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Summary

The human physiology undergoes significant adaptation during pregnancy, partic-
ularly within the cardiovascular system. Insufficient cardiovascular adaptation can
lead to several serious pathologies which can affect the growth of the foetus, such
as hypertension, hypotension, pre-eclampsia, and placental insufficiency. Peripheral
oedema occurs in the majority of woman over the course of a pregnancy, which
is caused when the lymphatic system is unable to drain the excess fluid that has
gathered in the interstitia.

In order to provide a platform for modelling these pathologies, a comprehensive
closed-loop 1D-0D cardiovascular network model of pregnancy is developed and
presented in this thesis. The computational framework allows in-vivo measurement
data, including pressures, cardiac output, and gestational week, to be integrated
into the cardiovascular model. New numerical schemes are presented for reduced-
order modelling of the cardiovascular system and the lymphatic system with a view
to providing a platform for a coupled cardiovascular and lymphatic model.

An automated parameter estimation technique is presented, which allows the
integration of patient measurement data into the model through the iterative adap-
tation of haemodynamic parameters, and could be utilised in a wide variety of
cardiovascular pathology modelling.

The pregnancy model is implemented using patient specific measurements and
is extended to cover all gestational weeks for an idealised healthy pregnancy. The
model solutions have shown good agreement with values from the literature for:
the pulsatility index; pulse wave velocity; and flow rate waveforms in the uterine
arteries, which includes the presence of a notch that is used in the clinic to detect
pathologies. A novel aspect of the model is in predicting the blood supply to the
uterus via the uterine and utero-ovarian communicating arteries, which could be
useful in a clinical setting. The model is expected to provide a platform for modelling
various pathologies that can develop during pregnancy.
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Common Symbols and Abbreviations

Parameter
Name

Symbol Value Units

viscosity µ 0.035 poise
density ρ 1.06 g/cm3

cross-
sectional
area

A −− cm2

pressure P −− mmHg
flow rate Q −− ml/s
temporal co-
ordinate

t −− s

axial coordi-
nate

x −− cm

viscous fric-
tion constant

ξ −22 cm3/g

reference
pressure

P0 −− mmHg

external pres-
sure

Pext 0 mmHg

reference
cross-
sectional
area

A0 −− cm2

wall viscosity
coefficient

Γ −− g/s

collapse pres-
sure

Pcollapse -10 mmHg

reference
wave speed

c0 −− cm/s

resistance R −− mmHg min/l
compliance C −− ml/mmHg
inductance L −− mmHg s2/ml

Table 1: Glossary of terms for blood flow equations. Includes values where applica-
ble.
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Chapter 1

Introduction

In this thesis a closed-loop 1D-0D computational model of the human cardiovascu-

lar system during pregnancy is developed. The model utilises participant data from

in-vivo measurements, using an automated parameter estimation technique. This

chapter provides an overview of: human pregnancy, including physiological adapta-

tion and the development of pathologies; the role and function of the cardiovascular

system; the adaptation of the cardiovascular system during pregnancy; and the role

of the lymphatic system. At the end of this chapter the outline and objectives of

this thesis are presented.

1.1 An Overview of Human Pregnancy

Approximately five days after fertilisation of the egg, the collection of cells begins

to organise into a structure called a blastocyte before implantation (adherence to

the uterine wall). The blastocyte structure has three main sections: an inner cell

mass, referred to as the embryoblast; a blastocoel, which is a fluid-filled cavity; and

trophoblasts, which are located on the outer wall of the blastocyte. The blastocyte

embeds itself into the innermost layer of the uterus (endometrium), and develops to

become the embryo, and then eventually the foetus.

Pregnancy causes many significant changes to the physiology of the female hu-

man, which includes mechanical and chemical adaptation. The following are some

of the changes that occur in the blood:

• an increase in plasma volume by up to 50% and a smaller increase in red blood

cell mass creates a decrease in haemoglobin concentration [320];

• a small decrease in platelet count, though normally still within a healthy range

[320];

• changes in blood coagulation leads to an increased risk of blood clotting and

venous thrombosis [320].
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Additional adaptations of the blood and cardiovascular system are described in

section 1.3.

The respiratory system is also affected by pregnancy. There is an increased

demand for oxygen during pregnancy, which is primarily caused by a 15% increase

in the rate of metabolism and a 20% increase in oxygen consumption [320]. There

are changes in the renal vasculature, anatomy, and function. These include the

vasodilation of renal blood vessels, increased renal plasma flow, and an increase in

protein excretion.

With all the adaptation that needs to occur for a healthy pregnancy, there are

also many pathologies that can develop. Many of these pathologies are caused by

a mixture of poor cardiovascular adaptation and chemical imbalances. Pregnant

woman are at an increased risk of developing: depression and anxiety disorders

[14] due to the chemical and hormonal changes that occur; peripheral oedema, due

to the lymphatic system being unable to drain the increased amount of fluid that

gathers within the interstitia; and pulmonary oedema, due to a decrease in the

colloid osmotic pressure by 10 − 15% [320]. There are also several serious cardio-

vascular related pathologies which may develop during pregnancy and can impact

foetal development, such as pre-eclampsia, placental insufficiency, hypertension, and

hypotension, which are discussed in section 1.3.

Due to the interaction of the cardiovascular and lymphatic systems, it would

be advantageous to create a coupled cardiovascular and lymphatic network model.

This could lead to a greater understanding of how several pathologies develop, and

potentially aid clinicians in diagnosis and treating these pathologies. Thus in this

thesis a framework is developed for cardiovascular and lymphatic system models.

Cardiovascular models are quite well-developed and are currently being used to

answer clinical questions. However, the lymphatic system is still poorly understood

and currently no full body lymphatic vessel network has been developed, nor is

there enough data from literature to create one. Therefore no coupling between the

lymphatic and cardiovascular system is performed at this stage in the development

of the framework.
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1.2 The Cardiovascular System

The human circulatory system is comprised of the cardiovascular system and the

lymphatic system, with the former being investigated and understood much more

thoroughly. From an outside perspective, the cardiovascular system is comprised

of the heart, blood vessels, and approximately 5 litres of blood. However, it serves

many important roles which includes: the transport of oxygen, carbon dioxide and

other waste products to and from body cells; transport of hormones and blood cells;

is a critical component in regulating body temperature and pH levels; and aids the

healing process from injuries contains cells to fight disease causing pathogens.

The cardiovascular system is a closed double-loop system comprised of the sys-

temic loop and the pulmonary loop. In the systemic circulation oxygenated blood is

pumped into the aorta from the left ventricle of the heart. The blood transports oxy-

gen and nutrients to organs, tissues, and body cells, before returning de-oxygenated

blood and carbon dioxide to the right atria of the heart. The pulmonary loop brings

the de-oxygenated, carbon dioxide rich blood from the right ventricle of the heart

to the lungs where gas exchange takes place. The function of the lungs removes

carbon dioxide and other waste products from the body and binds oxygen to the

haemoglobin protein, then returns the oxygenated blood to the left atria of the

heart.

Both systemic and pulmonary system loops have similar structures and processes,

although the systemic system has more auto-regulation mechanisms. The arterial

systems are comprised from arteries transporting blood to the micro-circulation.

The micro-circulation can be separated into three main components: the arteri-

oles, which are small muscular arteries that branch from the larger arteries, and

can contract/relax to change downstream resistance and resistance distribution; the

capillaries branch from the arterioles and have thin walls which aids in their func-

tion for nutrient exchange; the capillaries confluence into the venules, which are

small veins with smooth muscle present in their walls allowing vasoconstriction and

vasodilation to take place. Finally the venules join to become larger veins which

bring blood back to a heart atria. Figure 1.1 shows the general overview of the

cardiovascular circulation.

The systemic arterial system transports nutrients and minerals to the majority
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of organs in the body which includes the brain via the cerebral arteries, the kidney

via the renal arteries, the liver via the hepatic artery and hepatic portal vein, the

heart via the coronary arteries, the large and small intestines via the inferior and

superior mesenteric arteries, and the pancreas, spleen, and stomach via the celiac

artery. The circulation of the liver is both interesting and unusual as it not only

receives oxygen-rich blood from the hepatic artery, but also receives low oxygenated,

nutrient-rich blood from the hepatic portal vein. The hepatic portal vein receives

blood from the spleen, and both large and small intestines which have absorbed

nutrients.

There are many auto-regulation mechanisms present in the cardiovascular sys-

tem, particularly in the systemic circulation. These mechanisms aid in control-

ling/maintaining blood pressures and/or blood flow rates. There are baroreceptors

located in the carotid sinus and aortic arch. The receptors are pressure sensitive

and/or stretch sensitive nerve endings that continuously sends signals to the auto-

matic nervous system, the brain uses this information to regulate blood pressure and

flow rates by adapting the heart rate and heart contractility, vascular compliances,

and vascular resistances.

There are many varieties of cardiovascular disease (CVD) ranging from problems

with the heart such as cardiac arrhythmia (irregular heart beats), blood vessel steno-

sis (narrowing) or aneurysms, hypertension (high blood pressure), and hypotension

(low blood pressure). With the many types of pathologies effecting the cardiovascu-

lar system, cardiovascular disease is responsible for the majority of deaths worldwide

with 31% of all global deaths attributed to CVDs according to the world health or-

ganisation [247].

1.3 The Maternal Cardiovascular System

During a healthy human pregnancy the cardiovascular system undergoes significant

adaptation; with an increase in cardiac output by 30− 50% [209, 320], which is due

to an increase in both stroke volume and heart rate; up to a 50% increase in blood

volume [161]; significant increases to vascular compliance [26, 87, 150, 218]; and

significant decreases in total peripheral resistance [150]. With these physiological

changes, the mean arterial pressure remains relatively stable during a healthy preg-
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Figure 1.1: General overview of the cardiovascular system. Showing the right atrium
(RA), right ventricle (RV), left atrium (LA), and the left ventricle (LV); along with
the aortic valve (AV), mitral valve (MV), pulmonary valve (PV), and the tricuspid
valve (TV).

nancy, often decreasing slightly for the first to second trimesters and then increasing

towards term [150]. If cardiovascular adaptation does not occur sufficiently, a num-

ber of pathologies may result. For example, an insufficient decrease in peripheral

resistance relative to the increase in cardiac output will result in high blood pres-

sure (hypertension). While an insufficient increase in blood volume relative to the

amount of vascular remodelling could result in low blood pressure (hypotension).

More serious pathologies such as placental insufficiency and pre-eclampsia are as-

sociated with hypertension, often caused by significantly elevated resistance of the

placenta/uterine system; additionally in pre-eclampsia, elevated levels of protein are

present in urine (proteinuria) [343, 263, 20, 131], while placental insufficiency can

lead to reduced foetal growth [127, 232, 181].

The maternal system is required to undergo a number of significant physiological

adaptations, including the remodelling of various components in the cardiovascu-

lar system. There is significant heart remodelling [150], with an increase in wall

thickness and left ventricular mass [145]; there is also significant remodelling of the

vascular network, such as increased vessel area, increased vessel compliance, and the

creation and development of a new specialised organ to facilitate nutrient exchange

between maternal and foetal systems called the placenta. The utero-ovarian system
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undergoes the most significant changes [53, 66, 200]. The spiral arteries, which are

the vessels that deliver blood to the uterine micro-circulation and placenta, undergo

the most drastic change, with a complete change in their micro-structure, whereby

their endothelial and smooth muscle cells are replaced by trophoblast cells from the

foetus. These trophoblast cells originate in the foetus, and propagate through the

maternal uterine vessels and tissues, beginning with entering the walls of the spiral

arteries before migrating through the entire inner third of the myometrium (which

is the outer layer of the uterus) [53]. Remodelling of the uterine vessels occurs

by increasing the unstressed vessel lumen diameter, and also significantly increases

the vessel wall compliance, which lowers resistance of the entire uterine region, and

encourages and increase of blood flow to the placenta [270, 367, 153].

The most significant regional increases of blood flow are to the uterus, ovaries,

kidneys, and skin. The uterus/placenta receives the largest increase of blood flow,

with significant increases to flow in the uterine artery, which supplies the lower and

mid portions of the uterus, being observed [98, 137]. The utero-ovarian communi-

cating artery, which supplies the fundus of the uterus is also expected to increase its

blood flow rate significantly, although direct measurements of this flow have so far

been unsuccessful due to the complex flow behaviour in this region [262, 47]. How-

ever, it has been mentioned that if the utero-ovarian communicating artery reaches

the same diameter as the ascending uterine artery, then the communicating artery

is capable of supplying the uterus with the majority of its blood supply needs [52].

1.4 Utero-Ovarian Circulation

The utero-ovarian circulation contains a complex arrangement of blood vessels.

Although there are numerous anatomical variations possible; the most common

anatomical configuration in the systemic arteries contains a loop which is shown in

figure 1.2, whereby the ovarian artery anastomoses with the uterine artery. This

creates complex flow behaviour in the uterine region [52, 47, 96], as blood can travel

from the uterus via the ovarian artery, which branches from either the descending

aorta or renal artery, and also reach the uterus via the left and right uterine arteries,

which is one of the branches from the internal iliac artery. In addition, the placenta

and uterine vascular beds are in parallel, significantly lowering the overall resistance
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Figure 1.2: Diagram of the utero-ovarian circulation. Showing an example of a one-
sided connection, with the right side representing the arterial circulation and the
left side representing the venous circulation

of the uterine region during healthy pregnancy. The vascular bed configuration

before and after the development of the placenta are shown in figure 1.3.

The uterine artery generally supplies the largest percentage of blood to the

uterus, although for a non-pregnant woman each uterine artery typically receives

less than 0.5% of cardiac output [52]. There are numerous other named (and un-

named) vessels which may also carry blood to the uterus, such as the lumbar arteries

and vaginal arteries. As in the majority of the cardiovascular system, the systemic

veins and systemic arteries are essentially symmetric [52].

During pregnancy the utero-ovarian circulation undergoes considerable adapta-

tion, including the development of the placenta, structural changes to many vessels,

and the enlargement of the uterus itself. The shape and characteristics of the uterine

artery velocity waveform have been studied extensively via Doppler ultrasound, with

examples of uterine artery waveform shapes shown in 1.4. The presence of a notch in

early diastole in the uterine artery waveform has been linked to several pathologies,

and has been investigated as an indicator of increased risk to a patient developing a

pathology later in pregnancy [98, 137]. The notch in the waveform is typically seen

in non-pregnant individuals (Figure 1.4a), however during a healthy pregnancy the

notch in the waveform is dampened out as pregnancy progresses, which is a a direct
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(a) Diagram of vascular bed configura-
tion in the non-pregnant uterus.

(b) Diagram of vascular bed configura-
tion in the pregnant uterus.

Figure 1.3: Vascular bed arrangement for non-pregnant and pregnant humans

(a) uterine artery wave-
form non-pregnant.

(b) healthy uterine artery
waveform mid pregnancy.

(c) unhealthy uterine artery
waveform mid pregnancy.

Figure 1.4: Example uterine artery waveform examples for non-pregnant, healthy
pregnant, and unhealthy pregnant conditions

result of the increased vessel compliance, and typically the notch should be absent

in most patients by the week 20-22 (middle of second trimester), which is shown in

Figure 1.4b. The presence of the notch in the uterine artery waveform (Figure 1.4c)

has been linked to the development of pre-eclampsia in later pregnancy, and to poor

foetal growth [109]. Flow rates in the uterine arteries are routinely measured to

ensure the foetus is receiving enough blood for growth, however, flow rates from the

utero-ovarian communicating artery are currently unknown and attempts to mea-

sure this have currently been unsuccessful [262, 47] due to the complex anatomy

and flow behaviour in the pelvic region.

1.5 Cardiovascular Models of Pregnancy

Current models of pregnancy mainly exclude the maternal system; instead focusing

on the foetal cardiovascular system [266, 130, 227], and flow in the umbilical cord
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[273, 311]. Although recently, a lumped parameter model of the maternal system

was proposed [89]. However, it is well known that lumped parameter models are

unable to account for wave-propagation phenomena, and therefore would have a

limited range of applicability, as the clinical detection of many pathologies require

waveform measurements and estimations of arterial stiffness, which are dependant

on wave-propagation and wave-reflection phenomena. Moreover, blood vessels in

the utero-ovarian system form a loop, such that the uterus can be supplied with

blood from the ovarian arteries (which originate from the descending aorta), and

the uterine arteries (which originate from the internal iliac arteries). Thus, there is

no current model of the maternal circulation which can account for various wave-

propagation phenomena, and that considers the various pathways of blood supply

to the uterus, from the heart.

1.6 The Lymphatic System

The primary role of the lymphatic system is to drain fluid from body tissues and

transport the fluid, now called lymph, back to the systemic venous system. The

lymphatic system also has an important function in the immune system, being one

of the first lines of defence, and recently has been shown to play a greater role

in fighting disease than first thought [280]. Hydrostatic pressure from the arterial

side of the capillaries causes fluid to leak into the interstitia, becoming interstitial

fluid. Colloid osmotic pressure causes the majority of this interstitial fluid to be re-

absorbed into the cardiovascular system via the venous side of the blood capillaries,

while the remaining fluid is absorbed and carried by the lymphatic system. There

is a wide range of estimates for the amount of blood which is re-absorbed, with 1 to

12 litres per day being claimed [308, 305].

When there is insufficient uptake of fluid from the interstitia to the lymphatic

system, the fluid will gather in the interstitia and body tissues, causing swelling that

is called oedema. Oedema can occur in many location in the body, but the most

common type is peripheral oedema, which occurs in the feet, ankles, legs, and hands.

There are many causes of peripheral oedema, such as hypertension, where high blood

pressure forces more fluid from the capillary blood vessels and into the interstitia;

congestive heart failure, where the heart is unable to pump sufficient blood around

Pg. 9 / 284



1.6. THE LYMPHATIC SYSTEM

the body; trauma, where a region of tissue has been damaged; and renal failure,

where the kidneys fail the regulate fluid volume in the body correctly. A common

cause of oedema is from the damage or removal of lymph nodes as a result of cancer

treatment. Edema which is caused by the damage (or removal) of lymph vessels or

nodes is commonly referred to as lymphedema. This type of pathology can arise in

cancer patients whose lymph nodes have been removed or damaged by surgery or

radiation therapy. Currently there exists no method of predicting whether a patient

will suffer from edema after the removal of these lymph nodes [168].

The lymphatics system has not been investigated as thoroughly as the cardio-

vascular system, and many aspects and functions of the lymphatic system are not

fully understood [79, 280]. Due to the small size of lymph vessels a full description

of the lymphatic vessel network is currently impossible as current in-vivo imaging

techniques are insufficient at capturing this small scale. The lymphatic system is

comprised of: initial lymphatics, which are thin-walled capillaries that absorb fluid

from the interstitia with valve like structures in their wall [44]; pre-collecting and

collecting lymphatics, which contain one-way valves and smooth muscle in the vessel

walls which contract; there are also lymph ducts and trunks which are the largest

lymph vessels. The lymph ducts drain directly into the venous system near one of

the subclavian veins. There are various organs that are considered part of the lym-

phatic system including: lymph nodes, bone marrow, thymus gland, tonsils, spleen,

and Peyer’s patches in the ileum. Figure 1.5 shows an example of a lymphatic cap-

illary vessel and its valve like structure, which allows fluid uptake and prevents fluid

leakage back into the interstitia.

During pregnancy significant lymphangiogenesis (creation of lymphatic vessels)

occurs in the region near the placenta [282]. This may be an indication that the

lymphatic system plays an important role at the maternal-foetal interface, however

this function is currently not known. The lymphatic system also needs to increase

its workload during pregnancy as there is an increased amount of blood plasma

that leaks into the interstitia. This can cause peripheral oedema, which occurs at

some stage in 80% of pregnancies [94]. Due to the significant increase in plasma

volume, pregnant individuals are also at a greater risk of developing other types of

oedema, such as pulmonary oedema, where the amount of fluid that leaks into the

interstitia around the lungs exceeds the drainage capacity of the lymphatic vessels

in the region.
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Figure 1.5: Overview of fluid leakage from cardiovascular capillaries (red vessel) to
interstitia, and fluid uptake by the lymphatic capillaries (green vessel)

A coupled cardiovascular and lymphatic modelling approach could lead to im-

proved diagnosis and treatment of edema, whether in aiding a clinicians decision

making when removing lymph nodes in cancer treatment, or to help understand

why oedema occurs in the majority of pregnancies. However, modelling of the lym-

phatic system is still in its infancy and many improvements are required before

clinically relevant lymphatic models can be developed.

1.7 Outline of Thesis and Objectives

The aim of this thesis is to develop a computer modelling framework of the car-

diovascular and lymphatic systems during pregnancy, that is capable of integrating

patient measurement data to aid parameter estimation techniques.

Chapter 2 In chapter 2 background information about the cardiovascular system is

presented. The chapter begins by giving an overview of literature in cardiovascular

modelling. The derivation of the one-dimensional blood flow equations is described,

along with the various components used to construct a closed-loop 1D-0D model.

The end of the chapter introduces the concepts used to analyse the model through

mathematical means, including: the separation of waves into forward and backward

components, wave intensity analysis, frequency domain analysis, and the basis of

transmission line theory, which comes from the linearisation of the one-dimensional
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blood flow equations.

Chapter 3 This chapter begins by giving background information on the numerical

schemes which are typically used to solve the 1D-0D haemodynamic equations. The

Enhanced Trapezoidal Rule Method (ETM), which is the numerical scheme used

in this thesis, is presented in detail: including the linearisation of equations for

all modelling components; the construction of elemental matrices; and the various

coupling procedures used.

Chapter 4 In this chapter the ETM scheme is rigorously tested through a series of

carefully chosen problems. The scheme is tested on published benchmark problems,

and cases with analytical solutions, which includes shock-wave problems, aneurysm,

and stenosis problems. The chapter finishes with a convergence study.

Chapter 5 In this chapter further numerical simulations are performed to investi-

gate the effects of non-linearities in the system of equations. This includes a com-

parison of the non-linear set of equations, the linearised set of equations, and the

lumped model equations, in a closed-loop 1D-0D cardiovascular network model. In

addition the impact of the choice of boundary conditions at vessel junctions is inves-

tigated, with a comparison of using either continuity of static pressure, or continuity

of total pressure.

Chapter 6 In this chapter a framework for estimating model parameters from in-

vivo participant measurements is presented. The chapter begins by describing the

various parameters which are estimated from literature. Finally the initial estima-

tion of parameters and an automated parameter adaptation technique are described.

Chapter 7 In this chapter the closed-loop 1D-0D model of the maternal cardio-

vascular system during pregnancy is presented. The chapter begins by providing

background information on the adaptation of the maternal cardiovascular system.

The model is then implemented for patient-specific measurement data in the three

trimesters and post-partum. Three of the patient waveforms are then compared

with digitised Doppler waveforms for pregnant and non-pregnant conditions. The

model is extended to an idealised pregnancy, which is performed for all gestational

weeks. The simulations results are validated through comparisons with several clin-
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ical indices such as pulse wave velocity, and the pulsatility index. The chapter ends

with a sensitivity analysis, showing the dependence on several model parameters

such as: cardiac parameters, initial conditions, and haemodynamic quantities.

Chapter 8 In this chapter a computational model of the lymphatic system is pre-

sented. The chapter presents a new numerical scheme for the collecting lymphatic

vessels, which allows the frequency of lymphangion contraction to be determined

automatically based on the pressure in the lymphangion.

Chapter 9 The final chapter provides a discussion on the strengths and limitations

of the modelling frameworks. Finally an overview of the main findings of the thesis

is given, and possible directions and applications for future work are presented.
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Chapter 2

The Cardiovascular System

2.1 Introduction

In this chapter, an introductory description of human cardiovascular physiology is

presented, along with the theory used to construct the modelling components of the

human cardiovascular system. Derivations of the governing equations used in the

model is given, using a reduction from the three-dimensional system to derive the

one-dimensional blood flow equations, and in turn the linearisation and reduction

of the one-dimensional system to determine the zero-dimensional lumped model

equations. Lumped parameter models used to describe vascular beds, the heart, and

valves are formulated and described. The chapter ends with a mathematical analysis

of the one-dimensional blood flow equations, which describes how the governing

equations can be written in terms of forward-propagating and backward propagating

characteristics. Finally, several commonly used analytical techniques are presented,

including: wave intensity analysis, which is performed in the time domain; Fourier

analysis, which is performed in the frequency domain; and an approach that predicts

the transmission and reflection of an incoming wave in the presence of changes in

vessel properties, and at vessel junctions. Parts of this chapter have been published

in [65].

2.2 Modelling Human Haemodynamics

Three-dimensional fluid-structure interaction (FSI) models of haemodynamics are

recognised as the most accurate models, and several highly complex FSI models

exist [346]. However, these models are very computationally expensive, and hence

are generally only applied to a small number of vessels, such as the aortic arch

[215], cerebral arteries [346, 351, 335], or coronary arteries [345, 99, 77]. Further-

more, these FSI models require large amounts of input data ranging from: vessel

geometry, which is often extracted using 3D or 4D radiographic imaging techniques,

such as rotational angiography [351, 335], computed tomography (CT) [346, 345,
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99] or magnetic resonance imaging (MRI) [215]; haemodynamic quantities such as

volumetric flow rate, which often require an assumption of the velocity profile at

the inlet and of laminar flow; and pressure measurements, which would generally

require the invasive surgical technique of catheterisation.

Material properties of the vessel wall would also be required in order to accu-

rately estimate vessel wall motion (compliance). However this is not feasible or

ethical, as it would require a sample of a patients artery. In addition a sample taken

outside of the body would exhibit significantly different conditions than the environ-

ment in-vivo. The mechanical properties may be estimated from a sample from a

cadaver, which will also be under significantly different conditions than in-vivo. Due

to lack of experimental testing, the majority of FSI models assume uniform material

properties in a vessel and consider the wall to have isotropic properties [110, 345,

215], when significant anisotropy has been observed experimentally [380]; or from

expensive four-dimensional imaging data such as 4D flow MRI, which can track the

three dimensional wall motion and/or blood velocity [195, 133]. This wall motion

can be used to either estimate the elastic moduli of the material, or to define wall

motion of the vessels during the simulation, essentially avoiding the fluid-structure

interface problem as the boundary/interface of the fluid and vessel wall is defined,

allowing the vessel wall (solid) model to be neglected. Vessel compliance can also

be estimated from the wave speed by finding the time difference between two mea-

surable waveforms (normally pressure) for specific wave characteristics, such as the

initial rise of pressure at the beginning of diastole; however such a method can only

be performed non-invasively for a small selection of vessels, and is typically used to

find the overall/average wave speed in the cardiovascular network, rather than the

wave speed in one specific vessel [251, 236]. The requirement to know these mate-

rial properties can be overcome by assuming a rigid wall, however these rigid wall

3D computational fluid dynamic (CFD) models are un-physiological, as significant

enlargement of vessel areas occur from pressure changes between diastole to systole,

and to a much lesser extend vessel axial and circumferential elongation.

Early contributions to the development of 1D haemodynamic models include

Barnard et al. [23], Hughes and Lubliner [160], Rooz et al. [293], Stergiopoulos [324],

Stergiopoulos et al. [325]. Recently, the field of one-dimensional blood flow mod-

elling has received more interest with further development of the one-dimensional

model via the use of different numerical methods such as finite differences [156] and
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[188], finite volume methods [216], and finite element methods [313, 117, 224]; there

also exists a semi-implicit scheme which allows a 1D or 2D model to be implemented

within the same framework [69]. One-dimensional blood flow models have also been

used to model the calf muscle pump [169], cerebral artery flow regulation [10], foetal

veins [188], neonatal pulmonary atresia [225], coronary circulation [224, 228, 229],

heat transfer in the systemic system in [85], and the entire human cardiovascular

system [220, 221, 230].

Validation of these one-dimensional models can generally be collected into three

main methodologies: in-vivo which includes outlet boundary conditions [244], flow

in bypass grafts in porcine subjects[322], patient specific arterial network [288], and

coronary artery flow [228]; in-vitro using experimental set-ups [295, 205, 31, 12];

in-silico studies comparing 3D and 1D models [142, 372, 42], or several 1D models

[41, 357].

The use of one-dimensional blood flow models has become more common as they

have gained recognition as a powerful tool for analysis of haemodynamic waveforms

in the cardiovascular system. One-dimensional modelling provides a computation-

ally inexpensive alternative to the 3D CFD and/or fluid-structure interaction mod-

els. This allows 1D models to consider the entire circulation and take considerably

less time to run compared 3D models, which can only be performed on relatively

small networks due to computational expense. The main drawback with 1D mod-

elling is that they are unable to capture local flow fields, as they consider flow only

in the axial direction. This has led to several studies coupling 1D and 3D models,

enabling the 1D model to act as boundary conditions for the 3D model, while the

3D domain covers the specific region of interest [116, 35, 253, 234, 199, 34].

2.2.1 Deriving the Governing Equations of One-Dimensional

Haemodynamics

There are (at least) three ways to derive the one-dimensional blood flow equations

[272]:

• an asymptotic analysis can be performed on the three-dimensional Navier-

Stokes equations with an assumption that the ratio vessel radius
vessel length

is small. This

reduces the dimensionality of the system of equations, and allows higher-order

terms to be neglected [23];
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Figure 2.1: Overview of flow in a vessel

• the one-dimensional blood flow equations governing blood flow can be derived

directly from first principals on a control volume [160];

• the three-dimensional system can be reduced to the one-dimensional system

by making the several assumptions, which includes assuming that vessels are

axially-symmetric, and that the flow in the axial direction is much larger than

the flow in the radial and circumferential directions (which is the approach

described below).

The three-dimensional incompressible Navier-Stokes equations describe the flow

of viscous fluid with a constant density. The system is governed by the continuity

equation

∇ · u =
∂ux
∂x

+
∂uy
∂y

+
∂uz
∂z

= 0, (2.1)

where u = [ux, uy, uz] is the fluid velocity in the x, y, and z directions, respectively;

the momentum equations of the three directions, which are expressed as

∂ux
∂t

+

(
ux
∂ux
∂x

+ ux
∂uy
∂y

+ ux
∂uz
∂z

)
+

1

ρ

(
∂P

∂x

)
−
(
∂τxx
∂x

+
∂τxy
∂y

+
∂τxz
∂z

)
= fx, (2.2)

in the x direction,

∂uy
∂t

+

(
uy
∂ux
∂x

+ uy
∂uy
∂y

+ uy
∂uz
∂z

)
+

1

ρ

(
∂P

∂y

)
−
(
∂τyx
∂x

+
∂τyy
∂y

+
∂τyz
∂z

)
= fy (2.3)

in the y direction, and

∂uz
∂t

+

(
uz
∂ux
∂x

+ uz
∂uy
∂y

+ uz
∂uz
∂z

)
+

1

ρ

(
∂P

∂z

)
−
(
∂τzx
∂x

+
∂τzy
∂y

+
∂τzz
∂z

)
= fz (2.4)
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in the z direction. Where fx, fy, and fz are external source/sink terms that may

arise depending on the problem of interest, such as from the inclusion of gravitational

forces. τ is the Cauchy stress tensor, and P is the hydrostatic pressure. The Navier-

Stokes equations are closed by the conservation of energy and an additional equation,

normally referred to as an equation of state (relating pressure, temperature and

density). However, neither the energy conservation equation or equation of state

are required for the purposes of this thesis as these are not required by the one-

dimensional formulation, and are not presented or described further.

In order to reduce the three-dimensional system into a one-dimensional system,

the three dimensional incompressible Navier-Stokes equations are first transformed

into cylindrical coordinates by applying

(x, y, z)→ (x, r, θ),

x = x, y = r sin(θ), z = r cos(θ). (2.5)

Making an assumption of a Newtonian fluid, the 3D continuity equation becomes

1

r

∂(rur)

∂r
+

1

r

∂uθ
∂θ

+
∂ux
∂x

= 0; (2.6)

While the radial component of momentum becomes

ρ

[
∂ur
∂t

+ ur
∂ur
∂r

+
uθ
r

∂ur
∂θ
− u2

θ

r
+ ux

∂ur
∂x

]
+
∂P

∂r

−µ
[

1

r

∂

∂r

(
r
∂ur
∂r

)
− ur
r2

+
1

r2

∂2ur
∂θ2

− 2

r2

∂uθ
∂θ

+
∂2ur
∂x2

]
= ρfr, (2.7)

the circumferential component becomes

ρ

[
∂uθ
∂t

+ ur
∂uθ
∂r

+
uθ
r

∂uθ
∂θ
− uruθ

r
+ ux

∂uθ
∂x

]
+
∂P

∂θ

−µ
[

1

r

∂

∂r

(
r
∂uθ
∂r

)
− uθ
r2

+
1

r2

∂2uθ
∂θ2

− 2

r2

∂ur
∂θ

+
∂2uθ
∂x2

]
= ρfθ, (2.8)
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and the axial component becomes

ρ

[
∂ux
∂t

+ ur
∂ux
∂r

+
uθ
r

∂ux
∂θ

+ ux
∂ux
∂x

]
+
∂P

∂x

−µ
[

1

r

∂

∂r

(
r
∂ux
∂r

)
+

1

r2

∂2ux
∂θ2

+
∂2ux
∂x2

]
= ρfx. (2.9)

.

Finally, the three-dimensional system in cylindrical coordinates can be reduced

to one dimension by the following assumptions:

• Axial symmetry. Indicates all quantities including velocity will be independent

of the angle θ.

• Radial displacement. The vessel wall displaces in the radial direction only (no

circumferential or axial displacement occurs).

• The pressure is assumed constant in each cross-section. Hence no pressure

differentials are considered in the radial or circumferential directions.

• Axial velocity is considered much larger than both radial and circumferential

velocities, allowing radial and circumferential components of velocity to be

neglected.

The momentum equation then becomes

∂ux
∂t

+ ux
∂ux
∂x

+
1

ρ

∂P

∂x
− µ

ρ

[
1

r

∂

∂r

(
r
∂ux
∂r

)
+
∂2ux
∂x2

]
= fx. (2.10)

Now integrating over a section gives momentum equation as

∂Q

∂t
+
∂
(
αQ

2

A

)
∂x

+
A

ρ

∂P

∂x
−
∫
CS

µ

ρ

(
1

r

∂

∂r

(
r
∂ux
∂r

))
dσ +

∂2Q

∂x2
= Afx, (2.11)

where Q = Au is the volumetric flow rate in a cross section, u is the average cross-

sectional velocity in the axial direction, r is the coordinate in the radial direction,

and x is the coordinate in the axial direction. The term α is a momentum flux

correction factor given as

α =

∫
CS
u2
xdσ

Au2
, (2.12)
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which accounts for the non-uniform velocity distribution (called the Boussinesq co-

efficient), and depends on the choice of velocity profile (for a uniform profile α = 1)

[314]. The continuity equation becomes

∂A

∂t
+
∂Q

∂x
= Φ, (2.13)

where A is the cross-sectional area, and Φ accounts for any source/sink terms.

There are three unknowns in this system, which are the area A, flow rate Q (or

velocity u), and hydrostatic pressure P which are shown in figure 2.1. Thus in order

to close the system of equations, an additional relation is required. The additional

equation is the constitutive law, which links the transmural pressure to the cross-

sectional area. The various constitutive laws used in one-dimensional blood flow

models are discussed in section 2.2.4. Furthermore, in order to estimate the friction

term, a velocity profile needs to be chosen. The choice and implications of the

velocity profile is discussed in section 2.2.3.

2.2.2 1D Formulation Variations

Through various manipulations of equations (2.11) and (2.13), various formulations

of the 1D blood flow equations can be found. The three most common variants

are the AU , AQ, and PQ formulations. The AU system of equations have been

implemented in [314, 224] and can be expressed as∂A
∂t

+ ∂Au
∂x

= 0, continuity

∂u
∂t

+ (2α− 1)u∂u
∂x

+ (1− α)u
2

A
∂A
∂x

+ 1
ρ
∂P
∂x
− f

ρ
= 0, momentum.

(2.14)

The AQ system used by [220, 117, 349] can be written as
∂A
∂t

+ ∂Q
∂x

= 0, continuity

ρ
A
∂Q
∂t

+ ρ
A

∂

(
αQ2

A

)
∂x

+ ∂P
∂x
− f

A
= 0, momentum.

(2.15)

The PQ system of equations is implemented in [30, 182]. The PQ system can be

derived by utilising the chain rule on the continuity equation (2.15), which gives
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∂A
∂t

= ∂A
∂P

∂P
∂t

= C ∂P
∂t

.
∂A
∂P

∂P
∂t

+ ∂Q
∂x

= 0, continuity

ρ
A
∂Q
∂t

+ ρ
A

∂

(
αQ2

A

)
∂x

+ ∂P
∂x
− f

A
= 0, momentum.

(2.16)

There are also more intricacies involved when it actually comes to solving these

equations. For example in the AU formulation, [314] chooses to keep the equations

in conservation form, while [224] performs the chain rule on the term ∂P
∂x

. This

will have an impact on not only implementation, but also may potentially causes

numerical issues if the geometry is not smooth (which is the case in patient-specific

geometric simulations).

2.2.3 Velocity Profiles

The choice of velocity profile effects both the momentum flux correction factor α in

equation 2.12, and the friction term in the momentum equation
∫
CS

µ
ρ

(
1
r
∂
∂r

(
r ∂ux
∂r

))
dσ.

The commonly used velocity profile [11, 41] is implemented throughout this thesis,

which satisfies the no slip condition (ux|r=R = 0), is given by

u(x, r, t) = U
ζ + 2

ζ

[
1−

( r
R

)ζ]
, (2.17)

where the radius of the vessel lumen is R, r is the radial coordinate, and ζ =
2−α
α−1

. Integrating the velocity profile in equation (2.17) for a cross-section causes the

friction term in the momentum equation to become

f =

∫
CS

µ

ρ

(
1

r

∂

∂r

(
r
∂ux
∂r

))
dσ =

−2 (ζ + 2)µπQ

A
, (2.18)

For the velocity profile given in (2.17), a flat profile can be obtained for α = 1,

however as limα→1 ζ(α) = ∞, a flat profile is only chosen for the non-linear term

in (2.11) as the friction term would tend to infinity. The velocity profile chosen

is almost always considered to be fully developed. Furthermore, it is relatively

common to assume a different velocity profile for the non-linear convection term

and the friction term. In most models α is chosen to be a constant [118, 318, 314]

for the momentum flux correction factor with either α = 1 (flat profile) [314], or
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α = 4/3 (parabolic profile) [118], while the friction term is often considered to be

either ζ = 2 (for a parabolic profile) [119, 224, 194]; or ζ = 9 [318, 230, 205], which

produces a profile that is mostly flat but with a boundary layer.

In [30] the velocity profile is constructed by splitting the profile into inertia domi-

nant and viscous dominant regions; While a velocity profile using Witzig-Womersley

pulsatile theory is presented in [287]. Figure 2.2a shows velocity profiles using (2.17),

figure 2.2b shows fully developed Womersley velocity profiles for a variety of Wom-

ersley numbers, and figure 2.3 shows Womersley profiles during different stages of

development for various Womersley numbers.
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Figure 2.2: Comparison of various velocity profiles

2.2.4 Constitutive Law

A constitutive law is required to solve the system in equation (2.16). The constitutive

law provides a relation between a sections cross-sectional area, and the transmural

pressure Ptm(A) = P −Pext where Pext is the external pressure. There are numerous

constitutive laws in use for the one-dimensional model, these may be classified as

elastic (linear and non-linear variants), collapsible vessel models, or visco-elastic

wall models. Table 2.1 shows a selection of the main constitutive laws used in one-

dimensional haemodynamic models and figure 2.4 compares the elastic constitutive

laws from the table. The meaning of terms in the equations in 2.1 are as follows:

P0 is a reference pressure, c2
0 and A0 are the wave speed and area at the reference

pressure, Pcollapse is the pressure at which the vessel is fully collapsed, and K is the
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Figure 2.3: Womersley velocity profiles development for different Womersley num-
bers

stiffness which is often expressed as

K =
E

12
√

1− σ2

(
h

R

)3

, (2.19)

where E is the elastic modulus, σ = 0.5 is Poisson’s ratio, h is the wall thickness,

and R the vessel radius.

In order to account for the visco-elastic properties of vessel walls, an additional

term can be added to the original constitutive law, such as in [117, 12, 230] given

by
Γ

A0

√
A

∂A

∂t
(2.20)

with comparisons between different visco-elastic models being performed by [276,

135]. [117] also included more complex wall behaviour, such as wall inertia and a

longitudinal elastic term in the constitutive law, although these terms tend to have

a minor effect on the solution.

From the constitutive law, one can extract the compliance of the vessel for a

given pressure. The compliance describes the relationship between the change of

area, with respect to the change of pressure. For the non-linear elastic constitutive
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Type Equation References
linear elas-
tic

Ptm = ρc2
0

(
A
A0
− 1
)

+ P0, [277, 278]

non-linear
elastic

Ptm = 2ρc2
0

( √
A√
A0
− 1
)

+ P0 =

β
A0

(√
A−
√
A0

)
+ P0

[117, 314, 313,
224]

non-linear
elastic
(power
law)

Ptm =
2ρc20
b

((
A
A0

)b/2
− 1

)
+ P0, b =

2ρc20
P0−Pcollapse

[230, 318, 55]

collapsible
elastic

P − Pext = P0 +K
((

A
A0

)m
−
(
A
A0

)n)
[45, 220]

Table 2.1: Example of each constitutive law type
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Figure 2.4: Comparison of a linear elastic, a non-linear elastic, a non-linear elastic
power law, and a collapsible tube model

law, the compliance can be calculated as

∂A

∂P
=

(
2Ad (P − Pext − Pd)

β
+ 2
√
Ad

)
Ad
β
. (2.21)

In general the constitutive law is written in the form P = y(A), and due to the non-

linear relation of pressure and area (for the non-linear constitutive laws), it may

not be possible (or trivial) to rearrange the function to be in the form A = y−1(P ),

and hence the derivative ∂A
∂P

, may not be straightforward to calculate. However,

from the inverse function theorem: for a continuously differentiable function y with

a non-zero derivative at a point in its domain, then the function y is invertible in
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a neighbourhood of this point, and it’s inverse y−1 is continuously differentiable;

furthermore the derivative of the inverse function in this neighbourhood is the re-

ciprocal of the derivative of y. Which means the derivative of P = y(A) with respect

to A, can be written as:
∂P

∂A
=

1
∂A
∂P

. (2.22)

When calculating the compliance for a visco-elastic constitutive law, only the elastic

part of the constitutive law is considered as the viscous term is much smaller in

magnitude.

2.2.5 External Pressures

In the majority of works the external pressure in the one-dimensional model is ne-

glected, and hence Pext = 0. However, external pressures are known to significantly

influence haemodynamics, for example many deep veins and arteries traverse be-

tween muscles and will experience external pressures when these muscles contract.

One of the many auto-regulation mechanisms, termed the calf muscle pump has been

presented in [169]. Although the network in [169] only considered one artery and

two veins (one deep, one superficial), it was shown that the addition of an external

pressure on the deep vein improved venous return by partially overcoming the force

produced from gravity.

The vessels in the coronary system experience external pressure from the sur-

rounding heart muscle. [229] presented a complex network of coronary vessels that

experience external pressure from the ventricles of the heart model. The model was

developed in order to study the influence of heart dominance on flow rate patterns.

