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5 EQUIVARIANT ALEXANDROV GEOMETRY AND ORBIFOLD

FINITENESS

JOHN HARVEY

ABSTRACT. Let a compact Lie group act isometrically on a non-collapsing
sequence of compact Alexandrov spaces with fixed dimension and uni-
form lower curvature and upper diameter bounds. If the sequence of
actions is equicontinuous and converges in the equivariantGromov–
Hausdorff topology, then the limit space is equivariantly homeomorphic
to spaces in the tail of the sequence.

As a consequence, the class of Riemannian orbifolds of dimension
n defined by a lower bound on the sectional curvature and the volume
and an upper bound on the diameter has only finitely many members
up to orbifold homeomorphism. Furthermore, any class of isospectral
Riemannian orbifolds with a lower bound on the sectional curvature is
finite up to orbifold homeomorphism.

1. INTRODUCTION

The Gromov–Hausdorff topology on the set of all compact metric spaces
has been widely studied since its introduction by Gromov in 1981 [12].
Consideration of this topology led naturally to the definition of new classes
of metric spaces of geometric interest. The present work considers Alexan-
drov spaces.

An Alexandrov space has a lower curvature bound which generalizes the
lower sectional curvature bound on a Riemannian manifold. These spaces
arise naturally as limits of sequences of Riemannian manifolds with a uni-
form lower sectional curvature bound.

One of the deepest results in Alexandrov geometry is Perelman’s Stabil-
ity Theorem [24], which states that if a sequence of compact Alexandrov
spaces has a uniform lower curvature bound, and neither grows unbound-
edly in terms of its diameter nor collapses in terms of its dimension, its
topological type does not change on passage to the limit.
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2 JOHN HARVEY

This result is almost omnipresent in Alexandrov geometry. One may
construct the tangent cone of an Alexandrov space at a pointp by taking the
limit of the space under rescaling aroundp. The Stability Theorem shows
that the space is locally homeomorphic to its tangent cone, and therefore, at
least topologically, its singularities are very controlled.

It is desirable to obtain an analogous convergence result inthe equivariant
setting. Here the appropriate topology is Fukaya’s equivariant Gromov–
Hausdorff topology [10].

In this vein, Searle and the author showed that an isometric action on an
Alexandrov space is locally determined by the isotropy action at the point
[19]. The main theorem of the present work gives a sufficient condition for
a convergent sequence ofG–actions on Alexandrov spaces with a uniform
lower curvature bound to be stable, in the sense that the limiting action is
equivariantly homeomorphic to those in the tail of some subsequence.

Theorem A. Let G be a compact Lie group and letXi be a sequence of
compact Alexandrov spaces of fixed dimensionn, with curvature bounded
below byk and diameter bounded above byD, each with an effective iso-
metric action ofG. Suppose that(Xi, G) converges in the equivariant
Gromov–Hausdorff topology to(X,Γ), whereX is also of dimensionn.
Suppose further that the sequence of actions is equicontinuous.

Then the groupsG andΓ are isomorphic and, for largei, the spacesXi

are equivariantly homeomorphic toX.
Furthermore, ifθi : X/G → Xi/G are homeomorphisms which witness

the Gromov–Hausdorff convergence of the orbit spaces, thenthere is a sub-
sequence for which the equivariant homeomorphismsX → Xi can be cho-
sen so that they descend toθi.

The theorem can also be stated as follows: In the space of Alexandrov
G–spaces of dimensionnwith curvature bounded below byk with the equi-
variant Gromov–Hausdorff topology, every point has a neighborhood con-
sisting only of Alexandrov spaces to which it is equivariantly homeomor-
phic.

Placed in this form, the original Stability Theorem is also amajor contri-
bution towards the question of how the geometry of a Riemannian manifold
controls its topology. The problem of finding geometric constraints to de-
fine a class of manifolds which is finite up to homotopy, homeomorphism
or diffeomorphism has a long history.

If the class is defined by bounds on sectional curvature, diameter and
volume, then a convenient notation is to writeMK,D,V

k,d,v (n). This represents
the class of all Riemannian manifolds(M, g) with k ≤ secg ≤ K, d ≤
diam(M) ≤ D andv ≤ vol(M) ≤ V . Where a value is replaced with “·”
the condition is understood to be deleted.
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The first such result is that of Weinstein, who showed that, for δ > 0,
M1,·,·

δ,·,·(2n), the class of unformly pinched positively curved manifoldsof
even dimension, has only finitely many members up to homotopy[34].
Shortly after this, Cheeger showed that, forn 6= 4, MK,D,·

k,·,v (n) has finitely
many simply connected members up to diffeomorphism [6]. In [27], Pe-
ters shows that this result still holds forn = 4, as well as removing the
hypothesis of simple connectivity.

Grove and Petersen removed the upper bound on sectional curvature, and
obtained finiteness ofM·,D,·

k,·,v(n) up to homotopy [14]. Shortly afterwards,
in collaboration with Wu, this result was improved to show finiteness up
to homeomorphism forn ≥ 4 [16]. As long as the dimension is not four,
the work of Kirby and Siebenmann [21] implies finiteness up todiffeomor-
phism.

Perelman’s Stability Theorem [24] showed thatAlex·,D,·
k,·,v(n), the corre-

sponding class of Alexandrov spaces, is finite up to homeomorphism. A
fortiori , this generalizes the Grove–Petersen–Wu finiteness resultto all di-
mensions.

Theorem B uses the equivariant version of the Stability Theorem to gen-
eralize the homeomorphism finiteness result of Grove, Petersen and Wu to
the area of Riemannian orbifolds. An orbifold is a mild generalization of a
manifold, and, to give just a few examples, the concept has found applica-
tions in Thurston’s work on the Geometrization Conjecture [33], the con-
struction of a new positively curved manifold by Dearricott[7] and Grove–
Verdiani–Ziller [17], and string theory, such as Dixon, Harvey, Vafa and
Witten’s conformal field theory built on a quotient of a torus[8]. The same
convenient notation can be used for orbifolds, here replacingM with O.

The first finiteness result for orbifolds is that of Fukaya [10], who gener-
alized the result of Cheeger, showing that a subclass ofOK,D,·

k,·,v (n) is finite
up to orbifold diffeomorphism. Fukaya used a much more restrictive def-
inition of orbifold, considering only the orbit spaces of global actions by
finite groups on Riemannian manifolds. This corresponds to what Thurston
called a “good” orbifold [33].

Working in dimension two, Proctor and Stanhope showed thatO·,D,·
k,·,v (2) is

finite up to orbifold diffeomorphism [30], providing a first generalization of
the result of Grove, Petersen and Wu. The homeomorphism finiteness result
was then shown in all dimensions by Proctor, provided the orbifold has only
isolated singularities [29]. Here that assumption is removed, completing the
generalization of Grove–Petersen–Wu’s homeomorphism finiteness.

Theorem B. For anyk,D, v, n, the classO·,D,·
k,·,v (n) has only finitely many

members up to orbifold homeomorphism.
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By Weyl’s asymptotic formula, which Farsi has shown is validfor orb-
ifolds [9], a Laplace isospectral class of orbifolds has fixed volume and
dimension. Stanhope has shown that, in the presence of a lower bound on
Ricci curvature, such a class has a uniform upper bound on itsdiameter
[32], and so, just as in [29], the following corollary is clear.

