leverage our growing understanding about which parasites are capable of crossing 377 

the species barrier and causing unwanted diseases. 378 

 379 
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 384 

Outstanding questions 385 

• Are there generalities about the plasticity in host specificity in response to environmental 386 

conditional for parasites from different taxonomic groups and/or with different transmission 387 

modes?  388 

• Do strong host-parasite co-evolutionary histories constrain the plasticity in host specificity 389 

and potential for host shifting across environmental gradients? 390 
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• Can integrated model frameworks and validation procedures for inferring fundamental host 391 

specificity allow us to better predict future host shifting events? 392 

 393 

 394 

 395 

 396 
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Glossary 657 

• Ecological fitting: Species association enabled by pre-existing capacity without genetic 658 

change. (e.g. a certain suite of potential host traits enables infection by a parasite upon 659 

encounter). 660 

• Emerging infectious disease (EID): Infectious disease that recently appeared in a 661 

population or is recognized as a ‘novel’ disease with rapid spread. 662 

• Environmental filtering: Environmental conditions that constrain resource utilisation by a 663 

species (e.g. the use of different host species by a parasite).  664 

• Fundamental niche (e.g. fundamental host range): For parasites, the set of all host 665 

species, whether known to be infected or not, that would serve a parasite as hosts under any 666 

environmental condition. The overall fundamental host range cannot necessarily be 667 

determined empirically, as only the existing (realized) host range across the accessible host 668 

species pool can be surveyed. 669 

• Host shifting: The event of colonizing of a novel host species by a parasite, involving host 670 

range expansion (here defined as colonization of a novel host without losing the ancestral 671 

host opposed to considerations that parasites may shift from one host to another without 672 

range expansion). 673 

• Host specificity: Measures of the number and/or diversity of host species a parasite is 674 

capable of infecting. 675 

• Niche: Broadly and indistinctly defined environmental space suitable for a species to 676 

survive and reproduce. For parasites, the host range broadly refers to the main component of 677 

their niche. 678 

• Potential resources: The range of resources that a species could utilise if it encountered 679 

them. In terms of host species, this is equivalent to fundamental host specificity, representing 680 

the full (unknown) range of hosts species a parasite is capable of infecting. 681 

• Realized niche (e.g. realized host range): A set of host species observed to be infected by 682 

a parasite in a specific regional and spatiotemporal context. 683 

• Spillover: Cross-species transmission of a parasite into a host population not previously 684 

infected. In contrast to ‘host shifting’, ‘spillover’ often refers to infection of novel 685 

populations but not necessarily novel species (i.e. no host range expansion). The term appears 686 

to be most commonly used to describe cross-species transmission from wildlife to humans.  687 

• Stockholm Paradigm: Hypothetical concept arguing that host range expansions by 688 

parasites result from the interplay between novel host-parasite opportunities in response to 689 
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shifting community assembly and phylogenetic and/or ecological barriers that limit parasite 690 

spread to novel hosts. 691 

• Transferability (models): Whether a model (and its parameter estimates) derived from a 692 

particular set of spatiotemporal conditions is transferable to other conditions and can be 693 

generalized. In terms of resource utilisation, a transferable model would allow accurate 694 

predictions of resource use from a model built using data from elsewhere. 695 

• Transmission: The transfer of a parasite between different host individuals or other entities 696 

(such as relevant vectors). A term typically used in epidemiological studies. 697 

• Zoonosis (zoonotic): An infectious disease of humans caused by parasites acquired from an 698 

animal reservoir (host individual/ population/ species infected with a parasite and acting as a 699 

source for further infection and parasite spillover). 700 

 701 

 702 

Box 1: Drivers of contemporary host specificity 703 

Host community composition is influenced by various biotic and environmental filters that 704 

can collectively lead to dramatic variation in a parasite’s realized host specificity. Here we 705 

outline a number of these situations, though it is important to note that this list is by no means 706 

exhaustive.  707 

• Anthropogenic invasion of key hosts: Changes in host community composition 708 

caused by anthropogenic invasions can lead to important changes in parasite realized 709 

host specificities. For example, the rapid expansion of chytrid fungus, the parasite 710 

responsible for threatening declines of many amphibians globally, largely occurred 711 

along wildlife trade routes [95]. In addition, invasive commensal rats have been 712 

crucial for the global spread of parasitic helminths that have ‘hitch-hiked’ their way to 713 

encountering novel host species [33], ultimately shaping parasite biogeographic 714 

distributions [31]. 715 

• Changing community compositions leading to new transmission dynamics: The 716 

population structure of a parasite depends on the diversities and relative abundances 717 

of different host species infected [17]; host abundance is itself a plastic trait that 718 

typically varies across environmental gradients, strongly contributing to plasticity in 719 

realized host specificity [96, 97]. Following the examples above, introduced species 720 

may not only serve as potential vehicles for introduced parasites, but may also directly 721 
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alter existing local host-parasite interactions by changing the abundance of endemic 722 

host species [19], hence inducing cascading effects on host-parasite interactions. 723 