In a right dominant coronary system, the right coronary arteries supply the septum

and parts of the left ventricle with blood; while in left dominance, the circumflex

artery supplies the septum with blood (co-dominance also exists, although was not

studied).

There remains a number of additional areas where external pressure plays a sig-

nificant role, and to-date have not been studied in sufficient detail to understand

the implications of these external pressures. These include both: healthy physiolog-

ical conditions, such as the effect of the muscle pump on either a venous or arterial

network (ankle, calf, and thigh), the effect of the respiratory pump, which acts on
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vessels in the thorax during respiration, and the effect of respiration and thus the

external pressure from the lungs, on pulmonary vessels; and also during patholog-

ical conditions such as the effect of external pressures on stenosis (such as in the

coronary vessels), or on aneurysms. Of course 1D modelling has its limitations for

modelling these situations, due to being unable to account for local fluid dynamics,

as only fluid flow in the axial direction is accounted for.

2.3 Zero-Dimensional Modelling

In many situations, the fluid flow at a specific location may not be of interest, in-

stead the more global aspects of the cardiovascular system may be of interest, such

as heart rate changes due to postural change [198]. In these case, a 1D model may be

more complex than needed, and thus a 0D lumped parameter model may more ap-

propriate. Typically, there are two variants of lumped models: single compartment

models, which represent the entire circulation as a single lumped model; or multi-

compartment models, which may treat each section of the cardiovascular system as

separate lumped models [191, 2, 271]. Another common use of lumped models is

for boundary conditions for more complex methodologies, such as outflow boundary

conditions for 1D [324, 116, 314, 230, 205, 220, 221, 41], 2D [69], or 3D [175, 372,

185] models. For the one-dimensional models, this may be to represent a specific

vascular bed, such as the coronary vascular bed [228] or lungs [275]; or may be to

represent the remainder of the circulation [103, 41].

The lumped parameter model equations can be derived using first principles, or

can be found by linearising the 1D system in a PQ formulation (similarly shown in

[11]), as in equation (2.16), and then averaging physical properties over the domain

length. In order to reduce the 1D system of equations to 0D, the 1D system is

linearised around its reference state, which means the non-linear convection term
∂

(
Q2

A

)
∂x

is first neglected. This leads to the system of equations
C1D,L

∂Ptm

∂t
+ ∂Q

∂x
= 0, continuity

L1D,L
∂Q
∂t

+ ∂P
∂x

+R1D,LQ = 0, momentum

C1D,L = ∂A0

∂Ptm,0
, L1D,L = ρ

A0
, R1D,L = ξµπ

A2
0
,

(2.23)
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averaging properties in a segment and integration over its length, leads to the final

form of the zero-dimensional system of equations
C0D

∂Ptm

∂t
+ ∆Q = 0, continuity

L0D
∂Q
∂t

+ ∆P +R0DQ = 0, momentum

C0D = ∂A0

∂Ptm,0
∆x, L0D = ρ

A0
∆x, R0D = 8µπ

A2
0

∆x,

(2.24)

where the capacitance (compliance) of a volume is C0D, the fluid inertia in a volume

is L0D, and the resistance from viscous forces in a volume is R0D. Furthermore,

the system of equations (2.24) can be de-constructed into the following three ba-

sic elements: a resistance element, an inductance and a compliance (capacitance)

element.

∆P = RQ,

∆P = L
∂Q

∂t
,

C
∂Ptm
∂t

= Qnet = Qin −Qout. (2.25)

The three basic elements shown in equation (2.25) can be used to construct any of

the lumped models used in haemodynamic modelling, albeit may need to be edited

slightly, such as in the case of the heart model as will be discussed in subsection

2.3.2. Additional information, such as the implementation of the lumped models

used in this thesis, is discussed further in subsection 3.2.4 of chapter 3.

2.3.1 Vascular Bed Models

In this subsection, the main types of lumped parameter models used for vascular

beds will be presented and discussed. Early implementations of these vascular bed

(often called Windkessel) models [120], used the two-element Windkessel model to

describe the effect of downstream vasculature on upstream haemodynamics. These

two-element Windkessel models are comprised of a single resistance and a single

compliance in parallel, as shown in figure 2.5a. However, it was found that while

these models typically represented compliance quite well (when used in conjunction
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with the pulse pressure method) [364], the model poorly captured the overall wave-

shape and inadequately estimated the impedance at high frequencies.

In order to improve on the shortcomings of the two-element Windkessel mod-

els, an additional resistance element was introduced, creating the commonly used

three-element Windkessel model. The three-element Windkessel model considers a

resistance in series, with a resistance and compliance in parallel, as shown in figure

2.5b. The first resistance Zart, was found to represent the characteristic impedance

of the connecting vessel [365], and can be considered as an intermediary between

a lumped model (which cannot account for wave propagating phenomena) and the

wave propagating aspects/phenomena in the vascular systems. Moreover, it has

been observed [327, 364] that treating the characteristic impedance as a resistor

leads to errors in the lower frequency range. However, these errors are generally

small due to the characteristic impedance being significantly smaller than the pe-

ripheral resistance. The three-element Windkessel model is generally treated using

constant resistances and compliances, however attempts have been made to imple-

ment pressure dependant resistances [230] (as used in this thesis for the closed loop

system), and pressure dependant compliances [114].

To reduce the errors at low frequencies, caused by the introduction of the char-

acteristic impedance, an additional element (inertia) was introduced into the three-

element Windkessel model. This four-element Windkessel model has two variations:

the traditional four-element model [50, 329] considers the inertial element and the

characteristic impedance to be in parallel, as shown in figure 2.5c; while [50, 51]

implemented an inertial element in series with the characteristic impedance, shown

in figure 2.5d. In practice it is very difficult to find an accurate estimate of the

inertance, and hence the three-element Windkessel model is often chosen for this

reason.

Further extensions to these lumped models have occurred, such as: the ability to

connect multiple arteries and/or veins to the same vascular bed; and more complex

vascular beds for the coronaries [228], which includes external pressure from heart

chambers and volume dependant resistances; and the vascular bed for the liver

[230], which connects to three systems, the systemic arteries, hepatic portal veins,

and systemic veins. Further description of the vascular bed models used in this

thesis, including their implementation, are discussed in section 3.2.4.
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(a) Two-element Windkessel model (b) Three-element Windkessel model

(c) Four-element Windkessel model with in-
ertia (inductance) in parallel

(d) Four-element Windkessel model with
inertia (inductance) in series

Figure 2.5: Comparison of the four common Windkessel models. Art and V ein are
connections to artery/arteries and vein/veins, respectively.

2.3.2 Heart Model

In some studies, an upstream boundary condition of volumetric inflow rate or pres-

sure is prescribed [324, 116, 314, 224, 41]; however several studies [119, 226, 230,

220, 221] have instead attached the inlet of the 1D vessel domain with a lumped

parameter heart model. The contractility of the heart model is generally pre-defined

through an elastance curve such as in figure 2.7a, while the closed-loop system from

section 7.8 (for the non-pregnant case) produced the physiologically representative

volume curves for the left atria and ventricle, and the right atria and ventricle, which

are shown in 2.7b.

Before introducing the equations of the heart model, it is useful to note the fol-

lowing relation between volume, volumetric flow rate and pressure, which is outlined

by figure 2.6

∂V

∂t
=
∂V

∂P

∂P

∂t
= Qin −Qout, (2.26)

V = AavgL,
∂V

∂P
=

1

E
, (2.27)
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where Aavg is the average area in a segment of length L, and E is the elastance

of the heart chamber. The basic equations which describe the heart model can be

written in the form [119]

P = E (V − V0)−RsQ, Rs = KsE (V − V0) , (2.28)

where P is the pressure in the heart chamber, Q is the net flow rate in the heart

chamber which is defined to be positive in the direction of flow Q = Qout−Qin, Rs is

a source resistance, and Ks is a constant. There have been several implementations

of the heart model with a single left ventricle model used to generate flow and

pressure waveforms for inflow to the aorta implemented in [119], while other studies

[230, 220] have used the heart model within a closed-loop framework.

Figure 2.6: Fluid storage in a control volume
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(a) Elastance curves for one cardiac cycle
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(b) Volume curves for one cardiac cycle

Figure 2.7: Elastance curves and volumes of left ventricle and left atria

In this thesis, the heart model by [230] is implemented for the closed-loop system.

A lumped element diagram of this heart model can be seen in figure 2.9. This

complex heart model considers three types of interaction:

Pg. 30 / 284



2.3. ZERO-DIMENSIONAL MODELLING

1. External pressures acting between contra-lateral chambers (interaction be-

tween the left and right side of the heart interaction), shown in figure 2.8a.

2. During ventricular contraction, a piston like effect causes a suction like effect

on the atria, aiding atrial filling, shown in figure 2.8b.

3. External pressures are exerted from the pericardia (where the heart is situated)

which acts on all chambers equally, shown in figure 2.8c.

RV LV

RA LA

(a) Pericardial cavity pres-
sure

RV LV

RA LA

(b) Piston effect on atria

RV LV

RA LA

(c) Left and right interac-
tion

Figure 2.8: Interactions of the heart

Figure 2.9: Heart model (one side)

Full details of the discretisation and implementation of the heart model used in

this thesis is provided in subsection 3.2.4.
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2.3.3 Valve Model

Valves are located in several locations in the human body. In the cardiovascular

system valves are located in the heart and in the systemic venous system. There

are also valves located in the lymphatic system, separating lymphangions. Valves in

the cardiovascular system are present to prevent blood from flowing in the opposite

direction. A healthy valve is one that opens easily in the presence of a positive

pressure gradient across the valve (opens for forward flow), and closes completely to

prevent back flow during a negative pressure gradient. A valve may: become dam-

aged as a result of excessive opening and closing pressures/forces and may lose its

effectiveness to fully close, allowing blood flow backwards through the valve, which

is called valve regurgitation [189]; or a heart valve may be affected by calcification,

which leads to valve stenosis where the cross-sectional area of the valve decreases

causing a greater resistance to blood flow, requiring the heart to pump with more

force [57].

Early models of valves treated the valve state like a simple diode, either being

fully open for a positive pressure gradient, or fully closed for negative flow rate [119,

377, 125]. More complex lumped models have been developed, such as describing

valve opening and closing behaviour based on balancing forces [180], or by determin-

ing valve opening and closing behaviour from the pressure gradient across the valve

[226]. The model from [226] was extended by [252] to include and improve modelling

of valve regurgitation. Under healthy conditions viscous losses are generally small

through the valve, however these will become more significant in the case of valve

stenosis. [169] added this viscous term into the valve model for systemic venous

valves.

In this thesis the valve model implemented is that of [226]; however, for com-

pleteness the viscous term will remain in the formulation in order to show the full

set of equations. A modification to [226] is given by

∆P = B |Q|Q+RQ+ L
dQ

dt
, (2.29)

where the Bernoulli resistance B, the viscous resistance R, and the inertance (in-
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ductance) L are given by

B =
ρ

2A2
eff

, L =
ρleff
Aeff

, R =
2 (ζ + 2) πµleff

A2
eff

, (2.30)

where leff is an effective length, and Aeff is the current orifice area, bounded between

a minimum Aeff,min and maximum Aeff,max orifice area, given by

Aeff (t) = (Aeff,max − Aeff,min) ξ(t) + Aeff,min. (2.31)

The coefficient ξ is the valve state, which is bounded between zero and one, and can

be calculated by one of the following ordinary differential equations
dξ
dt

= Kvo (1− ξ) ∆P, opening

dξ
dt

= Kvcξ∆P, closing
(2.32)

where Kvo and Kvc are coefficients which affect the sensitivity of the opening and

closing behaviour respectively, due to the trans-valvular pressure ∆P .

Figure 2.10 compares the pressure in the left ventricle with the pressure in the

aortic root, while the effect of valve closure can be seen with the presence of the

dicrotic notch.
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Figure 2.10: Comparison of left ventricular pressure and aortic root pressure
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2.4 Mathematical Analysis of the One Dimensional

Haemodynamics Equations

In this section an overview of the typical approaches used in the analysis of the 1D

system is described. The section will begin by studying the characteristic structure

of the 1D blood flow equations, which allows the equations to be re-written in

terms of forward and backward propagating characteristic variables. The section will

continue by presenting the two main types of analysis for the one-dimensional blood

flow equations: wave intensity analysis, which is performed in the time domain; and

Fourier analysis methods, which are performed in the frequency domain. Finally, an

analytical description of wave reflections is presented, which is valid for the linearised

system of equations.

2.4.1 Characteristic System

In order to derive the characteristic system, the chain rule is often used on the

pressure term in the momentum equation. For example, consider the 1D system

written as

∂A

∂t
+
∂Q

∂x
= 0,

∂Q

∂t
+
∂
(
Q2

A

)
∂x

+
A

ρ

∂P

∂x
= −ζπµQ

ρA
(2.33)

together with the constitutive law P − Pext − P0 = β
A0

(√
A−
√
A0

)
. Performing

the chain rule on the spatial derivative for pressure gives (assuming P0 is space

independent)

∂P

∂x
=
∂P

∂A

∂A

∂x
+
∂P

∂β

∂β

∂x
+
∂P

∂A0

∂A0

∂x
+

∂P

∂Pext

∂Pext
∂x

, (2.34)

This allows the system of equations to be written in quasi-linear form as

∂U

∂t
+H

∂U

∂x
= S, (2.35)
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Where

U =

[
A

Q

]
, H =

[
0 1

β
√
A

2ρA0
− Q2

A2 2Q
A

]
, (2.36)

and

S =

[
0

− ζπµQ
ρA
− A

ρ
∂P
∂Pext

∂Pext

∂x
− A

ρ
∂P
∂A0

∂A0

∂x
− A

ρ
∂P
∂β

∂β
∂x

]
. (2.37)

The eigenvalues Λ are found by det(ΛI −H), and are calculated as

Λ =

[
λ+

λ−

]
=

QA +
√

β
√
A

2ρA0

Q
A
−
√

β
√
A

2ρA0

 =

[
u+ c

u− c

]
, (2.38)

where λ+ and λ− are the propagation speeds in the forward and backward direction

respectively and c =
√

β
√
A

2ρA0
is the wave speed. Solving liH = λili gives the left

eigenmatrix as

L =

[
lT1

lT2

]
=

 −
Q
A

+ c, 1

−(Q
A

+ c), 1

 . (2.39)

Note that H can be written as

H = RΛ̄L, (2.40)

Where R is the right eigenvector, L is the left eigenvector and

Λ̄ =

[
λ+ 0

0 λ−

]
. (2.41)

Noting that LR = I, the identity matrix. System (2.35) can be written in an

equivalent form

L
∂U

∂t
+ Λ̄L

∂U

∂x
−LS = 0. (2.42)

If quantities w+ and w− exist as

∂w+

∂U
= l1,

∂w−
∂U

= l2, (2.43)
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then they are referred to as characteristic variables. Defining W =
[
w+, w−

]
,

system (2.42) can be written as

∂W

∂t
+ λ̄

∂W

∂t
+ T = 0, (2.44)

with

T = −LS − ∂W

∂A0

∂A0

∂x
− ∂W

∂β

∂β

∂x
. (2.45)

An assumption is often made to simplify the problem, where it is assumed A0 and β

are both constant, and the viscous resistance term is small enough to be neglected.

Which results in T ≈ 0. The characteristic variables w+, w− can be calculated from

w± = u− u0 +

∫ A

A0

c

A
dA = u− u0 +

∫ P

P0

1

ρc
dP, (2.46)

where A0, u0, and P0 are reference values. The characteristic variables are deter-

mined to be

w± = u− u0 ± 4(c− c0), (2.47)

or considering u0 to be zero, and using the constitutive law P − Pext − P0 =
β
A0

(√
A−
√
A0

)
, leads to

w+ =
Q

A
+ 4

√β
√
A

2ρA0

−

√
β

2ρ
√
A0

 , w− =
Q

A
− 4

√β
√
A

2ρA0

−

√
β

2ρ
√
A0

 .

(2.48)

It is also possible to calculate the primitive variables via manipulation of the char-

acteristic variables which gives

A =

(
w+ − w−

8

)4(
2ρA0

β

)2

, u =
w+ + w−

2
, (2.49)

while the volumetric flow rate can be calculated using the relation Q = Au and the

pressure can be found from substituting A into the constitutive law.

The forward propagating wave is governed by the forward travelling characteristic

w+, and is generated by ventricular contraction pumping blood into the arterial

system (in the arteries); while the backward propagating wave is governed by the
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backward travelling characteristic w−, and is caused by wave reflections which occur

as a result of junctions and/or changes in vessel properties (material properties

and/or geometry). Furthermore, these reflected waves are also re-reflected etc. and

hence at any point in the vessel network, the pressure and flow rate waves can be

considered as a combination of these forward and backward propagating waves.

2.4.2 Wave Intensity Analysis Versus Fourier Analysis

There are two main approaches to modelling wave propagation. Traditionally,

Fourier analysis has been used in signal processing, which includes area such as

audio signals, seismology and various wave propagation phenomena, including wave

which occur in biological systems. Fourier analysis requires the signal to be converted

into the frequency domain. This is performed by describing a complex waveform

using a series of sinusoidal functions, whose frequencies form a harmonic series. For

the purposes of studying haemodynamcs, this has the advantage of being capable

of detecting small changes in frequency or the presence of additional frequencies,

which may be due to changes in vascular stiffness, or changes in wave reflections

due to pathological conditions such as stenosis or aneurysms. However, there also

exist some shortcomings of working in the frequency domain, primarily:

• the circulatory system is not in steady state oscillation [259]. It is constantly

adapting to the environment with changes in heart rate, pressures, flow rates,

resistances, and compliances.

• Analysis in the frequency domain considers the cardiovascular system as a

linear system, which is certainly not the case as significant non-linearities

exist, with regards to both flow behaviour and vessel wall behaviour. This is

particularly true for the venous system, where vessels are capable of collapsing,

and many valves are present to encourage and support blood return to the

heart.

• It is generally not possible to relate a specific harmonic to an event in time, as

an entire heart beat or multiple heart beats are used to calculate the spectrum

of frequencies.

In order to overcome these problems, [260, 258] proposed a method which can al-

low the separation and study of the forward and backward propagating waves. The
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method eventually became known as wave intensity analysis (WIA) [259], and al-

though it is more mathematically intensive than Fourier analysis, WIA overcomes

some of its shortcomings. WIA is performed in the temporal domain, allowing spe-

cific events to be studied in time, which may lead to an improved understanding

of the underlying mechanisms involved in creating this specific event. WIA uses

the method of characteristics, which is described in section 2.4.1, as a basis for

the analysis. In addition, separation of waves can be performed linearly [259], or

non-linearly [106].

Derivation of the WIA requires the method of characteristics, with equation

(2.46) being used as a basis. Expressing the characteristic variable in terms of the

pressure P instead of using the cross-sectional area A, finding the differences between

two points in the space-time plane for characteristic variables which intersect, gives

the following the difference equation

dw± = dU ± dP

ρc
, (2.50)

where w±, dP and dU are the differences in the characteristic variables, pressures

and velocities over the time interval ∆t. The change in pressure and change in

velocity can then be written in terms of the change in characteristic variables (by

adding and subtracting both equations) to give

dP =
ρc

2
(dw+ − dw−) , dU =

1

2
(dw+ + dw−) . (2.51)

The product of dP and dU is called the wave intensity dI, and is defined as

dI = dPdU =
ρc

4

(
dw2

+ − dw2
−
)
, (2.52)

which has a positive contribution to wave intensity for forward travelling waves, and

a negative contribution for backward travelling waves.

The waves can also be separated (linearly) into forward and backward propa-

gating waves by defining the overall change in pressure and velocity are from the

addition of forward and backward components

dP = dP+ + dP−, dU = dU+ + dU−. (2.53)
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Figure 2.11: Frequency domain analysis, forward (F WI) and backward (B WI)
wave intensity, and pressure and velocity waveforms in the ascending aorta and left
common carotid artery. The main forward and backward waves are abbreviated
as follows: FCW - the forward compression wave, FEW - forward expansion wave,
BCW - backward compression wave

By considering forward components for forward pressure and velocity, and backward

components for backward pressure and velocity from equation 2.51, the following is

found

dP+ =
ρc

2
dw+, dP− = −ρc

2
dw− (2.54)

dU+ =
1

2
dw+, dU− =

1

2
dw−. (2.55)
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Or writing in terms of the overall pressure and velocity change, the forward and

backward pressure and velocity waves can be written as

dP± =
1

2
(dP ± ρcdU) , dU± =

1

2

(
dU ± dP

ρc

)
. (2.56)

Thus calculation of the forward and backward wave intensity can be described as

dI± = dP±dU± =
±1

4ρc
(dP ± ρcdU)2 . (2.57)

A time corrected version of wave intensity was proposed in [279]. The main

reason for this time correction was due to the majority of signals used in analysis

being at discrete points, thus the magnitude of wave intensity was also dependant

on the sample rate of the signal. The time corrected version is found using

wi =
dp

dt

du

dt
. (2.58)

The time corrected forward and backward wave intensity, when performing linear

wave separation is

wi± =
±1

4ρc

(
dP

dt
± ρcdU

dt

)2

. (2.59)

A non-linear wave separation can be performed by considering the wave speed to

also vary in the forward and backward direction, which means the wave intensity is

dw± = dU ± 1

ρc±
dP. (2.60)

Using this equation and following the previous steps to find the time corrected

forward and backward wave intensity [227] gives

wi± =
±ρc

4

(
dw±
dt

)2

. (2.61)

The wave intensity used in combination with dP± and dU± can be used to determine

the type of wave.

• Forward expansion wave (FEW) - where dPdU > 0 with a deceleration dU < 0

and an expansion dP < 0 wave.
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• Forward compression wave (FCW) - where dPdU > 0 with an acceleration

dU > 0 and a compression dP > 0 wave.

• Forward expansion wave (BEW) - where dPdU < 0 with an acceleration dU >

0 and an expansion dP < 0 wave.

• Forward compression wave (BCW) - where dPdU < 0 with a deceleration

dU < 0 and a compression dP > 0 wave

A fast Fourier transform (fft) can be performed on the pressure or velocity wave-

forms to convert them from the time domain into the frequency domain. Figure 2.11

compares the frequency domain analysis for pressure and velocity, the time-corrected

forward and backward wave intensities, and the pressure and velocity waveforms in

the ascending aorta and carotid artery. The wave intensity analysis can be used

to detect specific events and reflections such as the first forward compression wave

being caused by the heart; while the frequency domain combines the waves from

the entire cardiac cycle and detects changes in frequency due to reflections and

transmissions, making it more difficult to make conclusions on a specific event.

2.4.3 Wave Reflection and Transmission

An analytical approach can determine the magnitude of wave reflections and trans-

missions caused by changes in vessel properties or at vessel junctions [365, 8]. The

analysis relies on the linearised system from equation (2.23), and the admittance of

the vessel. The admittance Y is the inverse of the characteristic impedance Z and

is given by

Y =
1

Z
=
Aref
ρcref

, (2.62)

for a reference area Aref and wave speed cref , and the fluid density ρ.

For a change in material properties and/or geometry, an incoming wave will be

partially reflected. The reflection and transmitted coefficients can be determined as

Rref =
Yu − Yd
Yu + Yd

, Rtran =
Yd − Yu
Yu + Yd

, (2.63)

where subscript u and d are the upstream and downstream position with respect

to the change in vessel properties. For any perturbation in the forward travelling
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Figure 2.12: Overview of reflected and transmitted wave from an incident wave at
a bifurcation.

incident pressure wave the reflected pressure can be determined as

δPref = δPincRref . (2.64)

The transmitted pressure wave can be found from

δPtran = δPinc + δPref = (1 +Rref ) δPinc. (2.65)

The transmitted flow rate can be found by considering the conservation of mass at

a point in the domain

δQinc = δQtran − δQref , (2.66)

where the reflected flow rate can be determined from

δQref = −δQincRref . (2.67)

This process can be extended to determine the reflection of waves at vessel junc-

tions. For example, at a bifurcation as shown in figure 2.12, the reflection coefficients

can be determined as

Rref =
Yp − Yd1 − Yd2

Yp + Yd1 + Yd2

, Rd1 =
Yd1 − Yd2 − Yp
Yd1 + Yd2 + Yp

, Rd2 =
Yd2 − Yd1 − Yp
Yd1 + Yd2 + Yp

, (2.68)
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where subscripts p, d1, and d2 represent the parent vessel, and the first and second

daughter vessels, respectively. A process that is similar to the one used for a single

vessel can be performed to find the reflected and transmitted pressure and flow

waves from a given incident wave.

2.5 Concluding Remarks

This chapter presented the mathematical formulation of reduced order modelling,

and the modelling components utilised in this thesis. The chapter began by describ-

ing the reduction of dimensionality of the three-dimensional incompressible Navier-

Stokes equations, which leads to the derivation of the one-dimensional blood flow

equations. The components of the one-dimensional blood flow model were described,

which included a description of the different velocity profiles, and constitutive laws

that are implemented in the literature. The zero-dimensional model, often referred

to as a lumped parameter model, is then derived from the one-dimensional sys-

tem of equations by performing a linearisation around the reference state, averaging

the properties of a vessel segment, and then integrating the equations in space.

The various types of lumped parameter models used in reduced-order cardiovas-

cular modelling were then presented, such as models of: the vascular beds, which

included specialised models of the liver and coronary vascular beds; the heart, which

included all four heart chambers; the heart valves and systemic venous valves. Fi-

nally, the different analytical techniques that are commonly utilised for the analysis

of the one-dimensional blood flow equations were described. The analytical methods

included a characteristic analysis of the one-dimensional system of equations, wave

intensity analysis, and wave reflection and transmission theory.
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Chapter 3

Numerical Schemes

In this chapter, details of the most common numerical schemes used to solve the

one-dimensional blood flow equations are presented. The numerical scheme used in

this thesis, including the linearisation and discretisation of the blood flow equations,

are described in detail for all model components. These components include: 1D

vessels and 1D vessel junctions, 0D models representing vascular beds, the heart

and valves, and connectivity between 1D and 0D models. Parameter estimation

techniques which are used in conjunction with the numerical scheme are described

in chapter 6.

3.1 1D Schemes

There have been many important contributions to the development of 1D cardiovas-

cular models, with early works by Hughes and Lubliner [160], Stergiopoulos et al.

[324, 325] and Brook et al. [45]. The field of 1D cardiovascular modelling received

renewed interest in the early 2000s with Olufsen et al. [244], Formaggia et al. [116,

117], Sherwin et al. [314, 313]. This was followed by further developments to the

field: proposing new numerical methods and coupling procedures such as Mynard

and Nithiarasu [224], Müller and Toro [216, 220], Blanco and Malossi et al. [35,

199], and Formaggia [118, 119]; new arterial and venous networks [194, 37, 36, 216,

359, 220, 230]; model validation and comparisons [205, 31, 244, 287, 288, 12, 228,

41, 42, 349, 357]; auto-regulation [10, 169]; clinical related topics [225, 156, 188];

model components such as velocity profile [30], heart and valve models [119, 226,

180, 252]; and closed loop models [34, 230, 216, 220].

Several studies have compared different numerical schemes. Wang et al. [357]

compared the local nodal discontinuous Galerkin, MacCormack, Taylor-Galerkin,

and the finite volume scheme, monotonic upwind scheme for conservation laws

(MUSCL). Comparisons were performed on a single vessel, a bifurcation, and a

55 vessel arterial network. The MacCormack scheme performed well when non-

linearities were small, but struggled for cases which included larger gradients; the

MUSCL scheme performed best if shock-like phenomena were present; the Taylor-
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Galerkin scheme struggled with shock-like phenomena, and was the slowest of the

schemes; the discontinuous Galerkin scheme performed well for systems with small

physical diffusion. A benchmark study by Boileau et al. [41] compared six numerical

schemes for a range of problems, including comparisons with problems that had an-

alytic solutions, and also compared the 1D schemes with 3D solutions, and in-vitro

solutions. The six schemes were: the locally conservative Galerkin [224], a modal

discontinuous Galerkin [314], a Galerkin least-squares finite element method [34],

finite volume method [216], a MacCormack scheme [188], and simplified trapezoidal

rule method (STM) [182]. Results were generally consistent among the schemes,

although the STM scheme deviated from the other schemes for an arterial network

consisting of 55 arteries. The reason why the STM scheme deviated from the other

schemes in this case was due to the restriction of using conservation of static pressure

as a boundary condition at vessel junctions, while the other numerical schemes in

[41] implemented conservation of total pressure at junctions. This essentially means

that rather than any problems with accuracy, the STM scheme was actually solving

a different system of equations compared to the other schemes in [41]. The scheme

proposed in this thesis generalises the STM scheme, and overcomes the restriction

at vessel junctions by allowing any type of pressure conservation (including methods

involving estimates for pressure/energy loses) to be imposed as a boundary condition

at vessel junctions.

3.2 Enhanced Trapezoidal Rule Method

In this thesis the enhanced trapezoidal rule method is proposed. Some parts of this

section have been published in [64], however the description of the numerical model

in this thesis is much more thorough and complete compared with that published in

[64] as additional modelling components are introduced. The enhanced trapezoidal

rule method (ETM) scheme is essentially an extension to the method proposed

by Kroon et al. [182]. The ETM scheme can be considered to be a sub-domain

collocations method, which is technically on the boundary of finite element (FEM)

and finite volume methods, as it is part of a class of weighted residual methods

(FEM), yet can also be viewed as the generalisation and basis of a FVM.

Consider the following PQ formulation from equation (2.16) using the velocity
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profile given by equation (2.17) and a visco-elastic constitutive law equation. The

continuity equation is
∂A

∂P

∂Ptm
∂t

+
∂Q

∂x
= Φ, (3.1)

the momentum equation is given by

ρ

A

∂Q

∂t
+
ρ

A

∂
(
αQ

2

A

)
∂x

+
∂P

∂x
− ζµπQ

A2
= 0, (3.2)

and the visco-elastic constitutive law is

P − P0 − Pext =
2ρc2

0

b

((
A

A0

)b/2
− 1

)
+

Γ

A0

√
A

∂A

∂P

∂P

∂t
. (3.3)

The scheme can be derived using a second order backward difference discretisation

in time and the trapezoidal rule in space. Firstly the formulation is modified slightly

by moving the viscous term in the constitutive law to the momentum equation. Thus

the momentum equation becomes

ρ

A

∂Q

∂t
+
ρ

A

∂
(
αQ

2

A

)
∂x

+
∂P

∂x
+

∂

∂x

(
Γ

A0

√
A

∂A

∂P

∂P

∂t

)
− ζµπQ

A2
= 0. (3.4)

Moreover, the compliance calculation only considers the elastic part of the consti-

tutive law as the viscous term is much smaller in magnitude, which can be written

as

∂A

∂P
= CA =

A0

ρc2
0

(
(P − P0 − Pext)

b

2ρc2
0

+ 1

)( 2
b
−1)

. (3.5)

3.2.1 Linearisation

In order to discretise the non-linear system of equations, the terms are linearised in

the following way

Cn+1
A ≈ Cn+1,k

A , Qn+1 ≈ Qn+1,k+1, P n+1 ≈ P n+1,k+1,

Q2

A

n+1

≈ Q2

A

n+1,k

,
ρ

A

n+1

≈ ρ

A

n+1,k

,

(
8µπQ

A2

)n+1

≈
(

8µπQ

A2

)n+1,k

,
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(
Γ

A0

√
A
CA

)n+1

≈
(

Γ

A0

√
A
CA

)n+1,k

, (3.6)

where superscript k is the iteration level, and as an initial guess k = 1 ≈ n. However,

in this thesis only the first iteration is performed for the majority of cases, which

means (n+ 1, k) ≈ (n) and (n+ 1, k + 1) ≈ (n+ 1). The choice of performing only

one iteration, and the convergence of the iterative scheme, will be demonstrated and

discussed in Chapter 4. The linearised system then has the form

Cn
A

∂P

∂t
+
∂Qn+1

∂x
= 0, (3.7)

ρ

An
∂Q

∂t
+
∂P n+1

∂x
+

∂

∂x

((
CAΓ

A0

√
A

)n
∂P

∂t

)
=

(
−8µπQ

A2
− ρ

A

∂(Q
2

A
)

∂x

)n

, (3.8)

where equations (3.7) and (3.8) are the continuity equation and momentum equation

respectively.

3.2.2 Discretisation

Integration within the domain is performed by partitioning each vessel into smaller

intervals and integrating each of these intervals using the trapezoidal rule. Thus

integration over the length of a vessel can be considered as the composite trapezoidal

rule (second-order accurate), and creates two nodes per element. Integrating each

term individually in the continuity equation for an element gives∫
e

(
Cn
A

∂P

∂t

)
dx =

∆x

2

(
Cn
A,1

∂P1

∂t
+ Cn

A,2

∂P2

∂t

)
, (3.9)

∫
e

(
∂Qn+1

∂x

)
dx =

(
Qn+1

2 −Qn+1
1

)
. (3.10)

Integrating the momentum equation gives∫
e

(
ρ

An
∂Q

∂t

)
dx =

∆x

2

(
ρ

An1

∂Q1

∂t
+

ρ

An2

∂Q2

∂t

)
. (3.11)
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The second term of the momentum equation is∫
e

(
∂P n+1

∂x

)
dx =

(
P n+1

2 − P n+1
1

)
. (3.12)

The third term is integrated as∫
e

∂

∂x

((
CAΓ

A0

√
A

)n
∂P

∂t

)
dx =

((
CAΓ

A0

√
A

)n
∂P

∂t

)
2

−
((

CAΓ

A0

√
A

)n
∂P

∂t

)
1

. (3.13)

Letting the right side of Equation (3.8) be

h =

−8πµQ

A2
− ρ

A

∂
(
Q2

A

)
∂x

n

. (3.14)

Integrating gives ∫
e

(h)ndx =
∆x

2
(h1 + h2)n . (3.15)

This indicates that the mass and momentum is conserved at the element centre, while

the variables are defined on the nodes. Using the following second-order backward

difference scheme for the time derivatives (∂U
∂t
≈ 3

2∆t
Un+1 − 2

∆t
Un + 1

2∆t
Un−1) gives

the system in the form 3
2∆t

∆x
2
Cn
A,1,

3
2∆t

∆x
2
Cn
A,2

−1−
((

CAΓ

A0

√
A

)n
3

2∆t

)
1
, 1 +

((
CAΓ

A0

√
A

)n
3

2∆t

)
2

[P1

P2

]n+1

e

+

[
−1, 1

3
2∆t

∆x
2

ρ
An

1
, 3

2∆t
∆x
2

ρ
An

2

][
Q1

Q2

]n+1

e

=

[
0

∆x
2

(hn1 + hn2 )

]
e

+

[
∆x
2

(
Cn
A

2
∆t
P n − Cn

A
1

2∆t
P n−1

)
1

∆x
2

(
ρ
An

2
∆t
Qn − ρ

An
1

2∆t
Qn−1

)
1

]
e

+

[
∆x
2

(
Cn
A

2
∆t
P n − Cn

A
1

2∆t
P n−1

)
2

∆x
2

(
ρ
An

2
∆t
Qn − ρ

An
1

2∆t
Qn−1

)
2

]
e

−

 0((
CAΓ

A0

√
A

)n (
2

∆t
P n − 1

2∆t
P n−1

))
1


e

+

 0((
CAΓ

A0

√
A

)n (
2

∆t
P n − 1

2∆t
P n−1

))
2


e

.

(3.16)
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Which can be generalised to

F eP
n+1
e +GeQ

n+1
e = hne , (3.17)

where subscript e represents the elemental system of equations, and

F e =

 3
2∆t

∆x
2
Cn
A,1,

3
2∆t

∆x
2
Cn
A,2

−1−
((

CAΓ

A0

√
A

)n
3

2∆t

)
1
, 1 +

((
CAΓ

A0

√
A

)n
3

2∆t

)
2

 ,

P n+1
e =

[
P1

P2

]n+1

e

, Ge =

[
−1, 1

3
2∆t

∆x
2

ρ
An

1
, 3

2∆t
∆x
2

ρ
An

2

]
, Qn+1

e =

[
Q1

Q2

]n+1

e

, (3.18)

and hne is the right-hand side of Equation (3.16).

The second term on the right side of Equation (3.14) uses the following first-order

upwind discretisation for node i for an elastic constitutive law, while a central dif-

ference discretisation is performed if a visco-elastic constitutive law is implemented.

For node i the upwind scheme can be written as

∂
(
Q2

A

)n
∂x

≈


[(

Q2

A

)
i
−
(
Q2

A

)
i−1

]
1

∆x
if Qn

i > 0,[(
Q2

A

)
i+1
−
(
Q2

A

)
i

]
1

∆x
if Qn

i < 0,

(3.19)

and a ghost node is used at the vessel boundaries when needed.

A modification at the elemental is performed by enforcing flows to be directed

inwards (defined to point towards element centre). This causes a change of the sign

(to a negative) of the second row of Qe (Q at the second node) and changing the

sign of the second column of the matrix Ge.

Gc
e =

[
G11 G12

G21 G22

]
, becomes Ge =

[
G11 −G12

G21 −G22

]
. (3.20)

While flows Qe =
[
Q1, Q2

]T
become Qe =

[
Q1,−Q2

]T
. This means that the system

equations will still be the same as before when multiplied out. However this will

significantly change the meaning of the flow rate column at the global level. Matrix
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Ge is then inverted so the final elemental system of equations is given by

[−Ge
−1F e]P

n+1
e = [−Ge

−1hne ] +Qn+1
e . (3.21)

Once these elemental systems are assembled into the global system matrix it can

be seen that the flow column Qn+1
g becomes the conservation of mass between con-

nected elements and is zero for all internal nodes. In essence the flow rates at

the local element level become a column of mass change between elements at the

global assembled level. This global mass change (flow) vector only has non-zero

values on the boundaries, which represent external flows, and are accounted for

through the boundary conditions. Thus the global mass change vector looks like

Qn+1
g =

[
Qinflow, 0, . . . , 0, Qoutflow

]
. This can also have major implications on the

implementation of vessel junction conditions, such as for bifurcations, as the con-

tinuity of mass is automatically satisfied and when the same pressure node is used

(last node in parent and first nodes in daughters), the conservation of static pressure

is also satisfied (as performed in the STM scheme [182]).

However, this limits the STM method as only conservation of static pressure

can be imposed (it is not possible to use total pressure, or any pressure loss terms).

Therefore the ETM method extends the existing STM method to allow conservation

of total pressure (or any pressure loss method) to be applied between vessel segments,

the ETM uses Lagrange multipliers to hold conservation of total pressure as a system

constraint. This difference only occurs at vessel junctions as will be discussed in

section 3.2.5. Once the global matrix is assembled the implicit system is solved for

pressures and Lagrange multipliers, then the flows are updated using the elemental

system (3.21).

3.2.3 Example of a 1D-1D Element Connectivity

Consider two neighbouring elements within the same vessel with

[−Ge
−1F e] = Ke, and [−Ge

−1hne ] = f e, (3.22)

which means Equation (3.21) will take the form

KeP
n+1
e = fne +Qn+1

e , (3.23)
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where

Ke =

[
Ke

11 Ke
12

Ke
21 Ke

22

]
, fne =

[
f1

f2

]
, (3.24)

and P n+1
e =

[
P1 P2

]T
, Qn+1

e =
[
Q1 −Q2

]T
. Element one has pressure nodes P1

and P2 and flows Q1 and Q2, and element two has pressure nodes P2 and P3 and

flows Q3 and Q4 respectively. Assembling these two elemental system leads to the

system,

K
1
11 K1

12 0

K1
21 K1

22 +K2
11 K2

12

0 K2
21 K2

22


P1

P2

P3


n+1

=

 f 1
1

f 2
1 + f 1

2

f 2
2

+

 Q1

−Q2 +Q3

−Q4


n+1

, (3.25)

where the superscripts on K and f represent which element they belong to. The

conservation of mass between element one and two requires the outflow of element

one (Q2) to be equal to inflow of element two (Q3), hence Q2 = Q3 or rearranged

gives 0 = Q3 −Q2. This is exactly the middle term of the flow vector (last term on

right) in Equation (3.25). Thus only inflowQ1 and outflowQ4 (boundary conditions)

of this column vector are potentially non-zero, where either pressure or flow rate

would be prescribed. This implicit use of conservation of mass occurs when: 1D

elements connect with other 1D elements; when 1D elements connect to one, or

multiple lumped (0D) elements; and when any number of lumped elements connects

to any number of other 0D elements.

The inlet boundary condition for the benchmark problems is given as a flow rate,

which is easily implemented in the ETM scheme using the external flow column

vector Qn+1
g . If the pressure is required as a boundary condition then this can be

imposed as a Dirichlet boundary condition. At vessel junctions Lagrange multipliers

are used to constrain conservation of total pressure which will be discussed in section

3.2.5.

The outlet of the 1D system is often connected to a lumped parameter model,

whether it is a heart model, valve model, or vascular bed model. As an example to

show the connectivity of a 1D element with a 0D element, consider the 3-element

Windkessel model, which is constructed from a resistor R1 (often characteristic

impedance) in series with a resistor R2 (peripheral resistance) and capacitor C (com-

pliance) in parallel.
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The Windkessel model can be treated using a combination of the three basic

elemental equations, as described in equation (2.25). The 3-elements, each described

by two pressure nodes and two flow rate nodes, which can be expressed as

1

R1

(P n+1
1 − P n+1

2 ) = qn+1
1 = −qn+1

2 , (3.26)

1

R2

(P n+1
2 − P n+1

3 ) = qn+1
3 = −qn+1

4 , (3.27)

C(
∂P2

∂t
− ∂P4

∂t
) = qn+1

5 = −qn+1
6 . (3.28)

Note that the flow rates for node two of each element (q2, q4 and q5) are negative

due to the requiring flow rates to be defined towards the element centre. The tem-

poral term in Equation (3.28) is once again discretised by a second order backward

difference scheme. The elemental lumped equations have the same form as the 1D

blood flow equations, which can be expressed as

K0D
e P

n+1
e = fe +Qn+1

e . (3.29)

Similarly to the 1D equations, the local flow rate column once again becomes a

global mass change vector after assembly, with conservation of mass for internal

nodes, with only external flows being non-zero (boundary condition). This also

allows lumped model elements to be easily connected to the 1D elements by sharing

a pressure node, where once again the conservation of mass appears in the flow rate

column. The outlet boundary condition for the Windkessel model is typically a

defined pressure, which is applied to the system matrix directly. The flow rate could

be given in which case the boundary condition would simply be added to the flow

rate vector, Qn+1.

3.2.4 Lumped Models

As discussed in the subsection 2.3, all lumped models can be constructed using

a combination of three basic elemental equations: a resistance element, an induc-

tance (inertial) element, and a capacitance (compliant) element. The most complex

versions of these models, which are used implemented in chapter 7, and their dis-

cretisations are presented in this section.
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Vascular Beds

Vascular beds are defined by three different models, which are all identical to that

from [230], and thus only an overview of the models are presented here.