Corollary C. Any class of Laplace isospectral orbifolds with a uniform
lower bound on its sectional curvature has only finitely manymembers up
to orbifold homeomorphism.

This generalizes the similar result of Brooks, Perry and Petersen for
Laplace isospectral manifolds [3]. While one cannot hear the shape of an
orbifold, one can, at least in the presence of a lower sectional curvature
bound, know that there are only finitely many possibilities.

Acknowledgements.This research was carried out as part of the author’s
dissertation project at the University of Notre Dame, with the ever-helpful
advice of Karsten Grove. During that time, the author was supported in part
by a grant from the U.S. National Science Foundation.

The author is grateful to Vitali Kapovitch and Curtis Pro forinteresting
and helpful conversations on this subject, and to Karsten Grove for pointing
out the possibility of using [13] to prove Proposition 3.2.

2. PRELIMINARIES

2.1. Gromov–Hausdorff topologies. A general approach for proving finite-
ness results such as Theorem B [16, 24, 29] is to combine a compactness or
precompactness result for the class under consideration with a stability re-
sult. A particularly useful topology (in fact, a metric) on the set of isometry
classes of compact metric spaces was proposed by Gromov [12]. Gromov’s
metric generalizes the Hausdorff metric on the closed subsets of a compact
metric space.

Definition 2.1. Let (X, dX) and(Y, dY ) be metric spaces. A functionf : X →
Y (not necessarily continuous) is called an Gromov–Hausdorff ǫ–approximation
if, for all p, q ∈ X, |dX(p, q)− dY (f(p), f(q))| ≤ ǫ and anǫ–neighborhood
of the image off covers all ofY .

Definition 2.2. TheGromov–Hausdorff distancebetween two compact met-
ric spaces(X, dX) and(Y, dY ) is the infimum of the set of allǫ such that
there are Gromov–Hausdorffǫ–approximationsX → Y andY → X.

The equivariant Gromov–Hausdorff topology was first definedby Fukaya
[10], and achieved its final form some years later in his work with Yam-
aguchi [11]. Consider the set of ordered pairs(M,Γ) whereM is a compact
metric space andΓ is a closed group of isometries ofM . Say that two pairs
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are equivalent if they are equivariantly isometric up to an automorphism of
the group. LetMc

eq be the set of equivalence classes of such pairs.

Definition 2.3. Let (X,Γ), (Y,Λ) ∈ Mc
eq. An equivariant Gromov–Hausdorff

ǫ–approximationis a triple(f, φ, ψ) of functionsf : X → Y , φ : Γ → Λ
andψ : Λ → Γ such that

(1) f is an Gromov–Hausdorffǫ–approximation;
(2) if γ ∈ Γ, x ∈ X, thendist(f(γx), φ(γ)f(x)) < ǫ; and
(3) if λ ∈ Λ, x ∈ X, thendist(f(ψ(λ)x), λf(x)) < ǫ.

Note that these functions need not be morphisms from the relevant cat-
egory. The equivariant Gromov–Hausdorff distance is defined from these
approximations just as with the standard Gromov–Hausdorffdistance.

An alternative definition was provided by Paulin (attributed by him to
Bonahon) [23]. This definition requires the same group to acton both
spaces. A different Gromov–Hausdorff approximation is used for each fi-
nite subgroup, and that approximation must be exactly equivariant with re-
spect to the action of the subgroup. Under this definition twospaces might
be considered to be separated by a positive distance if they differ only by an
automorphism of the group.

By [11, Proposition 3.6], given a sequence inMc
eq, if the sequence of

underlying metric spaces converges in the Gromov–Hausdorff topology to
a compact metric space then there is a subsequence which converges in the
equivariant Gromov–Hausdorff topology.

By [10, Theorem 2.1], the sequence of orbit spaces corresponding to a
convergent sequence inMc

eq must itself converge in the usual Gromov–
Hausdorff topology.

The following two examples demonstrate the types of convergence that
can occur without the hypotheses of Theorem A. In the first case, the group
is not fixed. In the second example, the group has been fixed butits actions
are not equicontinuous.

Example 2.4.LetZp, the cyclic group of orderp, act freely onS3 with orbit
spaceS3/Zp

∼= Lp,1. Then, asp → ∞, the limit action is that of a circle.
The lens spaces collapse to a limit orbit space homeomorphicto CP1.

Example 2.5. Let T 2 act isometrically on the round sphereS3. This torus
has two distinguished circle subgroups which act so as to give a disk for
orbit space. Consider the circle subgroupS1

p of T 2 which winds around the
first of these subgroupsp times and the second once. The orbit space of this
circle action is the so-called “weighted” projective spaceCP1

p,1. The limit
action on this occasion is that of the fullT 2. The weighted projective spaces
collapse to a limit orbit space homeomorphic to an interval.
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Convergence of non-compact spaces can also be defined by adding a
basepoint, provided that the closed metric balls around thebasepoint are
compact. Such sequences are said to converge if, for everyr > 0, the closed
metric balls of radiusr around the basepoint converge. Where equivariant
convergence of non-compact spaces is considered in the present work, the
basepoint will always be fixed by the group. In this case, convergence also
reduces to the convergence of closed balls.

2.2. Basics of Alexandrov geometry.Certain curvature conditions define
precompact subsets of the set of all compact metric spaces. For example,
Gromov showed that the class of all Riemannian manifolds of dimensionn,
with diameter less thanD, and with Ricci curvature greater than(n−1)k is
precompact [12]. Strengthening the curvature condition torequire a lower
bound on the sectional curvature provides much more structure on the limit
spaces, and it is in this context that Alexandrov geometry was first studied.

It is possible to show that, for a Riemannian manifold, the condition that
sectional curvature be≥ k can be expressed as a triangle-comparison con-
dition. Grove and Petersen showed [15] that the closure ofM·,D,·

k,·,v(n) is
contained within the class of all complete length metric spaces satisfying
this triangle-comparison condition. It is natural, then, to study this class in
its own right.

Definition 2.6. An Alexandrov spaceof finite dimensionn ≥ 1 is a locally
complete, locally compact, connected length space, with a lower curvature
bound in the triangle-comparison sense. By convention, a0–dimensional
Alexandrov space is either a one-point or a two-point space.

Many fundamental results in this area were proved by Burago,Gromov
and Perelman [5], and this paper is a good general reference for the subject.
They showed that the class of all Alexandrov spaces with curvature bounded
below byk is closed under passing to Gromov–Hausdorff limits, and under
quotients by isometric group actions. Given a sequence of spaces with a
uniform lower curvature bound and fixed dimensionn, the limit space has
dimension at mostn.

LetX be an Alexandrov space, and letp ∈ X. Then, also by [5], there is
a uniquely defined tangent cone atp, TpX, which can be obtained as a limit
object by rescalingX aroundp. TpX is itself an Alexandrov space, with
curvature≥ 0.