• Habitat encroachment and the human-wildlife interface: As a consequence of 724 

habitat conversion and fragmentation, humans and domestic species are in frequent 725 

contact with wildlife species. Cat fleas, intestinal helminths, and canine distempter 726 

virus are among the increasing number of parasites observed to expand their host 727 

ranges to include a diversity of wild mammals following such novel human-wildlife 728 

encounters [7, 98, 99]. 729 

• Expanding dietary range of a key host: Biotic interactions among key host species 730 

play a large role in driving plasticity in host specificity. For example, within its exotic 731 

range in Australia, the presence of dingos and dingo/dog hybrids that feed on a large 732 

range of endemic wildlife has enabled the establishment of stable transmission cycles 733 

of the tapeworm Echinococcus granulosus through wild dogs and endemic wildlife 734 

[100], illustrating how host shifting into novel communities may be facilitated by 735 

particular regional conditions. 736 

• Exposure of parasites to competitors or facilitators: Parasites themselves can also 737 

exhibit important biotic interactions. Antagonistic and synergistic effects in multi-738 

host, multi-parasite systems affect both the co-occurrence of co-infecting parasites 739 

within the same host individuals [53, 101] as well as eco-epidemiological 740 

transmission dynamics [102]. 741 

• Climate-related changes in the host affinity of vectors: Climate-driven changes in 742 

the feeding patterns of important vectors may facilitate opportunities for vector-borne 743 

parasites to contact novel host species. For instance, warming climate influences the 744 

human-feeding habits of rickettsiae-vectoring tick species, leading to human spillover 745 

events [103]. Climate in combination with habitat changes can also affect the host 746 

range of tick-borne Borrelia bacteria, the cause of Lyme disease [104, 105]. 747 

 748 

 749 

Box 2: A data primer on host shifting and specificity  750 

Any conclusion on fundamental host specificity depends on a sufficiently large number of 751 

individuals and potential host species examined for robust inference. At their most basic 752 

level, host specificity analyses rely on binary vectors describing the confirmed presence or 753 

absence of infection by a particular parasite from a diversity of sampled host species. Ideally, 754 
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the scope of the study should be narrow enough that the sampled species will all be suitable 755 

potential hosts for the selected parasite (occurring within the parasite’s geographical 756 

distribution and exhibiting some level of possible exposure). Yet even with good foresight 757 

and selection of possible hosts, these presence-absence vectors are surprisingly difficult to 758 

acquire. For example, if data from multiple studies are compiled to represent a suite of known 759 

host-parasite associations, such data are usually strongly susceptible to bias. This is because 760 

such databases typically contain presence-only records. For host specificity inferences 761 

beyond simple diversity metrics of the observed host species, the absence records 762 

(representing species not found to be host after a reasonable sampling effort) are just as 763 

important as presence records and should be included where possible. An option to make 764 

presence-only data accessible to analysis could be the utilisation of pseudo presence-absence 765 

data, in which infected host species are recorded as ‘viable’ and uninfected species (i.e. those 766 

species present in a pool of potential host species but not recorded to be infected) as ‘non-767 

viable’ hosts. 768 

Without detailed information on sampling efforts such as the number of host 769 

individuals screened for a parasite, there is uncertainty whether parasites are truly absent 770 

from a host species that is reported to be uninfected, challenging the estimate of host range 771 

[106, 107]. Such absences can represent ‘false zeros’ (missing observations of interactions) 772 

when small sample sizes and a naturally low parasite prevalence result in limited detection 773 

probability. A simple proxy of sampling bias could be a measure of research effort, such as 774 

the number of scientific publications linked to a particular potential host species (see e.g. 775 

[99]). However, conservative interpretation is warranted as indices of research effort are only 776 

coarse proxies of the true underlying sampling bias (i.e. the number of publications does not 777 

necessarily reflect the true sampling efforts of how many host individuals have been surveyed 778 

for a parasite). 779 

Preferably, individual-level data (i.e. detailed data on the number of individuals 780 

examined and infected) will be available so that biological patterns and processes can be 781 

distinguished from sampling bias arising from unequal and small sample sizes [83, 85, 108]. 782 