The majority of vascular beds are treated using the model configuration shown

in figure 3.1. The generic vascular bed model allows multiple arteries and/or veins

to connect to the same vascular bed, which is more physiologically realistic than

treating each terminal vessel with a separate vascular bed. The generic vascular

bed includes: characteristic impedances from the arteries Zart and veins Zven, a

compliance element representing the arteriole and arterial side of the capillaries

Cart, a pressure dependant resistance from the capillaries Rvb, and a compliance

element representing the venous side of the capillaries and venules Cven. The pressure

dependant resistance varies as

Rvb =

R0

(
Ptm,0−Pzf

Ptm−Pzf

)
, Ptm > Pzf

inf, Ptm ≤ Pzf
(3.30)

where R0 is the resistance at the reference pressure Ptm,0, and Pzf is the transural

pressure when flow becomes zero (5 mmHg as in [230]). The value of Ptm,0 is set to

equal Ptm = P1 − Pext,1 in figure 3.1 when the pressure Part is equal to the aimed

diastolic pressure in the arteries, and Pven is the reference pressure of the veins.

Figure 3.1: Generic vascular bed

The liver vascular bed is shown in figure 3.2, and connects the hepatic artery

(art) and hepatic portal (hpv) vein, before reaching the variable resistance Rvb which

represents the liver. All other aspects are the same as the generic vascular bed, with

the resistance being dependant on the transmural pressure Ptm = P2 − Pext,2 from
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figure 3.2.

Figure 3.2: Liver vascular bed model

The coronary model is shown in figure 3.3 and is more complex than the other

vascular beds. The coronary vascular bed essentially including four layers: the epi-

cardium, subepicardium, midwall, and subendocardium. The model contains nine

variable resistances, which depend on the volume of blood in the vascular bed com-

partment, rather than the pressure. In addition, the external pressures are defined

to be a proportion of heart chamber pressures, which leads to the physiologically

representative waveforms for coronary arteries, which have low systolic flow, and

larger diastolic flows.

For completeness the model equations presented in [230] are repeated here. Each

compliance element C is associated with a compartment volume V , which is updated

using

V (t) = V0 +

∫ t

0

C
dptm
dt

dt, (3.31)

where V0 is the initial compartment volume. This volume is used to update the bed

resistances as

Ri = R0,i

V 2
0,i

V 2
i

, (3.32)

for subscripts R1,i and R2,i from figure 3.3, and

Rvb = R0,vb

(
0.75

V 2
0,1

V 2
1

+ 0.25
V 2

0,2

V 2
2

)
. (3.33)

The external pressures are split between the subepicardium, midwall, and subendo-
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Figure 3.3: Coronary vascular bed model

cardium respectively as

1/6Pch + α
Pch

(Vch − V0,ch)

1/2Pch + α
Pch

(Vch − V0,ch)

5/6Pch + α
Pch

(Vch − V0,ch)
, (3.34)
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where Pch is the pressure in a heart chamber, and Vch is the volume of the heart

chamber. For more details of the model see [230].

Heart Model

The heart model is identical to that of [230]. For completeness, all equations that

describe the heart model are presented. The lumped representation of the heart

model is shown in figure 3.4. The pressure in a heart chamber is described by

Figure 3.4: Heart model (one side)

P = Ppc + Enat (V − V0)−RsQ+
Enat
Esep

P ∗, (3.35)

where the source resistance is

Rs = KsEnat (V − V0) , (3.36)

for a constant Ks, and current V and unstressed V0 chamber volume. The pericardial

pressure is calculated using

Ppc = Kpcexp

[
Vpc − V0,pc

Φ

]
, (3.37)

where Kpc, V0,pc, and Φ are constants for the pericardium, and Vpc is the current

volume of the pericardium, which includes heart chamber volumes, intramycardial

volume, and pericardial fluid volume. The effective heart chamber elastance curves
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(native elastances) are constructed using a relation between the free-wall elastance

(local elastance) and septal elastance (a linear combination of the free-wall elas-

tances of right and left heart chambers). The native elastance of a heart chamber

is described by

Enat =
EfwEsep
Efw + Esep

− µAVQV , (3.38)

for an atrio-ventricular piston constant µAV and the net volumetric flow rate in the

ventricle. The septal elastance is

Esep = κLEfw,L + κREfw,R, (3.39)

for chamber constants κ, and the free wall elastance is

Efw = kch

[
g1

1 + g1

] [
1

1 + g2

]
+ Emin. (3.40)

The free-wall elastance is constructed from the following three functions

g1 =

(
t− tonset

τ1

)m1

, g2 =

(
t− tonset

τ2

)m2

, (3.41)

and

kch =
(
Emax
fw − Emin

fw

)
/max

[(
g1

1 + g1

)
,

(
1

1 + g2

)]
. (3.42)

From a lumped element perspective, each heart chamber can be constructed from

one modified capacitance (compliance) element and one resistive element. Before

describing the discretisation of the equations, it is important to understand the

physical meaning of the terms in the equation. In particular there are two external

pressures acting in equation (3.35). There is an external pressure acting on all heart

chambers from the pericardium via Ppc (as shown in figure 2.8a), and an external

pressure from the contra-lateral heart chamber (i.e. left to right sided chamber

interaction) Enat

Esep
P ∗ (shown in figure 2.8c). Thus defining the total external pressure

on a chamber as as Pch,ext = Ppc+
Enat

Esep
P ∗, which is to be used to describe the discrete

form of the equations.
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The discretisation of equation (3.35) (assuming iterations are performed) is

P n+1,k+1 =

(
Enat
Esep

)n+1,k+1

P ∗,n+1,k + P n+1,k
pc (3.43)

+ En+1,k+1
nat

(
V n+1,k+1 − V0

)
−Rn+1,k+1

s Qn+1,k+1.

In order to split this equation into two elements, consider a heart chamber to have

three pressure nodes: an external pressure Pch,ext, a node connecting elastance ele-

ment and resistance element P1, and the chamber pressure P . The following relation

is used to update the volume in every heart chamber

dV

dt
= Qnet = Qin −Qout, (3.44)

where Qnet is the difference between flow going into the chamber Qin and flow going

out of the chamber Qout. Performing a Crank-Nicolson discretisation allows the

volume update to the current time step to be

V n+1,k+1 − V n =
∆t

2

(
Qn+1,k+1
net +Qn

net

)
. (3.45)

This allows the elastance element (modified compliant element) to be described by

1

En+1,k+1
nat

(
P n+1,k+1

1 − P n+1,k+1
ch,ext

)
= V n +

∆t

2

(
Qn+1,k+1
net +Qn

net

)
− V0, (3.46)

which can be written as a linear system consistent with equation (3.17). The source

resistance element can be written as

1

Rn+1,k+1
s En+1,k+1

nat

(
V n + ∆t

2

(
Qn+1,k
net +Qn

net

)
− V0

) (P n+1,k+1 − P n+1,k+1
1

)
= Qnet,

(3.47)

which is in the required form to be used in the ETM scheme.

Valve Model

Valves can be constructed using three elements: a Bernoulli resistance element, a

viscous resistance, and an inertial element. The valve model is shown in figure 3.5.

For a change in pressure across the valve ∆P , the equation which describes valve
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Figure 3.5: Valve model

dynamics is

∆P = BQ |Q|+RQ+ L
∂Q

∂t
, (3.48)

where B, R, and L are the Bernoulli resistance, viscous resistance, and the inertance

respectively and are given by

B =
ρ

2A2
eff

, R =
ζπµleff
A2
eff

, L =
ρleff
Aeff

, (3.49)

with an effective orifice area of

Aeff (t) = (Aeff,max − Aeff,min) ζ(t) + Aeff,min. (3.50)

The valve state 0 ≤ ζ ≤ 1 from equation (2.32), can be updated by applying

the second order backward differences for the time derivatives and a semi-implicit

discretisation

3

2∆t
ζn+1 − 2

∆t
ζn +

1

2∆t
ζn−1 = Kvo

(
1− ζn+1,k+1

)
∆P n+1,k (3.51)

for valve opening and

3

2∆t
ζn+1 − 2

∆t
ζn +

1

2∆t
ζn−1 = Kvcζ

n+1,k+1∆P n+1,k (3.52)

for valve closing. The discretisation of (3.48) can be found by using a second order

backward difference scheme for the time derivative which gives

∆P n+1,k+1 =Bn+1,k
∣∣Qn+1,k

∣∣Qn+1,k+1 +Rn+1,kQn+1,k+1

+Ln+1,k

(
3

2∆t
Qn+1 − 2

∆t
Qn +

1

2∆t
Qn−1

)
, (3.53)

which is consistent with the required form from equation (3.17) to be used in the

ETM scheme.
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3.2.5 Vessel to Vessel Interface Conditions

In the majority of works [224, 12, 188, 220] extrapolation of characteristic variables

is used in conjunction with conservation of mass and conservation of total pressure

at vessel junctions. A Newton-Raphson method is required to update variables to

the next time step which are then used as boundary conditions. This needs to be

performed at every vessel junction and could become computationally expensive

depending on the number of vessels at a junction, and how many junctions are

considered in the network.

In the ETM scheme, Lagrange multipliers are used as system constraints to

impose a conservation of pressure (in this case total pressure). In order to implement

Lagrange multipliers, first consider a system of equations (such as those representing

1D blood flow) written in the form Ax = b, which are subject to constraints at

an interface (vessel junction). For N number of vessels at a junction, a reference

vessel is chosen (normally a parent vessel), then the system of equations needs to

be supplemented with N − 1 constraints gi i = 1, . . . , N − 1, which relates the

pressure in the reference vessel to that of the daughter vessels (or non-reference

parent vessels). The constraint chosen in this example is the conservation of total

pressure, although static pressure or the inclusion of pressure loses can be easily

introduced. The constraint is written in the form

gi =
ρ

2

Q2
1

A2
1

+ P1 −
ρ

2

Q2
i

A2
i

− Pi = 0, i = 1, . . . , N − 1, (3.54)

where subscript 1 is the chosen reference vessel. These constraints need to be lin-

earised and are imposed for the time level n+ 1. After linearisation, the constraints

for all junctions can be combined into the system Bx = c, which is the same form

as the original equations (blood flow equations).

At each junction there are N − 1 equations which need to be satisfied at the

interface between the parent and N − 1 daughter vessels, implying that N − 1 La-

grange multipliers will be needed to impose these pressure constraints at each vessel

junction. For the global system, the Lagrange multipliers for all vessel junctions are

written as λ1,...,M . Where M is the total number of Lagrange multipliers needed in

the entire system in order to constrain conservation of total pressure at all vessel

junctions. In order to constrain the system, first let Λ be a vector containing all
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λ1,...,M , and

ΛT (Bx− c) = 0. (3.55)

Defining an energy functional to be

δI = (Ax− b)T δx = δ(xTAx− xTb), (3.56)

where Ax−b are the original system of equations which describe the 1D blood flow

model. The stationary condition that satisfies this is

I = (xTAx− xTb). (3.57)

A functional can be created by adding Equations (3.57) and (3.55), which gives

J = xTAx− xTb+ ΛT (Bx− c). (3.58)

By requiring that the total variation of this functional δJ = 0,

δJ =
∂J

∂xi
δxi +

∂J

∂λi
δλi = 0. (3.59)

It is easily deduced that

∂J

∂xi
= 0, and

∂J

∂λi
= 0, (3.60)

as δxi and δλi are arbitrary. Thus the full linear system to be solved can be written

as [
A BT

B 0

][
x

Λ

]
=

[
b

c

]
(3.61)

.

Interestingly when conservation of total pressure is constrained via Lagrange

multipliers, mass conservation is automatically satisfied and hence does not need

to be explicitly constrained, this will be described and become clear in subsection

3.2.6. The ETM scheme requires the constraint system of equations Bx = c to be

in the same form as equation (3.23). As a result, the junction constraints (including

both pressure and flow) need to follow the same format. The linearisation of the
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Figure 3.6: An example of the ETM schemes use of Lagrange multipliers at a bi-
furcation. Arrows indicate assumption of flow direction, hence the parent vessel
(reference vessel) is on the left with pressure nodes P1 and P2. However, this is for
indication of the reference vessel only, and is capable of handling flow in any di-
rection. Lagrange multiplier λ1 connects pressure nodes 2 and 3, while λ2 connects
pressure nodes 2 and 5.

conservation of total pressure terms are as follows

P n+1 ≈ P n+1,k+1,
ρ

2

(
Q2

A2

)n+1

≈ ρ

2

(
Q2

A2

)n+1,k

, (3.62)

where k is the iteration level. As mentioned before only one solve is performed

per time step (no iterations), hence, the iteration levels would be approximated by

(n+ 1, k) ≈ (n) and (n+ 1, k + 1) ≈ (n+ 1).

The Lagrange multipliers can be used to impose continuity of static pressure,

continuity of total pressure, and can also implement methods which estimate en-

ergy/pressure losses at junctions, such as that of [231].

3.2.6 Physical Interpretation of the Lagrange Multipliers

In order to determine a physical interpretation of the Lagrange multipliers it is

advantageous to consider one parent vessel connecting to one daughter vessel, which

can then be easily extended to multiple parent or daughter vessels. Consider the
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last element in the parent vessel p1 and the first element in its daughter vessel d1.

The system of equations representing this system is given by
kep111 kep112 0 0

kep121 kep122 0 0

0 0 ked111 ked112

0 0 ked121 ked122



P p1

1

P p1
2

P d1
1

P d1
2


n+1

=


fp11

fp12

fd11

fd12


n

+


Qp1

1

−Qp1
2

Qd1
1

−Qd1
2


n+1

. (3.63)

Noting that the final column on the right hand side of Equation (3.63) represents the

flow rate column. The first flow of the system Qp1
1 and the last flow of the system Qd1

2

will either: become the conservation of mass when connected another element within

the vessel as shown in Equation (3.25) (becomes zero); or be a specified boundary

condition, which could be either prescribed flow or pressure. After taking this into

account the only flows left in this column are the outflow of the parent vessel Qp1
2 ,

and the inflow of the daughter vessel Qd1
1 . However, from mass conservation the

outflow of the parent vessel must equal the inflow of the daughter vessel. Defining

λ1 = Qp1
2 = Qd1

1 and adding it as a variable to the left hand side of system (3.63),

and adding the conservation of total pressure equation (3.54) between one parent

vessel and one daughter vessel gives


kep111 kep112 0 0 0

kep121 kep122 0 0 1

0 0 ked111 ked112 −1

0 0 ked121 ked122 0

0 1 −1 0 0




P p1

1

P p1
2

P d1
1

P d1
2

λ1



n+1

=


fp11

fp12

fd11

fd12

fλ1



n

. (3.64)

This implies that the Lagrange multiplier is in fact the flow between parent vessel

and daughter vessel. Writing the equations corresponding to the last node of the

parent and the first node of the daughter gives

kep121P
p1
1 + kep122P

p1
2 + λ1 = fp12 ,

ked111P
d1
1 + ked112P

d1
2 − λ1 = fd12 . (3.65)

A dimensional analysis can be done on either of these equations to find that λ1 has

the same units of flow rate.
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This can be extended to any number of parent vessels and/or daughter vessels.

For example, at a bifurcation, the equations of the last node of the parent vessel

and the first node of the two daughter vessels are

kep121P
p1
1 + kep122P

p1
2 + λ1 + λ2 = fp12 ,

ked111P
d1
1 + ked112P

d1
2 − λ1 = fd12 ,

ked211P
d2
1 + ked212P

d2
2 − λ2 = fd22 . (3.66)

It is easily seen that λ1 is the inlet flow of the first daughter vessel and λ2 is the

inlet flow of the second daughter vessel and hence λ1 + λ2 is the total flow leaving

(or entering) the parent vessel.

In the case of two parent vessels to one daughter vessel the equations of the last

node of the two parents and first node of the daughter become

kep121P
p1
1 + kep122P

p1
2 + λ1 + λ2 = fp12 ,

kep221P
p2
1 + kep222P

p2
2 − λ1 = fp22 ,

ked111P
d1
1 + ked112P

d1
2 − λ2 = fd12 . (3.67)

The Lagrange multiplier λ1 = −Qp2
2 (negative the outlet flow of the second parent

vessel), while λ2 is the inlet flow of the daughter vessel, hence, λ1 + λ2 will be the

outlet flow of the first parent (reference) vessel. This can be extended to any number

of parent and/or daughter vessels.

Thus the use of Lagrange multipliers to constrain conservation of total pres-

sure (or static pressure) also finds the external flows of the vessels, meaning that

conservation of mass is also automatically satisfied for the connected vessels.

3.2.7 Treatment of Duplicate 1D Vessels or Lumped Ele-

ments

There are a large number of variations in a cardiovascular network between individ-

uals. Moreover, in the model it is assumed no fluid leaks radially from the vessels.

It is also unrealistic to account for all minor vessels which branch from major vessels

(such as the inter-costal arteries from the descending aorta). In order to account

for the blood that is being removed by such arteries, it can be assumed that several
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vessels branch from the same point of the major vessel, and connect to the same vas-

cular bed. Thus creating several vessels with exact same properties and inlet/outlet

boundary conditions on both sides. This allows a trick to be applied at the vessel

junction, which takes into account that multiple vessels are connected to a junction

and vascular bed, but only calculates the fluid within one of these vessels.

There are two different treatments for the different occurrences of these duplicate

vessels. These are from: a 1D-1D vessels junctions, where the trick needs to be taken

into account through the Lagrange multipliers at the junction, as described in section

3.2.5; and a connection of 1D-0D, or 0D-0D models.

First consider the case for a connection of 1D-1D vessels. For simplicity consider

a bifurcation, where the two child vessels have the same material properties (such

as length and area), and have the same inlet boundary conditions (branch from the

same point of the parent vessel). For this the corresponding constraint system matrix

(only considering the nodes at the junction), which would normally be written as

equation (3.66), could be written as:

kep121P
p1
1 + kep122P

p1
2 + λ1 = fp12 ,

2ked111P
d1
1 + 2ked112P

d1
2 − λ1 = 2fd12 . (3.68)

This essentially tricks the code to consider the effect of duplicate child vessels at a

junction, and can be extended to any number of child vessels, and can also extend

to include any number of parent vessels. It is important to note that the Lagrange

multiplier will now be the total flow leaving the parent vessels, which is twice the

flow going into each child vessel.

A similar trick can be performed at junctions where pressure nodes are shared

by neighbouring elements, such as 1D-0D or 0D-0D connectivities. Considering two

identical 1D vessels connecting to a 0D vascular bed, the original system (at the

shared pressure node) can be expressed as

ke1D,1
21 P 1D,1 + ke1D,1

22 P 1D,1,S
2 + ke1D,2

21 P 1D,2 + ke1D,2
22 P 1D,2,S

2 + ke0D
21 P

0D,S + ke0D
22 P

0D
2

=f 1D,1
2 + f 1D,2

2 + f 0D
1 , (3.69)

or in a linear system when considering the shared nodes P Shared = P 1D,1,S
2 =
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P 1D,2,S
2 = P 0D,1,S

2 is

[
ke1D,1

21 ke1D,1
22 + ke1D,2

22 + ke0D
21 ke1D,2

21 ke0D
22

]

P 1D,1

P Shared

P 1D,1
2

P 0D,2

 = f 1D,1
2 + f 1D,2

2 + f 0D
1 .

(3.70)

This can be manipulated and re-written as

[
2ke1D,1

21 2ke1D,1
22 + ke0D

21 ke0D
22

] P 1D,1

P Shared

P 0D,1,S

 = 2f 1D,1
2 + f 0D

1 . (3.71)

It is also important to remember that these tricks are performed on the global as-

sembled matrix (not the elemental systems), as the local flow updates are performed

at the elemental level.

3.3 Concluding Remarks

This chapter presented the formulation and implementation of the numerical schemes

used to solve the one-dimensional and zero-dimensional modelling components. The

chapter began by comparing the common types of schemes that are implemented for

the one-dimensional system of equations. This was followed by the description of

the ETM scheme utilised in this thesis. The ETM scheme is an implicit sub-domain

collocation scheme, which uses a second-order backward difference discretisation for

the temporal domain, and the composite trapezoidal rule for spatial integration.

The scheme involves a novel technique for the treatment of vessel junctions, which

involves the use of Lagrange multipliers to constrain conservation of mass, and a

continuity of pressure (static, total, or inclusion of pressure loss estimation meth-

ods). The treatment of other boundary condition types for the one-dimensional

model was also described, including the coupling to the lumped parameter models

of the heart, valves, and vascular beds.
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Chapter 4

Benchmark Problems and Method-

ology Testing

4.1 Introduction

In this chapter the Enhanced Trapezoidal Rule Method (ETM) is rigorously tested

through a series of comparisons with published benchmark problems [41] which

include comparisons with analytical solutions, in-vitro data, and in-silico data. The

scheme is further tested in order to determine its convergence behaviour, and is

compared to additional problems for which a theoretical solution exists.

This chapter is primarily split into three parts: section 4.2 compares the ETM

scheme with benchmark problems published in [41]; section 4.3 compares the ETM

with several additional cases with theoretical solutions; finally, section 4.4 tests the

spatial and temporal convergence behaviour of the scheme and the effect on the

choice of linearisation implemented.

Unless otherwise stated, the governing equations used for each test case in this

chapter are the following continuity and momentum equations
CA

∂P
∂t

+ ∂Q
∂x

= 0,

ρ
A
∂Q
∂t

+ ρ
A

∂
∂x

(
Q2

A

)
+ ∂P

∂x
− f

A
= 0,

(4.1)

While the constitutive law is the non-linear elastic constitutive law described by

P = Pext + Pd +
β

Ad

(√
A−

√
Ad

)
, β(x) = 4/3

√
πEh, (4.2)

for which the vessel compliance can be determined by

CA =
∂A

∂P
=

(
2Ad (P − Pext − Pd)

β
+ 2
√
Ad

)
Ad
β
. (4.3)
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The velocity profile chosen is given by

u(x, ξ, t) = U(x, t)
ξ + 2

ξ

[
1−

(
ξ

r

)ζ]
, (4.4)

which causes the friction term due to viscous forces to become

f = −2(ζ + 2)µπ
Q

A
. (4.5)

The outlet boundary conditions will differ between each problem tested and range

between reflection-free outlet conditions, a single resistance outlet model, and a

three-element Windkessel model. For completeness, the details of each problem

tested, including the network and boundary conditions, will be described in each

section. At vessel junctions conservation of total pressure, and conservation of mass,

are held as constraints between vessels, unless stated otherwise.

4.2 Benchmarked Problems

In this section the ETM scheme is compared with six published benchmark prob-

lems [41], which includes comparisons with analytical solutions (single pulse in a

long vessel), in-vitro experimental measurements (37-artery network), in-silico so-

lutions from a 3D model (common carotid artery, upper thoracic aorta, and aortic

bifurcation), and an in-silico comparison between several one-dimensional numeri-

cal schemes (56-artery network). Table 4.1 contains the numerical parameters used

for all benchmarked cases. For the benchmark cases the ETM scheme which is at

least first-order accuracy in space is implemented (due to the non-linear convection

discretisation), however the scheme can be easily adapted to second-order accuracy

in space, which is tested in section 4.4.2.

The following error metrics are used to aid the comparison between the ETM

scheme and 3D or in-vitro measurements for the benchmark problems:

εRMS
P =

√√√√ 1

n

n∑
i=1

(
P 1D
i − Pi
Pi

)2

, εRMS
Q =

√√√√ 1

n

n∑
i=1

(
Q1D
i −Qi

maxj Qi

)2

, (4.6)
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Case ∆t (ms) ∆x (cm) Space (order) Time (order)
Single pulse 0.1 0.1 1st 2nd

Carotid 1.0 1.0 1st 2nd
Aorta 1.0 1.0 1st 2nd

Aortic bifurcation 1.0 1.0 1st 2nd
37-artery 1.0 1.0 1st 2nd
ADAN56 1.0 1.0 1st 2nd

Table 4.1: Numerical parameters used for the benchmark cases

εMax
P = max

j

∣∣∣∣P 1D
i − Pi
Pi

∣∣∣∣ , εMax
Q = max

j

∣∣∣∣Q1D
i −Qi

maxj Qi

∣∣∣∣ , (4.7)

εSysP =
max(P 1D)−max(P)

max(P)
, εSysQ =

max(Q1D)−max(Q)

max(Q)
, (4.8)

εDiasP =
min(P 1D)−min(P)

min(P)
, εDiasQ =

min(Q1D)−min(Q)

max(Q)
, (4.9)

where P 1D and Q1D are the solutions of the model at the spatial location and time

point i (i = 1, . . . , n), while P and Q are the 3D solutions (or in-vitro measurement).

The error measures are used for the pressure (P ) and flow rates (Q) in the vessel

(middle of vessel unless otherwise stated), the pressure difference between the inlet

and outlet of the vessel (∆P ), and the difference in vessel radius from diastole (∆r).

4.2.1 Single Pulse in a Long Reflection-Free Vessel

The first test is a single, non-physiological pulse in a long reflection-free vessel.

Numerically, this is challenging for any scheme due to the sharp gradient of the

pulse. As mentioned, this is a non-physiological test as a physiological wave has

a wavelength in metres, while in this problem the defined pulse has a wavelength

in centimetres. Furthermore, an analytical solution can be found for the linearised

system, hence only the linearised system, shown in equation (2.23) are implemented,

which involves the removal of the non-linear convection term from the momentum

equation.

The vessel considered has uniform properties along its length. At the inlet the

volumetric inflow rate is a Gaussian-shaped wave with a peak flow rate of 1 ml s−1
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Property Units Vessel 1
Length, L cm 1000
Area, Ad cm2 π

Initial Area, A(x, 0) cm2 Ad
Initial flow, Q(x, 0) ml s−1 0
Wall thickness, h cm 0.15
Blood density, ρ kg m−3 1050

Blood viscosity, µ mPa s 4 or 0
Velocity profile order ζ — 9

Elastic modulus, E kPa 400.0
Diastolic pressure, Pd kPa 0

External pressure, Pext Pa 0
Initial pressure, P (x, 0) kPa 0
Outflow pressure, Pout Pa 0

Table 4.2: Properties for a single pulse in a single vessel

given by

Qinflow(t) = exp(−10000 (t− 0.05)2) ml s−1, (4.10)

while a reflection-free outflow boundary condition is chosen (although the simulation

terminates before the pulse reaches the end of the computational domain). A theo-

retical solution is constructed for the linearised system, with a theoretical decrease

of peak pressure [11] in the viscid case given by

Ppeak, viscid(x) = Ppeak, inviscid exp(−(ζ + 2) πµx

ρc0Ad
), (4.11)

which is applicable when the fluid velocity is small. Parameters used in this case are

given in Table 4.2. For more details on this problem, see the original description in

[11], which is repeated in [41]. The time step used for this case is ∆t = 0.1 ms and

the element size is ∆x = 0.1 cm.

Figure 4.1 compares the ETM scheme with the theoretical solutions for both the

viscous and inviscid cases. The ETM scheme preserves the peak in the inviscid case,

and correctly predicts the pressure peak reduction along the vessel length for the

viscous case. The solution indicates that the ETM scheme can correctly capture

high frequencies.
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Figure 4.1: Decrease in the pressure wave peak along a vessel length for the single
pulse case. The pressure of inviscid case is shown by the black line, while the pressure
decrease due to viscous effects is shown by the blue line. The theoretical decrease
of pressure for viscous case is given by the red line.

4.2.2 Common Carotid Artery

The common carotid arteries are the largest arteries in the neck and supply the

majority of blood to the head and brain. In this test case a single vessel, repre-

senting a common carotid artery, is considered to have uniform material properties

(cross-sectional area, wall thickness, and elastic modulus). The outlet of the vessel is

connected to a three-element lumped parameter model which represents the down-

stream vessel network properties. The volumetric inflow rate Qinlet was measured

in-vivo and was published in [372] with the problem description. The inflow rate is

also given in supplementary material from [41]. Table 4.3 contains information on

various parameters of the problem.

For this problem, the spatial mesh (element size) used is ∆x = 1 cm, with a

temporal mesh (time step) of ∆t = 1 ms. The pressure and flow rate waveforms of

the ETM scheme, shown in figures 4.2a and 4.2b respectively, are in good agreement

with the 3D solution and are consistent with the published solutions of the other

1D schemes. Relative errors are shown in Table 4.4.

4.2.3 Upper Thoracic Aorta

The thoracic aorta is the first section of the descending aorta, located distal to

the aortic arch. The thoracic aorta test considered here, is a single 1D vessel with

uniform properties. The inlet boundary condition is a defined volumetric inflow rate

Qinlet, while the 1D outlet boundary is coupled with a three element Windkessel
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Property Units Common Carotid
Length, L cm 12.6

Area at diastolic pressure, Ad cm2 0.28274
Initial Area, A(x, 0) cm2 0.22038
Initial flow, Q(x, 0) ml s−1 0
Wall thickness, h cm 0.03
Blood density, ρ kg m−3 1060

Blood viscosity, µ mPa s 4
Velocity profile order ζ — 2

Elastic modulus, E kPa 700.0
Diastolic pressure, Pd kPa 10.933

External pressure, Pext Pa 0
Initial pressure, P (x, 0) kPa 0
Outflow pressure, Pout Pa 0

Windkessel resistance, R1 Pa s m−3 2.4875× 108

Windkessel resistance, R2 Pa s m−3 1.8697× 109

Windkessel compliance, C Pa s m−3 1.7529× 10−10

Table 4.3: Properties for the common carotid artery case.

Error (%) ETM DCG LCG STM
εRMS
P 0.31 0.33 0.32 0.32
εRMS
Q 0.35 0.34 0.30 0.35
εRMS

∆r 1.11 1.15 1.11 1.10
εRMS

∆P 4.16 4.15 4.24 4.35
εMax
P 0.75 0.81 0.76 0.77
εMax
Q 1.30 1.26 1.19 1.31
εMax

∆r 2.48 2.63 2.48 2.54
εMax

∆P 15.48 15.43 15.77 16.47

εSysP -0.26 -0.27 -0.27 -0.26

εSysQ -0.54 -0.55 -0.46 -0.55

εSys∆r -1.61 -1.65 -1.63 -1.63

εSys∆P -15.11 -15.05 -15.37 -15.76
εDiaP 0.27 0.28 0.28 0.27
εDiaQ 0.26 0.25 0.22 0.27
εDia∆r 0.07 0.08 0.11 0.8
εDia∆P 4.99 4.99 4.76 4.85

Table 4.4: Comparison of relative errors from the 3D solution of the ETM, DCG,
LCG, and STM, for the common carotid artery case
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Figure 4.2: Pressure and volumetric flow rate waveforms in the common carotid
artery test comparing the ETM, DCG, LCG and 3D data.
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Figure 4.3: Pressure and volumetric flow rate waveforms in the upper thoracic aorta
test comparing the ETM, DCG, LCG and 3D data.

model which simulates the effect of downstream vasculature. The original test case

was published in [372], while [41] also describes the problem along with supplying

additional material, which includes the volumetric inflow rate and both 1D and 3D

model solutions.

The time step used for the ETM scheme is ∆t = 1 ms and element size is ∆x =

1 cm. Figures 4.3a and 4.3b compare the pressure and flow waveforms for the ETM,

DCG and LCG schemes, along with a 3D solution. The ETM scheme solution is

consistent with the other published 1D method solutions published in [41], with

noticeable discrepancies with the 3D data, particularly during systole. Table 4.6

shows the relative errors of the ETM, STM, DCG, and LCG schemes.
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Property Units Thoracic Aorta
Length, L cm 24.137

Area at diastolic pressure, Ad cm2 4.5239
Initial Area, A(x, 0) cm2 3.0605
Initial flow, Q(x, 0) ml s−1 0
Wall thickness, h cm 0.12
Blood density, ρ kg m−3 1060

Blood viscosity, µ mPa s 4
Velocity profile order ζ — 2

Elastic modulus, E kPa 700.0
Diastolic pressure, Pd kPa 9.46̇

External pressure, Pext Pa 0
Initial pressure, P (x, 0) kPa 0
Outflow pressure, Pout Pa 0

Windkessel resistance, R1 Pa s m−3 1.1752× 107

Windkessel resistance, R2 Pa s m−3 1.1167× 108

Windkessel compliance, C Pa s m−3 1.0163× 10−8

Table 4.5: Properties for upper thoracic aorta case.

Error (%) ETM DCG LCG STM
εRMS
P 1.30 1.20 1.31 1.23
εRMS
Q 1.72 1.78 1.74 1.82
εRMS

∆r 2.63 2.56 2.61 3.08
εRMS

∆P 6.48 6.46 6.43 6.71
εMax
P 2.94 3.05 2.99 3.23
εMax
Q 5.60 5.83 5.68 5.94
εMax

∆r 6.67 6.74 6.75 8.94
εMax

∆P 25.51 24.16 24.16 26.07

εSysP -0.42 -0.57 -0.32 -0.59

εSysQ -5.17 -5.56 -5.36 -5.56

εSys∆r -2.18 -2.54 -1.93 -4.48

εSys∆P -9.42 -8.91 -8.89 -9.70
εDiaP 1.08 0.85 1.22 0.85
εDiaQ 2.55 2.75 2.67 2.95
εDia∆r 2.17 1.85 2.24 0.00
εDia∆P 6.95 7.32 7.24 7.47

Table 4.6: Comparison of relative errors from the 3D solution of the ETM, DCG,
LCG, and STM, for the upper thoracic aorta case
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Property Units Aorta Iliac
Length, L cm 8.6 8.5

Area at diastolic pressure, Ad cm2 2.3235 1.1310
Initial Area, A(x, 0) cm2 1.8062 0.94787
Initial flow, Q(x, 0) ml s−1 0 0
Wall thickness, h cm 0.1032 0.072
Blood density, ρ kg m−3 1060 -

Blood viscosity, µ mPa s 4 -
Velocity profile order ζ — 9 -

Elastic modulus, E kPa 500.0 700.0
Diastolic pressure, Pd kPa 9.46̇ 9.46̇

External pressure, Pext Pa 0 0
Initial pressure, P (x, 0) kPa 0 0
Outflow pressure, Pout Pa 0 0

Windkessel resistance, R1 Pa s m−3 - 6.8123× 107

Windkessel resistance, R2 Pa s m−3 - 3.1013× 109

Windkessel compliance, C Pa s m−3 - 3.6664× 10−10

Table 4.7: Properties for aortic bifurcation case, which is a symmetric configuration
and includes the abdominal aorta and two common iliac arteries.

4.2.4 Aortic Bifurcation

The section of the descending aorta contains a bifurcation to the left and right

common iliac arteries, which distributes blood towards the pelvic region and the legs.

This location is often called the aortic bifurcation and the geometric configuration of

this region can lead to an abdominal aortic aneurysm (AAA), particularly in older

individuals with more tortuous vessels [304]. The bifurcation model is symmetric, i.e.

both iliac arteries are identical and the vessels considered have uniform properties.

The volumetric inflow rate is defined for the inlet boundary condition, while the

outflow is coupled to a three-element Windkessel model. The original problem is

described in [372], while supplementary material from [41] contains volumetric inflow

rate, and the solutions of various models, including 1D and 3D methodologies.

The time step used in this case ∆t = 1 ms and the element size is ∆x = 1 cm.

Figure 4.4 compares the ETM, DCG, and LCG methods with the 3D model so-

lutions. Good agreement is observed for pressure and flow waveforms between the

ETM scheme and 3D data for the abdominal aorta and common iliac arteries. Table

4.8 shows the relative errors for the ETM, DCG, LCG, and STM schemes.
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Error (%) ETM DCG LCG STM
εRMS
P 0.43 0.45 0.45 0.44
εRMS
Q 0.93 0.92 0.83 0.93
εRMS

∆r 2.50 2.52 2.45 2.48
εMax
P 0.73 0.77 0.75 0.74
εMax
Q 2.79 2.74 2.49 2.76

Midpoint aorta εMax
∆r 4.07 4.18 4.04 4.11

εSysP -0.52 -0.53 -0.54 -0.51

εSysQ -2.51 -2.47 -2.23 -2.52

εSys∆r -3.92 -3.96 -3.86 -3.93
εDiaP 0.48 0.50 0.51 0.48
εDiaQ 1.16 1.16 1.03 1.17
εDia∆r -1.41 -1.39 -1.37 -1.41
εRMS
P 0.46 0.48 0.47 0.47
εRMS
Q 1.18 1.16 1.19 0.40
εRMS

∆r 4.08 4.09 4.03 4.06
εMax
P 0.84 0.89 0.86 0.85
εMax
Q 3.63 3.55 3.64 1.68

End aorta εMax
∆r 6.94 7.02 6.88 7.08

εSysP -0.69 -0.71 -0.70 -0.69

εSysQ -3.52 -3.47 -3.53 -1.08

εSys∆r -6.80 -6.84 -6.73 -6.90
εDiaP 0.53 0.54 0.55 0.53
εDiaQ 1.77 1.76 1.78 0.69
εDia∆r -1.95 -1.93 -1.92 -1.88
εRMS
P 0.49 0.50 0.50 0.48
εRMS
Q 0.59 0.56 0.60 0.59
εRMS

∆r 4.31 4.31 4.31 4.27
εMax
P 0.94 0.99 0.96 0.94
εMax
Q 2.16 2.05 2.16 2.18

Midpoint iliac εMax
∆r 7.45 7.50 7.48 7.45

εSysP -0.82 -0.83 -0.83 -0.81

εSysQ -1.80 -1.68 -1.84 -1.79

εSys∆r -7.23 -7.25 -7.26 -7.22
εDiaP 0.53 0.55 0.55 0.54
εDiaQ 1.18 1.17 1.19 1.18
εDia∆r -2.39 -2.36 -2.37 -2.41

Table 4.8: Comparison of relative errors from the 3D solution of the ETM, DCG,
LCG, and STM, for the aortic bifurcation case
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Figure 4.4: Pressure and flow rates for the aortic bifurcation case. A comparison
between the ETM, STM and LCG schemes with 3D data.

4.2.5 Arterial Network Containing 37 Vessels

The 37-arterial network was first presented in [205], who compared a 1D haemody-

namics model of purely elastic vessels with in-vitro measurements from an identical

network of silicone tubing. An extension, which included a visco-elastic wall model

for the 1D methodology, was compared with the same experimental set-up [12].

The inlet boundary condition for the model uses volumetric inflow rate from the

in-vitro measurements, while the outflow boundaries are attached to lumped resis-

tance elements. In order to be consistent with the benchmark paper by [41], the case

considered in this section is for the elastic wall model. All parameters in the model

are given as supplementary material in [41]. Table 4.9 shows the haemodynamic

parameters used in the simulation.

Figures 4.5, 4.6, and 4.7 compare pressure and volumetric flow rates from in-vitro

measurements with the ETM, DCG, and LCG methods for various vessels through-

out the network. The vessels considered are the: aortic arch II, which connects the
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Property Units Parameter Value
Blood density, ρ kg m−3 1050

Blood viscosity, µ mPa s 2.5
Velocity profile order ζ — 9

Elastic modulus, E kPa 1200.0
Diastolic pressure, Pd kPa 0

External pressure, Pext Pa 0
Initial pressure, P (x, 0) kPa 0
Outflow pressure, Pout Pa 0

Table 4.9: Properties for thirty-seven arterial network case.

ascending and descending parts of the aorta; thoracic aorta II, which is towards the

top of the descending aorta; left subclavian artery I, which is primarily responsible

for carrying blood to the arms (and to the vertebral arteries which supply a minority

of blood to the head and brain); right iliac femoral, which although is not an artery

in the artery by itself, it represents the combination of the right common and exter-

nal iliac arteries and right femoral artery, which physiologically begins in the pelvic

region (iliac) and carries the majority of blood to the leg (via femoral); left ulnar

and right ulnar arteries, which are located in each forearm; splenic artery, which is

an artery that splits from the celiac branch (a branch that supplies blood to organs

which eventually brings blood to the liver) and carries blood the the spleen; and the

right anterior tibial artery, which is located in the lower right leg.

The ETM scheme gives solutions which are consistent with the other 1D mod-

elling methodologies. Comparing with the in-vitro measurements, the numerical

methods over-predict the presence and magnitude of high frequency oscillations for

both pressure and flows, particularly in the second and third vessel generations. The

ETM scheme uses a time step of ∆t = 1 ms and an element size of ∆x = 1 cm, which

gives a maximum CFL number of CFL = 2.3517. Table 4.10 shows the relative er-

rors of the ETM, LCG, DCG, and STM schemes compared to the measurements.
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Figure 4.5: Pressure and flow waveforms in the 37-arterial tree network, comparison
between ETM, DCG, LCG, and experimental measurements.

4.2.6 ADAN56 Arterial Network

The largest network tested in the benchmark paper [41] is a network consisting of

56 of the major systemic arteries, which is a reduced model of an arterial network

originally proposed in [37, 36]. Table 4.11 shows the main haemodynamic parame-

ters used for this simulation. For more details on parameters, including volumetric

inflow rate and the arterial network description, see [41]. There exists no in-vitro
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Figure 4.6: Pressure and flow waveforms in the 37-arterial tree network, comparison
between ETM, DCG, LCG, and experimental measurements.

data, or in-silico data from 3D models for this network, and hence the solutions of

six 1D models were compared and published in [41]. Thus in this subsection, the

ETM scheme is compared with three of the solutions from the benchmark paper.

Furthermore, while the majority of current schemes are explicit and must adhere to

a CFL number restriction for stability purposes, the ETM scheme is implicit and

hence is not restricted by the CFL number. Thus the ETM scheme is simulated for

several combinations of element size ∆x and time step size ∆t, in order to investi-
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Figure 4.7: Pressure and flow waveforms in the 37-arterial tree network, comparison
between ETM, DCG, LCG, and experimental measurements.

gate whether using higher CFL numbers would still give acceptable solutions. As

mentioned in section 3.2 the ETM is an extension of the STM scheme by [182]. The

STM scheme performed poorly when compared with the other schemes published

in [41] for the ADAN network, however the STM gave results that were consistent

with other schemes for all other cases in the benchmark paper. The differences in

solution of the STM scheme for the ADAN model were attributed to the STM’s

inability to hold conservation of total pressure at vessel junctions as the STM was

restricted to use conservation of static pressure by sharing a pressure node between

parent and child vessels. This explanation of the choice of junction condition was

not originally investigated or confirmed, as all other numerical methods in [41] im-

plemented conservation of total pressure, and conservation of static pressure was not

tested for any other scheme. Thus implementing the ETM scheme for this problem

also confirms the hypothesis from [41] that the ADAN model is more sensitive to

the choice of the pressure conservation condition at vessel junctions. The effect of

junction conditions and non-linearities in the system are investigated for a closed
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Property Units Parameter Value
Blood density, ρ kg m−3 1040

Blood viscosity, µ mPa s 4
Velocity profile order ζ — 2

Elastic modulus, E kPa 225.0
Diastolic pressure, Pd kPa 10

External pressure, Pext Pa 0
Initial pressure, P (x, 0) kPa 0
Outflow pressure, Pout Pa 0

Table 4.11: Properties for ADAN network case.

loop system in section 5.

Figures 4.8, 4.9, 4.10, and 4.11 compare pressure and volumetric flow rate wave

forms of the ETM (for three different combinations of element size and time step),

STM, LCG, and DCG schemes for several vessel through the systemic arterial sys-

tem. The solutions are compared in the following vessels: aortic arch I, which

physiologically is located just after the coronary arteries in the ascending aorta;

thoracic aorta III, which is located close to the midpoint in the descending part of

the aorta; abdominal aorta V, which is located at the very bottom of the descending

aorta; the right common and internal carotid arteries, which are located in the neck;

the right renal artery, which brings blood to the right kidney and branches from

the abdominal aorta; right common and internal iliac arteries, which are located in

the pelvic region; the right radial artery and right posterior interosseous, which are

located in the forearm; the right femoral and right anterior tibial artery, which are

located in the upper and lower leg, respectively.