The most important singularities of an Alexandrov space areits extremal
subsets, introducted by Perelman and Petrunin [26]. The distance functions
in an Alexandrov space have well-defined gradients, and it ispossible to
flow along these gradients. The gradient flow gives a natural way to under-
stand an extremal subset.
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Definition 2.7. LetX be an Alexandrov space. A subsetE ⊂ X is extremal
if, for everyp ∈ X, the flow along the gradient ofdist(p, ·) preservesE.

Trivial examples of extremal sets are the empty set, and the entire space
X. Any point having a space of directions with diameter≤ π/2 is extremal,
as is the boundary of an Alexandrov space. The extremal subsets stratify the
space into manifolds, and informally they are usefully thought of as strata
with small normal spaces. Of greatest interest for the topicunder discussion
is the following result [26].

Proposition 2.8. LetX be an Alexandrov space, and letG be a compact
Lie group acting onX by isometries. LetXH be the closure of the set of
points in the orbit spaceX/G which are the image of points with isotropy
H. ThenXH is an extremal subset ofX/G.

Extremal sets survive the passage to Gromov–Hausdorff limits, and so
for any extremal setE, and any pointp ∈ E, there is a well defined tangent
subconeTpE ⊂ TpX which is also extremal. Conversely, ifE is a closed
subset ofX such thatTpE is extremal for eachp ∈ E, thenE is an extremal
subset.

2.3. The Stability Theorem. A crucial advance in the understanding of
Alexandrov spaces was made by Perelman with his proof of the Stability
Theorem [24]. The author recommends the treatment by Kapovitch [20]
for those who wish to learn more about this deep result.

The statement of the theorem given here is a relative versionof Perel-
man’s original theorem. It was proved by Kapovitch for the case where
only one extremal subset is under consideration, but as was pointed out by
Searle and the author [19], it is in fact true in greater generality.

Theorem 2.9 (Stability Theorem [24, 20, 19]). Let Xi be a sequence of
compact Alexandrov spaces of dimensionnwith curvature uniformly bounded
from below, converging to a compact Alexandrov spaceX of the same di-
mension. LetEi = {Eα

i ⊂ Xi}α∈A be a family of extremal sets inXi

indexed by a setA, converging to a family of extremal setsE in X.
Leto(i) : N → (0,∞) be a function withlimi→∞ o(i) = 0. Letθi : X →

Xi be a sequence ofo(i)–Gromov–Hausdorff approximations.
Then for all largei there exist homeomorphismsθ′i : (X, E) → (Xi, Ei),

o(i)–close toθi.

This result implies all the previously known finiteness results for mani-
folds, other than diffeomorphism finiteness in dimension four. It also has a
vital application in Alexandrov geometry. Consider the construction of the
tangent cone to an Alexandrov space by the convergence of thesequence
obtained by rescaling the metric around a certain point. By anon-compact
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version of Theorem 2.9, the local structure of the space is controlled by the
tangent cone.

Corollary 2.10. LetX be an Alexandrov space, and letp ∈ X. Then for
somer0 > 0, Br(p) ∼= TpX for all r < r0. Furthermore, for small enough
r0 the homeomorphism can be chosen so that, for every extremal set E,
E ∩Br(p) is mapped toTpE.

These small conical neighborhoods are extremely useful in the study of
Alexandrov spaces, and so it will be convenient to make the following def-
inition.

Definition 2.11. An open subsetU of an Alexandrov spaceX is called
cone-like aroundp if p ∈ U , and there is a homeomorphismf : U → TpX
with f(p) being the vertex of the cone andf(E ∩ U) = TpE for each
extremal setE.

For the proof of Theorem A, it will also be necessary to require the sta-
bility homeomorphisms to behave in a particular manner neara point, or
near an orbit of a group action.

Proposition 2.12. Under the assumptions of Theorem 2.9, letp ∈ X and
let pi ∈ Xi converge top. Then there is a smallr > 0 such that for
0 < δ < r and large i the homeomorphismsθ′i can be chosen to also
respect the distance fromp in the annulus aroundp. More precisely, for all
q ∈ Br(p) \Bδ(p), dist(pi, θ′i(q)) = dist(p, q).

If each of theXi andX admit an isometric action by compact Lie groups
Gi andG, and these actions form a convergent sequence, then for some
subsequence the pointspi andp may be replaced with the orbitsGi · pi and
G · p.

A brief proof will be given now, but reference to [20] is advised for a full
understanding of the details.

The proof of the stability theorem is carried out on a local basis. The
spaceX is covered by compact sets which are said to beframed.

Definition 2.13. A compact subsetP of an Alexandrov spaceX is called
k–framed ifP has a finite open coverUα such that there are regular maps
fα : Uα → Rk. In other words,P is covered by fiber bundles over subsets
of Rk.

If a k–framed set inX has a lift toXi, then it is possible to use the fram-
ing to construct a homeomorphism between the framed sets. These local
homeomorphisms are all glued together to construct the global homeomor-
phism. All of these results can be proved in parametrized versions, so that
the homeomorphisms respect certain maps.
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Proof of Proposition 2.12.For a suitable choice ofr the functionf(q) =
dist(p, q) is regular onBr(p) \Bδ(p) as well as onBr(pi) \Bδ(pi) for large
i, depending onδ. CoverX with framed sets so that for every framed setP
which intersects this annulus,f is the first co-ordinate of every framing map
fα. Then the local homeomorphisms between framed sets will allrespect
f on the annulus. The gluing of the local homeomorphisms can becarried
out to respectf on the annulus as well.

For the case of a group action, the orbit spacesXi/Gi converge toX/G,
and the distance functions in the orbit spaces have the necessary regularity
property. The lifts of these functions toXi andX are regular over points
where they are regular in the orbit space, and so the proof canbe applied in
this case also. �

3. EQUIVARIANT STABILITY

It is well known that a Gromov–Hausdorff convergent sequence can, after
passing to a subsequence, be reduced to a Hausdorff convergent sequence in
an enveloping metric space. This provides a more concrete object of study,
adding some convenience. This result can be generalized to the equivariant
setting, and so the slice theorem holds in the enveloping metric space. The
proof of Theorem A is based on a study of this enveloping space.

First, however, it is necessary to investigate the phenomenon of equicon-
tinuous sequences of actions. The additional assumption ofequicontinuity
is needed to establish the existence of a limit.

Definition 3.1. Let Xi be a sequence of compact metric spaces, and let
G be a compact Lie group which acts by isometries on each of themby a
mapρi : G × Xi → Xi. Then the sequence ofG–actions will be called
equicontinuousif, for some fixed metric onG, and for everyǫ > 0, there is
a δ > 0 such that for everyg ∈ G, p ∈ Xi and for eachi, ρ−1

i (Bǫ(ρi(g, p)))
contains a ball of radiusδ around(g, p) in the product metric.

As will be seen in Lemma 3.4, equicontinuity implies convergence. The
converse is a little trickier. In fact, if the representatives from an equiva-
lence class inMc

eq are chosen in a particular way, even a constant sequence
in Mc

eq might not be equicontinuous. For example, consider an action of
T 2 on a metric spaceX. By changing the group by a sequence of automor-
phisms( 1 k

0 1 ) ∈ SL(2,Z) with k → ∞ a non-equicontinuous sequence of
equivalent actions onX is generated.