If detailed information from empirical field surveillances (such as the number of infected and 783 

uninfected host individuals captured) are available, the prevalence of parasites in different 784 

sympatric host species can be estimated. If combined with further information on host species 785 

occurrence and density (which are often available or can be estimated from trap or survey 786 

data), such estimates provide valuable information on the relative importance of different 787 

host species as parasite reservoirs. These relative importances can be used to weight the 788 
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contributions of different host species to a parasite’s realized host specificity, aligning to the 789 

concept that host species may have different reservoir capacities. Incorporating measures on 790 

host presence and abundance might be of particular relevance if host abundances are subject 791 

to strong fluctuations [13, 109] and/or migration that drives the connectivity of 792 

geographically disparate host assemblages [48, 110]. 793 

For parasites with complex life cycles, it can also be important to consider details of 794 

parasite life histories. For some helminths, for example, different sets of host species are 795 

utilised to complete different parts of the life cycle (i.e. predatory carnivorous species that 796 

serve as definite host versus herbivorous species that serve as intermediate hosts). In addition, 797 

detailed molecular data can provide valuable insight into whether different sympatric host 798 

species share the same strains or populations of a parasite [111], eventually narrowing down 799 

the pool of host species relevant for analysis.  800 
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Table 1. Overview of selected components and methods to define host specificity. 817 

Method Methodological approach Example/Reference 

Number of host species 

infected 

Count of the number of 

infected host species. This 

basic count ignores host 

species attributes such as 

phylogenetic or ecological 

relationships.  

[112] 

Diversity indices capturing 

variation in host community 

composition (e.g. Shannon-

Wiener, phylogenetic 

diversity, UniFrac) 

Diversity measures based on 

the abundance and/or 

attributes attributed to the 

range of observed host 

species (i.e. phylogenetic 

diversity). 

[5], [113] 

Geographic specificity and 

host range turnover (β-

diversity) 

Measures of the 

dissimilarity of a parasite’s 

host ranges in different 

regions, resembling β-

diversity measures. 

[114], [17] 

Distance-based phylogenetic 

and/or functional specificity 

Measures of the distances 

between pairs of host 

species in terms of 

phylogenetic or functional 

relationships. Distance 

measures can be weighted 

by prevalence to give greater 

weight to commonly 

infected host species. 

[115], [15] 

Network indices of 

specialization (d’) 

Calculated from bipartite 

host-parasite interaction 

networks, these indices 

measure of a parasite’s 

interactions with a range of 

[76] 
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potential host species (i.e. 

the sampled host species 

pool), weighted relative to 

the host interactions 

displayed by other parasites 

in the community.  

Degree of matching between 

host and parasite 

phylogenies 

Measures of the matching 

between host and parasite 

phylogenies, used for 

depicting community-level 

patterns of possible co-

evolution. Specificity 

inferences are drawn based 

on how tightly parasite 

evolution is linked to host 

evolution. 

[116] 

Host competence 

heterogeneity 

The spread of parasites 

through host assemblages 

can be largely determined by 

their variation in potential 

hosts’ competence and 

reservoir potential. Such 

measures have been rarely 

used to measure host 

specificity to date, but could 

be especially useful to 

express plasticity in host 

specificity. 

[117], [118] 
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 830 

Figure 1. Rise in the proportion of peer-reviewed research articles mentioning ‘host 831 

specificity’ for select groups of parasites over time. Colours of bars represent the total 832 

number of unique peer-reviewed journals mentioning ‘host specificity’ for each parasite 833 

group in each year. Articles were accessed by searching the NCBI PubMed database on 2nd 834 

April 2019. 835 
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 838 

Figure 2. Illustration of how environmental filters across a parasite’s geographical range may 839 

impact the parasite’s realized host specificity. Hosts are sampled for the parasite across an 840 

environmental gradient that influences opportunity for the parasite to interact with each 841 

potential host species. Density plots depict the probabilities that observed host pairwise 842 

phylogenetic distances differ from those expected (representing the entire host pool that 843 

occurs at a given location) for each site. More negative measures (darker purple tones) 844 

indicate a parasite infects hosts that are more closely related than expected, indicating 845 

specialism; more positive measures (warmer yellow tones) indicate generalism.  846 
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