The solutions show that the ETM scheme gives solutions consistent with the

LCG, and DCG schemes. The STM scheme can be seen to deviate from the other

numerical schemes for all vessels, which even includes pressure in the aortic arch

(which is the inlet for the model). The ETM scheme has been tested with conser-

vation of static pressure, and then gives the same solution as the STM, implying

that the choice of pressure conservation law at vessel junctions is responsible for the

deviation of the solution for the STM scheme.

In addition, three different combinations of element size and time step size are
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Figure 4.8: Pressure and flow rate waveforms in the aortic arch I, thoracic aorta
III, and abdominal aorta V. Results are shown for the ETM, STM, DCG, and LCG
methods. ETMa is the ETM scheme with ∆t = 1 ms and ∆x = 1 cm, ETMb is
the ETM scheme with ∆t = 2 ms and ∆x = 2 cm, ETMc is the ETM scheme with
∆t = 5 ms and ∆x = 5 cm.

considered by the ETM scheme. The time step for the ETMa simulation is ∆t = 1 ms

while the element size is ∆x = 1 cm; the ETMb uses a time step of ∆t = 2 ms and

∆x = 2 cm for the element size; the ETMc uses ∆t = 5 ms for the time step

and an element size of ∆x = 5 cm. Table 4.12 shows the maximum CFL number
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0 0.5 1
Time (s)

60

80

100

120

140

Pr
es

su
re

 (m
m

Hg
)

ETMa
ETMb
ETMc
STM
LCG
DCG

(e) Pressure in right common iliac artery
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(f) Flow rate in right common iliac artery

Figure 4.9: Pressure and flow rate waveforms in right common carotid artery, right
renal artery, and right common iliac artery. Results are shown for the ETM, STM,
DCG, and LCG methods. ETMa is the ETM scheme with ∆t = 1 ms and ∆x =
1 cm, ETMb is the ETM scheme with ∆t = 2 ms and ∆x = 2 cm, ETMc is the ETM
scheme with ∆t = 5 ms and ∆x = 5 cm.

(Courant-Friedrichs-Lewy condition) and CPU time taken per cardiac cycle for each

simulation. The lowest CFL number gives results almost identical to the LCG and

DCG schemes from [41], however explicit schemes would be unstable using this time

step and element size combination. It is important to note that a lower limit of two
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ETM Time Step (ms) Max Element Size (cm) Max CFL Time Taken (s)
a 1 1 3.6789 2.31
b 2 2 7.3631 0.83
c 5 5 18.4272 0.24

Table 4.12: ETM scheme simulation for three different combinations of time step
and element size.

elements per vessel is chosen for the simulation, and as a result of the shortest vessel

being defined by two elements for all simulation cases (ETMa, ETMc, and ETMc),

the maximum CFL number for each case only scales with the time step as the ratio

of wave speed to element size does not change for the vessel with the highest CFL

number.

Furthermore, only small discrepancies are seen for the ETM scheme when using

the coarser temporal and spatial meshes. Table 4.13 shows the maximum peak and

mean percentage errors for pressures and flow rates (for the vessels where these

errors are largest), with the waveforms for these vessels shown in figure 4.12 for the

ETMc and ETMa simulations. The maximum errors for P (and Q) at the centre of

each vessel were calculated as follows

MaxPi =

∣∣∣∣(Max(Pi,fine)−Max(Pi,coarse)

Max(Pi,fine)

)∣∣∣∣ , (4.12)

while mean errors were calculated via

MeanPi =

∣∣∣∣(Mean(Pi,fine)−Mean(Pi,coarse)

Mean(Pi,fine)

)∣∣∣∣ , (4.13)

for i = 1 : N , where N is the number of vessels. The largest MaxPi, MeanPi,

MaxQi, and MeanQi were chosen for table 4.13. Although the peak values have

errors, the waveforms of the ETMc simulations still capture the main trends in the

waveforms quite well. Hence it may be of value to quickly estimate the solution (in

close to real time) using a coarser mesh if only mean values of pressure and flow

are required, or a coarse mesh could be used for several cardiac cycles to quickly

converge, with a refined mesh used for the final one or two cardiac cycles.
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(c) Pressure in right radial artery

0 0.2 0.4 0.6 0.8 1 1.2
Time (s)

0

1

2

3

4

5

Fl
ow

ra
te

 (m
l/s

)

ETMa
ETMb
ETMc
STM
LCG
DCG

(d) Flow rate in right radial artery
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(e) Pressure in right internal iliac artery
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(f) Flow rate in right internal iliac qrtery

Figure 4.10: Pressure and flow rate waveforms in right internal carotid artery, right
radial artery, and right internal iliac artery. Results are shown for the ETM, STM,
DCG, and LCG methods. ETMa is the ETM scheme with ∆t = 1 ms and ∆x =
1 cm, ETMb is the ETM scheme with ∆t = 2 ms and ∆x = 2 cm, ETMc is the ETM
scheme with ∆t = 5 ms and ∆x = 5 cm.
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4.3. NUMERICAL COMPARISONS FOR PROBLEMS WITH
THEORETICAL SOLUTIONS
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(d) Flow rate in right femoral II artery
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Figure 4.11: Pressure and flow rate waveforms in right posterior interosseous, right
femoral artery, and right anterior tibial. Results are shown for the ETM, STM, DCG,
and LCG methods. ETMa is the ETM scheme with ∆t = 1 ms and ∆x = 1 cm,
ETMb is the ETM scheme with ∆t = 2 ms and ∆x = 2 cm, ETMc is the ETM
scheme with ∆t = 5 ms and ∆x = 5 cm.

4.3 Numerical Comparisons For Problems With

Theoretical Solutions

In this section additional cases are chosen to test the ability of the ETM scheme to

handle various challenging problems. These will test a number of important concepts
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ETM Max P Mean P Max Q Mean Q
b 1.776 % 0.041 % 3.231 % 0.238 %
c 6.782 % 0.129 % 11.259 % 0.998 %

Table 4.13: Error of ETM scheme for coarser meshes ETMb and ETMc, in compar-
ison with the ETMa simulation
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Figure 4.12: Waveforms for vessels with maximum peak errors in pressure and flow
rates for the ETMc, in comparison with the ETMa.

and situations in order to improve understanding of the numerical scheme, and to

investigate any limitations that may be present, including:

• Investigating whether the scheme is well-balanced. In the computational com-

munity, well-balanced refers to the ability of a numerical scheme to correctly

handle source terms, which is particularly important for stiff source terms,

which is the case in the governing equations of 1D haemodynamics, particu-

larly in the presence of a stenosis (narrowing) of a vessel.

• Conservation properties of the scheme (in particular mass conservation). The-

oretically the scheme for the 1D system is mass conservative, as the equations

are formulated in such a way as to solve for pressures and net flow rates (mass

change, which includes Lagrange multipliers) in the global system. However,

as with any scheme inaccuracies can occur due to order of accuracy (spatial

and/or temporal order of the scheme). For example, it would be expected that

the scheme would perform worse with respect to mass conservation for larger

time steps or lower order of accuracy. Furthermore for an implicit method,

conservation can also depend on the choice of convergence criteria, lineari-

Pg. 90 / 284



4.3. NUMERICAL COMPARISONS FOR PROBLEMS WITH
THEORETICAL SOLUTIONS

sation, and also on the condition number of the global system matrix and

machine precision.

• Numerical order of accuracy, stability, convergence (spatial and temporal mesh,

and periodic convergence) of the scheme and its components (1D and 0D).

• If the scheme can handle un-smooth changes in vessel geometry and/or mate-

rial properties, which may even include discontinuous jumps.

• The ability to capture sharp gradients of pressure or flow rates, including

shock waves, which could potentially occur due to external pressures, or from

inclusion of gravity due to a sudden change in posture.

There are various cases that can be constructed in order to test the effectiveness,

and correctness, of the numerical scheme. Due to the complex, non-linear behaviour

of the system, there exists no analytical solution for the full non-linear set of equa-

tions. Therefore, in order to construct problems with analytical solutions, additional

assumptions need to be made, which reduces the complexity of the system. These

assumptions involve: reducing the system to a linear set of equations with simi-

lar properties, which can be used to investigate wave propagating phenomena in

the vessel and at junctions; employing a steady state solution for a rigid tube for

an inviscid fluid, which allows verification that the non-linear convection term is

treated correctly by the scheme; and considering discontinuous material properties

and geometry, which allows any jump in pressure or flow rate to be analytically

calculated.

4.3.1 Shockwave within a Vessel

In order to ensure the numerical scheme correctly handles sharp gradients which may

occur due to external pressure on a a vessel, a case similar to a shock tube problem is

investigated. For this problem the inviscid set of equations are implemented (µ = 0),

with vessel properties and the parameters of the test given in Table 4.14. Reflection-

free boundary conditions are implemented at both the vessel inlet and outlet. The
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initial discontinuous pressure chosen to be quite severe and is given by

Pinitial(x) =


16.3995 kPa if x < L

2
,

10.9333 kPa if x ≥ L
2
.

(4.14)

For this problem the time step is chosen to be ∆t = 0.5 ms, while the element size

is ∆x = 1 cm.

The ETM scheme is compared with the theoretical solution (see [97] for details

of the theoretical solution) in figure 4.13. A small amount of artificial diffusion is

added to the momentum equation in order to suppress numerical oscillations that

would occur due to the sharp gradient. The artificial diffusion term is chosen to have

the same form as the visco-elasticity term from equation (2.20), which is written in

the format
∂

∂x

(
ΓCA

A0

√
A0

∂P

∂t

)
, (4.15)

and is linearised and written in discrete form as described in section 3.13. For this

problem the artificial diffusion Γ = 200 was applied over the entire vessel, as the

main reason was to investigate whether the scheme correctly predicts the wave speed

at sharp gradients, although artificial diffusion could be added only in the region of

the shock if required.

It can be seen from figures 4.13b and 4.13d, that without artificial diffusion,

oscillations develop. However, the introduction of a relatively low amount artificial

diffusion Γ = 200 eliminates these oscillations. Moreover, the results indicate the

ETM scheme correctly handles and predicts the wave speed for the shock travelling

in the forward (right) direction, and a rarefaction travelling in the backward (left)

direction.

4.3.2 Aneurysm and Stenosis with Steady Volumetric Flow

Rate

Thus far problems have been implemented to test the schemes ability to handle

source terms correctly, and to correctly capture the wave speed of the system. How-
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Figure 4.13: Pressure and flow rate waveforms for shock test with and without
artificial diffusion at different time instances (seconds).

ever, the ETM scheme has not been tested to determine whether the non-linear

convection terms are correctly handled. In order to do this, two cases are consid-

ered with the inviscid formulation µ = 0 and a rigid wall model for the constitutive

law, where the vessel wall is made rigid by choosing β = ∞, which causes the

compliance to become CA = 0 everywhere in the domain. This technique would

cause problems for explicit schemes due to the CFL condition, however the implicit

ETM scheme is unconditionally stable for any CFL. The two cases considered are

an aneurysm case and a stenosis case (both with severe changes in area), with the

problem parameters being defined in table 4.15. The outlet condition is a single

characteristic impedance. The system is considered to have a steady flow rate of

100 ml s−1.

For both aneurysm and stenosis cases, the pressure before and after the aneurysm

or stenosis will be equal in magnitude. Within a stenosis the pressure should de-

crease as the velocity increases until the location of the minimum area is reached,

the pressure will then increase until the healthy area is reached while the velocity de-
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Property Units Vessel 1
Length, L cm 3780
Area, Ad cm2 5.6549

Initial flow, Q(x, 0) ml s−1 0
Wall thickness, h cm 0.3
Blood density, ρ kg m−3 1060

Blood viscosity, µ mPa s 0
Velocity profile order ζ — 9

Young’s modulus, E kPa 700.0
Diastolic pressure, Pd mmHg 82

External pressure, Pext Pa 0
Inflow pressure, PIn mmHg 123

Outflow pressure, Pout mmHg 82
Viscous wall coefficient, Γ g s−1 200

Table 4.14: Properties for shock wave test

creases to return to the same magnitude as before the stenosis. Within an aneurysm

the opposite occurs, where the pressure increases as the velocity decreases until the

location of the maximum area is reached, and then the pressure will decrease un-

til the healthy area is reached while the velocity increases to return to the same

magnitude as before the aneurysm.

The aneurysm or stenosis is chosen to be at the centre of the domain and has a

length LA = 10 cm defined in terms of its diameter by

D(x) = D0 +
DA −D0

2

(
1− cos

(
x

LA2π

))
, (4.16)

where D0 is the healthy diameter, DA is the diseased diameter, and x ∈ [0, LA] is

the spatial coordinate.

Figure 4.14 and figure 4.15 show the pressure, flow rate, area, and velocity for the

aneurysm and stenosis cases respectively. The pressure solutions obtained for both

cases indicate the ETM scheme treat the non-linear term correctly, as the pressure

before and after the stenosis are equal in magnitude, while the behaviour of pressure

and velocity within the aneurysm and stenosis show the expected behaviour.
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Property Units Aneurysm Stenosis
Length, L cm 100 100

Area (healthy), Ad cm2 π π
Diameter (unhealthy), DA cm2 2D0 D0/2

flow rate, Q(x, 0) ml s−1 100 100
Blood density, ρ kg m−3 1050 1050

Blood viscosity, µ mPa s 0 0
Velocity profile order ζ — 9 9

Young’s modulus, E kPa ∞ ∞
Diastolic pressure, Pd mmHg 0 0

External pressure, Pext Pa 0 0
Outflow pressure, Pout mmHg 0 0

Table 4.15: Properties for aneurysm and stenosis tests
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Figure 4.14: Waveforms for the aneurysm case.

4.3.3 Discontinuous Material Properties and Geometry

Wave reflections will occur in the system for any changes in material properties

and geometry, hence it is important for the numerical scheme to correctly predict
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Figure 4.15: Waveforms for the stenosis case.

any wave reflections which may occur due to geometrical aspects such as tapering.

In this subsection, the schemes ability to handle static discontinuities is tested,

which includes discontinuous material properties and geometries in a single vessel.

The inviscid set of equations are chosen for these test cases. The non-linear terms

are considered, however by considering the flow rate to be quite small, the non-

linearities are also small, it allows the use of an analytical approach to determine

the magnitude of wave reflections and transmissions caused by the discontinuity.

This is determined with the use of transmission line theory which is performed on

the linear system [365, 8]. In order to determine these wave reflections, it is first

advantageous to define the initial admittance Y (inverse of characteristic impedance

Z), which can be written as

Y =
1

Z
=
Ad
ρc0

, (4.17)

where Ad is the initial cross-sectional area, ρ is the density, and c0 is the initial wave

speed. The reflection coefficient Rf will depend on the change of admittance in a

vessel. The linear formulation is used to find the analytical solution. At the point
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Property Units Value
Length, L cm 100

Blood density, ρ kg m−3 1050
Blood viscosity, µ mPa s 0

Diastolic pressure, Pd mmHg 0
External pressure, Pext Pa 0

Initial pressure, P (x, t = 0) mmHg 0
Wall thickness, h cm 0.15

Elastic modulus, E kPa 200.0, or 400.0 or 800.0
Reference area, Ad cm2 0.5π, π or 2π
Cardiac period, T s 1.5

Table 4.16: Consistent properties across all four simulations for discontinuous ma-
terial property β, and discontinuous reference area A0.

of any change in material properties or geometry the following equations must hold

Rf,ref =
Yref − Ytran
Yref + Ytran

, Rf,tran =
Ytran − Yref
Yref + Ytran

, (4.18)

where subscript ref is for the backwards propagating reflected wave and tran is for

the forward propagating transmitted wave. The reflection coefficient has limiting

values of 1 for a complete positive reflection, and -1 for a complete negative reflection,

while a value of 0 corresponds with a zero reflection of the wave. Furthermore,

the a perturbation in the reflected pressure wave Pref can be determined from the

perturbation of the forward travelling incident pressure wave Pinc as

δPref = δPincRf,ref . (4.19)

The transmitted pressure can be determined from the linear separation of pressure

into reflected pressure and transmitted pressure Ptran, in a similar way to section

2.4.2 to give

δPtran = δPinc + δPref = (1 +Rf,ref ) δPinc. (4.20)

The flow rate is related by the conservation of mass at the point, that is the flow

entering must equal all flow leaving (whilst taking into account that the reflected
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flow wave is in the negative direction)

δQinc = δQtran − δQref , (4.21)

where the reflected flow rate wave can be determined as

δQref = −δQincRf,ref . (4.22)

Thus from the initial wave speed, initial area, and a known incident flow rate and

pressure wave, both reflected and transmitted flow rates and pressures can be esti-

mated given the assumption of small system non-linearities.

The main haemodynamic parameters, which are consistent across all four test

cases implemented, are given in table 4.16, where the base values for Ad and β are

before any increases are imposed. These cases include

• A discontinuous decrease in reference area Ad with a uniform β.

• A discontinuous increase in reference area Ad with a uniform β.

• A uniform reference area Ad with a discontinuous decrease in β.

• A uniform reference area Ad with a discontinuous increase in β.

The same Gaussian shaped inflow rate is used for all simulations and is given by

Qinflow(t) = exp(−10000 (t− 0.05)2) ml s−1, (4.23)

which has a maximum flow rate of 1 ml s−1, while non-reflecting boundary conditions

are imposed.

Figure 4.16 shows the case where Ad has a step decrease from π to π/2 at 50 cm

into the domain. It can be seen from the figure that the numerical solution correctly

predicts the reflected and transmitted waves from the incident wave. For this case

the admittance is determine as follows: given the value of E = 400 kPa, and β

calculated from equation (4.2), and the values of A0 and ρ, means that the first half

of the vessel domain has a wave speed of c0,s = 617.2134 cm s−1, while the second

have of the vessel domain is c0,e = 733.9946 cm s−1. Thus the admittance is given
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by

Ys =
A0,s

ρc0,s

≈ 0.0048, Ye =
A0,e

ρc0,e

≈ 0.0020, (4.24)

which means the reflection coefficient can be determined to be

Rf,ref =
Ys − Ye
Ys + Ye

= 0.4080. (4.25)

Therefore for this problem the reflected peak flow rate can be found analytically as

(when considering δQ = Qinc −Qinit = Qinc, as the initial flow rate Qinit = 0)

Qref = −QincRf,ref = −0.4080 ml s−1, (4.26)

and the transmitted flow rate is Qtran = Qinc + Qref = 1 − 0.4080 = 0.5920 ml s−1.

Similarly for pressure, the incident pressure is 0.1547 mmHg, and hence the reflected

pressure is analytically determined to be

Pref = PincRf,ref = 0.0631 mmHg. (4.27)

The transmitted pressure can be calculated as Ptran = Pinc (1 +Rf,ref ) = 0.2178 mmHg.

The second problem involves a step increase in the reference diameter Ad from π

to 2π at 50 cm into the domain. The elastic modulus for this problem is chosen to be

400 kPa. This causes the initial wave speed to be calculated as c0,s = 617.2134 cm s−1

for the first half of the domain, and c0,e = 519.0125 cm s−1, which leads to a negative

reflection coefficient of Rf,ref = −0.4080. This causes the reflected pressure to

become negative, while the reflected flow is positive. Figure 4.17 indicates that the

numerical scheme correctly predicts the wave reflections from a step increase in area.

The third problem investigates a severe step decrease in β caused by a decrease

in elastic modulus from 400 kPa in the first half of the domain, to 200 kPa in the

second half. The area is defined to be uniform with Ad = π. For this problem

the wave speed can be calculated to be c0,s = 617.2134 cm s−1 for the start of the

domain, and c0,s = 436.4358 cm s−1 in the second half. This leads to a small negative

reflection coefficient of Rf,ref = −0.1716, which leads to a negative reflected pressure

and a positive reflected flow rate. Figure 4.18 shows the numerical scheme correctly

predicts the magnitude of wave reflections and transmissions at the discontinuity.

The final problem tests a case with a a severe step increase in β caused by a
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Figure 4.16: Waveforms for a discontinuous area decrease.

increase in elastic modulus from 400 kPa in the first half of the domain, to 800 kPa

in the second half. The area is uniform across the length of the vessel Ad = π. For

this problem the wave speed can be calculated to be c0,s = 617.2134 cm s−1 in the

first half of the vessel, and c0,s = 872.8716 cm s−1 in the second half. This leads to

a small positive reflection coefficient of Rf,ref = 0.1716, which leads to a positive

reflected pressure and a negative reflected flow rate. Figure 4.19 indicates that the

magnitude of both reflected and transmitted waves are correctly predicted by the
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Figure 4.17: Waveforms for a discontinuous area increase.

numerical scheme.

4.3.4 Reflections at Junctions

In the previous subsection, the numerical scheme was tested to determine if wave re-

flections were correctly predicted in the presence of discontinuities in vessel stiffness

and geometry. This section makes use of transmission line theory in the prediction of
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Figure 4.18: Waveforms for a discontinuous decrease in material properties.

wave reflections and transmissions at vessel junctions. Table 4.17 shows the param-

eters and vessel information of a bifurcation problem. The inviscid set of equations

are implemented once again in order to prevent a decrease in peak values for pres-

sure and flow rate waveforms as the pulse propagates. Furthermore, conservation of

mass and conservation of hydrostatic pressure are chosen as interface conditions at

the junction. A single Gaussian shaped wave, given by equation (4.23), is used as

the inlet flow rate.
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Figure 4.19: Waveforms for a discontinuous increase in material properties.

The analytical reflection coefficient can be determined from linear analysis of the

system equations, and is calculated from the admittances Y of all vessels at the

junction as

Rp,ref =
Yp − Yd1 − Yd2

Yp + Yd1 + Yd2

= 0.2522, (4.28)

where the admittances are calculated from equation (4.17), and the initial wave
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4.3. NUMERICAL COMPARISONS FOR PROBLEMS WITH
THEORETICAL SOLUTIONS

Property Units Vessel 1 Vessel 2 Vessel 3
Length, L cm 50 50 50

Blood density, ρ kg m−3 1050 1050 1050
Blood viscosity, µ mPa s 0 0 0

Diastolic pressure, Pd mmHg 0 0 0
External pressure, Pext Pa 0 0 0

Initial pressure, P (x, t = 0) mmHg 0 0 0
Wall thickness, h cm 0.15 0.15 0.15

Elastic modulus, E kPa 400.0 400.0 400.0
Reference Area, Ad cm2 π π/2 π/4
Cardiac Period, T s 1.1 – –

Table 4.17: Haemodynamic parameters used in bifurcation case to investigate wave
reflections

speeds of the parent p, and two daughter vessels d1 and d2, are c0 = 617.2134 cm s−1,

c0 = 733.9946 cm s−1, and c0 = 872.8716 cm s−1.

The theoretical reflected peak pressure can be calculated once again from the

peak incident pressure as Pref = Rp,refPinc = 0.0390 mmHg, while the transmitted

pressure for both daughter vessels can be calculated as Ptrans = (1 +Rp,ref )Pinc =

0.1937 mmHg.

Similarly the reflected peak flow rate can be calculated as Qref = −Rp,refQinc =

−0.2522 ml s−1. The theoretical transmitted flow rates can be determined through

the use of the admittances of both daughter vessels as

Qtran,d1 = (Qinc +Qref )
Yd1

Yd1 + Yd2

, Qtran,d2 = (Qinc +Qref )
Yd2

Yd1 + Yd2

, (4.29)

where (Qinc +Qref ) = 0.7478 ml s−1 corresponds with the remaining flow that is

transmitted into one of the two downstream vessels. Thus the theoretic peak flows

are determined to be Qtran,d1 = 0.5265 ml s−1 and Qtran,d2 = 0.2214 ml s−1. Figure

4.20 indicates that the ETM scheme correctly predicts wave reflection and trans-

mission behaviour for a given incident wave.

4.3.5 Single Pulse in bifurcation and unification case.

This test case is constructed to confirm the physical interpretation of the Lagrange

multipliers in the ETM scheme, which are used at vessel junctions to constrain a
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Figure 4.20: Reflections at a single bifurcation

conservation of pressure, actually correspond with flow rates of the non-reference

vessels (at a junction one of the vessels is chosen as the reference vessel, to which all

other vessels are constrained). The test is a configuration of four vessels, where the

initial vessel bifurcates and then these two child vessels rejoin again. The inflow rate

is a sinusoidal shaped wave, while the outlet condition is attached to a resistance

element with a resistance of infinity, which causes a full reflection of the waves. The

full non-linear set of equations are implemented in this problem for a viscous fluid.
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Figure 4.21: Configuration for bifurcation and unification test

The haemodynamic properties of the problem are given in Table 4.18, while the

problem configuration is shown in Figure 4.21. As the non-linear set of equations

are chosen, no theoretical solution exists for this problem. The element size chosen

for this problem is ∆x = 1 cm, while the time step is ∆t = 1 ms.

The inflow rate is given by

Qinlet =


40 sin( πt

0.3636T
), for 0 < t ≤ 0.3636T,

0, for 0.3636T < t ≤ T.

(4.30)

The cardiac period is T = 1.1 s, while four cardiac cycles are required to achieve

periodic convergence. The downstream resistance was set to infinity to enforce both

positive and negative flow rates to occur at all the junctions.

The numerical predicted flow rates, as calculated in equation (3.21), are com-

pared to the Lagrange multipliers at each junction in Figure 4.22. Figure 4.22a

shows the bifurcation case where, as described in Section 3.2.6, the parent vessel

flow rate is equal to the sum of the Lagrange multipliers (λ1 and λ2), which cor-

respond with the inflow rates of vessels 2 and 3, respectively. The confluence to

unification case is shown in figure 4.22b, and it can be seen that the flow rate in the

reference parent vessel (vessel 2), is equal to the sum of λ3 and λ4. Furthermore,

the outflow of parent vessel 4 is equal to the negative value of λ3, while the inflow

of vessel 4 is equal to the Lagrange multiplier λ4. These results indicate that the
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Property Units Vessel 1 Vessel 2 Vessel 3 Vessel 4
Length, L cm 400 400 400 400
Radius, rd cm 1.3 0.8 1.1 1.3
Area, Ad cm2 5.3093 2.3093 3.8013 5.3093

Initial area, A(x, 0) cm2 5.3093 2.3093 3.8013 5.3093
Initial flow, Q(x, 0) ml s−1 0 0 0 0

Initial pressure, P (x, 0) kPa 10.666 10.666 10.666 10.666
Wall thickness, h cm 0.07 0.07 0.07 0.07
Blood density, ρ kg m−3 1060 1060 1060 1060

Blood viscosity, µ mPa s 4 4 4 4
Velocity profile order ζ — 9 9 9 9

Young’s modulus, E kPa 700.0 700.0 700.0 700.0
Diastolic pressure, Pd kPa 10.666 10.666 10.666 10.666

External pressure, Pext Pa 0 0 0 0
Outflow pressure, Pout Pa 0 0 0 0

Windkessel resistance, R1 Pa s m−3 — — — ∞
Daughter vessel(s), — 2 & 3 4 4 —

Parent vessel(s), — — 1 1 2 & 3

Table 4.18: Properties for bifurcation to unification test.

Lagrange multipliers can be physically interpreted as flow rates in the non-reference

vessels at each junction.
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Figure 4.22: A comparison of outflow and inflow at junctions with Lagrange multi-
pliers.
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4.4 Convergence Behaviour of the ETM Scheme

The ETM scheme has been rigorously tested for a wide range of problems. However,

the convergence behaviour of the scheme, and the effect of performing one iteration

per time step, has not yet been investigated. Thus this section tests the convergence

behaviour of the scheme, which includes comparing the choice to use either an

upwind or central difference discretisation for the non-linear convection term, and

comparing the choice of performing one Newton iteration per time step, or multiple

iterations.

4.4.1 Mass Conservation in an Arterial Network

In this subsection, the ADAN arterial network that was implemented in section

4.2.6 is used. However, this time the interest is of mass conservation, rather than

the pressure and flow waveforms. The inflow of the network is defined and has an

average flow rate of 112.3899 ml s−1 and is shown in Figure 4.23, while the outflow is

a three element windkessel model with constant resistances and compliances, and a

defined outflow pressure for the windkessel model of 0 mmHg. In order to investigate

mass conservation the following is true of the system:

• Due to the periodic inflow boundary condition and constant outflow conditions,

the solution of the numerical problem will converge to a periodic solution.

• When a periodic solution is achieved, the inflow of the 1D system must be

equal to the sum of outflows of the system over a cardiac cycle. Which can be

described by stating, over a cardiac cycle the mass entering the system must

equal the mass exiting the system.

Of course not all numerical schemes are mass conservative, and for schemes that do

theoretically conserve mass, numerical errors will still cause deviations (albeit small)

in the schemes mass conservation properties. The ETM scheme is theoretically mass

conservative, in fact the scheme implicitly solves pressure and mass change in the

system (not flow rates), per time step.

The first test is to investigate the impact of time step and element size of mass

conservation in the system. In the ETM scheme it could be anticipated that the

time step will have a greater impact on mass conservation as greater errors would be
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Newton time step element size (inflow − outflow)/
Iterations (ms) (cm) inflow (%)

1 1.0 1.0 -0.1180
2 1.0 1.0 0.000198
3 1.0 1.0 0.000157
4 1.0 1.0 0.000157
5 1.0 1.0 0.000157
1 0.1 1.0 -0.0397
1 1.0 0.1 -0.1443

Table 4.19: Results for the mass conservation simulation tests on the ADAN model,
where inflow minus outflow divided by inflow column corresponds with the percent-
age difference between inflow rate with outflow rate, which is normalised by the
inflow rate (should be zero to exactly conserve mass).

expected for larger time steps, especially due to the result of the system linearisation,

and choice of performing only one Newton iteration. The errors would be expected

to decrease in magnitude when more Newton iterations are performed. For these

tests, an upwind discretisation is chosen for the non-linear convection term.
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Figure 4.23: Inflow flow rate for mass conservation tests

Table 4.19 shows the results of the simulations several different configurations.

The difference between inflow and outflow per cardiac cycle is shown to decrease from

−0.1180 % to −0.0397 % with a decrease in time step by a factor of 10. Furthermore,

the error is also seen to decrease when more Newton iterations are performed, until

a peak convergence is reached for 3 Newton iterations. When more than 3 Newton

iterations per time step are performed, there is no change in performance, as the

residual does not decrease any further (due to machine precision and the condition

number of the system matrix). Although the waveforms show very little change with

the use of more than 1 Newton iteration.
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Interestingly, the error in mass actually increases with a reduction of the max-

imum element size in the system. This is likely caused by an increase of the CFL

number from CFL = 3.6789 to CFL = 8.0868. Although the CFL number does

not have an impact on the stability of the scheme, it does have an impact on the

accuracy, as the CFL number determines how far propagating information travels

per time step. A CFL number of 1 would indicate information travelling in the

forward direction will propagate from one node to the next node in exactly one time

step.

Needless to say, the ETM scheme has been shown to successfully conserve mass in

a network scale situation. The ability to conserve mass will be particularly important

when implementing a closed loop system, as will be performed in chapter 7.

4.4.2 Numerical Convergence Study

In this section numerical convergence tests are performed. The common carotid case

from section 4.2.2 is used for this study. Four different cases are tested here:

• A first order upwind discretisation for the non-linear convection term with one

Newton iteration used for time stepping.

• A second order central difference discretisation for the non-linear convection

term with one Newton iteration used for time stepping.

• A first order upwind discretisation for the non-linear convection term with

four Newton iteration used for time stepping.

• A second order central difference discretisation for the non-linear convection

term with four Newton iteration used for time stepping.

Thus this test investigates and compares the space-time convergence behaviour of

the different variations of the ETM scheme, and serves to improve understanding of

the choice on performing one Newton iteration.

Figure 4.24 shows the spatial and temporal convergence for all cases studied.

The solution of the smallest time step and element size is chosen to be the reference

solution, where ∆t = 0.1 ms and ∆x = 0.1 cm. When considering the choice of dis-

cretisation for the non-linear convection term, the first order upwind form provides

a spatial convergence in the order of 1.6, which increases to the order of 2.09 when
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cretisation, with one Newton iteration
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(e) Temporal convergence of upwind dis-
cretisation, with four Newton iterations
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(f) Spatial convergence of upwind discreti-
sation, with four Newton iterations
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(g) Temporal convergence of central dis-
cretisation, with four Newton iterations
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Figure 4.24: Numerical convergence curves of the ETM scheme for the common
carotid problem. Investigating the choice of discretisation of the non-linear convec-
tion term, and the number of Newton iterations performed.

a second order central difference form is implemented. The spatial convergence rate

remains relatively consistent whether one Newton iteration or four Newton itera-
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tions are performed per time step, with a small improvement in performing four

iterations for both forms of convection discretisation. The temporal convergence is

not affected by the choice of convection discretisation. However, an improvement of

temporal convergence is seen when performing four Newton iterations as opposed

to one iteration.

The scheme exhibits super-linear convergence in both time and space, with the

highest order of temporal convergence of 1.6685 when using four Newton iterations,

and a quadratic (order of 2.0993) spatial convergence when using a central difference

discretisation for the non-linear convection term.

4.5 Conclusions

The ETM scheme has shown to give solutions which are consistent with other com-

monly used 1D numerical methods for the various benchmarked problems tested.

When compared with a theoretical solution for a single pulse in a long, reflection-

free vessel, the ETM correctly predicted the drop in peak pressure across the length

of a vessel for the viscid case, and correctly retained the pressure peak for the in-

viscid case. The scheme has also been compared with additional problems which

have a theoretical solution and successfully captured: a shock wave and rarefaction

in a shock tube problem; and wave reflections caused by discontinuous geometries

and material properties; and wave reflections at vessel junctions. Furthermore, the

ETM scheme has been shown to exhibit good mass conservation properties, while

a numerical convergence study showed super-linear convergence in both time and

space. This provides confidence in the numerical scheme.
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Chapter 5

Investigation of Non-Linearities in

a 1D-0D Closed-Loop Cardiovascu-

lar System

5.1 Introduction

In the field of 1D cardiovascular modelling, research groups tend to use conserva-

tion of mass and either continuity of static pressure, or of total pressure, at vessel

junctions. However, it is important to realise that neither the use of total pressure

conservation nor static pressure conservation fully describe the dynamics at the junc-

tion. The effect of pressure loss at junctions was investigated for various bifurcation

configurations (both converging and diverging flows) by [231]. They compared the

performance of their 1D model to a three-dimensional model, observing that the

influence of the pressure conservation law chosen at the junction was inconsistent

across different vessel configurations (bifurcations), which led to the development of

their unified method, which estimates the pressure loss at junctions based on the

angle between vessels at the junction. It was found that for diverging flow at a

bifurcation where a small vessel branches from a larger vessel, that static pressure

gave a loss coefficient closer to the 3D solution in the smaller side vessel, while total

pressure gave a better representation for the larger straight vessel. Moreover, for a

configuration similar to the abdominal aorta branching to the common iliac arteries,

that static pressure overestimated the loss coefficient, while total pressure underes-

timated the loss coefficient by a similar amount. However, these comparisons were

only performed for steady flow conditions, not pulsatile flows which are more com-

mon in blood flow. The effect of the non-linearities in blood flow have been studied

for the arterial system by [38, 7], but not for the venous system.

The main aim of this section is therefore to investigate how cardiovascular wave-

forms are affected by

1. including or excluding non-linear components in the models, and
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2. using the conservation of either total pressure or static pressure to describe

the transition at junctions in both the arterial and venous systems.

To investigated these, the following comparisons and investigations are performed:

1. four model formulations comprised of either non-linear or linear models, de-

scribing junction transitions using the conservation of either total or static

pressure in each case,

2. a comparison of these models with the performance of a linear 0D formulation

in which resistances, compliances and inductances were constant,

3. and commonly used configurations such as a non-linear formulation for either

the major systemic vessels, or just the major systemic arteries, with a lumped

formulation for the remainder of the circulation. Which are performed to

investigate whether errors from the linear regimes propagated into other sys-

tems.

5.2 Methodology

The closed loop model for the non pregnant case is used as the basis, the parameters

of the model are described in Chapter 6. The formulations and simulation cases used

are abbreviated as follows, the four cases with unified formulations for 1D vessels

are:

• NL-TP includes the non linear convection term (α1 = 1) within the vessel

with conservation of total pressure at junctions.

• NL-SP includes the non linear convection term (α1 = 1) within the vessel

with conservation of static pressure at junctions.

• L-TP excludes the non linear convection term (α1 = 0) within the vessel with

conservation of total pressure at junctions.

• L-SP excludes the non linear convection term (α1 = 0) within the vessel with

conservation of static pressure at junctions.
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Parameter Value Units
ρ 1.06 g/cm3

µ 0.035 poise
ξ 22 cm3/g
g 0 cm/s2

∆t 1 ms
∆x 1 cm

Table 5.1: Parameters used in this section

• L0-SP is the linear 0D formulation (α1 = 0) within the vessel with conserva-

tion of static pressure at junctions.

• Mixed-A uses a non-linear (NL-TP) formulation for the systemic arteries

and veins (including portal, cerebral and coronary systems), whilst using a

linear 0D (L0-SP) formulation for the pulmonary system. This is a similar

form to the model proposed by [220, 221].

• Mixed-B uses a non-linear (NL-TP) formulation for the systemic arteries

(cerebral and coronary systems), whilst using a linear 0D (L0-SP) formulation

for the systemic veins (including portal, cerebral and coronary systems) and

the pulmonary system. This is a similar form to the model proposed by [34].

These abbreviations will be used throughout the results and discussion sections. It

should be noted that the linear 0D model used in this section is a multi-compartment

model, and contains the same number of elements (vessel segments) as the 1D model.

5.2.1 Isolated Vessel Junctions

Three additional cases are considered to better understand the differences caused

by using either static pressure conservation (NL-SP) or total pressure conservation

(NL-TP) at vessel junctions. These cases are:

• Bifurcation case, where one parent vessel bifurcates to two daughter vessels.

• Confluence case, where two parent vessels unify to one daughter vessel.

• Trifurcation case, where one parent vessel trifurcates to three daughter vessels.
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These cases were chosen as they are the most common type of junctions in the closed

loop cardiovascular model.

In the bifurcation and trifurcation cases the area of the parent vessel is chosen,

while in the confluence case the area of the daughter vessel is chosen. Murray’s law

[223] given by
Np∑
p=1

rκp =

Nd∑
d=1

rκd , κ = 2.76, (5.1)

is used along with area ratios, to determine the initial radii of the daughter vessels

for bifurcation and trifurcation cases (or parent vessels for the confluence case).

Where subscript p and d denote the parent and daughter vessels respectively.

• The bifurcation case has one area ratio defined as γ1 = Ad2

Ad1
.

• The confluence case has one area ratio defined as γ1 = Ap2

Ap1
.

• In the trifurcation case there are three ratios defined as γ1 = Ad2

Ad1
, γ2 = Ad3

Ad1
,

and γ3 = γ1
γ2

= Ad2

Ad3
.

The input for these three test cases use a half cosine wave for flow rate at the inlet

given by

Qin =


Qmax

2

[
1− cos(2πt3

T
)
]
, for 0 ≤ t ≤ T/3

0, for T/3 < t ≤ T,
(5.2)

where Qin is the flow rate at the inlet, Qmax is the maximum flow rate, and T = 0.9

s is the period for one cardiac cycle. In the confluence there are two system inlets

and as a result the system inflow is distributed based on reference area A0 such that

both inlets have approximately the same velocity
Qin,p1

A0,p1
=

Qin,p2

A0,p2
. A three element

Windkessel model is used at the outlet of the system.

5.3 Results

A typical simulation took approximately 18.2 s per cardiac cycle (typically 15 cardiac

cycles needed to achieve a periodic solution, when there is less than 1% change in

peak pressure and flow rates). All waveforms shown are from the middle of each

vessel. Names of the vessels correspond with names used in [230].
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The error measures used in this section are as follows: Root-Mean-Square-Error

(RMSE)

εRMSE =

√√√√ 1

n

n∑
i=1

(
Xi − X̄i

)2
, (5.3)

where X is a value of the NL-TP formulation, X̄ is a value of one of the other

formulations and n = nv × nt is the number of monitored points (nv) plus the

number of time steps (nt); A scaled Mean-Absolute-Error (MAE) is needed for flow

rates to avoid dividing by zero.

εMAE =
100

n

nv∑
v=1

nt∑
t=1

∣∣∣∣Xv,t − X̄v,t

max(X)v

∣∣∣∣ , (5.4)

where max(X)v is the maximum value in each vessel; The Mean-Absolute-Percentage-

Error (MAPE)

εMAPE =
100

n

n∑
i=1

∣∣∣∣Xi − X̄i

Xi

∣∣∣∣ , (5.5)

is used to measure error of the peak pressures, flow rates, and wave intensities. It

is important to note that although error is used to describe the differences between

NL-TP and the other formulations (as error measures such as RMSE and MAE

are used to compare the methods), it does not necessarily mean that the NL-TP

formulation captures the physics most accurately for a given situation (although the

non-linear form is often considered the most complete).

5.3.1 Effects on waveforms

The waveforms for pressure, flow rate, forward and backward components of wave

intensity in the systemic arterial network are shown in figure 5.1. The solutions

in the aortic root are shown in figures 5.1a, 5.1b, 5.1c, 5.1d and in the right ulnar

artery II in figures 5.1e, 5.1f, 5.1g, 5.1h. Systemic venous system waveforms are

shown in figure 5.1, for the inferior vena cava IV in figures 5.2a, 5.2b, 5.2c, 5.2d and

ulnar vein II in figures 5.2e, 5.2f, 5.2g, 5.2h. The aortic root and inferior vena cava

were chosen as they are close the heart, while the ulnar artery and vein were chosen

as they are both close to the vascular beds and are also a sufficient distance from

the heart to view the effects of the non-linearities.
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Comparing the NL-TP and NL-SP formulations, the results indicate that the

use of static pressure with non-linear effects captures the main characteristics of the

waveforms quite well. The use of static pressure tends to induce a very slight shift

of waveforms normally affecting the rate at which pressure and/or flow increases

and decreases. These effects can also be seen when comparing the L-TP and L-SP

waveforms.

Comparing the NL-TP and L-TP formulations shows the effect of the non-

linear convection term on waveforms. The linearised formulation tends to shift the

waveform to the right in the systemic arterial system as seen in figure 5.1, and shifts

waveforms to the left in the systemic venous system as seen in figure 5.1. This effect

on waveforms is accentuated toward peripheries, although the main characteristics

of the waveforms are generally still captured.

The linear formulation L0-SP typically shows the greatest deviation in wave-

forms when compared with the NL-TP formulation. In the systemic arterial and

venous systems the waveforms are significantly shifted towards the right and fail

to capture a number of characteristics in the waveforms such as those in figures

5.1e and 5.1f for the ulnar arteries, and figures 5.2e and 5.2f for the ulnar veins.

Furthermore, figures 5.1g and 5.1h demonstrate that the wave intensities are poorly

captured using the linear system of equations towards the periphery. In comparison,

figure 5.1c shows that the forward wave intensity in the aortic root is relatively well

captured for all methods. This is due to the forward wave intensity being primarily

formed by the outflow of the lumped heart model (via aortic valve), which is the

same model for all formulations. Similarly, figure 5.2d shows that the backward wave

intensity in the inferior vena cava is relatively well captured for all methods, as the

heart model creates the backward travelling waves from atria contraction. However,

the linear system of equations performs poorly for the backward wave intensity 5.1d,

which indicates the inability of the method to capture wave reflections. This can

also be seen in figure 5.1a, where the pressure waveform fails to reach the same peak

pressure as a result of poorly capturing wave reflections from downstream vessels.