The following proposition shows that, at least in the case ofAlexandrov
spaces with a uniform lower curvature bound, it is always possible to find
appropriate automorphisms rendering a convergent sequence equicontinu-
ous.
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The proof of this result relies on the center of mass construction from
Grove–Petersen [14], which allows for the construction of continuous maps
from discrete ones. In the review of this construction, bearin mind that the
Riemannian manifold will be the compact Lie groupG with a bi-invariant
metric.

Let (M, g) be a complete Riemannian manifold, withdimM = n, sec g ≥
k, vol(M, g) ≥ v anddiam(M, g) ≤ D.

A minimalµ–net forM is defined to be a set of points inM such that the
µ–balls cover all ofM but theµ

2
–balls are disjoint.

It is shown in [14] that certain constantsr, R > 0 andN ∈ N exist which
depend only onn, k, v andD, but not on the manifoldM itself, so that the
following hold:

(1) For any minimalµ–net, a ball of radiusµ will have non-empty in-
tersection with at mostN of theµ–balls centered on the members
of theµ–net.N depends only onn, k andD.

(2) Let p1, . . . pm ∈ M , and letλ1, . . . , λm > 0 be weights, so that
Σλi = 1. Letη < r(1+R+· · ·+Rm−1)−1. If dist(pi, pj) < η, i, j =
1, . . . , m, then a center of massC(p1, . . . pm, λ1, . . . , λm) is defined
which depends continuously on thepi and theλi, is unchanged on
dropping any point with weight 0, and satisfiesdist(C, pi) < η(1 +
R + · · ·+Rm) for eachi.

WriteK = 1 +R + · · ·+RN .

Proposition 3.2. LetG be a compact Lie group acting by isometries on a
compact Alexandrov spaceX of dimensionn and curvature bounded below
by k. Suppose that a sequence of Alexandrov spacesXi with the same di-
mensionn and lower curvature boundk is also acted on isometrically byG.
If (Xi, G) converges to(X,G) in the equivariant Gromov–Hausdorff topol-
ogy, then there is always an equicontinuous sequence of spaces equivalent
to (Xi, G) in Mc

eq.

Proof. First fix a bi-invariant Riemannian metricσ onG, and fix constants
N andK as above, which are appropriate to the metricσ. When a com-
pact Lie group acts on a compact metric space by isometries, the action
induces a continuous norm on the group. Letρi, ρ be norms onG defined
by ρi(g) = supx∈Xi

dist(x, gx) andρ(g) = supx∈X dist(x, gx). The norms
induce distance functions bydρ(g, h) = ρ(gh−1). These distance functions
are continuous with respect to the Riemannian metric.

Choose a sequenceǫi → 0 and(fi, φi, ψi), a triple of functionsfi : X →
Xi, φi : G→ G andψi : G→ G such that

(1) fi is an Gromov–Hausdorffǫi–approximation;
(2) if g ∈ G, x ∈ X, thendist(fi(gx), φi(g)fi(x)) < ǫi; and
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(3) if g ∈ G, x ∈ X, thendist(fi(ψi(g)x), gfi(x)) < ǫi.

Lemma 3.3. The functionψi may be chosen to be continuous.

Proof. Let νi > 0 be such thatdσ(g, h) < 2νi =⇒ dρi(g, h) < ǫi. LetAi

be a minimalνi–net in(G, σ). Let ηi > 0 converge to 0, but let eachηi be
large enough thatdρ(g, h) < 4ǫi =⇒ dσ(g, h) < ηi, and choose a minimal
ηi–netBi ⊂ (G, σ).

Define a mapα : Ai → Bi by mappingp ∈ Ai to an element ofBi

nearest (in theσ metric) toψi(p). If, for somep, q ∈ Ai, dσ(p, q) < 2νi,
thendσ(α(p), α(q)) < 3ηi. There is an induced map between the Euclidean
spacesRAi → RBi , where the coordinate for anyp ∈ Bi is obtained by
summing the co-ordinates for each element ofα−1(p).

Then a continuous map̃ψi : (G, ρi) → (G, ρ) may be defined by com-
posing maps(G, ρi) → RAi → RBi → (G, ρ).

LetAi =
{

p1i , . . . , p
ℓ
i

}

and choose smooth functionsf j
i : (G, σ) → RAi,

each having their support in the ball of radiusνi aroundpji , with Σjf
j
i = 1

and f j
i (p

k
i ) 6= 0 =⇒ j = k. The map(G, ρi) → RAi is given by

g 7→ f j
i (g). Note that points in the image of this map have at mostN

non-zero coordinates.
The map fromRAi → RBi is that induced byα, and the map from

RBi → (G, ρ) is given by the center of mass construction. Note that in the
domain points have at mostN non-zero coordinates, and the corresponding
elements ofBi are at pairwise distance at most3ηi.

To verify thatψ̃i will serve as part of the equivariant Gromov–Hausdorff
approximation, it is enough to show thatdρ(ψi(g), ψ̃i(g)) is uniformly bounded
overG, and that this bound is converging to zero. Letp1i , . . . , p

N2

i be those
elements ofAi within νi of g in theσ metric. Their images inBi underψ̃i

are then at mostηi from ψi(g) in theσ metric. The pointψ̃i(g) is obtained
from the elements ofBi via the center of mass construction, and so is at
most3ηiK from any of them. This gives a global bound ofηi(3K + 1) for
the difference betweenψi andψ̃i. �

Now, by the continuity of theρ distance function with respect toσ, it is
clear that for largei the (now assumed to be continuous) mapψi will be an
almost homomorphism in the sense of Grove–Karcher–Ruh [13]. That is
to say, for eachg, h ∈ G, dσ(ψi(gh)ψi(h)

−1, ψi(g)) ≤ q for a fixed small
q. By [13, Theorem 4.3], there is then a continuous group homomorphism
within 1.36q of ψi, and again by continuity ofρ, for large enoughi this
meansψi may be taken to be a homomorphism of Lie groups.

Finally, it is necessary to check that it is in fact anisomorphismof Lie
groups. LetHi be the kernel ofψi. Then(X,Hi) → (X, 1) in Mc

eq. It
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follows thatX/Hi → X in the Gromov–Hausdorff topology. However,
since dimension cannot increase in the limit [5], and since the Hausdorff
measure must converge,Hi must eventually be trivial. �

Lemma 3.4. LetG be a compact Lie group and let(Xi, G) be a sequence
ofG–spaces inMc

eq which converges to(X,Γ) in the equivariant Gromov–
Hausdorff topology. Suppose further that this sequence of actions is equicon-
tinuous. Then there is a subsequenceXij such that there is a metric on
X = X

∐

j Xij that

(1) restricts to the original metric on each ofXij andX;
(2) is invariant with respect to an action ofG, which restricts to the

original action on each of theXij ; and
(3) induces a convergence ofXij to X in the Hausdorff metric on the

closed subsets ofX ;

and thereforeG is, after factoring out any ineffective kernel of its actionon
X, isomorphic toΓ.

Proof. Fix Gromov–Hausdorffǫi–aproximationsfi : Xi → X which wit-
ness the Gromov–Hausdorff convergence of the underlying metric spaces.
Using these approximations, it is possible to define a limitingG–action on
X as follows.

Consider the actions as continuous mapsφi : G × Xi → Xi. Fixing
a metric onG, the functionsidG × fi are Gromov–Hausdorff approxi-
mations showing the convergence ofG × Xi to G × X. By the Grove–
Petersen–Arzelà–Ascoli Theorem, one can extract from theequicontinuous
subsequenceφi a compact subsequence converging to a continuous map
φ : G×X → X [15, Appendix]. It is clear that this map is also an isomet-
ric action.

Now pick approximationsgi : X → Xi such thatgi ◦ fi is close to the
identity. Lethi : Xi → Xi+1 be defined byhi = gi+1 ◦ fi. Thenhi is
a Gromov–Hausdorff5ǫi–approximation which is almost equivariant with
respect to the action ofG, and so(hi, idG, idG) can be used as an equivariant
Gromov–Hausdorffri–aproximation. The quantityri depends both onǫi
and on the rate of convergence of theφi to φ.

It is then possible to place a metric on the disjoint unionXi

∐

Xi+1

such thatdist(x, hi(x)) = ri (see Burago, Burago and Ivanov [4, Corol-
lary 7.3.28]). This metric can be renderedG-invariant by the usual av-
eraging procedure, at a small cost—hi is now a Gromov–Hausdorff3ri–
approximation. The restriction of the metric toXi and toXi+1 is un-
changed. Letdi be the Hausdorff distance betweenXi andXi+1 in this
metric.



EQUIVARIANT ALEXANDROV GEOMETRY AND ORBIFOLD FINITENESS 13

Following Petersen [28, p297], pass to a subsequence so thatdi < 2i

for all i. Then, by gluing the metrics on each of theXi

∐

Xi+1, a G–
invariant metric on

∐

iXi can be constructed, which restricts to the original
metric on eachXi. This space can be completed toX in such a way that
X = X

∐

iXi, andXi converges toX in the Hausdorff sense inX .
Since

∐

iXi is dense inX , the isometricG–action can be extended to an
isometric action on all ofX , and the extension toX is the limitingG-action
constructed at the beginning of the argument.

This action is, after factoring out any ineffective kernel,the limit of the
G–actions in the equivariant Gromov–Hausdorff topology. �

It is now possible to proceed to the proof of Theorem A. The proof relies
on a result of the author from the general theory of transformation groups
[18], given here as Theorem 5.4. This result, along with the justification for
its application here, is reviewed at the end of the paper, in Section 5.

Proof of Theorem A.Envelop the convergence.
By Lemma 3.4, one may assume by passing to a subsequence that there is

aG-invariant metric onX = X
∐

iXi which restricts to the original metrics
and actions on each of theXi, with Xi converging toX in the Hausdorff
metric on the closed subsets ofX . Fix approximationsθi : Xi → X.

Let G′ be the ineffective kernel of theG–action onX (it will be shown
later that this is trivial). Now(Xi, G), converges to(X,G/G′) in the equi-
variant Gromov–Hausdorff topology. Letπ : G → G/G′ be the projection
map. Then equivariant Gromov–Hausdorff approximations from (Xi, G)
to (X,Γ) which witness the convergence are given by the triple(θi, π, s)
wheres is a (possibly discontinuous) section ofπ.

The cohomogeneity is constant.
By applying the slice theorem toX , as a sequence of pointspi ∈ Xi

converges top ∈ X the isotropy groupGp must be larger thanGpi. In
particular, the principal orbits ofX have dimension no greater than those of
Xi. In other words,dim(X/G) ≥ dim(Xi/G).

On the other hand, the orbit spacesXi/G converge toX/G under a uni-
form lower curvature bound, so it follows thatXi/G andX/G have the
same dimension, and are therefore homeomorphic by Perelman’s Stability
Theorem.

The radius of the tubes is bounded.
Here the termtubeis used in the transformation groups sense, meaning

the image of a slice under translation by the group.
Let p ∈ X, and letp̄ be its image inX/G. As described by the author

and Searle [19, section 3.4], a tube in an Alexandrov space around the orbit
G · p can be constructed by choosing a strictly concave functionh̄ on a
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neighborhoodU of p̄ which achieves its maximum at̄p. This construction
is due to Perelman [25].

The gradient flow of̄h gives a retraction̄r : U → p̄. The function̄h lifts
to a functionh on a neighborhood ofG · p. The gradient flow ofh then
gives aG–invariant retractionr ontoG · p, showing that neighborhood to
be a tube around the orbit.

By Perelman and Petrunin [26, Lemma 4.3], the construction of h̄ is such
that strictly concave functions̄hi exist on neighborhoods inXi/G converg-
ing to h. Let p̄i be the maxima of thēhi. Let r be such that, for largei,
Br(p̄i) is contained in the domain of concavity ofh̄i.

This establishes the existence of a sequence of pointspi → p such that
there are tubes of a fixed radiusr around eachG · pi andG · p. Clearly the
orbitsG · pi are of the most singular type possible in the neighborhood.

The orbit-type survives passage to the limit.
It is claimed that for every subgroupH ⊂ G, after passing to a subse-

quenceXH
i → XH . Recall thatXH

i is a subset ofXi/G, the closure of the
set of orbits with isotropy typeH.

Let p̄i ∈ XH
i . Then there are pointspi ∈ Xi abovep̄i which have isotropy

containingH. Any accumulation pointp of the sequencepi is also fixed by
H, and lies above some accumulation point of thep̄i.

Next it is claimed that if, in fact,p is fixed by some larger groupK, then
there is a sequenceqi → p of points inXi which are fixed byK.

Fix r so that the tube of radiusr aroundG · p can be approximated by
tubes of radiusr aboutG · pi, with pi → p. By Proposition 2.12, for
large i the tubes aroundG · pi are homeomorphic to those aroundG · p.
Homeomorphism of the tubes implies homotopy equivalence ofthe orbits,
so the orbits are all of the same dimension, and have the same number of
components. In the case thatG is finite, this proves the claim.

Consider a tube in the enveloping spaceX aroundG · p, and fix for the
remainder of the proof a decomposition of the tube into slices at each point
of the orbit. After pickingpi to lie in a slice atp, Gpi = Li must be a
subgroup of full dimension inK.

Let K0 be the identity component ofK, and hence also of theLi. Let
Γ = K/K0. Now it is clear thatXi/K0 → X/K0, and this convergence is
equivariant with respect to the action ofΓ.

SinceΓ fixes the image ofp, p̄ ∈ X/K0, there are points̄qi ∈ Xi/K0

converging tōp which are also fixed byΓ. As noted in the previous section
of the proof, these points̄qi are of the most singular type possible locally,
and so they must correspond to fixed points ofK0, qi ∈ Xi. Theseqi then
have isotropy typeK as required.
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Construct the homeomorphisms.
Recall that the setsXH

i andXH are extremal subsets of the orbit space.
By the Stability Theorem, the convergenceXi/G→ X/G insideX /G can
then be used to establish homeomorphismsθi : X/G→ Xi/G which carry
XH toXH

i for every subgroupH. Theseθi are Hausdorff approximations
in the spaceX /G.