5.3.2 Error analysis

The RMSE for waveforms in the systemic systems (including coronary and cere-

bral circulations) and pulmonary systems can be seen in Figure 5.3. The NL-SP
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Figure 5.1: Comparison of NL-TP, NL-SP, L-TP, L-SP, L0-SP formulations for
various vessels in the systemic arterial system

formulation typically shows the least deviation (of the unified formulations) from

the NL-TP formulation for pressure (figure 5.3a), flow rates (figure 5.3b) and wave

intensities (figures 5.3c and 5.3d).

The linearised formulations L-TP and L-SP tended to perform similarly. The

linear L0-SP method shows the greatest deviation of all the unified formulations,

performing particularly poorly in the systemic arterial system. The Mixed-A con-

figuration typically performed well for the systemic system, while the Mixed-B

configuration performed quite well in the systemic arteries. The two mixed con-

figurations performed poorly for the pulmonary system as both use the linear 0D

formulation in those vessels.

The percentage error of the peak pressure, flow rate, forward wave intensity and

backward wave intensity are shown in Figure 5.4. Typically the NL-SP formulation

deviated least from the NL-TP formulation for peak wave intensities. However, this

is not the case for pressure and flow rates, where in a number of systems (such as the

pulmonary arterial system in figures 5.4a and 5.4b) the L-TP formulation deviated
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Figure 5.2: Comparison of NL-TP, NL-SP, L-TP, L-SP, L0-SP formulations for
various vessels in the systemic venous system

less.

Of the unified formulations the linear L0-SP method again deviated the most.

Although this model showed only a 2% error for pressures, the method performs

much worse for flow rates (up to 12% error) and wave intensities (just over 50%

error).

5.3.3 Overview of the main systemic vessels

Figures 5.5 and 5.6 provide a visual representation of errors in the systemic arterial

and venous systems respectively (excluding coronary and cerebral circulations for

clarity). The pulmonary circulation is not shown as it is a smaller network and

generally has much smaller errors. The L-SP form are omitted from the combined

figures 5.5 and 5.6 for clarity, and also as the results are somewhat similar to the L-

TP formulation. However, the L-TP results for the systemic arteries and systemic

veins are shown in figure 5.7. The two mixed configurations are also omitted as they

are a mix of non-linear and linear formulations. Note that in the systemic venous
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trees the left side (of the network) shows only deep veins in the arm and leg, while

the right side shows superficial veins.

Figure 5.5a shows the RMSE of the NL-SP formulation while figure 5.5b shows

the scaled MAE of the NL-SP for flow rates in the major systemic arterial vessels.

It can be seen that the largest errors in pressure tend to be in smaller peripheral

vessels which have branched from much larger vessels, although a significant error

can also be seen in the abdominal aorta between the celiac arterial branch and the

superior mesenteric artery. This error in pressure also has a knock on effect on flow

rates.

Figure 5.5c and 5.5d show the RMSE and scaled MAE of the L-TP formulation

for pressure and flow rate, respectively. The errors for both pressure and flow rates

tend to increase toward peripheries. The L-TP formulation has larger errors than

the NL-SP formulation for both pressure and flow rates.

The RMSE and scaled MAE of the L0-SP formulation for pressure and flow rate

are shown in Figures 5.5e and 5.5f. Significant differences can be seen between the

left and right arm in 5.5f, this is due to the larger flow rates which the right arm ex-

periences, meaning that the dynamic pressure term at junctions, and the non-linear

convection effect has a greater impact in the right arm. The general distribution of

errors is similar, albeit significantly larger, than the L-TP formulation.

The errors of the NL-SP formulation in the major systemic venous vessels for

pressure and flow rates are shown in Figures 5.6a and 5.6b respectively. The largest

errors in pressure occur in the inferior vena cava between the renal veins and the

hepatic veins. Errors in flow rates are spread across the venous system, but tend to

be larger close to the iliac veins and inferior vena cava.

Figures 5.6c and 5.6d show the errors for the L-TP formulation for pressure

and flow rates. Errors in flow rates follow a similar pattern to the NL-SP form,

although are in general larger. The errors in pressure tend to be larger around the

junction of the iliac veins and the inferior vena cava. Although there is no sudden

jump in pressure error around the renal veins to inferior vena cava (as seen when

using static pressure conservation at junctions).

The errors of the linear L0-SP formulation are shown in Figures 5.6e and 5.6f for

pressure and flow rates respectively. Again errors in flow rate have a similar pattern

to the other formulations, albeit substantially larger in magnitude. The errors in

pressure are more distributed when compared with other formulations. However, the
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largest error occurs in the inferior vena cava, between the renal and hepatic veins;

which is the same place as the NL-SP formulation, implying that this deviation is

due to the junction conditions of pressure conservation.

5.3.4 Additional results from the systemic arteries

Additional results from the systemic arterial network are shown in figure 5.8 and

5.9. The results are shown for pressure, volumetric flow rate, forward wave intensity,

and backward wave intensity; for the right common carotid artery, the descending

thoracic aorta, the right femoral artery, the septal artery in the coronary arteries,

and the anterior communicating artery in the cerebral circulation. While table

5.2 shows results the number of vessels for each formulation which deviated from

the reference solution, from most to least deviation; and also shows the average

root-mean-square-error RMSE and peak errors for pressure, flow rate, forward and

backward wave intensities. The Lumped formulation L0-SP deviated the most for

all measures tested.

NL SP L TP L SP L0

RMSE

Ranking P
86/15/8/0 19/50/40/0 4/44/61/0 0/0/0/109

RMSE

Ranking Q
99/9/1/0 1/42/66/0 9/58/42/0 0/0/0/109

RMSE

Ranking

WIf

109/0/0/0 0/69/40/0 0/40/69/0 0/0/0/109

RMSE

Ranking

WIb

103/6/0/0 6/76/27/0 0/27/82/0 0/0/0/109

Average

RMSE P
0.3985 0.8368 0.8989 2.4693

Average

RMSE Q
0.1341 0.6406 0.6106 1.7049
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Average

RMSE

WIf

13,725 66,090 67,686 114,690

Average

RMSE

WIb

5,935 12,096 12,596 26,846

Peak

(max)

Ranking P

26/19/46/18 52/20/20/17 14/56/28/11 17/14/15/63

Peak

(max)

Ranking Q

50/21/36/2 48/32/28/1 9/55/43/2 2/1/2/104

Peak

(max)

Ranking

WIf

107/2/0/0 2/77/30/0 0/30/78/1 0/0/1/108

Peak (min)

Ranking

WIb

91/16/2/0 17/66/26/0 1/27/81/0 0/0/0/109

Average

Peak

(max) %

Error P

0.8156 0.5320 0.8179 1.4645

Average

Peak

(max) %

Error Q

2.6680 3.1645 3.5772 7.7570

Average

Peak

(max) %

Error WIf

4.2053 20.4602 22.8622 38.005
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Average

Peak (min)

% Error

WIb

6.7846 16.6803 20.6903 41.8134

Table 5.2: Arterial RMSE. Ranking numbers in the form a/b/c/d indicate the num-
ber of vessel segments (out of 109) for each formulation which have a-least deviation,
b-second least deviation, c-second most deviation, and d-most deviation from the
solution of the NL-TP formulation. Average RMSE is the root-mean-square-error
calculated for each vessel, then averaged over all vessels

5.3.5 Additional results from the systemic veins

Additional results from the systemic venous network is shown in figure 5.10 and 5.11.

The results are shown for pressure, volumetric flow rate, forward wave intensity, and

backward wave intensity; for the right internal jugular vein, superior vena cava, the

right femoral vein, the septal vein and the superior sagittal sinus in the cerebral

circulation. A significant shift in waveforms can be seen between non-linear NL for-

mulations and linear/lumped formulations L/L0. While table 5.3 shows results the

number of vessels for each formulation which deviated from the reference solution,

from most to least deviation; and also shows the average root-mean-square-error

RMSE and peak errors for pressure, flow rate, forward and backward wave intensi-

ties. Once again the Lumped formulation L0-SP deviated the most for all measures

tested.

NL SP L TP L SP L0

RMSE

Ranking P
104/27/7/2 28/87/23/2 4/26/110/0 4/0/0/136

RMSE

Ranking Q
140/0/0/0 0/91/49/0 0/49/91/0 0/0/0/140

RMSE

Ranking

WIf

137/3/0/0 3/116/20/45 0/11/119/10 0/10/1/129
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RMSE

Ranking

WIb

140/0/0/0 0/105/35/0 0/27/105/8 0/8/0/132

Average

RMSE P
0.0834 0.1274 0.1474 0.2375

Average

RMSE Q
0.0842 0.2528 0.2492 0.3432

Average

RMSE

WIf

6.5366 17.1062 20.2746 32.0045

Average

RMSE

WIb

48.1556 238.4696 250.9585 374.4662

Peak

(max)

Ranking P

43/37/53/7 24/30/29/57 57/31/32/20 16/42/26/56

Peak

(max)

Ranking Q

65/64/8/3 71/63/6/0 2/12/121/5 2/1/5/132

Peak

(max)

Ranking

WIf

75/32/23/10 41/71/24/4 19/24/83/14 5/13/10/112

Peak (min)

Ranking

WIb

72/32/28/8 49/61/29/1 10/41/77/12 9/6/6/119

Average

Peak

(max) %

Error P

0.5640 0.8461 0.6303 0.9142
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Average

Peak

(max) %

Error Q

2.0366 2.0582 3.9173 5.9333

Average

Peak

(max) %

Error WIf

11.4586 19.6975 26.7254 49.3712

Average

Peak (min)

% Error

WIb

7.4202 14.2311 18.3907 37.2798

Table 5.3: Ranking numbers in the form a/b/c/d indicate the number of vessel
segments (out of 140) for each formulation which have a-least deviation, b-second
least deviation, c-second most deviation, and d-most deviation from the solution of
the NL-TP formulation. Average RMSE is the root-mean-square-error averaged
over all vessels

5.3.6 Results from the pulmonary system

Figures 5.12 and 5.13 show the solutions for all formulations for a selection of vessels

in the pulmonary circulation. In the pulmonary arteries, the main pulmonary artery

and the vessel denoted as RSA0-2-54 are chosen as they are near the start and end

of the pulmonary arteries respectively. In the pulmonary veins, the superior right

pulmonary vein and the vessel denoted as RSV0-2-54 are chosen as they are near the

end and start of the pulmonary veins respectively. There is generally less deviation

in the pulmonary circulation than is seen in the systemic circulation.

5.3.7 Bifurcation Test

Due to significant deviations seen between the use of static pressure or total pres-

sure at various junctions, such as the bifurcation of the abdominal aorta and celiac
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branch, additional cases are investigated, comparing only the NL-TP and NL-SP

formulations. The bifurcation case uses a half sinusoidal wave for volumetric flow

rate at the inlet of the parent vessel, and a three element Windkessel model at the

outlets of both daughter vessels. The configuration is shown in figure 5.14. The test

has three main variables that are defined: maximum flow rate at the inlet, area of

the parent vessel, and the area ratio between the two daughter vessels γ1. The cases

investigated are:

• Ap1 = 1.584 cm2, γ1 ∈ [1, 50],

Qin,max = [100, 200, 300] cm3/s.

• Ap1 = 2π cm2, γ1 ∈ [1, 50],

Qin,max = [200, 400, 600] cm3/s.

• Ap1 = π cm2, γ1 ∈ [1, 50],

Qin,max = [200] cm3/s.

Figures 5.16a, 5.16b and 5.16c show the percentage error of maximum flow rate,

maximum pressure and mean pressure for the bifurcation case, respectively. The

test compares the effect of using either static or total pressure conservation at the

junction. Thus the solutions are compared at the oulet of the parent vessel and

the inlets of the daughter vessels (not at the centre of each vessel as in the full

cardiovascular network). The case shown is using Ap1 = 1.584 cm2, with γ1 ∈ [1, 50],

and a maximum inlet flow rate of Qin,max = 200 cm3/s. The area ratio of the celiac

branch of the closed loop model is shown by the vertical line. In general the error

graphs show the same behaviour for all the cases simulated. However, for the cases

Ap1 = 2π cm2 and a maximum inlet flow rate of Qin,max = 200 cm3/s, a different

maximum flow rate peak can be found in the parent vessel as a result of wave

reflections at the junction depending on the value of γ1.

The differences between solutions of the static and total pressure conservation

junction condition tend to increase rapidly for an area ratio γ1 from 1 to 5 at the inlet

of the smallest daughter vessel Dau1 for maximum flow rate, and both maximum

and mean pressures. After this point the percentage error levels off to around 8%

for maximum flow rate, 2% for maximum pressure, and 0.35% for mean pressures.

The error of the largest daughter Dau2 and the parent vessel Par tends to zero as

the area ratio increases for both pressures and flow rates. This is due to the area of
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Qmax ml/s 100 200 300
% error Mean P 0.1 0.35 0.65
% error Max P 0.5 2 4
% error Max Q 5 8 9.5

Table 5.4: percentage error of mean and maximum pressure, and maximum flow
rates for Dau1 in the bifurcation case with Ap = 1.584 cm2

A = 1.584 A = π A = 2π
% error Mean P 0.35 0.1 0.025
% error Max P 2 0.4 0.045
% error Max Q 8 5 −

Table 5.5: percentage error of mean and maximum pressure, and maximum flow
rates for Dau1 in the bifurcation case with Qin,max = 200. Empty entry − due to a
different peak becoming the maximum as a result of wave reflections

largest daughter vessel tending towards the area of the parent vessel, while a large

proportion of the flow travels from the parent to the largest daughter vessel, and

hence the two dynamic pressure terms ρ
2
Q2

A2 in total pressure conservation almost

cancel. For an area ratio of γ1 = 1 the difference in maximum flow between the

static and total pressure cases is close to zero for all three vessels. However, for

pressures only solutions of the daughter vessels are close to zero for γ1 = 1, while in

the parent vessel there is a negative error for the static pressure case.

The shape of the error waveforms generally remain consistent when changing the

maximum flow rate or area of the parent. However, the error increases (decreases)

with an increase (decrease) in flow rates as shown in table 5.4; while when increasing

the parent and daughter vessel areas the error increases (decreases) as the area

decreases (increases) as shown in table 5.5.

5.3.8 Confluence Test

The confluence case also has three main variables that are defined: maximum inlet

flow rate, area of the daughter vessel, and the area ratio between the two parent

vessels γ1. The cases investigated are:

• Ad1 = π cm2, γ1 ∈ [1, 50],

Qin,max = [100, 200, 300] cm3/s.
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Qmax ml/s 100 200 300
% error Mean P -0.014 -0.05 -0.1
% error Max P -0.01 -0.1 -0.35
% error Max Q -0.047 -0.12 -0.18

Table 5.6: percentage error of mean and maximum pressure, and maximum flow
rates for Par1 in the confluence case with Ad = π cm2. Maximum inlet flow rates
Qmax are distributed to achieve same velocity at both inlets

A = π
2

A = π A = 2π
% error Mean P -0.2 -0.05 -0.001
% error Max P -0.8 -0.1 -0.01
% error Max Q -0.23 -0.12 -0.046

Table 5.7: percentage error of mean and maximum pressure, and maximum flow
rates for Par1 in the confluence case with Qin,max = 200. Empty entry − due to a
different peak becoming the maximum as a result of wave reflections

• Ad1 = 2π cm2, γ1 ∈ [1, 50],

Qin,max = [200] cm3/s.

• Ad1 = π
2
cm2, γ1 ∈ [1, 50],

Qin,max = [200] cm3/s.

Figure 5.16 shows the confluence test for Ad1 = π, which is a similar size to the

inferior vena cava, and Qin,max = 200 which would be achieved during moderate

exercise (although a physiological flow waveform in the inferior vena cava generally

does not have zero flow). Figures 5.16d, 5.16e and 5.16f shows the percentage error

between the static pressure and total pressure junction condition, of maximum flow

rate, maximum pressure and mean pressure for the confluence case, respectively.

Generally the error is largest for the smallest parent vessel Par1. For flow rates the

error tends to decrease as the ratio γ1 decreases. However, this is not the case for

pressure as the error increases with increased γ1 in parent vessel Par1.

The waveform has the same general shape when changing inlet flow rates or

areas. The error tends to increase as the flow rate increases as shown in table 5.6,

while the error tends to decrease as the areas increase as shown in table 5.7.
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5.3.9 Trifurcation Test

An additional trifurcation case is investigated, comparing the NL-TP and NL-

SP formulations, as significant deviations were seen at trifurcations such as at the

junction of the internal thoracic artery, vertebral artery and subclavian artery II that

branch from the subclavian artery I. The trifurcation case has four main variables

that are defined: maximum inlet flow rate, area of the parent vessel, and two area

ratios γ1 and γ2. An additional area ratio γ3 has also been defined to aid analysis.

The configuration of the trifucation case can be seen in figure 5.15. The cases

investigated are:

• Ap1 = π
2
cm2, γ1 ∈ [1, 50], γ2 ∈ [1, 50],

Qin,max = [100, 200, 300] cm3/s.

• Ap1 = π cm2, γ1 ∈ [1, 50], γ2 ∈ [1, 50],

Qin,max = [200] cm3/s.

• Ap1 = 2π cm2, γ1 ∈ [1, 50], γ2 ∈ [1, 50],

Qin,max = [200] cm3/s.

Figures 5.17a, 5.17b, 5.17c show the percentage difference (between static and total

pressure conservation at junctions) of maximum pressure in the parent vessel Par1,

and daughter vessels Dau1 and Dau2, respectively. Figures 5.17d, 5.17e, 5.17f show

the percentage difference of the maximum flow rate. The results shown are for

the case Ap1 = π
2

and Qin,max = 100. The solutions for Dau3 are shown in the

supplementary file, as they show similar behaviour as Dau2 (the same graphs would

be produced by swapping the x-y axes).

The main diagonal of these figures (bottom left to top right) correspond with

γ3 = 1. Moreover, the figures for the parent and daughter (Dau1) vessels are

symmetric along this diagonal.

There is a negative error for pressure in the parent vessel along the main diagonal

γ3 = 1, with the largest negative error occurring at γ1 = γ2 = γ3 = 1. For flow rates

there is a small positive error along the diagonal where γ3 = 1. For the parent vessel

Par1:

• The largest errors for both maximum pressure and flow rate occurred in the

interval γ3 = [0.3, 0.4] and γ3 = [1/0.3, 1/0.4].
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• The lowest errors for maximum pressure and flow rate occurred in the interval

γ3 = [0.57, 0.6] and γ3 = [1/0.57, 1/0.6], at high values of γ1 when γ2 = 1, and

at high values of γ2 when γ1 = 1.

For the daughter vessel Dau1:

• The lowest error for both maximum pressure and flow rate occurred at γ1 =

γ2 = γ3 = 1.

• Large errors for maximum flow rate occurred for γ1 > 2 and γ2 > 2. The

largest errors occurred along the diagonal where γ3 = 1, at high values of γ1

when γ2 = 1, and at high values of γ2 when γ1 = 1.

• The largest errors for maximum pressure occurred at γ3 = [0.3, 0.4] and γ3 =

[1/0.3, 1/0.4].

• Medium errors occurred for maximum pressure along the diagonal γ3 = 1 (i.e.

γ1 = γ2).

For daughter vessel Dau2:

• The lowest errors occurred along the diagonal γ3 = 1; and for high values of

γ2 with low values of γ1.

• The largest errors occurred along γ3 ≥ 1/0.4.

For daughter vessel Dau3:

• The lowest errors occurred along the diagonal γ3 = 1; and for high values of

γ1 with low values of γ2.

• The largest errors occurred along γ3 ≤ 0.4.

Figure 5.17 shows the deviation between using static pressure and total pressure

conservation at vessel junctions for the third daughter vessel Dau3. The case show

is for Ap1 = π
2

and Qin,max = 100. Figure 5.18 shows the deviation of the choice

of pressure conservation condition at a trifurcation junction for the parent vessel,

and all three daughter vessels. The case shown is for Ap1 = π
2

and Qin,max = 200.

Indicating an increase in flow rate increases the magnitude of the errors, but follows

a similar pattern for the area ratios γ1, γ2, and γ3.
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5.4 Discussion

The performance of six 1D model configurations were compared (two employing

non-linear convection terms and two without non-linear convection, each of which

was formulated separately using conservation of either total pressure or static pres-

sure); a 0D linear formulation in which resistances, compliances and inductances

were constant; a configuration which uses a non-linear formulation for systemic ar-

teries and veins, with a 0D linear formulation for the pulmonary system; and a

configuration which uses a non-linear formulation for systemic arteries, with a 0D

linear formulation for the systemic veins and pulmonary system. These configu-

rations were compared with the reference solution (non-linear with total pressure

conservation at junctions, NL-TP).

For systemic arterial networks we observed that:

• peak flow rate solutions were most sensitive to the choice of pressure conser-

vation rule at junctions;

• the NL-SP simulation showed the smallest deviation from the reference so-

lution in pressure, flow rate, and forward and backward wave intensities, but

contained larger deviations at asymmetric vessel junctions particularly for the

smallest daughter vessel;

• estimation of peak pressure was better with the L-TP formulation, but peak

wave intensities were better estimated with the NL-SP formulation;

• the 0D linear formulation showed the greatest deviation for all measures in-

vestigated and poorly captured wave reflections;

• treating the systemic venous and/or pulmonary system as linear models, whilst

treating the systemic arterial system as non-linear, does not have a significant

impact on the solution in the systemic arterial system.

For systemic venous networks:

• the NL-SP simulation again deviated least overall, especially for flow rate

estimation;
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• the NL-SP solution deviated significantly from the NL-TP solution when

very asymmetric vessel junctions were considered;

• L0-SP (linear) formulation deviated the most.

For the pulmonary circulation:

• The influence of pressure conservation at junctions was greater than the non-

linear convection effect in pulmonary vessels;

• overall the L-TP formulation deviated the least for pressures in both arterial

and venous systems;

• L-TP deviated the least for peak pressures in both arterial and venous net-

works, and for peak flows in arterial networks;

• L0-SP formulation performed the worst for all error measures tested (of the

unified formulations).

The NL-SP simulation provided solutions for arterial configurations that were

closer to the NL-TP (reference model) solution than any of the other three model

formulations (being closer to the reference solution in 86 out of 109 vessels for

pressure, in 99 out of these vessels for flow rate, in all 109 vessels for forward wave

intensity, and in 103 vessels for backward wave intensity. However, the NL-SP

solutions showed greater deviations from the reference solution in vessels that had

very asymmetric junctions, this being particularly evident for peak systolic pressure

and peak flow rates. The junction is considered to be asymmetric if there are large

differences in cross-sectional area between the junctions daughter vessels. These

asymmetric junctions tend to increase the error in estimates of flow rates during

systole (i.e. peak flow rates) but not during diastole (i.e. low flow rates), when the

total (dynamic) pressure term has a much reduced impact. In general, the more

asymmetric the junction the larger the deviation of the NL-SP solution from the

NL-TP reference solution, especially in the smaller daughter vessel. This influence

of junction cross-sectional area mismatches could explain the observations of Boileau

et al.[41], who described deviations in solutions for the Adan56 arterial network

(compared with reference solutions) but not for the more symmetric 37-vessel arterial

network, despite using static pressure conservation in both cases.
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To illustrate this point further the NL-SP model was also compared to the

NL-TP model for isolated bifurcation and trifurcation cases. The results of the

isolated junction cases supported the finding that larger differences between the

solutions were present at more asymmetric junctions, mainly affecting the solution

of the smallest daughter vessel. However, the isolated junction cases also showed

that differences in pressure were found in the parent vessel at symmetric junctions

(although this difference was relatively small). Moreover, it was found that these

differences increased at higher flow rates. Figures 5.16a, 5.16b and 5.16c showed a

configuration (both areas and flow rates) that is similar to the celiac branching from

the descending aorta. There was approximately a 5% difference in maximum flow

rate for what could be considered the celiac artery where the area ratio between

the daughter vessels was γ1 = 2.575. Interestingly [231] showed that static pressure

better represented the pressure solution in a smaller daughter vessel (which branched

from a much larger vessel), while dynamic pressure better represented the pressure

solution in the larger daughter vessel (when compared to 3D simulations). In the

systemic arterial network, significant differences were seen at the trifurcation of the

internal thoracic artery, vertebral artery and subclavian artery II branching from

the subclavian artery I. The isolated trifurcation test junction again supported this

finding as significant differences between the static and total pressure conservation

cases were observed for γ3 = [0.3, 0.4] (largest difference occurred around γ3 = 0.35).

At this trifurcation in the systemic arterial tree the value of γ3 = 0.39. Moreover,

the largest daughter vessel showed less differences in solutions (between the static

pressure and total pressure conservation junction condition) than the other two

much smaller daughter vessels. As one of the daughter vessels is much larger than

the other/others, there is a much larger percentage of blood entering the larger

daughter vessel (from the parent vessel), and as the area of the largest daughter

vessel tends towards the area of the parent vessel, the dynamic pressure terms (in

total pressure conservation) ρ
2
Q2

A2 almost cancel.

It is important to consider the impact on waveforms of the non-linearity term

and the use of either conservation of total pressure or static pressure at junctions

throughout the network. In general, the non-linearity in the momentum equation

causes the flow and pressure solutions to lean upstream towards the heart. The use of

conservation of total pressure (which includes dynamic pressure term similar to the

non-linear convection term) mainly influences the rate of change of pressure (and flow
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rate) waveforms, however the main characteristics of the waveforms are generally well

captured albeit with different extrema. The linear 0D L0-SP formulation performed

poorly, differences can even be seen in the aortic root for pressure in figure 5.1a,

indicating the 0D form particularly struggles with capturing wave reflections. While

in the ulnar artery shown in figures 5.1e and 5.1f many features of the pressure and

flow waveforms are not captured.

Similarly, for venous network configurations the non-linear convection term tended

to have a greater impact on model solutions than the dynamic/total pressure term.

The NL-SP configuration again performed best compared to the reference (NL-

TP) solution, particularly for the flow rate solutions: the average flow rate solution

was better for this model in all 140 vessels, whilst the wave intensity solution was

better in 137 vessels for forward wave intensity and in all 140 vessels for backwards

wave intensity. The pressure solutions in the NL-SP model again became less ac-

curate when considering smaller vessels connected to very asymmetrical junctions

(i.e. small veins joining a much larger vein). Once again the lumped formulation

deviated the most from the reference solution for both average and peak values of

pressure, flow rate and wave intensity.

The non-linear convection term in the momentum equation causes the estimated

venous waveforms to lean downstream (towards the heart). As in the arterial system,

the use conservation of total pressure mainly influences the rate of change of pressure

(and flow rate) waveforms, which again captured the main characteristics of the

waveforms albeit with different extrema. The L-TP solution was generally closer

to the reference solution than the L-SP solution for pressures, flow rates and wave

intensities. The direction of waveform lean in veins was found to be the opposite

of that in the arterial system, in which the non-linear convection term leans the

waveform upstream. This is most likely a result of the diverging flow and tapering

of vessels in the flow direction for the arterial system, whilst the venous system

displays converging flow and a widening of the vessels in the direction of flow.

For the pulmonary circulation the NL-SP formulation deviated the least from

the reference solution for average flow rates and average wave intensities, however

the L-TP solution performed best for average and peak pressures as seen in figures

5.3a and 5.4a. The choice of pressure conservation rule at junctions tends to have a

larger effect in the pulmonary system than the inclusion or exclusion of the non-linear

convection term, as the non-linearity has less time/distance to affect the solution.
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5.5 Conclusion

The effects of non-linearities and the pressure conservation junction condition has

been investigated across the vessels of an extensive closed-loop cardiovascular sys-

tem. The greatest deviations of solutions, when comparing conservation of total

pressure and conservation of static pressure, tended to occur at asymmetric junc-

tions (i.e. junctions which have large differences in daughter vessel cross-sectional

areas). If only the systemic system is of interest then it is reasonable to consider

the pulmonary system as a lumped model. The non-linear convection effect, and

the effect of variable inductances, compliances and resistances in 1D was shown to

significantly affect the solutions of pressure, flow rates, and wave intensities and

should be included in the systems of interest. The lumped formulation performed

poorly, particularly with respect to wave reflections. Thus the lumped formulation

is unsuitable for problems/investigations for which wave reflections are important,

such as stenosis, aneurysms, and investigating arterial stiffness using the augmen-

tation index. This indicates that lumped models, even multi-compartment models

should only be used to close the loop, that is to ensure that flow returns to the

heart. Furthermore, when using the ETM scheme there is no computational over-

head of a 1D formulation, compared with a lumped model (when considering the

same number of elements); that is the 1D and 0D approaches take the same amount

of computational time. Therefore a 0D model should be lumped as much as possible

if the aim is to reduce computational cost, otherwise the more versatile and more

accurate 1D model should be implemented. The 1D linearised formulation which

omits the non-linear convection term (though non-linearities are present through in-

ductance, compliance and viscous effects) is an acceptable compromise, particularly

for problems involving smaller vessels. If regions of interest include small vessels

branching from larger branches such as investigating renal function and liver func-

tion, the choice of junction condition may be of importance. In order to investigate

the effects of gravity in such a system, various auto-regulation effects such as mus-

cle pumping and the baroreceptor reflex mechanism need to be integrated into the

model.
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Figure 5.3: RMSE (relative to the NL-TP formulation) of pressure, flow rate, and
wave intensities in the systemic arterial and venous systems (including hepatic veins,
cerebral and coronary circulation), and pulmonary arterial and venous systems
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Figure 5.4: Percentage errors (relative to the NL-TP formulation) of peak pres-
sures, flow rates, and wave intensities in the systemic arterial and venous systems
(including hepatic veins, cerebral and coronary circulation), and pulmonary arterial
and venous systems
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(a) RMSE of NL-SP for pressure (b) Scaled MAE of NL-SP for flow rate

(c) RMSE of L-TP for pressure (d) Scaled MAE of L-TP for flow rate

(e) RMSE of L0-SP for pressure (f) Scaled MAE of L0-SP for flow rate

Figure 5.5: Deviation of formulations for the systemic arterial system (cerebral and
coronary vessels omitted for clarity), compared to NL-TP form
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(a) RMSE of NL-SP for pressure (b) Scaled MAE of NL-SP for flow rate

(c) RMSE of L-TP for pressure (d) Scaled MAE of L-TP for flow rate

(e) RMSE of L0-SP for pressure (f) Scaled MAE of L0-SP for flow rate

Figure 5.6: Deviation of formulations in the systemic venous system (cerebral and
coronary vessels omitted for clarity), compared to NL-TP form. As shown in the
figure the veins on the left side (arms and legs) are deep veins, while on the right
side are superficial veins
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(a) RMSE of L-SP for pressure in arter-
ies

(b) Scaled MAE of L-SP for flow rate in
arteries

(c) RMSE of L-SP for pressure in veins (d) Scaled MAE of L-SP for flow rate in
veins

Figure 5.7: Deviation of L-SP for the systemic arterial and venous systems (cerebral
and coronary vessels omitted for clarity), compared to NL-TP form. For the veins,
the left side (arms and legs) are deep veins, while on the right side are superficial
veins
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Figure 5.8: Comparison of NL-TP, NL-SP, L-TP, L-SP, L0-SP formulations for
various vessels in the arterial system
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Figure 5.9: Comparison of NL-TP, NL-SP, L-TP, L-SP, L0-SP formulations for
various vessels in the arterial system
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Figure 5.10: Comparison of NL-TP, NL-SP, L-TP, L-SP, L0-SP formulations
for various vessels in the venous system
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Figure 5.11: Comparison of NL-TP, NL-SP, L-TP, L-SP, L0-SP formulations
for various vessels in the venous system
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Figure 5.12: Comparison of NL-TP, NL-SP, L-TP, L-SP, L0-SP formulations for
various vessels in the pulmonary system
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Figure 5.13: Comparison of NL-TP, NL-SP, L-TP, L-SP, L0-SP formulations for
various vessels in the pulmonary system
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Figure 5.14: Configuration of the bifurcation case where AP is the area of the parent
vessel, Ad1 and Ad2 are the areas of the first and second daughter vessels, respectively

Figure 5.15: Configuration of the trifurcation case where AP is the area of the parent
vessel, Ad1, Ad2, and Ad3 are the areas of the first, second, and third daughter vessels,
respectively
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Figure 5.16: Percentage error of static pressure compared with total pressure for
bifurcation and confluence cases for parent (Par) and daughter (Dau) vessels
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Figure 5.17: Percentage error of static pressure compared with total pressure for
trifurcation case for parent (Par) and daughter (Dau) vessels
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Figure 5.18: Percentage error of static pressure compared with total pressure for the
trifurcation case for parent (Par) and daughter (Dau) vessels
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Chapter 6

Parameter Estimation and Measure-

ment Integration

This chapter introduces the various methodologies used to estimate the parameters

of the 1D and 0D cardiovascular model components. These model components are

used to construct the 1D-0D closed-loop cardiovascular model of pregnancy, which

is described and implemented in chapter 7. The parameters used in the model are

generally estimated by at least one of the following: 1) from literature, and are

generally based on either in-vivo or in-vitro measurements; 2) from physiological

measurements of height, weight, pressures, heart rate, and cardiac output, which

can aid the estimation of model resistances, compliances, and vessel lengths.

Parameter estimation is perhaps the most difficult and most uncertain compo-

nent of cardiovascular modelling. Many of these reasons relate to the difficulty in

obtaining physiological in-vivo data or experimental in-vitro. This could be due to

the expense required for performing medical imaging techniques such as CT and

MRI, and also the expense of obtaining other equipment of a sufficient quality for

accurate measurements. Furthermore, many of these techniques and equipment

require sufficient expertise to reliably perform physiological measurements. The re-

quirement to adhere to ethical laws also prevents the use of several potentially useful

types of data. For example, during pregnancy an ultrasound device may be used

almost indefinitely on the patient, however many more useful types of imaging data

such as CT and MRI are restricted due to potential risks to foetal development [74],

and are only used if the diagnostic usefulness clearly outweighs any risk. In addition,

many blood vessels are inaccessible externally and thus would require invasive mea-

surements, such as catheterisation which can be used for pressure measurements.

However such procedures are unethical unless a patient already requires surgical in-

tervention. Many of the measurement devices used in clinics have a potential error

of the measured quantity by ±5% to ±10% [268], so there is significant uncertainty

even with the physiological measurement.

Considering these difficulties, it is important to develop as accurate an estimation

of the physiological parameters as possible for a given, and often limited set of
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physiological measurement data. These parameters can often be used either directly

into any model, as is the case for flow rate measurements as an inflow boundary

condition [41]; or be used to inform the model to aid in choosing parameters, such

as the pulse pressure being used to aid estimation of arterial compliance [327, 326].

A particularly important and challenging aspect of implementing a model of such

complexity while using physiological measurement data, is:

• the choice of the initial conditions, which includes initial pressure and flow

estimations in the 1D and lumped model systems. This is important as a

model with poor initial conditions will take significantly longer to converge to

a periodic solution;

• parameter estimation within the model, which includes both initial parameter

estimation, and iterative adaptation of parameters to improve their estima-

tion. There exists several aspects to parameter estimation as not only does

the total effect of parameters need to be accounted for, such as the total pe-

ripheral resistance and total compliances in each part of the circulation; but

also the distribution of these resistances and compliances throughout the net-

work. Typically, measurements such as pressure and estimations of cardiac

output can be used to estimate total resistance and compliance parameters,

but do not inform of the distribution of said parameters in the network. There

also exists several additional components to consider in a closed-loop model,

such as the total blood volume in the system being implicitly defined based

on initial pressures and initial parameter values;

• the connectivities of the cardiovascular network, the geometry and material

properties of blood vessels, should be different from person to person. Such

data on a patient’s cardiovascular network is unrealistic to obtain due to ex-

pense and ethics. Hence, the same connectivities in the network and the vessel

geometry are treated equal among participants. The material properties are

estimated from pulse pressure measurements.

Of particular interest in this thesis is the ability to estimate and adapt parameters in

the numerical model which enables the simulated solutions of pressure and cardiac

output / flow rates, to match measurements performed on participants. Currently

no such technique has been published which achieves this for such a complicated
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closed-loop system. A few studies have presented methodologies to estimate resis-

tance and compliance distributions within a small network of the systemic arteries

[325, 327, 326, 9, 354, 11, 158], and a study investigated an iterative approach

to adapt and improve estimation of these parameters during the simulation [372].

Although iterative schemes have generally only been performed on much smaller net-

works from the systemic arteries, such as the carotid artery and aortic bifurcation.

These iterative schemes were employed on the vascular bed parameters only, with

an assumption that the 1D vessel parameters such as compliance were unchanged

for all simulations. This is physiologically unrealistic as there are significant differ-

ences between individuals for total arterial compliance, including the compliance of

major vessels, and resistances. The vessel with the largest compliance is the aorta,

which has a significant impact on the pulse pressure [201, 73, 91, 141, 151, 323]; as

pulse pressure is primarily effected by stroke volume, aortic and downstream arterial

compliance; although the rate for change of the flow rate also influences the pulse

pressure.

This chapter will begin by presenting the model components and parameters

which are chosen from literature, which includes details of the 1D vascular networks

and all the components required for the closed-loop 1D-0D system. A description of

the physiological measurement data will then be given, which leads to the method-

ologies used in initial and iterative parameter estimation.

6.1 Model Parameters From Literature

This section describes the modelling components that remain unchanged from liter-

ature. This choice is due to: (1) patient measurement information being insufficient

to provide an accurate patient-specific estimation of each parameter, such as in the

heart and valve models; or (2) that the modelling component is not of primary

interest and is mainly there to complete the model, such as the coronary system

being included to drain approximately 5% of cardiac output from the aorta; or (3) a

combination of both such as in the pulmonary system, in which the mean pressures

are scaled to achieve healthy pulmonary pressures, as no measurement data was

available for the pulmonary system and the primary interest of the model is the

systemic circulation.
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6.1.1 Heart Model

The heart model parameters used in this thesis are primarily the same as those

defined in [226, 230], the description of the heart model and its implementation

in this thesis was previously described in chapter 3.2.4, and a lumped parameter

diagram of the heart model was shown in figure 2.9. Table 6.1 contains information

of the heart parameters used in this thesis.

LV LA RV RA
Emin, (mmHg ml−1) 0.07 0.09 0.035 0.045
Emax, (mmHg ml−1) 2.8 0.13 0.45 0.09
τ1, (s) 0.26875 T 0.0525 T 0.26875 T 0.0525 T
τ2, (s) 0.5025 T 0.1725 T 0.5025 T 0.1725 T
m1 1.32 1.99 1.32 1.99
m2 21.9 11.2 21.9 11.2
V0, (ml) 10 3 40 7
Vt=0, (ml) 136 71 172 67
Ks, 10−3 (ml) 0.5 0.25 1 0.5
κ 6 2 6 2
µAV , (g cm−7 s−1) 0 0.033 0 0.05
tonset, (s) 0 0.8125 T 0 0.8125 T

Table 6.1: Heart chamber parameters with units of measurement. Items without
a unit of measurement are dimensionless. Abbreviations are as follows: left ventri-
cle/atria -(LV/LA, right ventricle/atria - RV/RA.

6.1.2 Valve Model

The valve model and its implementation are described in chapter 3.2.4. The valve

model is similar to [226], where venous valve parameters are from [226], while heart

valve parameters are from [230]. Table 6.2 contains the parameter values of the

heart valve and venous valve models.

6.1.3 1D Vascular Networks

The majority of the vascular network and vascular bed configurations are the same

as [230], however in this thesis additional vessels and vascular beds are included in

order to model important physiological adaptations which occur during pregnancy.
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AV MV PV TV VV
Aeff,max, (cm2) 6.9 5.1 5.7 6.0 Acon
Aeff,min, (cm2) 0 0 0 0 0
leff , (cm) 1.5 2 1.5 2 1
Kvo, (cm2 s2 g−1) 0.02 0.02 0.02 0.03 0.03
Kvc, (cm2 s2 g−1) 0.02 0.04 0.02 0.04 0.03

Table 6.2: Valve model parameters with units of measurement. Abbreviations are:
AV - aortic valve, MV - mitral valve, PV - pulmonary valve, TV - tricuspid valve,
VV - venous valve. The effective maximum area of the venous valve is set to the
current area of the connecting vessel Acon.

Pulmonary System

The 1D pulmonary system is identical to that in [230], which used fractal relations

from [275] to create the network. Vascular bed compliances and the distribution of

pulmonary vascular resistance are also held the same as in [230]. However, the total

pulmonary vascular resistance is scaled to achieve physiologically healthy pulmonary

pressures. The pulmonary system network is shown in figure 6.1.

(a) 1D Pulmonary Arteries (b) 1D Pulmonary Veins

Figure 6.1: 1D pulmonary artery and venous vascular networks.

Systemic System

The majority of the 1D network parameters are identical to the model proposed in

[230], with the exception of the added vessels for pregnancy modelling, and vessel
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lengths. The vessel lengths are scaled using the height of the patient in the following

way

Lvessels = γLvessel,base, γ =
Height

Base Height
, (6.1)

where Lvessels is the new length of each vessel, Lvessel,base is the base length as defined

in [230], γ is a scaling term defined by the fraction of patient height with the models

base height of 6 ft1 in. There exists more complicated relationships such as allometric

scaling laws [302, 95], which vary both vessel lengths and diameters. However, in

this thesis the simple scaling relationship is used, as there are already significant

uncertainties in the vascular network, and thus the choice of scaling law is not likely

to have a large impact on the solution, particularly as vessel compliances are adapted

based on the patient pressure measurements.

The main systemic vessels of the model, excluding the cerebral arteries and portal

system circulation, are shown in figure 6.2, the cerebral vessels are shown in figure

6.3, and the hepatic portal system circulation is shown in figure 6.4c.

(a) Major arteries in 1D systemic network (b) Major veins in 1D systemic network

Figure 6.2: 1D systemic system network
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(a) 1D cerebral arteries (b) 1D cerebral veins

Figure 6.3: 1D cerebral artery and venous vascular networks.

Coronary Network and Coronary Vascular Bed Model

The 1D coronary network and lumped coronary vascular bed parameters are the

same as described in [230], but are briefly described here for completeness. The

coronary model was previous described in chapter 3.2.4 in this thesis, the vascular

bed configuration can be seen in figure 3.3 and the coronary arterial and venous

network can be seen in figure 6.4.

The coronary network contains the main arteries and veins in the coronary sys-

tem. The coronary vascular bed is split into four main compartments: the epi-

cardium, subepicardium, midwall, and subendocardium. In addition the coronary

vascular bed experiences external pressure from the left and/or right ventricle, with

vascular resistances are non-linear and dependent on the blood volume in each com-

pliance compartment C1, C2. The distribution of resistances, compliances, and

myocardial volumes, is identical to that presented by Mynard and Smolich [230].
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(a) 1D coronary arteries (b) 1D coronary veins

(c) 1D hepatic portal net-
work

Figure 6.4: 1D coronary artery and venous vascular networks, and hepatic portal
system.