Now consider the spaceX/G as an abstract orbit space (see Definition
5.1). Let f : X/G → X /G be the obvious embedding ofX/G as the
orbit space ofX ⊂ X . Let fi be the embeddingθi ◦ f . Clearly fi con-
verges tof . Now each of theXi is aG–space overX/G. The convergent
sequence of embeddings intoX /G can be used to apply the Covering Se-
quence Theorem 5.4, to obtain strong equivalence of theXi, ie, equivariant
homeomorphisms ofXi with X which descend toθi.

Remove the subsequence.
Return to consideration of the original equicontinuous sequence(Xi, G).

If there is noN0 such that, for alln ≥ N0, the space(Xn, G) is equiv-
ariantly homeomorphic to the limit(X,G), there would be a subsequence
(Xij , G) of spaces converging to(X,G), but none of which are equivari-
antly homeomorphic to(X,G). However, by what has already been shown,
that subsequence must itself have a subsubsequence which infact is equiv-
ariantly homeomorphic to(X,G) in the tail, and this would yield a contra-
diction. �

These arguments can easily be applied to pointed convergence of non-
compact spaces in the case where the group fixes the basepoint.

Corollary 3.5. Let G be a compact Lie group and let(Xi, pi) be a se-
quence of pointed complete Alexandrov spaces of dimensionn and cur-
vature bounded below byk. Let G act isometrically on each ofXi, fix-
ing pi. Suppose the sequence converges to an action ofΓ on anothern–
dimensional complete pointed Alexandrov space(X, p) in the equivariant
Gromov–Hausdorff topology. Suppose further that, for every r > 0, this
sequence of actions is equicontinuous onBr(pi).

Then for eachR, ǫ > 0 and for largei there are open equivariant embed-
dings

ψi : BR+ ǫ
2
(p) → BR+ǫ(p)

coveringBR(pi). Furthermore, there is a subsequence such that the embed-
dings can be chosen to cover stability embeddings of the orbit spaces.

The non-equivariant version of the stability theorem may berephrased as
follows: For everyX in the class of Alexandrov spaces of dimensionnwith
curvature bounded below byk, there is anǫ = ǫ(X, k) such that every space
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in the class within Gromov–Hausdorff distanceǫ of X is homeomorphic to
X.

Theorem A can be rephrased in the same manner, using Proposition 3.2.

Theorem 3.6.LetG be a compact Lie group acting by isometries on a com-
pact Alexandrov spaceX of dimensionn and curvature bounded below by
k. Then there is someǫ = ǫ(X,G, k) such that any compact Alexandrov
space of dimensionn and curvature bounded below byk with an isomet-
ric G–action which is within equivariant Gromov–Hausdorff distanceǫ of
(X,G) is equivariantly homeomorphic to(X,G).

4. ORBIFOLDS

Orbifolds were first introduced by Satake under the nameV–manifolds
[31], as topological spaces locally modelled on a quotient of Euclidean
space by a finite group. Some basic facts about orbifolds are reviewed here.
The reader may refer to, among others, the book by Adem, Leidaand Ruan
[1] or Thurston’s notes [33] for further information.

Definition 4.1. A smoothn–dimensionalorbifold chartover a topological
spaceU is a triple(Ũ ,ΓU , πU) such thatŨ is a connected open subset of
Rn, ΓU is a finite group of smooth automorphisms ofŨ andπU : Ũ → U is
aΓU–invariant map inducing a homeomorphism̃U/ΓU

∼= U .

For convenience, a chart will sometimes be referred to as being over a
pointp. This will mean that the chart is over some neighborhood ofp.

LetU andV be open subsets of a topological spaceX, and let(Ũ ,ΓU , πU)

and(Ṽ ,ΓV , πV ) be orbifold charts of dimensionn overU andV respec-
tively. The charts are calledcompatibleif, for every p ∈ U ∩ V , there is
a neighborhoodW of p and an orbifold chart(W̃ ,ΓW , πW ) overW such
that there are smooth embeddingsλU : W̃ →֒ Ũ andλV : W̃ →֒ Ṽ with
πV ◦ λV = πW andπU ◦ λU = πW .

As usual, an orbifold atlas on a spaceX will mean a collection of com-
patible charts coveringX. Now the definition of an orbifold can be made.

Definition 4.2. A smoothorbifold of dimensionn is a paracompact Haus-
dorff space equipped with an atlas of orbifold charts of dimensionn.

An orbifold homeomorphism (respectively diffeomorphism)is a home-
omorphism of the underlying topological space which can locally be lifted
to an equivariant homeomorphism (respectively diffeomorphism) of charts.
Borzellino and Brunsden (see [2]) have pointed out that thisdefinition of
an orbifold map is not sufficient for many purposes, though itis appropriate
to the question currently under consideration. Four possible definitions of
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orbifold map are given there, of which this is the most naı̈venotion, the
reduced orbifold map.

Let X be an orbifold, letp ∈ X, and let(Ũ ,Γ, π) be a chart overp
with π(y) = p. The isotropy group ofy will be called thelocal groupat
p, and will be written asΓp. It is uniquely defined up to conjugacy inΓ,
and choosing a different chart does not change the isomorphism type of the
group.

In fact, one can always choose a linear chart overp such that the group
of automorphisms is isomorphic toΓp. By this is meant a chart of the form
(Rn,Γp, π) where the action ofΓp is via a faithful orthogonal representation
ρp : Γp →֒ O(n). Such a chart will be referred to as alinear chart around
p. The representation is also uniquely determined up to isomorphism, and
will be called thelocal actionat p. The differential of the action ofΓp at
the origin of the chart is also isomorphic toρp.

A Riemannian metricon an orbifold can be given by fixing a finite atlas
and a partition of unity with respect to the corresponding cover, and choos-
ing Riemannian metrics on the charts which are invariant with respect to
the finite group action. An orbifold equipped with a Riemannian metric is
called a Riemannian orbifold. Once the metric on the orbifold is given it
can be lifted to the maximal atlas in a canonical manner. The various no-
tions of curvature at points of an orbifold can then be definedby reference
to the curvature of the charts.

It is straightforward to see that an orbifold with sectionalcurvature≥ k is
also an Alexandrov space with curvature≥ k. The tangent cone at any point
of an orbifold is then well-defined, and coincides with the usual notion of
tangent space for orbifolds. The notion of an extremal set now finds a very
natural application in orbifolds.

Proposition 4.3. LetX be an orbifold of dimensionn, Γ a finite group, and
ρ : Γ →֒ O(n) a linear representation ofΓ. LetXρ be the closure of all
points with local actionρ. ThenXρ is an extremal set ofX.

Proof. The result is clear wheren = 1. Let p ∈ Xρ and consider the local
action atp byΓp. The tangent cone atp is the cone on the quotient of the unit
sphere byΓp. Consider the image of those points in the unit sphere having
isotropy isomorphic toρ. The closure of the cone on this set isTpXρ and
by induction it is extremal inTpX. SinceXρ is closed, it is extremal. �

The following lemma now shows that a linear chart aroundp can be ex-
tended over any cone-like set aroundp.

Lemma 4.4. LetX be an orbifold, and letp ∈ X. LetU be a cone-like set
aroundp. Then there is a linear chart overU aroundp.
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Proof. Consider the differential of the local action ofΓp onRn. The quo-
tient of this action is the tangent cone atp, TpX.

Let f : U → TpX be a homeomorphism carrying each extremal setE in
U to TpE. Note that becauseU is cone-like,f preserves the local action at
every point.

Using a maximal atlas, coverU by the ranges of all possible linear charts,
{Uκ}κ∈K . Discard anyUκ such thatf(Uκ) is not the range of a linear chart
in TpX.

Observe that this reduced family still coversU . Suppose someq ∈ U
is not in any element of the reduced family. Then for everyκ ∈ K such
thatq ∈ Uκ, f(Uκ) is not a linear chart. Butf(q) is covered bysomelinear
chart, and the intersectionW of the range of this chart withf(Uκ) is also
covered by a linear chart. Then becausef−1(W ) ⊂ Uκ it too is covered by
a linear chart. It follows thatf−1(W ) = Uλ for someλ ∈ K, and is in the
reduced family.

Select a countable subcover,U1, U2, . . ., and writeVi for f(Ui). Let Γi

be the local group acting on the chartsUi andVi. The chartsṼ1, Ṽ2, . . .
can be glued together to construct a chart over all ofTpX. The gluing
requires[Γp : N(Γi)] copies ofṼi. The manner of this gluing gives a set
of instructions which allows one to glue the chartsŨ1, Ũ2, . . . together to
obtain the desired chart̃U .

Since this chart is built by gluing together charts from the orbifold atlas,
it is compatible with the atlas. �

By the Stability Theorem 2.9,O·,D,·
k,·,v (n) contains only finitely many topo-

logical types. To prove Theorem B, it is therefore sufficientto prove the
following.

Theorem 4.5. Let X be a compact topological space. Then, up to orb-
ifold homeomorphism, there are only finitely many orbifold structures onX
which belong toO·,D,·

k,·,v (n).

Proof. Aiming for a contradiction, letOi be a sequence of orbifolds in
O·,D,·

k,·,v (n), all of which have underlying topological spaceX, and no two

of which are orbifold homeomorphic. By compactness ofAlex·,D,·
k,·,v(n),

a subsequence ofOi converges in the Gromov–Haudorff sense to some
Y ∈ Alex·,D,·

k,·,v(n) which also has underlying spaceX. Abusing notation,
the subsequence will still be written asOi. Since there will be many more
instances of passing to subsequences, this abuse of notation will be repeated
throughout the proof.

By Stanhope [32] there is a uniform upper bound on the order ofthe local
group of a point inO·,D,·

k,·,v (n). Recall a finite group has only finitely many
linear representations in a given dimension. It follows that all the possible



EQUIVARIANT ALEXANDROV GEOMETRY AND ORBIFOLD FINITENESS 19

local actions up to isomorphism can be listed byρℓ : Gℓ → GL(n), for
ℓ = 1, . . . , m wherem is some finite number. LetEℓ

i beOρℓ
i , the closure of

the subset ofOi with local group action isomorphic toρℓ. By Proposition
4.3 theEℓ

i are extremal sets.
Passing to a subsequencem times if necessary, one may assume that

each sequenceEℓ
i converges to an extremal subsetEℓ ⊂ Y . Now, by the

Stability Theorem 2.9, there are homeomorphismshi : Y → Oi which are
Gromov–Hausdorff approximations and carry each of theEℓ onto theEℓ

i .
To prove the result, it is now sufficient to show thathij : Oi → Oj given

by hij = hj ◦ h
−1
i is an orbifold homeomorphism.

Let pα be a set of points inY such thatY is covered by cone-like metric
ballsUα centered atpα. Then the setshi(Uα) are also cone-like around
pαi = hi(p

α), and coverOi. Denote these sets byUα
i .

By Lemma 4.4 eachUα
i is covered by a chart(Ũα

i ,Γpαi
, πUα

i
). By passing

to a subsequence, we may assume that theŨα
i form a convergent sequence

in the pointed equivariant Gromov–Hausdorff topology, converging to some
object(Ũα,Γpα) ∈ Mc

eq.
Now, by Theorem A,Ũα

i and Ũα are equivariantly homeomorphic by
someFi : Ũ

α → Ũα
i . TheFi induce homeomorphismsfi : Ũα

i /Γpαi
→

Ũα/Γpα which are Hausdorff approximations witnessing the Hausdorff con-
vergence of the orbit spaces inside the enveloping orbit space.

Write µα
i for the isometryŨα

i /Γpαi
→ Uα

i induced byπUα
i

.

Ũα
i Ũα

Ũα
i /Γpαi

Ũα/Γpα

Uα
i Uα

Fi

∼
=

µα
i

∼=

fi

∼
=

hi

∼
=

Now the gap may be filled in by a homeomorphismφi : Ũ
α/Γpα → Uα

given byh−1
i ◦µα

i ◦fi. Theφi make up a sequence of Gromov–Hausdorff ap-
proximations, and the sequence converges to some isometryφ : Ũα/Γpα →
Uα.

Then thefi may be adjusted slightly, settinggi = (µα
i )

−1 ◦ hi ◦ φ. Since
φi converges toφ, these homeomorphismsgi will also witness the Gromov–
Hausdorff convergence of̃Uα

i /Γpαi
to Ũα/Γpα. By Theorem A, new equi-

variant homeomorphismsGi : Ũ
α → Ũα

i can be chosen which will induce
the homeomorphismsgi.
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This gives a non-smooth orbifold chart overUα, (Ũα,Γpα, φ) such that
thehi : Uα → Uα

i are orbifold homeomorphisms. The mapshij are then
also orbifold homeomorphisms. �

5. TAMENESS OFALEXANDROV SPACES

This section will provide the necessary background to Theorem 5.4 and
justify its application in Theorem A. The result is a refinement of Palais’
classification ofG–spaces [22] for orbit spaces which are “tamely parti-
tioned”, and appears in [18]

For a subgroupH ofG, write (H) for the conjugacy class ofH. Say that
(H) ≤ (K) if K has a subgroup which is conjugate toH.

Definition 5.1. LetG be a compact Lie group. Then anabstract orbit space
for G is a locally compact, second countable spaceZ together with a par-
tition {Z(H)}H⊂G of Z such that, for each(H), ∪

{

Z(K)

∣

∣ (K) ≤ (H)
}

is
open.

A G–space overZ is then a space with an action ofG by homeomor-
phisms, such thatX/G is homeomorphic toZ, via a homeomorphism that
carries the orbit-type partition ofX/G to the partition onZ.

The notion of tameness used is quite a mild topological property, and it
will be shown that the orbit spaces of isometric group actions on Alexandrov
spaces satisfy it. The definition first requires the concept of a controlled
homotopy.