6.1.4 Utero-Ovarian Circulation

The anatomical configuration used in this thesis is the most common. However,

several variations of the vessel network in the utero-ovarian system exist [13]. Ta-

ble 6.3 shows the vessel lumen diameters of arteries and veins in the utero-ovarian

circulation, comparing those which are given in literature, and the corresponding

diameters used in the model, with both non-pregnant and pregnant values (late

pregnancy) given. There are several vessels for which there exists no information on

their diameter in literature, and for the majority of values, the lengths are not given,

and hence are chosen from anatomical considerations (for lengths), or by assuming

the veins are 1.25 times larger in diameter than their arterial counterparts. The

utero-ovarian circulation network used in this thesis is shown in figure 6.5, along

with vessel numbering which is given in table 6.4 and table 6.5. There are several

potential pathways for blood to reach the uterus from the aorta. The circulation is

generally symmetric, with left and right pathways containing the same vessels and

connectivities. The main pathway is via the uterine arteries, which branches from

the anterior branch of the internal iliac artery, before travelling towards the uterus.

The uterine artery typically splits into two branches: a descending branch, which

connects to the vaginal artery, supplying the vagina and cervix with blood; and the
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Figure 6.5: Utero-Ovarian System

ascending uterine artery, which travels upwards along the wall of the uterus. Several

arcuate arteries branch from the ascending uterine arteries, often anastomosing, cre-

ating a connection of the left and right sided blood vessels of the uterus. The radial

arteries branch from the arcuate arteries, penetrating the myometrium, containing

branches of basal arteries, and finally becoming spiral arteries. The spiral arteries

bring blood to the inner most layer of the uterus, and during pregnancy, approxi-

mately 200 of these vessels [52] open into the intervillous space of the placenta. The

second most common pathway for blood to reach the uterus is via the utero-ovarian

communicating arteries, which bifurcate from the ovarian artery and often anasto-

mose with ascending uterine artery near the fundus of the uterus. There exist many

smaller pathways, which vary significantly between individuals and hence are not

considered in this thesis.

6.2 Measured Data

The data utilised in this thesis was collected by Mike Lewis’ research group [63,

59, 62, 60, 61, 100]. The equipment used for collecting measurements was the Task

Force c© monitor by CNSystems (Graz, Austria). There were a total of 58 participants
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in the cohort at the first trimester. However, this decreased to 36 participants in the

second trimester, 29 participants in the third trimester, and finally, 24 participants

in the post-partum group. An overview of these participants can be found in Table

6.6. The device has the ability to perform:

• impedance cardiography (ICG).

• two-channel electrocardiography (ECG).

• heart rate monitoring (HR)

• non-invasive continuous beat-to-beat blood pressure monitoring via the index

and middle fingers.

• oscillometric blood pressure which also acts as a corrector for the continuous

blood pressure monitor;

This allows a wide range of measurements and parameters can be extracted. Allow-

ing the following beat-to-beat variables to be measured or estimated:

• the systolic, diastolic, and mean blood pressure in the brachial artery.

• tracking of heart rate and measurements of stroke volume enables the calcu-

lation of cardiac output.

• the total peripheral resistance or systemic vascular resistance (TPR) can be

estimated from the mean arterial pressure and cardiac output.

• an estimation of the left ventricular ejection time (LVET).

• heart rate and blood pressure variability can be investigated by a power spec-

tral analysis, which is a frequency domain analysis of RR-interval, and the

beat-to-beat systolic and/or diastolic pressure signal respectively.

• baroreceptor reflex sensitivity can be investigated by a combination of mea-

sured variables such as heart rate and blood pressures.

In addition, participant height and weight were recorded, and body surface area

(BSA) was estimated, allowing the calculation of various indices which related car-

diovascular parameters with BSA (such as cardiac index and stroke volume index).
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The participants were measured for approximately five minutes in each of the fol-

lowing body positions and conditions:

• Approximately supine, where the patients’ torso was approximately at a 45

degree angle to avoid compression of inferior vena cava due to the gravid

uterus.

• standing (and hence baro-receptor reflex sensitivity, as measurements from

supine to standing were continuous).

• light exercise to increase cardiac output.

• seated recovery.

• mental tasks (mathematical tasks to increase stress levels).

• metronomic breathing (breathing with a constant frequency for the respiratory

cycle).

• spontaneous breathing (natural breathing).

Although in this thesis only the data in the supine position has been utilised as

gravitational effects and baro-receptor modelling is not the focus of this thesis.

6.3 Initial Parameter Estimation

The choice of initial conditions will inevitably effect the convergence behaviour of

the iterative parameter estimation scheme (which is presented in section 6.4). The

parameter estimation uses the collected data, as discussed in section 6.2. The initial

conditions of the model assumes flow rates to be zero everywhere which is typical

of a closed-loop cardiovascular model [220, 230]; while initial pressures are treated

in the following way:

• The initial pressure in the systemic arterial system is set to the aimed diastolic

pressure (diastolic pressure given by measured data).

• Initial pressure in the systemic venous system is set to equal the systemic vein

reference pressure Pd (5 mmHg).
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• Initial pressure in the hepatic portal system is set to equal the hepatic portal

vein reference pressure Pd (8.5 mmHg).

• Initial pressure in the pulmonary arterial system is set to equal the pulmonary

artery reference pressure Pd (11 mmHg).

• Initial pressure in the pulmonary venous system is set to equal the pulmonary

vein reference pressure Pd (10 mmHg).

• The initial pressure for each heart chamber is defined by Pch = Ech (Vch − Vch,0),

where the heart model parameters used in the simulations are defined in table

6.1. This often defines a discontinuity in hydrostatic pressure between atria

and venous systems, although this assumption has no knock-on effects on the

final solution.

• Initially, the venous valves are assumed open, and hence the pressure in the

venous valve element is assumed equal in magnitude to its neighbouring 1D

vessel elements.

• Initial pressures in the vascular beds are calculated by ignoring compliance

elements. This allows the initial vascular bed pressures to be solved as a

steady state system. The pressure at each node can then be easily calculated

from the initial pressures in the connecting 1D vessels.

Furthermore, the reference pressures (i.e. the pressure at which the vessel area is

defined) throughout the network is shown in table 6.7

6.3.1 Total Peripheral Resistance

The estimation of total peripheral resistance (TPR) is well studied [9, 354, 11, 158].

In this thesis the initial estimation of total peripheral resistance uses the following

commonly used formula

TPR ≈ MAP −MCV P

CO
, (6.2)

where MAP is the mean arterial pressure (from measurements), MCV P is the mean

central venous pressure (assumed 5 mmHg), and CO is the cardiac output (from

measurements). The distribution of this resistance is performed from a combination

Pg. 163 / 284



6.3. INITIAL PARAMETER ESTIMATION

of two methodologies. The first involves the use of expected percentage of cardiac

output to each region/organ of the body, based on normal distributions found in

humans [184].

The second methodology is a variant of Murray’s law of bifurcations [223], which

involves assuming the flow distribution to a region is dependant on vessel geometry,

thus requiring the sum of the radii cubed of parent vessels must equal the sum of

the radii cubed of child vessels.∑
i=1:NP

r3
i =

∑
j=1:ND

r3
j , NP - number of parents, ND - number of children. (6.3)

Once this distribution is determined the vascular bed parameters can be found

by acknowledging the total resistance in the vascular region is determined from

the summation of characteristic impedances from both arteries and veins, and a

combined arteriole, capillary, venule resistance. The characteristic impedances at

the reference wave speed are determined from the geometry and material properties

in the 1D system, thus can be readily calculated.

The initial pressure across the vascular bed models can be found solving the

pressure drop from arteries to veins from the initial pressures in the 1D system.

6.3.2 Estimation of Total Systemic Compliance

The majority of studies investigating compliance tend to focus on total arterial

compliance [325, 327, 326, 73], rather than the total compliance in the systemic

system or pulmonary system. In addition the distribution of compliance has not

been fully investigated, although the compliance of large vessels against small vessels

has been investigated [33]. This serves to show the difference in truly elastic arteries

such as the aorta and the more muscular arteries, which have a greater control on

blood flow distribution. There have been several studies investigating the compliance

in the systemic venous system, linking the compliance to various pathologies such

as hypertension [246, 375, 363, 134].

The initial estimation of the total arterial compliance (TAC) is performed via

a defined RC constant, which relates to the drop off rate of pressure due to the

interaction of the total peripheral resistance TPR and total arterial compliance CT .
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The drop of constant is given by

τ = TPR× CT , (6.4)

where the time constant is chosen to be τ = 1.3 [11], although in literature the time

constant has varied significantly from τ = 0.81 [325] to τ = 2.72 [5]. The total

compliance is the sum of 1D and 0D models, as the initial compliance of the 1D

vessels can be determined via the constitutive law, an estimate of compliance in the

vascular bed can be determined from

C0D = CT − C1D, (6.5)

While the distribution of compliance is determined using the inverse distribution of

peripheral resistance. The total venous compliance is estimated to be thirty times

the compliance of the arteries [134], the 1D venous compliance is subtracted from

the total venous compliance, then the remaining compliance is distributed to the

vascular beds using the same distribution as the arterial side.

6.4 Iterative Parameter Estimation

A complication that arises in a closed-loop cardiovascular model is that of judg-

ing the initial conditions of the model. Typically flow rates are assumed zero ev-

erywhere at the beginning of the simulation. As the vessels within the network

change in length based on patient height, it is difficult to predict how the initial

blood volume in the system relates to the final periodic solution, making the cardiac

output challenging to estimate. This also means the initial resistance/compliance

estimations that are calculated using the cardiac output from patient measurements

will initially be incorrect. An accurate iterative parameter estimation technique is

critical to achieve convergence of the models haemodynamic parameters to the mea-

sured participant data. This section presents an automated parameter adaptation

technique that: improves the estimation of resistances and compliances within the

systemic system to converge the model solutions of diastolic, systolic, and mean ar-

terial pressures to the measured data; and also adds or removes blood volume from

the cardiovascular model to achieve the aimed cardiac output. It should be noted
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Figure 6.6: Flowchart of the implementation of the initial and iterative parameter
estimation techniques

that the model simulation is performed for 8 cardiac cycles before any iterative

adaptation occurs, which means the solution is close to periodic with approximately

a 2 − 5% change in flow and pressure waveforms from the previous cardiac cycle.

An overview of the initial and iterative parameter estimation techniques, and their

location within the computational algorithm, is shown in Figure 6.6.

6.4.1 Blood Volume

Due to the impossible task of accurately estimating the models cardiac output from

the initial conditions, it is necessary to add/remove volume into the system. In order

to implement this novel technique, the first choice is to decide where the blood will

be added or removed from the system. A natural choice to do this is via the venule

compliance element in the vascular beds as the 0D compliance element is derived
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from the continuity equation. The 1D variant of the continuity equation with a

source/sink term is given by

C1d
∂Ptm
∂t

+
∂Q

∂x
= Φ, (6.6)

where C1d is the vessel compliance and Φ is the source/sink term. Thus the equations

reduction to 0D becomes

C0d
∂Ptm
∂t

= Qin −Qout + Φ̄, (6.7)

where Qin−Qout is the net change in volumetric flow rate of the compliance element,

and Φ̄ is the volumetric flow rate which is added to or taken from to the system.

Only a small amount of blood volume is added to the system at every time step

in order to converge to the measured cardiac output in a more controlled manner,

which equates to a maximum of a 5% change in blood volume over a cardiac cycle.

6.4.2 Total Peripheral Resistance

The total peripheral resistance is adapted to achieve the measured diastolic pressure

in the left brachial artery to match the measurements, although in practice any

artery in the system could be used. The iterative update can be performed in a

similar fashion to [372]. The iterative update of TPR for the next cardiac cycle

(i + 1), can be determined from the linearisation of a modified version of the total

peripheral resistance equation (6.2) by assuming venous pressure is 0 mmHg

TPRi+1 = TPRi +
∂TPRi

∂MAP
δMAP +

∂TPRi

∂CO
δCO, (6.8)

where δMAP and δCO are the differences of the models mean arterial pressure and

cardiac output (defined at the ith cycle), with the aimed measured data (defined as

superscript m), respectively; and are defined as

δMAP = MAPm −MAP i, and δCO = COm − COi. (6.9)
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Where the derivatives can be calculated as

∂TPRi

∂MAP
=

1

COi
,

∂TPRi

∂CO
= −MAP i

CO2,i
. (6.10)

However, the difference in the current cardiac output to the aimed cardiac output

can be quite significant depending on the patient’s data. This can cause issues as

blood is added or removed from the system slowly and the last term in the right-

hand side of equation (6.8) can significantly slow down convergence of the total

peripheral resistance, as the cardiac output estimation is itself slow to converge.

Other linearisations of this term can be performed, such as lagging the cardiac

output term behind by setting δCO = COi − COi−1; however this has a relatively

small impact on the overall convergence as cardiac output is slow to converge, hence

in this thesis the last term in the right-hand side of equation (6.8) is neglected.

Once the total peripheral resistance is updated the resistance distribution is kept

the same, which essentially means all resistances are scaled by the same amount,

which can be written as

αR = TPRi+1./TPRi, (6.11)

where all resistances in the vascular beds are scaled as Ri+1
vb = αRR

i
vb, and then the

contributions of characteristic impedance (which are updated via the compliance

update) are subtracted from this resistance to find the capillary resistance.

6.4.3 Systemic Arterial Compliance

The total compliance in the arterial system can be calculated by the summation

of 1D and 0D compliances. The 0D compliances are only estimated during the

initialisation, and are set during the simulation. However, the 1D compliances are

adapted to converge to the pulse pressure from the measurements. This is done by

integration of the continuity equation at a reference point(s) in the arterial system

over time, between end diastolic pressure and maximum systolic pressure (pulse

pressure) in a similar way to [372]. This can be written as∫ tP,sys

tP,dia

C
∂P

∂t
+Q = 0; (6.12)
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which when assuming C = Cd, where Cd is the compliance at diastolic pressure, can

be integrated to

Cd (Psys − Pdia) + (Q|t=P,sys −Q|t=P,dia) ∆tpp = 0, (6.13)

where ∆tpp is the difference in time between the diastolic Pdia and systolic Psys

pressure, while Q|t=P,sys and Q|t=P,dia is the flow rate at the time of Psys and Pdia,

respectively. In order to update the compliance equation (6.13) needs to be lin-

earised, this is performed by first rearranging to solve for compliance in terms of

flow and pulse pressure where PP = Psys − Pdia, which gives

Cd =
(Q|t=P,sys −Q|t=P,dia) ∆tpp

PP
, (6.14)

and after linearising can be written as

Ci+1
d = Ci

d +
∂Ci

d

∂PP
δPP +

∂Ci
d

∂ (Q|t=P,sys −Q|t=P,dia)
δ (Q|t=P,sys −Q|t=P,dia) . (6.15)

The aimed value and future values of (Q|t=P,sys −Q|t=P,dia) are not known, however

it is reasonable to assume that the difference from previous cardiac cycle is small

enough to be neglected (or at least much smaller than the pulse pressure), hence

δ (Q|t=P,sys −Q|t=P,dia) ≈ 0.

The compliance change is performed in the 1D domain via a change in the

reference wave speed c0. Without knowledge of how the compliance should be dis-

tributed, it is assumed to scale by the same amount everywhere in the systemic

arteries. Hence the reference wave speed squared (c2
0) is updated by

c2,i+1
0 = c2,i

0

Ci
d

Ci+1
d

. (6.16)

It should also be noted, that the change in wave speed for the vessels, will also mean

the characteristic impedances will need to be recalculated.
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6.5 Concluding Remarks

This chapter described the choice of different parameters implemented in the closed-

loop cardiovascular model. This included parameter and coefficient values from

literature, and the initial and iterative parameter estimation techniques utilised in

this thesis which use participant measurements to aid the estimation. Details of

the measured participant data were described, which includes measurements from

the first, second, and third trimesters of pregnancy, as well as a measurement post-

partum. The utilisation of the measured data was described via an initial parameter

estimation technique, which uses the participant measured heart rate and mean

brachial artery pressure as an input. The iterative parameter estimation technique

is utilised at the end of every cardiac cycle during the simulation. The iterative

technique adapts the models systemic vascular resistances, vessel compliances, and

blood volume in the system, in order to converge to the participant measurements of

systolic pressure, diastolic pressure, and cardiac output. The parameter estimation

techniques are generalised, allowing parts of the techniques to be implemented within

both closed-loop and open-loop models.
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Vessel Name Literature Diame-
ter (references)

Model Diameter

Uterine Artery 0.2−0.5 cm (NP) [52],
0.2−0.6 cm (NP) [331]

0.25 cm (NP),
0.4370 − 0.5 cm
(P)

Ascending Uterine
Artery

0.2 to 0.5 cm (NP)
[98, 52], 0.26 cm 2nd
trimester and 0.3 cm
3rd trimester (P) [290]

0.25 cm (NP), 0.3−0.4
cm (P)

Arcuate Artery mid pregnancy about
size of uterine artery,
by term some are dou-
ble diameter [53]

0.125 cm (NP), 0.5046
cm (P)

Spiral Artery 0.02 widening to
0.05 − 0.1 cm [104],
0.05 cm healthy, 0.02
cm pre-eclampsia [66],
0.1 − 0.2 cm (NP)
[98], 0.2 − 0.3 cm (P)
[53]

0.1 (NP), 0.2 − 0.24
(P)

Ovarian Artery < 0.15 cm [52] 0.14 cm (NP), 0.35 cm
(P)

Ovarian Artery II No Information 0.1 cm (NP), 0.2 cm
(P)

Utero-Ovarian Com-
municating Artery

0.05 − 0.2 cm non-
pregnant (close to
Uterine artery when
pregnant) [52], 0.05
cm (NP) [331]

0.1 cm (NP), 0.3568−
0.4 cm (P)

Uterine Vein 0.33 cm (NP) [52] 0.31 cm
Ascending Uterine
Vein

0.33 cm (NP) [52] 0.31 cm

Arcuate Vein No Information 0.15625 cm
Spiral Vein No Information 0.125 cm
Ovarian Vein 0.32 − 0.39 cm (NP),

1.84 [52]
0.31 cm

Ovarian Vein II No Information 0.125 cm
Utero-Ovarian Com-
municating Vein

No Information 0.0625 cm

Table 6.3: Diameters of utero-placenta and ovarian circulation.
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No. Name Length
(cm)

Area
NP
(cm2)

Area P
(cm2)

Vascular
Bed

62 Ovarian Artery I 3 0.0154 0.03079
63 Ovarian Artery II [x3] 2 0.0079 0.015 Ovary
64 Communicating Artery 5 0.004418 0.048105
65 Arcuate Arteries I [x4] 12 0.0123 0.1257
66 Radial/Spiral Arteries I [x50] 3 0.000314 0.001963 Fundus
67 Ascending Uterine Artery I 3 0.02405 0.048105
68 Arcuate Arteries II [x4] 12 0.0123 0.1257
69 Radial/Spiral Arteries II [x50] 3 0.000314 0.001963 Uterus
70 Ascending Uterine Artery II 3 0.02405 0.048105
71 Arcuate Arteries III [x4] 12 0.0123 0.1257
72 Radial/Spiral Arteries III [x50] 3 0.000314 0.001963 Placenta
73 Ascending Uterine Artery III 3 0.02405 0.048105
74 Arcuate Arteries IV [x4] 12 0.0123 0.1257
75 Radial/Spiral Arteries IV [x50] 3 0.000314 0.001963 Uterus
76 Ascending Uterine Artery I 3 0.02405 0.048105
77 Descending Uterine Artery 3 0.000314 0.001963
78 Arcuate Arteries V [x4] 12 0.0123 0.1257
79 Radial/Spiral Arteries V [x50] 3 0.000314 0.001963 Cervix
80 Uterine Artery 8 0.02405 0.048105
81 Vaginal Artery 7 0.00307 0.04909

Table 6.4: Utero-ovarian artery vessel information. Right and left sides assumed to
be equal in length and area.
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No. Name Length
(cm)

Area
NP
(cm2)

Area P
(cm2)

Vascular
Bed

270 Ovarian Vein I 3 0.0767 0.7854
271 Ovarian Vein II [x3] 2 0.0123 0.0491 Ovary
272 Communicating Vein 5 0.0767 0.7854
273 Arcuate Veins I [x4] 12 0.0192 0.1963
274 Radial/Spiral Veins I [x50] 3 0.0124 0.0491 Fundus
275 Ascending Uterine Vein I 3 0.02405 0.048105
276 Arcuate Veins II [x4] 12 0.0192 0.1963
277 Radial/Spiral Veins II [x50] 3 0.0124 0.0491 Uterus
278 Ascending Uterine Vein II 3 0.02405 0.048105
279 Arcuate Veins III [x4] 12 0.0192 0.1963
280 Radial/Spiral Veins III [x50] 3 0.0124 0.0491 Placenta
281 Ascending Uterine Vein III 3 0.02405 0.048105
282 Arcuate Veins IV [x4] 12 0.0192 0.1963
283 Radial/Spiral Veins IV [x50] 3 0.0124 0.0491 Uterus
284 Ascending Uterine Vein I 3 0.02405 0.048105
285 Descending Uterine Vein 3 0.000314 0.001963
286 Arcuate Veins V [x4] 12 0.0192 0.1963
287 Radial/Spiral Veins V [x50] 3 0.0124 0.0491 Cervix
268 Uterine Vein 8 0.0767 0.7854
266 Vaginal Vein 7 0.0098 0.02405

Table 6.5: Utero-ovarian venous vessel information. Right and left sides assumed to
be equal in length and area.

Age Range Trimester 1 Trimester 2 Trimester 3 Non-Pregnant
Post-Partum

Age < 25 17 9 7 2
25 ≤ Age < 30 18 10 6 6
30 ≤ Age < 35 18 13 12 12

Age > 35 5 4 4 4

Total number of data 58 36 29 24

Table 6.6: Characteristics of the cohort, showing age range and number of partici-
pant data for each trimester.
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Location Pressure (mmHg)

systemic arteries 80
systemic veins (excluding hepatic portal system) 5

hepatic portal veins 8.5
pulmonary arteries 11
pulmonary veins 10

Table 6.7: Defined reference pressures Pd.
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Chapter 7

Computational Model of Pregnancy

This chapter begins by describing the various types of physiological adaptation in the

maternal circulation over the course of a human pregnancy. The development of the

foetus, placenta, and uterus will be presented and a description of the physiological

role of the placenta and umbilical cord will be given. The computational algorithm

for the closed-loop pregnancy model will then be described. The computational

simulations performed will then be given in separate sections, which includes: the

patient-specific model, which integrates in-vivo physiological measurements taken

during the first, second, and third trimesters, and for post-partum conditions; an

idealised model of pregnancy for all gestational weeks; and two additional cases,

which are an asymmetric adaptation of the uterine system, and the effect of chang-

ing the diameter of the utero-ovarian communicating artery. Finally, a sensitivity

analysis is performed on the model to investigate the effect of the initial conditions,

and cardiac parameters on the final model solutions, which tests the effectiveness of

the iterative adaptation technique.

7.1 Physiological Adaptation

Pregnancy induces many physiological and structural adaptations. Compared to

the non-pregnant circulatory systems, pregnant individuals show increases in cardiac

output by 30−50% caused by an increase in both stroke volume and heart rate [155,

176, 52, 300, 209, 320]; there is a considerable increase in total blood volume, with

an increase in plasma volume by just under 50%, and an increase in red cell mass by

approximately 18%, leading to an overall decrease in the density of red blood cells

within the plasma [161, 250]. A study also observed a lower overall blood viscosity

in pregnant individuals, while there was no significant change in the viscosity of

plasma alone [296]. There is also an increase in interstitial fluid (oedema) during

pregnancy, with a further increase in extracellular fluid observed in patients with

hypertension [46].

Even with the extreme increase in cardiac output, the pressures in the systemic

arterial system remain relatively consistent throughout pregnancy [209], with mean
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arterial pressure observed to fall slightly during the first to second trimesters, and

rising to pre-pregnant values towards term. The mean pressures are kept relatively

consistent due to the decrease of systemic vascular resistance, as increase in vascular

compliance, vascular remodelling, and vaso-dilation of vessels [209, 52].

If sufficient physiological adaptation does not occur, several pathologies can

develop. Hypertension may develop if vascular modelling does not occur suffi-

ciently, which means the systemic vascular resistance does not decrease sufficiently

to counter the increase in cardiac output; hypotension may result if the vascular

remodelling, increase in vascular compliance, and decrease in systemic vascular re-

sistance occur to a greater extent than the relative increase in blood volume. Several

clinically serious pathologies are also associated with hypertension, such as pre-

eclampsia, which is a leading cause of maternal mortality, occurring in 3− 7% of all

pregnancies [6], and is regarded as a renal complication which tends to develop after

week twenty of gestation. Pre-eclampsia causes hypertension, proteinuria (protein

in urine), is linked to poor placentation (formation and structure of the placenta),

and can lead to an increase in oedema [343, 263, 20, 131]. Placental insufficiency

can also develop, and is caused by poor placentation, poor placental development,

and poor adaptation of the uterine vasculature, leading to increased placental and

uterine resistances, hypertension, and restricted foetal growth [127, 232, 181].

During pregnancy the maternal vasculature undergoes substantial adaptation.

These changes include: the remodelling of the heart, which results in an increase

of left ventricular mass and wall thickness [150, 145]; the creation and development

of a specialised organ, the placenta, which facilitates nutrient and waste product

exchange between maternal and foetal systems; remodelling of the vascular network,

including an increase in vessel lumen diameters and compliance, particularly in the

uterine system, with significant changes to the micro-structure of the spiral-arteries

which penetrate the wall of the uterus [53, 66, 153, 200, 270, 367].

There are also significant changes to the distribution of cardiac output to each

body region. In particular with regional increases of blood flow to the uterus, ovaries,

kidneys, and skin. Blood flow to the uterus occurs via several pathways. The

uterus receives the majority of its blood supply needs from the left and right uterine

arteries, while the remaining supply reaches the uterus from: the utero-ovarian

communicating artery, which is a small vessel anastomosing the ovarian artery with

the ascending uterine artery; and large number of smaller (often unnamed) vessels.
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The uterus has the largest increase in blood flow of all body regions, where the total

bi-lateral blood flow through the uterine arteries increases from approximately 3.5%

of cardiac output in early pregnancy, to 12% of cardiac output by term of pregnancy

[340], with an example of the uterine artery waveforms for the non-pregnant case

and for the first trimester are shown in 7.2. While the utero-ovarian communicating

artery increases its diameter significantly, and in some cases vaso-dilation occurs to

the extent that the utero-ovarian communicating vessel can supply the uterus with

the majority of its blood supply needs [52].

7.2 The Uterus and The Placenta

The vasculature of the uterus undergoes tremendous adaptation over the course of

pregnancy to accommodate its role change, from acting as the site of embryo fer-

tilisation pre-pregnancy, to protecting and aiding in the development of the foetus

during pregnancy, and even plays a critical role at term by contracting and facili-

tating childbirth. The uterus has three major layers: a thin outer layer called the

perimetrium which mainly acts as an external border; a middle layer called the

myometrium, which is a thick muscular layer responsible for uterine contractions

during childbirth; and the inner layer called the endometrium, which contains two

sub-layers, a basal layer and a functional layer. The functional layer is shed if fer-

tilisation of an embryo does not occur, and is the location where a fertilised embryo

attaches to and develops in the uterine wall; while the basal layer remains in place

and does not shed during menstruation. Figure 7.1 gives an overview of the uterine

wall and its vessels for pregnant and non-pregnant individuals.

The uterine vessels begin to remodel in early pregnancy. The most significant

vessel vaso-dilation occurs in the uterine, utero-ovarian, ovarian, arcuate, and spiral

vessels, for both arteries and veins [52, 104, 331, 53, 66, 290, 98, 358]. The spiral

arteries undergo the most significant changes, dilating up to five times of their

non-pregnant values by term. Up to 120-200 of these spiral arteries adapt further,

becoming the utero-placental vessels, which drain blood directly to the intervillous

space in the placenta [104, 52]. The compliance of these uterine vessels are affected

by an invasion of trophoblast cells from the placenta (originating from the foetus),

which progressively travel further into the maternal vessel walls and tissues over
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(a) Diagram of the pregnant uterus. (b) Diagram of the non-pregnant uterus.

Figure 7.1: Comparison of diagram of the non-pregnant and pregnant human uterus,
including the development and vasculature of the placenta.

the course of pregnancy, with these trophoblasts even being observed in the uterine

arteries in later pregnancy [270, 104, 358, 367, 366].

The placenta plays a critical role during pregnancy. It is a unique organ that:

receives blood from both maternal and foetal systems; acts as a barrier that keeps

maternal and foetal blood separate; and facilitates nutrient exchange between ma-

ternal and foetal systems. An increased weight and size of the placenta has been

shown to aid in foetal development, and increase birth weight [292]. Poor placen-

tation may result in a number of pathologies, such as pre-eclampsia, uteroplacental

dysfunction (placental insufficiency), and foetal growth restriction [6, 181]. These

pathologies often affect the entire uterine system, with poor adaptation of uterine

arteries occurring in conjunction with poor placental development.

Pg. 178 / 284



7.3. DOPPLER STUDIES OF PREGNANCY

7.3 Doppler Studies of Pregnancy

The uterine arteries (one on left and one on the right side) are the main vessels

which supplies blood to the uterus and placenta, and hence flow in this artery is

critical to the development of the foetus, as insufficient nutrient supply may result

in foetal growth restriction [6, 181]. Clinically, the use of Doppler ultrasound on the

uterine artery to view blood flow rates, enables an estimation of uterine resistance

and compliance. Of particular interest is the presence of a notching in flow wave-

forms, as this is an indicator for many of the pathologies which may develop during

pregnancy, such as pre-eclampsia and placental insufficiency. Figure 7.2 shows a

healthy uterine artery waveform from a digitisation of a Doppler ultrasound for a

non-pregnant human where a notch is present, and a healthy uterine artery wave-

form from a digitisation of a Doppler ultrasound in the first trimester. The uterine

artery flow waveform has been studied extensively, particularly when investigating

risk factors in pregnancy. This led to the development of several measures such

as: the pulsatility index, resistance index, types of notching present, and systolic to

diastolic flow ratios, that have been used to link uterine waveform shape features to

the development of pathologies [98, 137, 109, 297, 173, 307, 22, 136, 193, 306, 138,

256, 54, 208, 43, 72, 204, 255, 16, 78, 19, 152, 123, 83].

The uterine artery has received a lot of attention as it is relatively straight

forward to access. However, no other vessels in the uterus have been studied to the

same extent. For example, due to the complex flow behaviour, attempts to measure

the flow in the utero-ovarian communicating artery have been unsuccessful [262, 47].

The uterine circulation in the venous system is also much less studied, with only

the uterine vein waveforms having been studied [344].

7.4 Computational Modelling Of Pregnancy

The majority of models of pregnancy have primarily focused on the foetal circulation

[266, 130, 227, 211], umbilical cord [273, 311, 188], or the placenta [81, 75]. Only one

model of the maternal system has been proposed [89], which is a multi-compartment

lumped model. However, lumped models struggle to account for wave-propagation

phenomena, and would only have limited use, as the majority of indices used in the
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(a) Typical digitised Doppler waveform
for the uterine artery in non-pregnant
women [307]

(b) Typical digitised Doppler wave-
form for the first trimester in the first
trimester [264]

Figure 7.2: Typical digitised Doppler waveforms for a non-pregnant woman and for
the first trimester

detection of pathology, use uterine artery waveforms to determine compliance and

resistance estimates of the uterine region. The pressure and flow rate waveforms

in the cardiovascular system rely on wave-reflections which lumped models poorly

capture [103]. Thus in this thesis, a distributed 1D model is used for the major

vessels, which can capture wave-reflection and transmission behaviour.

The maternal system model proposed in this thesis, extends the closed-loop 1D-

0D model of Mynard and Smolich [230], by adding the utero-ovarian circulation. An

automated parameter estimation and adaptation is implemented within the model

which allows the integration of measured in-vivo data. The predicted increase of

vessel diameters uses the curve presented in [155] for the expected increase in cardiac

output over the course of pregnancy, which can be seen in figure 7.3. The descrip-

tion of model parameters and the automated parameter estimation and adaptation

is described in Chapter 6; the numerical scheme is described in Chapter 3, and

an overview of the computational algorithm for the closed-loop system is described

in the next section. In the sections which follow, the closed-loop system is imple-

mented with measured participant data as an input, to inform the model on various

parameters. Three of these patients will be included in a small case study and are

analysed in more detail, with a comparison of flow and pressure waveforms. The

model is then performed for an idealised case in pregnancy, which is performed from

a non-pregnant case, and covers all weeks in pregnancy. The results of which are

compared with values and indices in literature. The chapter ends with additional
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Figure 7.3: Estimated increase of problem parameters.

cases, which includes: an asymmetric adaptation of the left to right side of the uter-

ine circulation; and a sensitivity analysis for several cardiac variables, which is used

to test the effectiveness, and consistency of the automated parameter estimation

technique.

7.5 Computational Algorithm

In order to advance the solution forward in time from tn to tn+1 the boundary

conditions for the lumped models need to be known. The only true boundary con-

ditions for the closed loop model are external pressures which act on the compliant

(and elastance) elements in the vascular bed (and heart) models. These external

pressures can either be prescribed such as for vascular beds, or are constrained

by certain conditions using Lagrange multipliers such as in the heart model. The

general computational algorithm for the ETM scheme is as follows:

• Pre-Processing Step. Involves reading the input file, patient specific mea-

surement data, mesh creation, vectorisation, initial parameter estimation, and

pre-allocation memory.

• For loop until periodic convergence and convergence to measured participant

data.
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– For loop in time

∗ Determine if blood needs to be added or removed from the system

(only performed after the fifth cardiac cycle, to converge towards

periodic solution).

∗ Within the Newton iteration (if more than one iteration is used):

· Parameters such as vascular resistances, heart elastances, valve

opening coefficients are updated to the current time level.

· Calculate and construct elemental matrices for 1D and lumped

models.

· Assemble global matrix and source/sink vector, account for bound-

ary conditions, and solve the linear system of equations for pres-

sures and Lagrange multipliers.

· Calculate/update flow rates from the elemental matrices.

· Update volume changes in the heart (and track volume in the

system).

· Check convergence of Newton iteration (if more that one iteration

is used).

∗ Update variables and move the the next time step.

– Compare numerical solution with measured participant data to check for

convergence.

– If not converged, recalculate total resistance and compliance based on

current numerical solution and measured data (pressures and cardiac out-

put).

– If converged to measured data, check convergence to periodicity. If peri-

odic solution detected exit loop.

• Post-processing steps which include saving of solutions to a file and plotting

monitoring pressures.

7.6 Pulse Wave Velocity and Pulsatility Index

One of the main indicators of pathology development during pregnancy is arterial

stiffness [197, 291, 298, 105, 18, 218, 139]. In early pregnancy, an increase in arterial
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stiffness has been linked to an increased risk of pre-eclampsia [192, 164, 352, 303,

167], placental insufficiency [248], and decreased foetal growth [102] later in preg-

nancy. Several clinical methods have been proposed to estimated arterial stiffness

in pregnancy, including the use of pulse pressure [339, 147, 378], pulse wave velocity

[172, 236, 251, 121], pulsatility index [22, 109, 137, 144, 146, 337], and resistance

index [43, 123, 146, 148].

The current gold standard of estimating aortic stiffness is pulse wave velocity

(PWV) [267]. There are several techniques used in the estimation of pulse wave

velocity: the femoral-carotid method is recognised as the best method to estimate

PWV [267]; the brachial-ankle method [251] is non-invasive, using the brachial artery

in the arm and tibial artery in the lower leg, and is used due to the accessibility of

these arteries; the carotid-brachial method can also be used [267]. Pulse wave veloc-

ity methods estimate the velocity at which a pressure pulse travels in the systemic

arteries. The method measures the time difference for a pulse to reach two arteries

in different regions of the body, and the distance between the two arteries.

Two different estimations of PWV are implemented in order to compare with

literature: the first uses the wave speed in the ascending aorta as calculated from the

1D blood flow equations PWVaorta; the second uses the brachial-ankle estimation

PWVb−a [251]. There exist two wave speeds, one for a forward-propagating wave

and one for a backward-propagating wave, which can be written as

λ± = u± c. (7.1)

However, this can be estimated from the initial conditions by assuming the initial

velocity is u = u0 = 0 and c = c0. The aortic PWV can then be estimated using

PWVaorta = c0. The brachial-ankle method uses the same technique as described in

[251], which estimates PWV using

PWVb−a =
Lb − La
∆tb−a

, (7.2)

where Lb is the distance from the aortic valve and brachial artery, La is the distance

from the aortic valve and anterior tibial artery, where both lengths are estimated

from patient height. ∆tb−a is the time difference between the beginning of systole

(initial pressure rise) of the brachial artery and anterior tibial artery.
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The pulsatility index (PI) is a measure of the variability in systolic and diastolic

velocities, found from

PI =
umax − umin

umean
, (7.3)

where umax, umin, and umean, are the maximum systolic, minimum diastolic, and

mean velocities respectively. In the model the velocity is determined as u = Q
A

.
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7.7 Patient Specific Pregnancy Modelling

This section will begin by giving an overview of the measured data, and a general

comparison of the simulation results with the measured data and data from litera-

ture. This will include: the measure of errors from simulated results and measured

variables to test the effectiveness of the automated parameter estimation technique;

and comparing the simulated results with data from literature for the PI, PWV, and

flow distributions through the uterine vessels. The section will end with a compari-

son of the solutions for three participants, which includes a comparison of Doppler

waveforms from literature in the uterine arteries.

The patient-specific closed-loop model is implemented for measured data col-

lected from various studies, led by Prof. Mike Lewis [63, 59, 62, 60, 61, 100]. The

number of patients, split into age ranges for each trimester and post-partum, is

shown in table 7.1.

Age Range Trimester 1 Trimester 2 Trimester 3 Non-Pregnant
Post-Partum

Age < 25 17 9 7 2
25 ≤ Age < 30 18 10 6 6
30 ≤ Age < 35 18 13 12 12

Age > 35 5 4 4 4

Total number of data 58 36 29 24

Table 7.1: Characteristics of the cohort, showing age range and number of partici-
pant data for each trimester.

7.7.1 Results Overview

The results for the non-pregnant cases are designated week zero in all figures, though

are from post-partum measurements. There is a discrepancy in literature of studies

taken in the first 8 weeks of pregnancy, primarily as many do not realise they are

pregnant until the 6 week mark, and it takes time to recruit participants to any

study. The simulations are performed until the model cardiac output, diastolic,

and systolic blood pressures are within 1% of the measured data at the end of a

cardiac cycle (convergence to measurements), and maximum pressures in the last
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cardiac cycle must be within 0.5% of the previous cardiac cycle (models periodic

convergence).

Figure 7.4a and 7.4b shows the PI for the uterine and utero-ovarian artery. The

model estimated PI of the uterine artery is within physiologically realistic values,

although the models population mean is slightly lower than the values from [337].

Nevertheless good agreement is observed, with the behaviour of the PI closely fol-

lowing the behaviour of values presented in [337] as pregnancy progresses. The PI

of non-pregnant individuals from literature has been measured to be approximately

in the range PI =2-6, and varies over the menstrual cycle [144]; this is in agreement

with the model prediction PI≈ 4.

No studies have involved the PI in the utero-ovarian communicating artery

(UOCA), in fact previous attempts at measuring flow in these arteries using Doppler

have been unsuccessful [262, 47]. The model predicts the PI in the UOCA to follow

a similar behaviour to that of the uterine artery, although the model predicts the

magnitude of the PI in the UOCA to be lower than in the uterine arteries.

Figures 7.4c and 7.4d shows the percentage of cardiac output to the uterus via

the uterine arteries and UOCAs respectively. Table 7.2 shows the estimated total

percentage of cardiac output and volumetric flow rates through the uterine arteries

from literature, for at various stages in pregnancy and post-partum. The model-

predicted percentage of cardiac output through the uterine arteries is in excellent

agreement with literature. The model-predicted population mean percentage of CO

through the uterine arteries is: 0.5% for the non-pregnant simulations, 5.6201% in

the first trimester, 10.5231% for the second trimester, and 12.9485% in the third

trimester. For the non-pregnant simulations, the flow rate is in agreement with

literature, in one study the total measured flow rate in the uterine arteries was

found to be 20− 50 ml min−1 [249], while the population mean of the model is 27.1

ml min−1; indicating the flows predicted by the model are physiologically realistic.

The model-predicted percentage of CO in the utero-ovarian communicating ar-

teries is: 0.0436% for the non-pregnant case, 3.5552% in the first trimester, 7.2417%

in the second trimester, and 8.9177% in the third trimester. These cannot be com-

pared with literature as attempts to use Doppler measurements in these vessels have

so far been unsuccessful [262, 47], owing this failure to the complex geometry and

flow behaviour of this region. However in [52] it is stated that if the UOCA reaches

the same diameter as the ascending uterine artery, then it can supply the uterus
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(a) Pulsatility Index in the left uter-
ine artery for patients. The black x
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(b) Pulsatility Index in the left utero-
ovarian communicating artery for pa-
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(d) Combined percentage of cardiac out-
put through the left and right utero-
ovarian communicating artery.
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(e) Aortic PWV calculated from the
models wave speed c0.
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(f) Brachial-ankle PWV, where the black
dotted line is the mean and ± standard
deviation of PWV from [251], while the
blue dashed line is the mean of simulated
values.

Figure 7.4: The pulsatility index and percentage of total cardiac output through the
uterine arteries and utero-ovarian communicating arteries; and pulse wave velocity
using Aortic PWV from the model and an estimate of brachial-ankle PWV, for all
patients. Circles represent patient simulated values, and the dashed red line is the
95% confidence interval of the simulated data.
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with its full blood supply needs; and as the model assumes the UOCA does in fact

reach this diameter, which was assumed as there is little information on the diame-

ter of the UOCA, then the models predicted flow rate in the UOCA being close the

that of the uterine artery can be considered quite reasonable.

Figures 7.4e and 7.4f show the aortic PWV, and the PWV calculated from the

brachial-ankle method. The aortic PWV is significantly lower that the estimation

from the brachial-ankle method, although both show similar trends. This is expected

as the PWV in the aorta is generally around 4-5 m s−1, increasing to 8 − 9 m s−1

in the abdominal aorta [267]; which means estimation of PWV by methods such

as brachial-ankle, and carotid-femoral, will produce higher PWV values than the

actual aortic PWV. Figure 7.4f also compares the model-predicted PWV with the

mean and standard deviation of the brachial-ankle method from a longitudinal study

[251] (from a different cohort). The behaviour of the models PWV estimates are

similar to that of [251], with the models population mean showing a decrease from

the first trimester to a minimum in the second trimester, before increasing again

towards the third trimester and term. Overall the general behaviour of the model

is in agreement with literature.

7.7.2 Three Participant Comparison

In this section, three of the participant measurements are compared for trimesters

one, two, three, and also post-partum. The participant characteristics, which in-

cludes participant information and simulation results, are shown in table 7.3.

The uterine artery (UA) flow rate waveforms are shown in figure 7.5, and are com-

pared with digitised Doppler waveforms. For the first trimester waveforms, which

are shown in figure 7.5a, the general shape of the uterine artery flow rate wave-

forms are in good agreement with Doppler waveforms from literature [264], with

participant one in particular showing excellent agreement. In the first trimester, it

is not uncommon for notching in the waveform to be observed, occurring in 46.3

% of pregnancies [137]. However, for these patients no notching is observed. The

second trimester flow rate waveforms are shown in figure 7.5c, the model gives good

agreement with the overall waveform shape from a Doppler study [240], with the

shape of participant one’s waveform showing excellent agreement with the digitised

Doppler waveform. The third trimester flow rate waveforms are again in good agree-
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Status
Flow
rate

Percentage
of CO

Reference

bi-lateral as-
cending uterine
artery

Early Preg-
nancy

−− 3.5 % [340]

bi-lateral as-
cending uterine
artery

At Term −− 12 % [340]

bi-lateral uterine
artery

Non Preg-
nant

20 − 50
ml/min

−− [249]

bi-lateral uterine
artery

Singleton
Pregnancies

450 −
800
ml/min

−− [249]

bi-lateral uterine
artery

Week 36
(Term,
estimate)

700
(900)
ml/min

−− [249]

bi-lateral uterine
artery

Week 20
531
ml/min

−− [178]

bi-lateral uterine
artery

Week 38
970
ml/min

−− [178]

Table 7.2: Flow to uterus from the uterine arteries from literature.

ment with the overall shape from digitised Doppler waveforms [137], which can be

seen in figure 7.5e. With the waveform of participant two showing the closest agree-

ment to the digitised Doppler waveform. The post-partum UA flow rate waveform

is shown in 7.5g also compares favourably with digitised Doppler waveforms [307],

where the waveform is quite narrow in comparison with the pregnant waveforms,

and notching can be seen at the start of diastole. Overall the uterine artery flow rate

waveforms predicted by the model are in good agreement with those of published

Doppler studies.

The mean flow rates, which are shown in table 7.3 are also in good agreement

with published data, which is shown in table 7.2. With participants mean flow

rates for the combined left and right uterine arteries, in the non-pregnant case being

within published ranges of 20− 50 ml/min [249], and increasing to 883.1 mm min−1

in the third trimester.

The venous system is much less studied compared to the arterial side, and there

are few studies on the uterine venous vessels. Two Doppler studies have been pub-
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Participant One Two Three

Age 27 37 20/21

HR
68.1/72.9/
71.4/58.4

102.6/114.8/
106.0/71.4

112.1/87.7/
107.3/83.9

CO (l min−1)
6.43/7.30/
7.05/5.38

9.28/8.42/
9.74/5.96

6.57/6.83/
7.07/6.21

SBP (mmHg)
118.8/96.5/
129.5/99.8

98.2/102.5/
109.1/93.4

120.6/118.0/
118.8/108.7

DBP
(mmHg)

69.4/54.4/
67.7/66.5

61.4/64.7/
72.5/57.6

79.0/69.2/
55.2/64.9

PI (uterine
artery)

1.40/0.94/
1.05/3.98

1.07/0.73/
0.69/4.10

1.06/0.87/
1.02/4.08

Uterine Flow
(ml min−1)

389.2/567.8/
855.1/25.7

351.2/678.7/
836.2/26.5

427.2/829.9/
883.3/30.1

Utero-
Ovarian Flow
(ml min−1)

248.9/400.4/
670.7/2.2

217.5/468.8/
559.6/2.3

273.5/568.7/
608.6/2.6

Table 7.3: Characteristics of the three participant comparison. Values are shown
for each trimester, and for post-partum measurements, and are written in the form
first trimester / second trimester / third trimester / post-partum. The following
abbreviations are used: HR - heart rate, CO - cardiac output, SBP - systolic blood
pressure, DPB - diastolic blood pressure, and PI - pulsatility index.

lished [344, 162]. The mean uni-lateral volumetric flow rate in the uterine vein was

found to be 274ml min−1 in the third trimester [162]. This compares very favourably

with the model-predicted values of 314ml min−1 for participant one, 270ml min−1 for

participant two, and 280ml min−1 for participant three. The model-predicted volu-

metric flow rate waveforms are shown in figure 7.6 for all three trimesters, and the

non-pregnant (post-partum) case. From literature the velocity (and flow) waveforms

in the third trimester are generally continuous with low pulsatility [344], which can

be observed in the model waveforms in Figure 7.6c. Unfortunately, no information

was found in the literature on uterine venous flows for non-pregnant individuals or

in early pregnancy. However, the model shows the general observed shape for flow

rate waveforms, and the expected mean flow rates in the third trimester.

The model-predicted volumetric flow rate waveforms in the ascending aorta for all

participants, in all trimesters and post-partum, are shown in figure 7.7. The cardiac

output is much larger for participant two during pregnancy, especially during the
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first and third trimesters, and can be observed in the ascending aorta flow rate

waveforms in figures 7.7a and 7.7c. The pressures in participant two are generally

lower than participants one and three, particularly in the first trimester. Considering

that the cardiac output is significantly higher and the pulse pressure is lower for

participant two, this requires a significant increase in compliance, and decrease in

total peripheral resistance for participant two compared with the other participants.

The effect of this increased compliance can be observed from the low pulsatility index

in the uterine artery shown in table 7.3, and in figure 7.8 for the brachial artery

pressure waveforms. Participant two’s waveforms are absent of notches which are

observed for participants one and three in all three trimesters, although the notch

is observed in the post-partum waveform.
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Figure 7.5: Right uterine artery flow rate waveforms for three patients over the
course of pregnancy, and post-partum, compared with in-vivo waveforms from lit-
erature. The black line is for participant one, the blue line is participant two, and
the red line is participant three. Waveforms are normalised in time for comparison
purposes. Digitised waveforms are scaled by physiologically realistic areas, as they
are originally velocity waveforms for Doppler studies.
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Figure 7.6: Right uterine vein flow rate waveforms for three patients over the course
of pregnancy, and post-partum. The black line is for participant one, the blue line
is participant two, and the red line is participant three.
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Figure 7.7: Ascending aorta flow rate waveforms for three patients over the course
of pregnancy, and post-partum. The black line is for participant one, the blue line
is participant two, and the red line is participant three.
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Figure 7.8: Left brachial artery pressure waveforms for three patients over the course
of pregnancy, and post-partum. The black line is for participant one, the blue line
is participant two, and the red line is participant three.
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7.8 An Idealised Pregnancy Model For All Weeks

Although a patient specific model is the ultimate aim of this thesis, it is important

to remember that measured patient data which has been collected retrospectively,

rarely contains data which is perfect. Therefore, it is necessary to simulate an

idealised model, for which the model can be run for all weeks in pregnancy, while

patient measurements are only performed at three points in time over the course of

their pregnancy. Hence, using published data from various studies, it is possible to

construct a model which captures the general behaviour of a healthy pregnancy.

A difficulty in developing a full closed loop model is that the majority of studies

contain measurements only in the systemic arterial system [25, 26, 58, 1, 124].

Although a few studies have investigated pulmonary hypertension in pregnancy [269,

174, 241]. The systemic venous system has been under-investigated, particularly as

many health issues related to pregnancy are due in part to poor adaptation in the

systemic venous system. Although other factors can result in pathology, such as in

supine hypotensive syndrome, which is a phenomena seen in a minority of pregnant

patients in the late second to third trimesters, where the uterus and foetus exerts

pressure on the descending aorta and inferior vena cava, lowering venous return

(and hence cardiac output), which has a knock-on effect of reducing mean arterial

pressures.

In this section an idealised model will be implemented, with expected changes

of the maternal system being imposed on the model. This allows an investigation

of the adaptation over all weeks of pregnancy. The model is tested for a different

rates of adaptation in the UOCA, which will give an indication to how sensitive

flow rate through this vessel is on the vessel lumen size, particularly as attempts

at measuring blood flow through this additional pathway to the uterus have been

unsuccessful [262, 47]. Finally a sensitivity analysis is performed for several model

parameters.

The model primarily uses an expected increase of blood volume as an estimation

of how much the maternal cardiovascular system is required to adapt between non-

pregnant conditions and term of pregnancy, which is considered to be week 40.

The predicted increase in parameters such as stroke volume and heart rate, and

the rate of adaptation of vessel diameter sizes, follows the curve presented in [155],
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Cardiac Output HR Diastolic Pressure Systolic Pressure
5.9− 8.5550l min−1 75-90 BPM 70 mmHg 115 mmHg

Table 7.4: Initial parameter values for the non-pregnant case to week 40 of preg-
nancy.

which is shown in figure 7.3. The problem parameters are described in table 7.4.

The parameters are chosen via the mean of the measured data, and are also in

agreement with published values [281, 312, 150]. The simulations are performed

until the difference between model parameters and the aimed input parameters

(systolic and diastolic blood pressure, and cardiac output) is less than 1%.

7.8.1 Simulation Results

The overview of results for the simulation of non-pregnant conditions and all weeks

of pregnancy is shown in figure 7.9. The effectiveness of the parameter estimation

technique can be observed in figures 7.9a and 7.9c.

The models predicted total peripheral resistance decreases by approximately 32

% from non-pregnant conditions to term of pregnancy, which is in agreement with

literature estimations [150] which gives a range between 25− 35% during a healthy

pregnancy.

Due to an increase in cardiac output during pregnancy, the body needs to adapt

its compliances in order to keep pulse pressures relatively consistent over the course

of pregnancy. The total arterial compliance (TAC) predicted by the model for all

weeks of pregnancy is shown in figure 7.10c. The TAC percentage increase predicted

by the model from the non-pregnant case to term is approximately 39 %, which is

in agreement with the estimate from [150] of between 30− 45 %.

The PI is compared with published data from [137] and shows excellent agree-

ment with the behaviour from week 11 through to week 40, however, the study

did not include data from before week 11. Another study showed reference ranges

for healthy non-pregnant women of PI=2-6 [144], though this still means there is

missing data for early pregnancy. The aortic pulse wave velocity predicted by the

model shows a similar behaviour to that shown in literature [251], although has

significantly different magnitudes compared with the estimation in literature, as the

clinical estimation used a brachial-femoral method. The differences in the brachial-
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Figure 7.9: Comparison of model outputs with idealised data. The aimed parameters
which the parameter estimation technique converges towards are shown by the red
dashed line, where applicable.
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Figure 7.10: Comparison of model outputs with idealised data, and convergence
behaviour.

femoral estimation of the model, and the aortic PWV is discussed in section 7.7.1

for the measured data cases. Furthermore, in [251] the PWV increases from the

second to third trimester, while the model predicts a small decrease. This could be

attributed to the models assumption that the pressure remains consistent during

pregnancy, while in reality there is often a decrease in mean arterial blood pressure

during the first and second trimesters (where PWV will decrease), followed by an

increase in mean arterial blood pressure towards term (where PWV will increase).

The model prediction for the combined percentage of cardiac output reaching the

uterus from the two uterine arteries, shown in figure 7.10a, is close to the expected
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Figure 7.11: Number of cardiac cycles required to achieve convergence to the ide-
alised data input and periodic convergence

range given in literature, from 0.5% [249] in the pre-pregnant simulation, to 11%

at week 40 (≈ 12% in [340]). The model-predicted mean flow rates through the

uterine arteries reaches 917 ml min−1, which is in the physiologically expected range

[249, 178]. The model-predicted percentage of cardiac output which travels via the

ovarian arteries and UOCA reaches an additional 7.6 %, and its change over the 40

weeks of pregnancy is shown in figure 7.10b. It is unknown exactly how much blood

should travel via this pathway as previous attempts to measure it have failed [262,

47]. However, it has been mention in [52] that these vessels are capable of supplying

the uterus with its full blood supply needs if the diameter increases to match the

diameter of the ascending uterine artery (as assumed in the model). The estimated

blood supply which the uterus needs is 450− 800 ml/min [249], while the combined

left and right UOCA flow rate predicted by the model is 626.3286 ml min−1, and

hence is in the correct range.

The number of cardiac cycles needed to achieve convergence to the aimed input

variables via the automated parameter estimation algorithm is shown in figure 7.11.

The model generally takes approximately 75-80 cardiac cycles to converge, however

each cardiac cycle only takes approximately 12 − 18 seconds (depending on heart

rate). It may be possible to improve the convergence behaviour, but this is not the

focus of the thesis and is left for potential future work.
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7.8.2 Changes in Vessel Adaptation

In this section two additional cases are considered. The first case involves the adap-

tation of the utero-ovarian communicating artery. Information on this artery is

generally quite scarce, as it is very small before pregnancy, with a diameter of ap-

proximately 0.5 mm. However, the vessel can increase its diameter by approximately

5 times its pre-pregnancy size by the third trimester, which means its diameter can

be approximately the same as the ascending uterine artery. When this occurs it is

expected to be capable of supplying the uterus with its full blood supply needs [52].

In the previous section, the model-predicted flow rates through the utero-ovarian

communicating arteries almost reached the values seen in the uterine arteries, which

are normally the primary vessels of blood transport to the uterus. Hence, it would

be useful to understand how the flow to the utero-ovarian vessel changes if it does

not adapt to its maximum potential lumen size. The cases considered are from

week 8 and week 40 in the idealised pregnancy model. The first case considered a

symmetric arterial network.

Figure 7.12 shows the flow rates in the left utero-ovarian communicating artery

and the left uterine artery. The three cases considered are: the baseline case, where

the area of the utero-ovarian artery is the same as the ascending uterine artery; a

case where the utero-ovarian artery has only undergone half of the adaptation so

its diameter is half its baseline value; the utero-ovarian artery area only reaches a

quarter of its baseline value.

The combined left and right volumetric flow rate which travels through the utero-

ovarian arteries is reduced significantly when the vessel lumen area is reduced. The

percentage of cardiac output which travels via these utero-ovarian arteries is reduced

from the baseline value of 7.43 %, to 4.31 % when the area is reduced by half, and

finally to 2.01 % when the area is a quarter of the baseline value. The flow rate in

the uterine artery does not change significantly between the three cases considered,

with only a slight increase in flow rate when the utero-ovarian artery is smaller. The

percentage of cardiac output through the uterine arteries varies from 10.89 % for

the baseline, through to 11.24 % for the most restricted case (A/4 in the figures).

Indicating that only a small proportion of the extra flow, created by a reduced

volume through the utero-ovarian vessels, is redistributed to the uterine arteries.

For the asymmetric cases, the vessels in the left side of the network have been
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(b) Flow rate in the uterine artery

Figure 7.12: Volumetric flow rates in vessels toward the uterus for the following
cases: the utero-ovarian communicating artery has the same area as the ascending
uterine - A, has half the original area - A/2, and has a quarter of the original area
A/4.

assumed to adapt half as much as the right sided vessels. Figure 7.13 show results for

a symmetric and asymmetric adaptation of the uterine vessels. The normalised flow

rate waveforms are quite similar, with the solution for the asymmetric case showing

slightly more definition with notching in the waveform shown in 7.13a, however the

majority of these differences are only seen in the week 8 simulation. For the week

40 case, the increased 1D vessel stiffness affects the flow rate waveforms to a much

less extent, which indicates the downstream compliance (compliance of the placenta

and uterus vascular beds) has a dominant effect on the solution.

For the asymmetric case the percentage of cardiac output through the left and

right uterine vessels varies significantly. In the week 8 simulations the left uterine

artery receives 0.59 % with a PI = 2.0469, while the right uterine artery receives

1.56 % of cardiac output with a PI = 1.7131. For week 40 the pulsatility index

is similar for both left and right sides with 0.8372 in the right side and 0.8271 in

the left side, once again indicating that the downstream compliance is dominant;

nevertheless, significant differences are observed in the percentage of cardiac output

through each vessel, with 5.7 % travelling through the right side, and only 2.74 %

travelling through the left uterine artery.
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(c) Normalised flow rate in the left utero-
ovarian communicating artery in gesta-
tional week 40.
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(d) Normalised flow rate in the left uter-
ine artery in gestational week 40.

Figure 7.13: Comparison of flow rate waveforms in vessels carrying blood to the
uterus for symmetric (case 1 and 3) and asymmetric (case 2 and 4)adaptation

7.8.3 Sensitivity of Parameters

In this section several cardiac and haemodynamic parameters are perturbed in order

to test the models sensitivity to various estimated parameters and initial conditions.

As the primary region of interest is in the quantification of solutions in the uterine

circulation, the uterine artery and utero-ovarian communicating artery flow rates are

investigated, along with pressure in the brachial artery, which is where the measured

data pressure readings were taken. The sensitivity test is performed by increasing

or reducing the parameter by ±5 % of their baseline values. The baseline values

are the simulations at week 40 for the idealised model given in table 7.4. For the
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sensitivity analysis only solutions in the systemic arteries are considered, as this

is where the measurements were performed for the participants. The following are

perturbed:

• the aimed cardiac output, diastolic blood pressure and systolic blood pressure;

• the cardiac parameters of the left ventricle: Emax, τ1, τ2, m1, and m2, which

affect the contractility behaviour.

• the initial compliance estimation, which will affect the models compliance

distribution;

• and the initial pressures in the entire system, which will change the initial

blood volume in the system, and in turn will effect the vascular bed resistance

calculation, which depends on both the initial and current pressures in the

system.

Figure 7.14 shows the mean absolute percentage errors for flow rates in the UOCA

and UA, and pressures in the brachial artery. The aimed parameters, which are the

parameters for which the automated parameter estimation converges towards, are

shown in figure 7.14a. Changing the aimed cardiac output has little impact on

the flow rates in the uterine vessels, or pressure in the brachial artery. Changing

the aimed systolic and diastolic pressures in the brachial artery has a much greater

impact on the flows in the uterine vessels, and of course the mean pressure in the

brachial artery itself. The results indicate that the input parameters of systolic and

diastolic blood pressures have a greater impact on the solution than changing the

cardiac output. This is due to the treatment of vessel compliance in the param-

eter estimation technique, which estimates the change needed in the total arterial

compliance from the pulse pressure at the end of cardiac cycle, and modifies the

compliances of all vessels equally to achieve the measured pulse pressure.

In the remainder of the results the aimed cardiac output, systolic, and diastolic

blood pressures are unchanged. Thus it is expected that the mean pressures in the

brachial artery will vary by only a small amount. The effect of changing various

cardiac parameters is shown in figures 7.14b and 7.14c. The results deviated from

the baseline solution by less that 1% for all cardiac parameters tested. This indicates

that changing the various cardiac parameters has a minor effect on the solution of

flow rates in the uterine vessels, and pressure in the brachial artery.
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Figure 7.14: Mean absolute percentage error in flow rates through the utero-ovarian
communicating and uterine arteries, and pressures in the brachial artery. Subscripts
p and m in the figures indicate whether the parameter is perturbed by an increase,
or decrease respectively.

Figure 7.14d shows the impact of the total arterial compliance estimation, and

the estimation of initial pressures in the system. Changing the initial estimation of

compliance will also change the distribution of compliance in the arterial system.

The results indicate that the model is relatively insensitive to the changes in the

estimation of total arterial compliance, and of the defined initial blood pressures.

The volumetric flow rate waveforms in the UOCA and UA are shown in figures

7.15a and 7.15b, while the pressure waveforms in the brachial artery is shown in

7.15c. The overall shape of all waveforms are very similar, and for the majority

of cases the magnitudes of the waveforms are in good agreement. More significant

differences in the magnitudes of the waveforms are observed for the perturbations

of the input parameters for diastolic and systolic blood pressures, which will impact
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(c) Brachial artery pressures

Figure 7.15: Comparison of flow rate waveforms in the utero-ovarian communicating
arteries and uterine arteries, and pressure waveforms in the brachial artery

the estimation of compliance in the entire circulation.

7.9 Limitations

The sensitivity analysis performed in this chapter was used to test the effectiveness of

the initial and adaptive parameter estimation techniques. This is used to investigate

uncertain cardiac parameters within the model that are likely to affect the pressure

and flow rate solutions. However, in order to fully appreciate the model, a sensitivity

analysis involving mutual variations of parameters must be performed, as this could

lead to different results. In addition, a more comprehensive sensitivity analysis could

help indicate which parameters are essential for clinicians to measure, which would

also provide a greater confidence in the model-predicted solutions.
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In this study a general network was implemented for all patient cases as no vessel

network information was available. A sensitivity analysis on the vessel lengths and

sizes within the network could also be performed to show whether the assumption

of a general network is acceptable.

In this study, no uterine artery Doppler waveforms were available for the partic-

ipants. In order to have predictive value and to detect pathologies, a further study

involving patient uterine artery Doppler waveform data, must be performed.

7.10 Conclusions

The automated parameter estimation technique employed was found to be very

effective at converging to the in-vivo measurement data, taking between 62 and 83

cardiac cycles to converge to within 1% of the measured cardiac output, systolic

pressure, and diastolic pressure. After the model’s convergence to this measured

data was achieved, the model solutions of pulsatility index, pulse wave velocity, and

expected percentage of cardiac output in the uterine vessels, showed good agreement

with the values and observed behaviour from literature.

The model was able to give an estimate for the volume of blood that reaches

the uterus via the utero-ovarian communicating arteries. This could have a clinical

significance, as currently it has not been possible to measure flow in these arteries due

to the complex anatomical configuration of that region. Therefore the total blood

reaching the uterus from the major vessels can be found via the model, but not via

any current clinical measurements. The model indicated that approximately 7.43%

of the cardiac output would reach the uterus from these vessels, if the diameter of the

utero-ovarian communicating arteries increases to equal the diameter of the uterine

arteries. This percentage decreases to 4.31% if the diameter of the utero-ovarian

communicating arteries increases to be half the diameter of the uterine arteries,

and 2.01% when the diameter of the utero-ovarian communicating arteries reaches

a quarter of the uterine arteries diameter. The volumetric flow rate to the uterus

via the uterine artery was insensitive to the change of diameter of the utero-ovarian

communicating arteries, varying between 10.89− 11.24% of cardiac output over the

three different diameters of the utero-ovarian vessels. This suggests that if the utero-

ovarian arteries reach the diameter of those in the uterine arteries, approximately
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20% of cardiac output reaches the uterus.

The model will need to be further validated through a comparison of patient

specific waveforms, however, the waveforms are similar to those seen in published

Doppler studies. In the future the model may be able to aid patient treatment

planning by determining which pregnant woman are at a high risk of developing

pathologies, such as pre-eclampsia and placental insufficiency; and be able to de-

termine whether a sufficient volume of blood is reaching the placenta and foetus to

ensure a healthy level of growth. If this can be achieved in the future, it would be a

ground-breaking development, as currently age and patient history are the main clin-

ical methods to determine patients with a high-risk of developing a pathology. The

patient history utilised involves any pre-existing cardiovascular disease was present,

or if the pregnant woman developed pathology in previous pregnancies. There are

no current methods of predicting the development of a pathology in later pregnancy

for patients with no previous history of being pregnant, or no previous pathology

that could affect the outcome of the pregnancy.

The results of the sensitivity analysis indicate that the model is most sensitive to

the input parameters provided by the measured data, specifically the blood pressure

measurements, and is much less sensitive to the model’s initial conditions. This is

a direct result of the model’s parameter estimation technique, which assumes the

distribution of compliance in the 1D network does not change during a simulation,

so when the compliance is adapted to achieve the measured pulse pressure, the

compliance is changed everywhere in the systemic arteries. Overall the model’s

performance in modelling the various aspects of pregnancy was very satisfactory.

The work in this chapter can provide a foundation for future development and

improve understanding of the mechanisms involved in the adaptation of the ma-

ternal cardiovascular system during pregnancy. The model developed successfully

utilised a parameter adaptation algorithm to converge to participant measurements.

This iterative scheme has the potential to be used in many areas of cardiovascular

modelling, not just for pregnancy. Such a parameter estimation technique could

also be utilised for open-loop systems, thus if only the arterial system is of interest,

then the remainder of the network could be neglected, while the adaptive param-

eter estimation technique could be utilised to predict participant resistances and

compliances within the network. The parameter estimation technique could also be

used to aid the modelling of several clinical procedures and diagnostic tools, such as:
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fractional flow research (FFR), which is a measurement of the pressure ratio across

a coronary stenosis that estimates how severe the vessel narrowing is on coronary

function; haemodialysis, where a machine extracts and cleans the blood of patients

whose kidneys are not functioning effectively; baro receptor reflex sensitivity, which

indicates the body’s ability to adapt to posture change and exercise; and to inves-

tigate the precurser to haemodialysis, by modelling the kidneys regulation of fluid

volume, and in predicting fluid change in the body due to a decrease in kidney

function.
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Chapter 8

The Lymphatic System

8.1 Introduction

The lymphatic system is one of the lesser known and under-appreciated systems

in the human body. However, as the various functions of the lymphatic system

are being learned and understood, the importance of this still relatively unknown

system is steadily growing [79, 280]. The lymphatic system is often considered to be

constructed from two semi-independent components: a network of lymphatic vessels;

and lymph tissues and organs, such as lymph nodes, the spleen, tonsils. Unlike the

cardiovascular system, the lymphatic network is: an open-looped system, as the

initial lymphatics drain fluid from body tissues, while the outlet of the lymphatic

system drains directly into the systemic venous system (mainly into the subclavian

veins in the neck); and is a uni-directional system as valves present in the large

lymphatic vessels prevent back flow [202] .

Fluid from the arterial side of the capillary beds in the cardiovascular system

is forced out of the vessels due to hydrostatic pressure, while oncotic pressures,

which are pressures primarily exerted by proteins, cause most of this fluid to be

re-absorbed into the venous side of the capillary beds; however some fluid remains

within the interstitia [360]. The primary role of the lymphatic system is to drain this

interstitial fluid and return the fluid back to the cardiovascular system. Although

the amount of fluid the lymphatic system carries varies significantly with estimates

between 1 litre per day [308] and 12 litres per day [305].

In addition to returning leaked fluid to the cardiovascular system, the lymphatic

system plays an important role in protein and ion transport [79] and has a critical

role in supporting the immune system [280], both in fighting infection and disease.

If the lymphatic system is unable to provide sufficient fluid drainage of the inter-

stitia then swelling will occur. This pathology is known as oedema, although there

are many different types depending on the location or cause of the swelling. For

example, pulmonary oedema occurs if there is excess fluid retention in body tissue

around the lungs, while peripheral oedema refers to excess fluid in the legs or arms.

The term lymphedema is used to describe oedema which has occurred as a result
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of damage to the lymph vessels or lymph nodes. Lymphedema can occur in cancer

patients who have undergone either surgical treatment to remove a lymph node, or

radiation therapy [168].

During pregnancy approximately 80% of woman develop peripheral oedema [94],

and also have a greater risk of developing pulmonary oedema. It has been proposed

that the lymphatic system may play an important role at the maternal-foetal inter-

face as significant lymphangiogenesis (creation of new lymphatic vessels) occurs in

the region near the placenta. The role of the lymphatic system near the placenta

is still unknown, but may be to prevent excess fluid build up in the nearby body

tissues, which could add pressure to the growing foetus [282].

8.1.1 Lymph

The fluid carried by the lymphatic is called lymph, which is translated into English

as ’clear water’. Compositionally, lymph is similar to interstitial fluid and blood

plasma, containing water, ions, and protein. Interstitial fluid is primarily formed

through the leaking of substances from the cardiovascular capillaries by Starling

forces (a balance of hydrostatic and oncotic pressures), whereby substances leak

into the interstitia via hydrostatic pressure in the capillaries, and substances being

pushed back into the blood capillaries via colloid osmotic pressure (oncotic). Not

all of the leaked fluid returns to the blood capillaries, and instead remains in the

interstitia until being taken up by the lymphatic capillary vessels.

8.1.2 Lymph Vessels

The lymphatic vessels intra-connect to form a complex network which begins in

the lymphatic capillaries, shown in figure 8.1, and weave between various tissues

and cardiovascular capillaries. The lymphatic network contains vessel types with

significantly different properties, while the vessels can be broadly split into lymph

capillaries (initial lymphatics), pre-collecting vessels, collecting vessels, trunks, and

ducts [202]. Figure 8.1 shows the position of lymph capillaries in relation to blood

capillaries.

The lymph capillaries [44], sometimes referred to as initial lymphatics, are re-

sponsible for uptake of lymph from the interstitial fluid. The vessel walls are made
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Figure 8.1: Overview of lymphatic system in relation to the cardiovascular system

up of single endothelial cells, while the size and network structure of these vessels

can vary widely depending on the organ or tissue at which they are located, and

vary significantly between species. Initial lymphatics in the human skin are ap-

proximately 35− 70 µm [111] in diameter, although estimates for the size of initial

lymphatics have also been suggested as 10− 60 µm [202, 289]. Due to their unique

structure, which includes irregular walls with an incomplete basement membrane

[44], the initial lymphatics function similarly to one way valves, allowing fluid to

leak into the vessel from a positive pressure gradient, while preventing the fluid

from leaking back into the interstitia. Lymphangiogenesis, which is the term used

to describe any growth of the lymphatic network, can be induced by events such as

tissue damage, repair, and tumor growth [90]. The capillaries eventually meet at

confluences to form the pre-collecting lymphatics.

Pre-collecting lymphatics have irregular network and structure patterns with dis-

continuous, irregular smooth muscle cells which function to propagate fluid through

one-wave bi-cuspid valves, often called primary valves, which are located at irregular

intervals [294]; and contains parts without smooth muscle cells, with an endothelium

discontinuous basal lamina similar to the lymphatic capillaries. The structure of the

pre-collecting vessels start to become more regular further from the capillary, and
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eventually connect to become the collecting vessels.

The collecting lymphatic vessels are much more regular in structure than the pre-

collecting vessels. They contain a complete basal lamina, valves which are normally

bi-cuspid at regular intervals which are often called secondary valves, and a cellular

structure more similar to blood vessels with three layers which are composed of

endothelial cells, smooth muscle cells, and collagen fibres. The vessel segments in-

between valves are called lymphangions. The contracting smooth muscle cells in

these lymphangions act as the pumping mechanism for the lymphatic system, and

propel fluid forward through the one-way valves.

There are controversial arguments describing the behaviour of individual lym-

phangions [202], and of neighbouring lymphangions including across vessel junc-

tions. There have been claims which suggest chains of lymphangions contract in a

peristaltic manner [113, 376] and is currently the widely accepted view, although

these studies were not on human lymphatics. However others have observed un-

peristaltic like behaviour, or a mix of peristaltic and un-peristaltic behaviour [237]

where contractions were observed to be peristaltic 84% of the time, or the whole

lymph vessel contracting approximately at the same time [93]. This indicates that

although there may be interaction between neighbouring lymphangions, there is also

likely an in-built mechanism for each lymphangion. The contradictions on lymphan-

gion contraction behaviour in literature indicate that the exact mechanisms behind

lymphangion contraction are still not fully understood. Figure 8.2 shows the general

configuration of a series of lymphangions which are separated by bi-cuspid valves.

Figure 8.2: A lymph vessel containing a chain of 5 lymphangions

The collecting vessels confluence to form the lymph trunks, which are larger

vessels whose primary role is to transport lymph to lymph ducts which finally return

the fluid to the systemic venous system. The two largest ducts are the thoracic duct
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and the right lymphatic duct, which usually drain into the left and right subclavian

veins respectively. The largest of these is the thoracic duct which has a diameter of

approximately 2.5 mm in healthy human volunteers [309].

There exists several organs related to the lymphatic system which are split into

primary lymph organs and secondary organs. The primary organs, which includes

bone marrow and thymus gland, are where lymphocytes are created and mature.

The secondary organs, such as lymph nodes, tonsils, spleen, and Peyer’s patches, act

as filters and fluid monitors and are the site of lymphocyte activation and are critical

in immune response [202]. Each of these secondary organs have tissue arranged

in different ways. The appendix is also considered a secondary lymphatic organ,

although has little function in humans.

The lymph nodes are distributed throughout the lymphatic network, primarily

acting to filter and monitor lymph in the network of collecting lymphatics. Lymph

nodes have a highly complex structure [238], have a high resistance to flow [48, 257],

and contain smooth muscle cells on the exterior walls which contract [206, 342, 159]

which facilitates lymph transport. However, the study of lymph nodes in human

subjects is limited, with the structure of a lymph node studied in a rat [238], and

[206, 159] observing the phenomena of contraction in bovine and [342] observing

contraction in ovine lymph nodes.

In this thesis the primary components of interest are the collecting vessels. To

this end, a mathematical model based on reduced order lumped parameter mod-

elling is presented. The model is simulated for idealised cases to test the various

components used to build the model, including a comparison with the published

model from [27].

8.2 Mathematical Model of Lymphatics

In this section the various model components which are used to construct a model

of lymphatics is presented. The section describes briefly, the 1D system of equations

and their reduction to a lumped representation of lymphatics; and proposes the use

of automated contraction frequency based on lymphangion pressure.

The majority of current lymphatic system models use reduced-order methodolo-

gies (1D or 0D) and tend to only include the collecting lymphatics as they consider
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lymphangions at regular intervals [283, 285, 284, 196, 274, 28, 29, 27, 165, 88].

Generally lymph capillaries and lymph nodes are not included in such models.

Reddy [283] is attributed with producing the first model of the entire circulation

which includes some of the major pathways, a lumped model for initial lymphatics,

and the thoracic duct; however due to the lack of data that currently exists, it is

unknown how physiologically accurate the lymphatic network that was presented

actually is as there is currently no recent model of the entire circulation using mod-

ern imaging techniques. The model uses a simplification of the 1D Navier-Stokes

equations by assuming inertia effects are negligible, leading to a system of ordinary

differential equations; although the model is claimed to be one-dimensional, the

model spatially averages the pressure for each lymphangion and due to the assumed

simplifications, essentially becomes a multi-compartment lumped model.

The model was extended by [196] to include passive and active terms in the

constitutive law, with contraction magnitude and phase of each lymphangion being

pre-defined. The model used a first order in time and space discretisation, choosing

an explicit upwind finite difference approach, which is well known to be highly

diffusive, an additional damping term and tension term were added to the system

as oscillations were originally seen in the solution space. The extended model was

only implemented for a small chain of lymphangions.

A lumped model of small chains of lymphangions was presented in [28, 29, 27,

165], which focused primarily on the contracting regimes. Each contraction was pre-

defined and the phase difference between contractions of neighbouring lymphangions

was also pre-defined.

A recent study has implemented a one-dimensional model using equations in

the same form as the 1D blood flow equations with a modified systemic venous

system constitutive law [88]. The model uses an electro-fluid-mechanical contraction

(EFMC) model to initiate and control both the phase and magnitude of lymphangion

contractions. The EMFC model is based on a modified FitzHugh-Nagumo model

and has the advantage of not needing the contraction behaviour to be pre-defined,

albeit with a significant increase in the number of user-defined parameters for the

EMFC model in each lymphangion. The contraction model uses four additional

ordinary differential equations per lymphangion, which includes calcium dynamics

and nitric oxide to provide a stimulus and refraction period. Although calcium

dynamics is likely to be involved in lymphangion contraction [362], as it is involved
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in vascular smooth muscle contraction [15], the exact mechanism behind lymphatic

contraction and its regulation is still unknown.

8.2.1 Modelling Lymph Vessels, Lymphangions

The lymphatic system is essentially a fluid travelling in a tube-like structure which

are under internal and external forces. The governing equations can be derived in

the same way as the cardiovascular system as shown in chapter 2.2.1 and can be

written in the same form as given in equation (2.15). For completeness the governing

equations are repeated here and are given by the continuity equation

∂A

∂t
+
∂Q

∂x
= 0, (8.1)

the momentum equation

ρ

A

∂Q

∂t
+
ρ

A

(
Q2

A

)
∂x

+
∂P

∂x
+
ξπµQ

A2
= 0, (8.2)

and a constitutive law linking pressure and area

P (A, x, t) = Pext + fp(A, x, t) + fa(A, x, t), (8.3)

where fp represents passive vessel wall properties, and fa represents the active con-

traction of smooth muscles in the lymphangion wall.

In the lymphatic system the flow rates and Reynold numbers are very small,

particularly in the lymph capillaries and collecting lymphatics, with the only ex-

ception being the larger lymph vessels close to where lymph is drained back into

the systemic venous system, although an average flow of 1− 2 litres per day in the

largest vessel, the thoracic duct, would generally be considered small under normal

circumstances, particularly when compared to cardiovascular flows; although these

estimates are based on the assumption of total lymph flow is around 2 litres per

day, while others estimate up to 12 litres per day [305]. Due to the small flows,

several studies have neglected either non-linear convection effects only [283, 285,

284, 196, 274], or both inertial and convective effects [28, 29, 27, 165]. Recently a

1D-0D model of collecting lymphatic pumping was proposed, which includes both
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convective an inertial terms in the momentum equation [88]. In this thesis fluid in-

ertia effects are considered, however the non-linear convection effects are neglected

as the small Reynolds number in the region of interest is small, and viscous effects

would be expected to dominate. Furthermore each lymphangion is connected to

two valves, one at the inlet and one at the outlet, which means that fluid tends to

only travel the length of two neighbouring lymphangions at most, which is approxi-

mately 6− 10 mm before being blocked by a valve, further limiting the effect of the

non-linear convection term.

The model proposed here is a multi-compartmental similar to that of [29, 27]

with the addition of fluid inertia and a different valve model, which is described in

section 8.2.3. The one-dimensional equations (8.1), (8.2), and (8.3) are simplified by

assuming an average diameter for the lymphangion, which is a reasonable assump-

tion due to observations that the entire wall of the lymph vessel contracts at the

same time [93]; however, the method can be easily and readily extended to include

additional spatial variation in a lymphangion if desired, which may be necessary for

the larger lymph vessels, such as the trunks and ducts.

Each lymphangion is represented by a volume (capacitance-like) element, two

resistance elements, and two inertial elements. This configuration can be seen in

figure 8.3. The lumped equations being solved are written in terms of diameter, flow

Figure 8.3: Lumped representation of a lymphangion

rate, and hydrostatic pressure. Each half of a lymphangion contains a resistance and
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inertance element which can be expressed as

∆x
ρ

π (D/2)2

∂Q

∂t
+ ∆P + ∆x

128µQ

πD4
= 0, (8.4)

where ∆x = L/2 is half the length of the lymphangion, while the compliant element

is the continuity equation

∂A

∂D

∂D

∂t
+

∆Q

∆x
= 0,

∂A

∂D
=
πD

2
, (8.5)

with ∆Q = Q2 −Q1 = −Qs, where Qs is the net flow as shown in figure 8.3.

8.2.2 Constitutive Law and Contraction Model

The main constitutive laws which have been proposed are: a thin-walled tube model

[283, 285, 284], a thick-walled tube model [196], two mathematical relations by

Bertram [28, 29, 27, 165], and a re-purposing of the cardiovascular venous constitu-

tive law by [88]. In addition there are several contraction models which have been

proposed, including a pre-defined elastance curve model similar to a heart model

[274]; a pre-defined sine wave contraction curve which affects an active term in the

constitutive law [28, 29, 27, 165], or changes the elastic modulus [196]; and an EFMC

model utilised by [88] which uses calcium and nitric oxide dynamics to determine

the contraction function on a time-step per time-step basis by changing the elastic

modulus.

The constitutive model utilised in this thesis is similar to [27]. The constitutive

law is split into passive and active (contraction) terms. However, unlike in [27] which

pre-defines the contraction function and relaxation period, which takes into account

that a lymphangion rests before contracting again, in this thesis the contraction

state is determined via an ordinary differential equation, similar to the valve model

[226], which changes its contraction frequency based on the average pressure in the

lymphangion during the previous contraction cycle. This allows a network to be

created without needing to define a contraction cycle for every single lymphangion,

while the pumping regimes are automatically determined numerically.

The constitutive law links the spatially averaged diameter in a lymphangion with

its mean pressure using a passive term and active term in the form of equation (8.3).
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For comparison purposes with [29], the passive term is given by

fp(A, x, t) = Pd

[
c1

(
D

c9

− c2

)2

+ c3 exp

(
c4

(
D

c9

− c5

))
+ c6

+c7

(
D

c9

− c8

)
+ c10

(c9

D

)3
]
, (8.6)

where c1 = −2.34457751, c2 = 1.1262924, c3 = 3.76013762, c4 = 79.991135, c5 =

1.0028029, c6 = 1.59133174, c7 = 3.69692633, c8 = 0.20699868, c9 = Dd/c11, c10 =

−0.0180867408, c11 = 0.32538081, Dd = 0.025, and Pd is a scaling term. The passive

constitutive term can be seen in figure 8.4a. The active term is

fa(A, x, t) =
2M0Mt

D
, (8.7)

where M0 is a scaling factor for the maximum force of contraction, and Mt is the

contraction state which is updated bydMt

dt
= Kconω (1−Mt) , Contraction

dMt

dt
= −Krelω (Mt) , Relaxation

(8.8)

where Kcon, Krel are opening and closing coefficients, and ω is a frequency term

which depends on the pressure (created by Daniel Watson, Swansea University,

PhD student), which was constructed from data in [207].

ω =
1

1 + (−0.71P + 0.56)
, (8.9)

produces a relation between contraction frequency and period and pressure as shown

in figure 8.4c and 8.4d. In comparison [29] pre-defines the contraction cycle using a

sine wave and a time delay between contractions; however the model proposed here

in equation (8.8) does not require defining a time delay, moreover the contraction

and relaxation behaviour is more physiological, as the decrease in force during the

relaxation phase is normally slower than the increase in force during the contraction

phase. Figure 8.4b compares the contraction model of [29], with equation (8.8).
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Figure 8.4: Comparison of passive constitutive relationships and contraction func-
tions

8.2.3 Valve Model

The valve model implemented in this thesis is described in chapter 2.3.3 and is the

same as the cardiovascular model, hence is not repeated in detail here. The model

allows a valve to be anything between open and closed, can be set up to be biased

towards opening or closing, and its opening state is updated based on the pressure

differential across the valve [226]. The equation that governs flow through a valve

is given by

∆P = B |Q|Q+RQ+ L
dQ

dt
. (8.10)

However, in the majority of test cases implemented here, only the viscous effect

is considered for comparison purposes. In the lymphatic system viscous effects

are considered dominant over inertial and convective terms, which are normally
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neglected. The remainder of the valve model is described in chapter 2.3.3. The

lymphangion and valve model configuration in a collecting lymph vessel is shown in

figure 8.5.

Figure 8.5: Lumped representation of lymphangion chain

The valve model is entirely different to that of [29]. Due to the majority of the

lymphatic model implemented here being modified from [29], it is useful to compare

the two valve models. Figure 8.5 shows the model representation of a lymphangion

chain. The valve model from [29] uses an empirical formula to determine resistance

of the valve, based on the pressure difference across it. The model equations are

∆P = RQ, (8.11)

where the resistance is determined as

R = Rmin +
Rv

1 + exp(−so (∆P −∆P0))
, (8.12)

where Rmin is the minimum resistance, and Rv, so, and ∆P0 are tuning parameters.

A comparison of the two valve models can be seen if figure 8.6.

8.2.4 Linearisation and Methodology

The linearisation of the equations is performed in a similar way to the cardiovas-

cular equations. The time derivatives are discretised using second order backward

differences
∂Q

∂t
=

2

3∆t
Qn+1 − 2

∆t
Qn +

1

2∆t
Qn−1, (8.13)
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and
∂D

∂t
=

2

3∆t
Dn+1 − 2

∆t
Dn +

1

2∆t
Dn−1, (8.14)

The terms of the momentum equation are linearised as follows:

ρ

π (D/2)2

n+1

≈ ρ

π (D/2)2

n+1,j

, ∆P n+1 ≈ ∆P n+1,j+1. (8.15)

∆x
128µQ

πD4

n+1

≈ ∆x
128µ

πD4

n+1,j

Qn+1,j+1, (8.16)

while for the continuity equation is

πDn+1

2
≈ πDn+1,j

2
, ∆Qn+1 = −Qn+1

s ≈ −Qn,j+1
s . (8.17)

The constitutive law terms are linearised in the following way

P n+1 ≈ P n,j+1, P n+1
ext ≈ P n+1,j

ext . (8.18)

fn+1
p ≈ fn+1,j

p +
∂fn+1,j

p

∂D
δD, fn+1

a ≈ fn+1,j
a +

∂fn+1,j
a

∂D
δD, (8.19)

where δD = Dn+1,j+1 − Dn+1,j. This allows the system of equations to be written

in the form

FePe +GeQe = fe, (8.20)

which allows the same treatment of flux terms as in the cardiovascular system.
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8.2.5 Example of an Assembled Matrix for a Lymphangion

In order to construct the elemental system matrix it is advantageous to initially con-

sider only the momentum equation 8.4. Writing this for each half of the lymphangion

leads to the system

K
1
11 K1

12 0

K1
21 K2

22 +K2
11 K2

12

0 K2
21 K2

22


n+1,j P1

P2

P3


n+1,j+1

=

 Q1

−Q2 +Q3

Q4


n+1,j+1

+

 f1

−f2 + f3

f4


n+1,j

,

(8.21)

where the superscripts on K denotes the element number. However, this system

ignores any change in diameter, contracting pressures, and the fact that the flow

leaving element one is now not necessarily the same as the flow entering element two

(i.e. −Q2+Q3 6= 0). Which means that some fluid storage can occur at this position.

Therefore, a net flow can be defined for mass conservation −Q2 + Q3 − Qs = 0.

Bringing this net flow to the left side of the system, treating it as a variable, and

adding the linearised equations (8.5) and (8.3) adds diameter as another variable.

Thus, the full system can be written as


K1

11 K1
12 0 0 0

K1
21 K2

22 +K2
11 K2

12 0 1

0 K2
21 K2

22 0 0

0 0 0 Km
1 Km

2

0 Kc
1 0 Kc

2 0




P1

P2

P3

D

Qs



n+1

=


Q1

0

Q4

fm

f c



n+1

, (8.22)

where superscript m and c are the continuity and constitutive equations. Note that

this matrix can be reduced in size by rearranging the fourth row as

Qs = (fm −Km
1 D)/Km

2 , (8.23)

and substituting the right hand side into row 2 of the system of equations (8.22).

The lymphangion model and all other lumped models can be coupled by shar-

ing a pressure node, while at junctions conservation of mass and conservation of

hydrostatic pressure are held as system constraints using Lagrange multipliers.
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8.3 Lymphatic Simulation Results

In this section several computational tests are performed using the newly proposed

methodology which includes a valve model with a variable opening state, and the

frequency of contraction which is dependant on the pressure in the lymphangion.

8.3.1 Single Lymphangion

The first test shows a comparison of the model in [29] for both the original valve

model in equation (8.12), the proposed valve model in equation (8.10) with a viscous

resistance only, and also shows the solution of the problem using the proposed

contraction model. The problem parameters are shown in table 8.1.

Figure 8.7 compares the results for the three simulation cases. First the effect

of using a different valve model is investigated. The pressure in the lymphangion is

shown in figure 8.7a and shows excellent agreement between the two valve models;

the flow through both valves is shown in 8.7c, the diameter of the lymphangion is

shown in figure 8.7e, and the contraction state is shown in figure 8.7g. The results

indicate that the new valve model can give solutions in excellent agreement with the

valve model of [29].

The waveforms on the right hand side of figure 8.7 shows the solution of the

proposed contraction and valve model, tuned to have similar contraction behaviour

as the left hand side waveforms. Slight differences in the shape and magnitudes of

pressure, diameter, flow rates and contraction state are observed. The main reasons

for these differences is that the newly proposed contraction function has a slower

rate of relaxation, which means fluid filling of the lymphangion is slightly lowered,

reducing pressures and flow rates when compared with the model of [29]. It would

not be expected that two different models would give the exact same solution, and

the overall behaviour is very similar, indicating the new model gives a satisfactory

solution to this problem.

8.3.2 Chain of Four Lymphangions

In this section a chain of four lymphangions is considered. Each of the lymphangions

have the same diameter and length, while the boundary conditions and pumping
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Parameters Values
Pd 35

Pext, cmH2O 2.1407
Pin, cmH2O 2.1916
Pout, cmH2O 2.4975

M0 10
L, cm 0.3

Table 8.1: Input parameters for single lymphangion model, where Pext is the external
pressure, Pin is the inlet boundary pressure, Pout is the outlet boundary pressure, L
is the length of a lymphangion.

parameters are chosen to be the same as the single lymphangion case for the baseline

case. The problem parameters are shown in table 8.1. Four cases are simulated,

three with different initial conditions but all other parameters kept the same, and an

additional case with an increased pressure differential from inlet to outlet. Figure

8.8 shows the pressure and diameter results of all simulations.

The first comparison is between three configurations with the same problem

parameters, but with different initial conditions. The baseline problem defines the

initial pressure everywhere to be P = 2.4975 cmH2O, meaning the initial transmural

pressure is zero, furthermore all valves are initially in a closed position. The second

case uses an initial condition of P = 2Pext with all valves initially open, while the

third uses P = Pext/2 with all valves initially open. The results are compared for

the last 160 seconds of the simulation. The mean solutions between these cases are

within 0.25% for all parameters, where the percentage is calculated using the mean

absolute percentage error. The parameters compared were: the flow rates through

each valve, mean, maximum, and minimum pressures in each lymphangion, the

contraction frequency for each lymphangion, and the diameter of each lymphangion.

Furthermore, the differences between solutions decreases when a longer simulation

time is used. The results are in excellent agreement with each other, and it can be

concluded that the model is insensitive to the initial condition, and will converge

towards a periodic solution.

The fourth test case performed uses a larger pressure differential from inlet to

outlet with an increase in outlet pressure to Pout = 3.4975 cmH2O, and an increase in

the contraction parameter M0 = 50 to help overcome this un-physiological pressure

differential. The main objective of this example is to showcase the effect of frequency
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changes for neighbouring lymphangions. The effective pumping of lymph is still

drastically reduced even with the increase in pumping force, with a 95% reduction

mean flow through each valve in the system. This will create un-physiologically high

pressures in the lymphangion during pumping. The increased pressure differential

has a significant effect on the contraction frequency term ω, decreasing from a mean

of 0.72 s−1 to 0.43 s−1.

The models contraction behaviour has periods of peristaltic-like behaviour shown

in figure 8.8g where each lymphangion contracts in sequence; and periods of un-

peristaltic behaviour shown in figure 8.8h, this phenomena is observed physiolog-

ically [237], and would not be possible to model if the contraction behaviour is

pre-defined.

As mentioned the pressure differential is un-physiological for such a short chain

of lymphangions, resulting in low flow rates and high pressures. In order to overcome

this an increased in the rate of contraction and a change in the force of contraction

could be introduced, which will limit the maximum force applied via contraction,

avoiding the un-physiologically high pressures, and better control flow rate and

contraction behaviour; however this is outside the focus of this thesis, which mainly

aims to present a numerical scheme for lymphatics.

8.4 Limitations

The development of the lymphatic model components are subject to the following

major limitations: 1) The mechanisms involved in the lymphatic system are not

fully understood, which includes the mechanical, electrical, and chemical processes

responsible for the contraction of a lymphangion wall. This means that the contrac-

tion function in current models generally try to match some observed behaviour,

such as the contraction behaviour of a chain of lymphangions [29]. This means that

the model may be representative of an ex-vivo experiment with a specific set up, but

may not be generalisable to in-vivo conditions, lymphangions from other locations

in the body, or lymphatics in other animals. In order to develop an accurate model

of the full lymphatic system, a much greater understanding of these physiological

mechanisms is required; 2) No accurate vessel network of the full lymphatic system

currently exists, this means that the majority of models implement either a lumped
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model [283, 285, 284], which ignores spatial variability, or considers a very small

network of less than ten lymphatic vessels [196, 28, 29, 27, 165, 88]. In order to

model fluid movement within the lymphatic system, a full network of the lymphatic

system needs to be developed.

8.5 Conclusions

This chapter presents a new numerical scheme for reduced-order modelling of the

collecting lymphatic vessels. The model was compared to the another reduced-order

model for a single lymphangion case from [29], and showed good agreement with

the overall behaviour. A particular strength of the model, is the ability for the

lymphangion contraction frequency to be determined automatically, and does not

need to be pre-defined as in the majority of currently published works [196, 28, 29,

27, 165]. The proposed numerical scheme for the lymphatic system could form a

basis for the future development of lymphatic system modelling. Before this occurs,

a greater understanding is needed of how lymphangion contraction occurs. Once

this is achieved, more clinically relevant research can be investigated.

One particular avenue to pursue, is in the understanding of how fluid transport

in the lymphatic system changes if a lymph node is removed from the network.

This is a problem which can occur in cancer patients, where after a lymph node is

removed, the fluid drainage from other body regions is affected, causing oedema,

which is when swelling of a body part occurs as a result of fluid build up within

the interstitia. Being able to model this may eventually help clinicians choose a

treatment for the patient which lowers the likelihood of oedema developing.

Eventually the cardiovascular system and lymphatic system models could be

coupled, which occurs in physiology. This coupling within the model could allow

the investigation of fluid transport within the entire circulation, and lead to improved

understanding of what happens during haemodialysis, which causes significant fluid

shifts in the body. This could aid clinicians in developing a more efficient and

effective treatment of haemodialysis patients, who suffer from excess fluid build up

in body tissues as a result of poor renal function, or renal failure.

During pregnancy, oedema is very common, occurring in approximately 80 % of

woman [94], particularly affecting the lower legs and arms. A coupled cardiovascu-
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lar and lymphatic system model, could indicate why peripheral oedema occurs in

pregnancy, and eventually provide an opportunity to investigate how oedema can

be managed or prevented during pregnancy.
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Figure 8.7: Results of a single lymphangion test comparing the valve model of
Bertram [29], the proposed valve model modified from [226], and the new contraction
model.
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Figure 8.8: Results for a chain of four lymphangions
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Chapter 9

Conclusions

In this chapter a general discussion is provided that outlines: the main achievements

of this thesis, including the use of techniques developed in this thesis that are being

used in other research areas; and the possible applications, extensions, and views on

potential future clinical impact of the model for pregnancy, and for other areas of

cardiovascular and lymphatic system research.

9.1 Summary of Thesis Achievements

In this thesis a comprehensive closed-loop 1D-0D cardiovascular model of human

pregnancy was developed. The model successfully used an automated parameter

adaptation algorithm to integrate in-vivo measurements from pregnant woman at

three stages during pregnancy, and post-partum. The model was further extended to

include all weeks of gestation by using published data for an idealised cardiovascular

adaptation model of pregnancy.

An implicit numerical scheme called the enhanced trapezoidal rule method (ETM),

was developed and presented in Chapter 3. The scheme was a modification of the

pre-existing simplified trapezoidal rule (STM). The main modification was for the

treatment of vessel junctions, where the ETM used Lagrange multipliers to con-

strain a conservation of pressure, allowing a straightforward change between the use

of: static pressure conservation, total pressure conservation, and can easily allow

pressure loss methods into the formulation.

The ETM scheme was rigorously tested in Chapter 4 by comparing with: pub-

lished benchmark problems, which included in-silico and in-vitro data, and included

problem from a single pulse in a reflection free vessel, small networks which were

compared with 3D model solutions, a 37-vessel arterial network which had an equiv-

alent experimental set-up with in-vitro measurements, and an arterial network with

56 arteries for which one-dimensional schemes were compared; and carefully cho-

sen cases with analytical solutions, including numerically challenging problems with

discontinuities in material properties, geometries, and a shock-wave. The scheme

gave excellent agreement with the published solutions to the benchmark problems,
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and showed excellent accuracy when compared with the problems which have an

analytical solution. A convergence test revealed that the ETM scheme is super-

linearly convergent in both temporal and spatial domains. Furthermore, the scheme

showed excellent mass conservation properties, which is an important criteria for

a closed-loop cardiovascular model, as the volume of blood must be conserved to

achieve sensible solutions.

An automated parameter estimation technique was presented in Chapter 6, with

the purpose of integrating into the model measured in-vivo data. The parame-

ter estimation technique determines the difference from the model solutions and

measurement data at the end of a cardiac cycle, and iteratively adapts resistances,

compliances, and blood volumes in the system to converge to the measured data.

The effectiveness of the parameter estimation technique was shown in Section 7.7

within the closed-loop 1D-0D cardiovascular model of pregnancy.

The solutions of the pregnancy model were compared with published clinical

indices which are used to aid detection of pathologies, such as hypertension, pre-

eclampsia, and placental insufficiency. The model solutions of the patient specific

simulations for the pulsatility index in the uterine arteries closely followed the ex-

pected behaviour from literature [137, 144] for pregnancy week 11, where the range

predicted by the model for all patient specific simulations was in the expected range

of PI ∈ [1.1, 2.6], through to week 40, where the range predicted by the model was

in the expected range of PI ∈ [0.55, 1.00]. The model predicted that the pulsatil-

ity index in the utero-ovarian communicating arteries would generally be lower in

magnitude than the PI in the uterine arteries, although it follows the same general

behaviour over the course of pregnancy by continually decreasing until term. Cur-

rently the measurement of the PI in these communicating vessels within the clinical

setting have been unsuccessful. Thus the model gives an estimate of this previously

unknown parameter. In addition, the brachial-ankle pulse wave velocity predicted

by the model follows the expected behaviour described by [251], showing a decrease

in PWV from the first trimester to the second trimester, before increasing again

towards the third trimester, and a further increase to term. The model showed that

the aortic PWV is much lower in magnitude than the brachial-ankle PWV, but that

it shows the same general behaviour over the course of pregnancy.

The model-predicted percentage of cardiac output that reaches the uterus via

the pathway of the uterine arteries was 0.5% in the non-pregnant case (averaged
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for the cohort), rising to 5.6% in the first trimester, 10.5% in the second trimester,

and eventually reaching 12.9% late in the third trimester, which agree with values

measured in literature [249, 340]. Additionally the model gave a first estimation

of the percentage of cardiac output which reaches the uterus via the utero-ovarian

communicating arteries. The volumetric flow rate through the utero-ovarian com-

municating arteries is currently unmeasured, as previous attempts to measure these

flows have been unsuccessful due to the complex geometry and flow behaviour in

the pelvic region [262, 47]. If the utero-ovarian communicating arteries reached a

lumen size equal to that of the uterine arteries, then they supplied an additional 9%

of cardiac output to the uterus at term for the patient specific simulations.

Three of the participant measurements were investigated in more detail, for all

three trimesters and post-partum. The uterine artery flow rate waveforms showed

good agreement with published Doppler studies for all three trimesters and post

pregnancy. The model-predicted flow rates in the uterine arteries were in excel-

lent agreement with the value of 20 − 50 ml min−1 from literature [249], with 25.7

ml min−1, 26.5 ml min−1, and 30.1 ml min−1 for participant one, two, and three re-

spectively. The total volumetric flow rate in the uterine arteries at term is 855.1

ml min−1, 855.1 ml min−1, and 855.1 ml min−1 for participant one, two, and three

respectively, while the range given in literature is 600 − 900 ml min−1 [249]. The

flow in the uterine veins was also compared to values from literature for the third

trimester (no data from earlier trimesters was available). The model-predicted val-

ues were in close agreement to that of [344, 162], where the volumetric flow rate

in the third trimester was measured to be 274ml min−1, while the model-predicted

values were 314ml min−1 for participant one, 270ml min−1 for participant two, and

280ml min−1 for participant three.

Through the use of published data, the pregnancy model was extended to become

an idealised model of human pregnancy in Section 7.7, covering the 40 weeks of ges-

tation. This made it possible to fill in the gaps and model every week of pregnancy,

as the patient-specific model only had measurement data from four different time

points. The idealised model showed excellent agreement with the published data

of cardiovascular adaptation in pregnancy, which included the predicted changes

to total peripheral resistance, total arterial compliance, the pulsatility index, and

the fraction of cardiac output reaching the uterus via the uterine artery through-

out pregnancy. The iterative parameter estimation technique took between 62 and
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83 cardiac cycles to converge to within 1% of the aimed cardiac output, systolic

pressure, and diastolic pressure.

A sensitivity analysis was performed on cardiac parameters, model initial condi-

tions, and the haemodynamic parameters which the iterative parameter estimation

algorithm utilises. The solutions in the utero-ovarian circulation were shown to be

insensitive to the initial conditions, and the cardiac model parameters. However,

the solutions were more sensitive to the aimed haemodynamic parameters of systolic

and diastolic blood pressures, indicating the importance of accurate measurement

techniques to supply the model with reliable data.

In addition the model was simulated for different lumen diameter estimates of the

utero-ovarian communicating artery and indicated that the blood volume supplied

to the uterus from these communicating arteries was highly depended on the vessel

lumen diameter. If the communicating arteries reached the same diameter as the

uterine arteries, then they provided an additional 7.43% of cardiac output to the

uterus. This reduced to 4.31% if their diameter was halved, and 2.01% if their

diameter was quartered.

Another contribution made in the thesis, is a new numerical scheme for collecting

lymphatics. The scheme is constructed in such a way as to be easily compatible with

the cardiovascular models numerical scheme, which will allow the cardiovascular

model and lymphatic models to be coupled in a straight forward manner in the

future, with the potential of creating a combined framework for the full human

circulatory system. However, before this is achieved, significant development needs

to occur for lymphatic system modelling, as current models of the lymphatic system

are mainly trying to match observed behaviour, but the exact mechanisms behind

the behaviour are not understood.

In conclusion, this thesis’ main contribution was the development of a closed-

loop 1D-0D cardiovascular model of human pregnancy, which can incorporate in-vivo

measurement data. The model can provide important insights in the cardiovascular

adaptation processes which occur during pregnancy, with the potential to be used

for improving understanding of the development of various pathologies, which may

eventually assist in diagnosis of cardiovascular disease as a results of poor adaptation

in pregnancy.
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9.2 Additional Achievements

The previous section focused on the main outcomes of the work developed and

investigated in this thesis. The techniques developed in this thesis are also currently

being utilised in other cardiovascular research areas. In this section an overview of

these other areas is described. The numerical scheme and model implemented in

this work has been utilised in a paper investigating blood flow induced vibrations of

the head in an attempt to detect and predict the severity of a carotid stenosis [71].

In addition the initial and iterative estimation technique is currently being

utilised in the development of a reduced-order fractional flow reserve software. Frac-

tional flow reserve is a measurement used in the clinic to estimate the severity of

a stenosis located in the coronary arteries. The parameter estimation technique is

used to estimate the inflow conditions of the patient-specific coronary system, as

extracted from the segmentation of CT scans.

9.3 Main Limitations

A sensitivity analysis for the cardiovascular model of pregnancy was performed on

the variation of a single parameter at a time. This enabled a test of the iterative

parameter estimation technique for uncertain parameters. However, to fully under-

stand the affect of all model parameters, and their interaction, a sensitivity analysis

involving mutual variation of parameters must be performed, as this could lead to

different results. This could also aid clinicians in determining which parameters are

most important to measure.

In this work there were no patient-specific Doppler waveforms available. This

mean that the model predicted waveforms, and various indices such as the pulsatility

index, had to be compared to measurements found in literature, which may vary

significantly with the patient data in this thesis. Therefore, in the future it is

imperative to compare the model to patient-specific data which includes waveforms,

and ideally pulse wave velocity measurements, in order to fully validate the model.

A generic cardiovascular network was utilised, as no information of the vessel

network, such as vessel lengths and diameters, was available for the patient-specific

simulations. It would aid the model prediction if some vessel information was avail-
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able, especially the geometry of the uterine vessels.

The lymphatic system is much more difficult to model as the mechanisms involves

in lymphatic contraction, which is responsible for the propulsion of lymph fluid in the

network, are currently not known. Moreover, the majority of models only consider

very small networks that are not based on physiological networks (due to lack of

available data). Hence, before clinical questions can be answered, the understanding

of the mechanisms involved in lymphangion contraction and the geometry of the

lymphatic network must be improved.

9.4 Future Work

This section describes the possible further applications and development of the mod-

elling framework described in this thesis. The section is separated into two main

parts: the first part describes the possible extension and application of the model

with regards to pregnancy; while the second part describes other areas where the

modelling methodologies developed in this thesis could also be utilised.

9.4.1 Pregnancy Modelling and Clinical Applications

The natural and ideal future work for the pregnancy model requires access to ad-

ditional patient data. This data must have the uterine artery Doppler waveforms,

along with the parameters that are already utilised in this thesis for the parameter

estimation technique, which includes heart rate, stroke volume, systolic pressure and

diastolic pressure. It would also be useful to obtain a pulse wave velocity measure-

ment for these patients. If this type of data can be obtained, then the model can be

fully validated, and confidence can then be assured when attempting to model the

development of various pathologies that can occur during pregnancy.

After validating for a ‘healthy’ pregnancy, the model could be used to inves-

tigate all cardiovascular related pathologies that can develop over the course of

pregnancy, which includes pre-eclampsia, placental insufficiency, hypertension, hy-

potension, supine hypotensive syndrome. In the future, this could provide a better

understanding of how these pathologies develop, and may even lead to a model that

is capable of predicting whether a pathology is likely to develop later in a pregnancy.

This could lead to a significant impact on healthcare systems by providing an ear-
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lier diagnosis of a developing pathology, which will improve the management and

treatment of patients during pregnancy.

An even more comprehensive model, which involves the coupling of the maternal-

foetal systems, could be developed. A model of the foetal cardiovascular system has

already been developed by [227], thus only a more complex model of the maternal-

foetal interface, i.e. the placenta, needs to be created in order to achieve this coupled

system. This could allow a number of interesting aspects to be investigated, such

as: the effect of placental placement within the uterus on blood and nutrient supply

to the foetus; and in understanding the impact of the placental micro-structure on

the resistance in the uterine system, and how it affects nutrient exchange between

the maternal and foetal systems.

Peripheral oedema occurs in around 80% of pregnancies [94], and pregnant

woman have a greater risk of developing other types of oedema, such as pulmonary

oedema [320]. When lymphatic system modelling is at a stage where the lymphatic

vessel network is known and the mechanisms involved in lymphangion contraction

are better understood, a coupled cardiovascular and lymphatic system model could

be implemented for pregnancy to provide insight into why oedema occurs in a large

majority of pregnancies, and why extensive lymphangiogenesis occurs near the pla-

centa [282]. This could provide a treatment plan and aid in the management of

oedema during pregnancy.

9.4.2 Other Modelling and Clinical Applications

The 1D-0D framework developed in this thesis used an automated parameter esti-

mation technique to converge model solutions towards patient-specific measurement

data. Although the current model focused on pregnancy, and thus contains female

specific vessels, and vascular beds, the model can be easily extended for males, or for

a general case by ignoring reproductive organs. This could make for an interesting

comparison between female and male specific cardiovascular network models.

The model presented in this thesis primarily focused on and utilised in-vivo data

from the systemic arterial system. However, the model could be easily extended

to integrate measured data from the systemic veins or from the pulmonary system,

within the same framework. This could lead to investigations for pulmonary hy-

pertension, where the pressure in the pulmonary arteries increases above 25 mmHg.
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Pulmonary hypertension is a serious pathology that is difficult to diagnose as symp-

toms vary widely [157], thus a model of this disease could help understand how the

pathology develops, which may lead to an improved diagnosis system. With the

inclusion of gravity and the auto-regulation mechanisms involved in the cardiovas-

cular system, there are a number of other interesting areas of research that could be

perused. For example, venous insufficiency is a disease where venous valves do not

function correctly, which means blood collects in the lower legs and causes swelling.

Chronic venous insufficiency commonly occurs in patients who have suffered a blood

clot in a deep vein (called deep vein thrombosis). In addition, the body’s reaction

to exercise and the baroreceptor reflex sensitivity could be investigated, which could

lead to a model to investigate the effect of a haemorrhage or blunt force trauma on

the cardiovascular system response.

There are many pathologies which can develop in the cardiovascular system.

The parameter estimation technique proposed in this thesis can be used to aid the

modelling of many of these pathologies. For instance it could be used to:

• estimate inlet and outlet boundary conditions of the coronary system for the

calculation of fractional flow reserve, which is a clinical procedure involving

the measurement of the pressure drop across a coronary artery stenosis, which

estimates the severity and functional significance of the lesion.

• utilise of patient measurements to investigate the severity of stenoses that are

located in other regions of the body, such as a carotid or cerebral stenosis.

• utilise of patient data to determine the effect of an aneurysm in various regions

of the body, such as the abdominal aortic aneurysm, aortic aneurysm, or

cerebral aneurysm.

• model the functional impact of the formation of a thrombosis (blood clot) in

various regions of the body to improve the treatment pathway, such as: in the

cerebral arteries which can lead to a cerebral embolism and a stroke; in the

coronary arteries which can lead to a coronary embolism and an acute myocar-

dial infarction; or in the pulmonary arteries, which can lead to a pulmonary

embolism.

The thesis also proposed a numerical scheme for the collecting lymphatic vessels,

although current lymphatic networks are small and do not include full body lymph
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networks, the model can be extended when sufficient information is available in

the literature on the lymphatic network, and when the mechanisms involved in lym-

phangion contraction are understood. The model could be utilised to investigate the

causes and potential treatments of various types of oedema. When adequate devel-

opment of lymphatic system modelling has occurred, it will also open the possibility

of coupling cardiovascular and lymphatic system models. This will be particularly

useful for investigating pathologies which are related to fluid retention and excretion

from the body. These pathologies include:

• the treatment of cancer patients, where lymph nodes are surgically removed

or damaged from radiation therapy which leads to the development of lym-

phedema, particularly in limbs [168]. A coupled cardiovascular and lymphatic

model could aid in the understanding of why oedema sometimes occurs in

areas that are located far away from the damaged or removed lymph node.

• the treatment of renal failure patients, where fluid gathers in the interstitia

of the lower limbs as a result of poor or no kidney function. These patients

undergo haemodialysis, which takes approximately four hours at a time, and

is required three days a week. A coupled cardiovascular and lymphatic model

could help in developing a more effective and efficient treatment for these

patients.

9.5 Concluding Remarks

It is currently an exciting time for cardiovascular research, primarily due to the

recent surge of activity trackers, such as watches that can track heart rate through-

out the day, it is expected that future studies could have improved longitudinal

data, enabling very interesting research to be performed. As the understanding

of physiology improves, and as computational resources become easier and cheaper

to obtain, larger cardiovascular and lymphatic networks could be simulated, allow-

ing an investigation of physiological mechanisms at a local and global level. In

recent years, the introduction of computed fractional flow reserve into the patient

treatment pathway, could provide an opportunity for other such software to gain

recognition for capabilities in diagnosing and predicting pathology. This could lead

to a monumental change in healthcare systems around the world in treating various
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types of cardiovascular pathology, ranging from: stenosis and aneurysm diagnosis

and treatment; improved treatment for cancer patients; more effective and efficient

treatment for haemodialysis patients; and improving the management of patients

during pregnancy.
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[212] Vuk Milǐsić and Alfio Quarteroni. “Analysis of lumped parameter models

for blood flow simulations and their relation with 1D models”. In: ESAIM:

Mathematical Modelling and Numerical Analysis 38.4 (July 2004), pp. 613–

632. doi: 10.1051/m2an:2004036. url: https://www.cambridge.org/

core/article/div- class- title- analysis- of- lumped- parameter-

models-for-blood-flow-simulations-and-their-relation-with-1d-

models-div/DC38700CCA82BAC1865609A4DE2107D1.

[213] James K. Min et al. “Diagnostic Accuracy of Fractional Flow Reserve From

Anatomic CT Angiography”. In: JAMA 308.12 (Sept. 2012), p. 1237. doi:

10.1001/2012.jama.11274.

[214] G. F. Mitchell et al. “Changes in Aortic Stiffness and Augmentation Index

After Acute Converting Enzyme or Vasopeptidase Inhibition”. In: Hyperten-

sion 46.5 (Oct. 2005), pp. 1111–1117. doi: 10.1161/01.HYP.0000186331.

47557.ae.

[215] Shohei Miyazaki et al. “Validation of numerical simulation methods in aortic

arch using 4D Flow MRI”. In: Heart and Vessels 32.8 (Apr. 2017), pp. 1032–

1044. doi: 10.1007/s00380-017-0979-2.

[216] Lucas O. Mller and Eleuterio F. Toro. “Well-balanced high-order solver for

blood flow in networks of vessels with variable properties”. In: International

Journal for Numerical Methods in Biomedical Engineering 29.12 (July 2013),

pp. 1388–1411. doi: 10.1002/cnm.2580.

[217] Larry Y. L. Mo et al. “A transmission line modelling approach to the in-

terpretation of uterine doppler waveforms”. In: Ultrasound in Medicine &

Biology 14.5 (1988), pp. 365–376. doi: 10.1016/0301-5629(88)90072-5.

Pg. 265 / 284



REFERENCES

[218] Erin A. Morris et al. “Pregnancy induces persistent changes in vascular com-

pliance in primiparous women”. In: American Journal of Obstetrics and Gy-

necology 212.5 (May 2015), 633.e1–633.e6. doi: 10.1016/j.ajog.2015.01.

005.

[219] Paul D. Morris et al. “Virtual Fractional Flow Reserve From Coronary An-

giography: Modeling the Significance of Coronary Lesions”. In: JACC: Car-

diovascular Interventions 6.2 (Feb. 2013), pp. 149–157. doi: 10.1016/j.

jcin.2012.08.024.

[220] Lucas O. Müller and Eleuterio F. Toro. “A global multiscale mathematical

model for the human circulation with emphasis on the venous system”. In:

International Journal for Numerical Methods in Biomedical Engineering 30.7

(2014), pp. 681–725. issn: 2040-7947. doi: 10.1002/cnm.2622. url: http:

//dx.doi.org/10.1002/cnm.2622.

[221] Lucas O. Müller and Eleuterio F. Toro. “Enhanced global mathematical

model for studying cerebral venous blood flow”. In: Journal of Biomechanics

47.13 (2014), pp. 3361 –3372. issn: 0021-9290. doi: 10.1016/j.jbiomech.

2014.08.005. url: http://www.sciencedirect.com/science/article/

pii/S0021929014004291.

[222] Lucas O. Müller et al. “A high-order local time stepping finite volume solver

for one-dimensional blood flow simulations: application to the ADAN model”.

In: International Journal for Numerical Methods in Biomedical Engineering

32.10 (Jan. 2016), e02761. doi: 10.1002/cnm.2761.

[223] C D Murray. “The Physiological Principle of Minimum Work: I. The Vascu-

lar System and the Cost of Blood Volume”. In: Proceedings of the National

Academy of Sciences of the United States of America 12.3 (1926), pp. 207–

214.

[224] J. P. Mynard and P. Nithiarasu. “A 1D arterial blood flow model incorporat-

ing ventricular pressure, aortic valve and regional coronary flow using the lo-

cally conservative Galerkin (LCG) method”. In: Communications in Numer-

ical Methods in Engineering 24.5 (Mar. 2008), pp. 367–417. issn: 1099-0887.

doi: 10.1002/cnm.1117. url: http://dx.doi.org/10.1002/cnm.1117.

Pg. 266 / 284



REFERENCES

[225] J. P. Mynard et al. “A numerical model of neonatal pulmonary atresia with

intact ventricular septum and RV-dependent coronary flow”. In: International

Journal for Numerical Methods in Biomedical Engineering (2010), n/a–n/a.

doi: 10.1002/cnm.1384.

[226] J. P. Mynard et al. “A simple, versatile valve model for use in lumped pa-

rameter and one-dimensional cardiovascular models”. In: International Jour-

nal for Numerical Methods in Biomedical Engineering 28.6-7 (Sept. 2012),

pp. 626–641. issn: 2040-7947. doi: 10.1002/cnm.1466. url: http://dx.

doi.org/10.1002/cnm.1466.

[227] Jonathan Mynard. “Computer modelling and wave intensity analysis of peri-

natal cardiovascular function and dysfunction”. PhD Thesis. 2011.

[228] Jonathan P. Mynard, Daniel J. Penny, and Joseph J. Smolich. “Scalability

and in vivo validation of a multiscale numerical model of the left coronary cir-

culation”. In: American Journal of Physiology - Heart and Circulatory Phys-

iology 306.4 (2014), H517–H528. issn: 0363-6135. doi: 10.1152/ajpheart.

00603.2013. eprint: http://ajpheart.physiology.org/content/306/4/

H517.full.pdf. url: http://ajpheart.physiology.org/content/306/

4/H517.

[229] Jonathan P. Mynard and Joseph J. Smolich. “Influence of anatomical dom-

inance and hypertension on coronary conduit arterial and microcirculatory

flow patterns: a multiscale modeling study”. In: American Journal of Physiology-

Heart and Circulatory Physiology 311.1 (July 2016), H11–H23. doi: 10.1152/

ajpheart.00997.2015.

[230] Jonathan P. Mynard and Joseph J. Smolich. “One-Dimensional Haemody-

namic Modeling and Wave Dynamics in the Entire Adult Circulation”. In:

Annals of Biomedical Engineering 43.6 (Apr. 2015), pp. 1443–1460. issn:

1573-9686. doi: 10.1007/s10439-015-1313-8. url: http://dx.doi.org/

10.1007/s10439-015-1313-8.

[231] Jonathan P. Mynard and Kristian Valen-Sendstad. “A unified method for

estimating pressure losses at vascular junctions”. In: International Journal

for Numerical Methods in Biomedical Engineering 31.7 (2015), n/a–n/a. issn:

Pg. 267 / 284



REFERENCES

2040-7947. doi: 10.1002/cnm.2717. url: http://dx.doi.org/10.1002/

cnm.2717.

[232] Mark G. Neerhof and Larry G. Thaete. “The Fetal Response to Chronic Pla-

cental Insufficiency”. In: Seminars in Perinatology 32.3 (June 2008), pp. 201–

205. doi: 10.1053/j.semperi.2007.11.002.

[233] B Newman, C Derrington, and C Dore. “Cardiac output and the recumbent

position in late pregnancy.” In: Anaesthesia 38 (4 Apr. 1983), pp. 332–335.

issn: 0003-2409.

[234] F. Nobile. “Coupling strategies for the numerical simulation of blood flow in

deformable arteries by 3D and 1D models”. In: Mathematical and Computer

Modelling 49.11-12 (2009), pp. 2152–2160. doi: 10.1016/j.mcm.2008.07.

019.

[235] Bjarne L. Nørgaard et al. “Diagnostic Performance of Noninvasive Fractional

Flow Reserve Derived From Coronary Computed Tomography Angiography

in Suspected Coronary Artery Disease”. In: Journal of the American College

of Cardiology 63.12 (Apr. 2014), pp. 1145–1155. doi: 10.1016/j.jacc.

2013.11.043.

[236] Hasan Obeid et al. “Numerical assessment and comparison of pulse wave ve-

locity methods aiming at measuring aortic stiffness”. In: Physiological Mea-

surement 38.11 (Oct. 2017), pp. 1953–1967. doi: 10.1088/1361- 6579/

aa905a.

[237] T. Ohhashi, T. Azuma, and M. Sakaguchi. “Active and passive mechanical

characteristics of bovine mesenteric lymphatics”. In: American Journal of

Physiology-Heart and Circulatory Physiology 239.1 (July 1980), H88–H95.

doi: 10.1152/ajpheart.1980.239.1.h88.

[238] Osamu Ohtani and Yuko Ohtani. “Structure and function of rat lymph

nodes”. In: Archives of Histology and Cytology 71.2 (2008), pp. 69–76. doi:

10.1679/aohc.71.69.

[239] J.B. Olansen et al. “A Closed-Loop Model of the Canine Cardiovascular Sys-

tem That Includes Ventricular Interaction”. In: Computers and Biomedical

Research 33.4 (Aug. 2000), pp. 260–295. doi: 10.1006/cbmr.2000.1543.

Pg. 268 / 284



REFERENCES

[240] Olufemi Adebari Oloyede and Faye Iketubosin. “Uterine artery Doppler study

in second trimester of pregnancy”. In: Pan African Medical Journal 15 (2013).

doi: 10.11604/pamj.2013.15.87.2321.

[241] Karen M. Olsson and Richard Channick. “Pregnancy in pulmonary arterial

hypertension”. In: European Respiratory Review 25.142 (Nov. 2016), pp. 431–

437. doi: 10.1183/16000617.0079-2016.

[242] M. S. Olufsen. “Blood pressure and blood flow variation during postural

change from sitting to standing: model development and validation”. In:

Journal of Applied Physiology 99.4 (June 2005), pp. 1523–1537. doi: 10.

1152/japplphysiol.00177.2005.

[243] M S Olufsen. “Structured tree outflow condition for blood flow in larger

systemic arteries.” In: The American journal of physiology 276 (1 Pt 2 Jan.

1999), H257–H268. issn: 0002-9513.

[244] Mette S. Olufsen et al. “Numerical Simulation and Experimental Validation

of Blood Flow in Arteries with Structured-Tree Outflow Conditions”. In:

Annals of Biomedical Engineering 28.11 (2000), pp. 1281–1299. issn: 1573-

9686. doi: 10.1114/1.1326031. url: http://dx.doi.org/10.1114/1.

1326031.

[245] R. Orabona et al. “Elastic properties of ascending aorta in women with pre-

vious pregnancy complicated by early- or late-onset pre-eclampsia”. In: Ul-

trasound in Obstetrics & Gynecology 47.3 (Feb. 2016), pp. 316–323. doi:

10.1002/uog.14838.

[246] Shmuel Oren, Ehud Grossman, and Edward D. Frohlich. “Arterial and venous

compliance in obese and nonobese subjects”. In: The American Journal of

Cardiology 77.8 (Mar. 1996), pp. 665–667. doi: 10.1016/s0002-9149(97)

89331-9.

[247] World Health Organisation. Cardiovascular disease fact sheet. May 17, 2017.

url: http://www.who.int/news-room/fact-sheets/detail/cardiovascular-

diseases-(cvds).

Pg. 269 / 284



REFERENCES

[248] Mohamed Waseem Osman et al. “Association between arterial stiffness and

wave reflection with subsequent development of placental-mediated diseases

during pregnancy”. In: Journal of Hypertension 36.5 (May 2018), pp. 1005–

1014. doi: 10.1097/hjh.0000000000001664.

[249] G. Osol and M. Mandala. “Maternal Uterine Vascular Remodeling During

Pregnancy”. In: Physiology 24.1 (Feb. 2009), pp. 58–71. doi: 10 . 1152 /

physiol.00033.2008.

[250] Joseph G. Ouzounian and Uri Elkayam. “Physiologic Changes During Normal

Pregnancy and Delivery”. In: Cardiology Clinics 30.3 (Aug. 2012), pp. 317–

329. doi: 10.1016/j.ccl.2012.05.004.

[251] Mizuho Oyama-Kato et al. “Change in pulse wave velocity throughout normal

pregnancy and its value in predicting pregnancy-induced hypertension: A

longitudinal study”. In: American Journal of Obstetrics and Gynecology 195.2

(Aug. 2006), pp. 464–469. doi: 10.1016/j.ajog.2006.01.104.

[252] Sanjay Pant et al. “Data assimilation and modelling of patient-specific single-

ventricle physiology with and without valve regurgitation”. In: Journal of

Biomechanics 49.11 (July 2016), pp. 2162–2173. doi: 10.1016/j.jbiomech.

2015.11.030.

[253] George Papadakis. “Coupling 3D and 1D fluid-structure-interaction mod-

els for wave propagation in flexible vessels using a finite volume pressure-

correction scheme”. In: Communications in Numerical Methods in Engineer-

ing 25.5 (May 2009), pp. 533–551. doi: 10.1002/cnm.1212.

[254] Michail I. Papafaklis et al. “Fast virtual functional assessment of intermediate

coronary lesions using routine angiographic data and blood flow simulation

in humans: comparison with pressure wire – fractional flow reserve”. In: Eu-

roIntervention 10.5 (Sept. 2014), pp. 574–583. doi: 10.4244/eijy14m07_01.

[255] Aris T Papageorghiou, Christina K.H Yu, and Kypros H Nicolaides. “The

role of uterine artery Doppler in predicting adverse pregnancy outcome”.

In: Best Practice & Research Clinical Obstetrics & Gynaecology 18.3 (June

2004), pp. 383–396. doi: 10.1016/j.bpobgyn.2004.02.003.

Pg. 270 / 284



REFERENCES

[256] Aris T. Papageorghiou et al. “Assessment of risk for the development of

pre-eclampsia by maternal characteristics and uterine artery Doppler”. In:

BJOG: An International Journal of Obstetrics and Gynaecology 112.6 (June

2005), pp. 703–709. doi: 10.1111/j.1471-0528.2005.00519.x.

[257] M Papp, G B Makara, and B Hajtman. “The resistance of in situ perfused

lymph trunks and lymph nodes to flow.” In: Experientia 27 (4 Apr. 1971),

pp. 391–392. issn: 0014-4754.

[258] K. H. Parker and C. J. H. Jones. “Forward and Backward Running Waves in

the Arteries: Analysis Using the Method of Characteristics”. In: Journal of

Biomechanical Engineering 112.3 (1990), p. 322. doi: 10.1115/1.2891191.

[259] Kim H. Parker. “An introduction to wave intensity analysis”. In: Medical

& Biological Engineering & Computing 47.2 (Feb. 2009), pp. 175–188. doi:

10.1007/s11517-009-0439-y.

[260] Kim H. Parker et al. “What stops the flow of blood from the heart?” In:

Heart and Vessels 4.4 (Dec. 1988), pp. 241–245. doi: 10.1007/bf02058593.

[261] T.A. Parlikar et al. “Model-based estimation of cardiac output and total

peripheral resistance”. In: Computers in Cardiology (Sept. 2007). doi: 10.

1109/cic.2007.4745501.

[262] Jason A. Pates et al. “Determining uterine blood flow in pregnancy with

magnetic resonance imaging”. In: Magnetic Resonance Imaging 28.4 (May

2010), pp. 507–510. doi: 10.1016/j.mri.2009.12.009.

[263] Beth Payne et al. “PIERS Proteinuria: Relationship With Adverse Maternal

and Perinatal Outcome”. In: Journal of Obstetrics and Gynaecology Canada

33.6 (June 2011), pp. 588–597. doi: 10.1016/s1701-2163(16)34907-6.

[264] Alberto Borges Peixoto et al. “Reference ranges for the uterine arteries Doppler

and cervical length measurement at 11–13(+6) weeks of gestation in a Brazil-

ian population”. In: The Journal of Maternal-Fetal & Neonatal Medicine

(Nov. 2015), pp. 1–6. doi: 10.3109/14767058.2015.1111334.

[265] P. Pellizzari et al. “Assessment of uterine artery blood flow in normal first-

trimester pregnancies and in those complicated by uterine bleeding”. In: Ul-

trasound in Obstetrics and Gynecology 19.4 (Apr. 2002), pp. 366–370. doi:

10.1046/j.1469-0705.2002.00667.x.

Pg. 271 / 284



REFERENCES

[266] G. Pennati, M. Bellotti, and R. Fumero. “Mathematical modelling of the

human foetal cardiovascular system based on Doppler ultrasound data”. In:

Medical Engineering & Physics 19.4 (June 1997), pp. 327–335. doi: 10.1016/

s1350-4533(97)84634-6.
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