Definition 5.2. Let U be an open cover of a topological spaceZ. Then a
mapf : Y × [0, 1] → Z is called aU–homotopyif for eachy ∈ Y there is
someU ∈ U such thatf(y, t) ∈ U for all 0 ≤ t ≤ 1.

In the case whereZ is metric andU is a cover by metric balls of radius
ǫ
2
, aU–homotopy may be called anǫ–homotopy.

It will be convenient to move from the partition onZ to the related fil-
tration. For the purposes of this paper, a filtration may havean index set
which is only partially ordered. For(H) ∈ Ω, write Z≥(H) for the union
of all Z(K) such that(K) ≥ (H). Z≥(H) is a closed set. These setsZ≥(H)

make up a filtration ofZ indexed by the partially ordered setΩ, but with
the reverse ordering.

Definition 5.3. Let Z be a filtered set (with the filtration indexed by a set
which is possibly only partially ordered). The filtration issaid to betame
if for eachY ⊂ Z which is a union of elements of the filtration and for
each open coverU of Z there are a neighborhoodV of Y and a homotopy
h : (Z \ Y )× I → Z \ Y satisfying:

(1) h is the identity on(Z \ Y )× {0},
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(2) h((Z \ Y )× {1}) ⊂ Z \ V ,
(3) h is aU–homotopy, and
(4) h preserves every member of the filtration onZ \ Y .

The key result onG–spaces which is applicable in the proof of Theorem
A can now be stated.

Theorem 5.4 (Covering Sequence Theorem [18]). Let X be aG–space
having finitely many orbit-types, and letY = X/G be its orbit space. Let
Z be an abstract orbit space which is compact, metrizable, andtamely par-
titioned. Letfn : Z → Y be a sequence of embeddings ofZ which carry
the partition ofZ to the orbit-type partition ofY , restricted to the image of
fn. Suppose thatf = limn→∞ fn exists, and is also such an embedding.

Then, for large enoughn, the invariant subspaces ofX over the images
of fn are equivariantly homeomorphic to that over the image off , and the
equivariant homeomorphisms induce the mapsf ◦ f−1

n .

In the case under consideration, where the orbit spaceZ is an Alexandrov
space, and its partition is by extremal subsets, the remaining results of this
section gives the necessary “tameness” requirement for application of the
theorem.

First, it will be established that tameness is a local property. Say that the
filtration is locally tame if, for each closedY ⊂ Z as above, and for each
y ∈ Y , there is an open setUy containingy so that for each open coverU of
Z there is a filtration-preservingU–homotopyr : (Uy \Y )× [0, 1] → Z \Y
deformingUy \ Y intoZ \ V for some openV ⊃ Y .

Proposition 5.5.LetZ be a compact metrizable space with a filtration. The
filtration is tame if and only if it is locally tame.

Proof. EndowZ with a metric, and replace the given coverU with a cover
by ǫ–balls, and aim to construct anǫ–homotopy.

CoverZ with finitely many open setsU1, . . . , UN so thatY is tame in
eachUi. Choose continuous functionsai : Z → [0, 1] so that the support
of eachai is in Ui andΣiai = 1. Let ri : (Ui \ Y ) × [0, 1] → Z \ Y
be an ǫ

N
–homotopy deformingUi \ Y into Z \ V in a stratum-preserving

manner for some openV ⊃ Y . (SinceN is finite,V may be assumed not to
depend oni.) By an appropriate choice ofri, one may assume further that
ri((Ui \ Y )× [ 1

N+1
, 1]) ⊂ Z \ V and thataj ◦ ri is a 1

(N+1)3
–homotopy for

eachj. Extend eachri overZ × {0} by the identity.
New homotopiesRi : (Z \ Y ) × [0, 1] → Z \ Y can be constructed by

Ri(x, t) = ri(x, ai(x)t). WriteRj : (Z \Y )× [0, 1] → Z for the homotopy
given by concatenatingR1, . . . Rj . It is claimed thatRN is the required
deformation.
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Certainly since eachri is stratum-preserving, eachRi is also, and so is
eachRj . Since eachri is an ǫ

N
–homotopy,RN is anǫ–homotopy. It remains

only to show thatRN((Z \Y )×{1}) ⊂ Z \U for some open neighborhood
U of Y .

For eachq ∈ Z \ Y , there is somei so thatai(q) ≥ 1
N

. Because each
of the homotopiesrk changes the value ofai by no more than 1

(N+1)3
, there

is somek ≤ N so thatak(Rk−1(q, 1)) > 1
N

− 1
(N+1)2

> 1
N+1

and hence

Rk(q, 1) ∈ Z \ V . In other words, everyq ∈ Z \ Y enters the compact
subsetZ \ V at some point in the construction ofRN . The homotopy will
continue to deform the subsetZ \ V , but its image must remain compact.

It follows thatRN deformsZ \ Y into a compact subset, and its comple-
ment is the desiredU . �

Proposition 5.6. LetZ be a compact Alexandrov space, and letE ⊂ Z be
an extremal subset. Then for eachǫ > 0 there are a neighborhoodV of E
and a homotopyh : (Z \ E)× I → Z \ E satisfying:

(1) h is the identity on(Z \ E)× {0},
(2) h((Z \ E)× {1}) ⊂ Z \ V ,
(3) h is anǫ–homotopy, and
(4) h preserves the extremal subsets ofZ \ E.

Proof. The proof is by induction on the dimension ofZ. If dim(Z) = 1,
Z is a circle or a closed interval, and the result clearly holds. Suppose the
result has been shown for all compact Alexandrov spaces of dimension at
mostn− 1.

By Proposition 5.5 it is sufficient to show the result locally. CoverE by
setsU1, . . . , UN which are cone-like around pointsp1, . . . , pN ∈ E. The
result is shown if it can be shown for eachUi.

Choose a finite cover ofZ by balls of radius ǫ
2N

. Since eachUi is cone-
like, these give finite coversUi of eachTpiZ. An inspection of the proof of
Proposition 5.5 shows that it will be sufficient to constructUi–homotopies
on eachTpiZ.

Since the tangent cone is not compact, Proposition 5.5 does not apply
directly toTpiZ itself. However, it does apply to the space of directions,
and so it is not too hard to adapt it to the cone.

Let o be the vertex ofTpiZ. By the compactness ofΣpiZ (which will be
writtenΣi for convenience), there are an unbounded increasing sequence of
numbers0 < t0 < t1 < t2, . . . and finite coversVj of Σi by balls of radius
δj for eachj = 0, 1, 2, . . . so that

Wi = {Bo(t1)} ∪ {Vj × (tj , tj+2) : j = 0, 1, 2, . . .} .

is a star-refinement ofUi.
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By the induction hypothesis, for eachj there is a homotopy onΣi \ΣpiE
deforming away from an open neighborhood ofΣpiE. This may be taken to
create aWi–homotopy on(Σi\ΣpiE)×(tj , tj+2). By gluing these together,
aUi–homotopy on(Σi \ ΣpiE)× (t0,∞) can be constructed.

The homotopy can then easily be extended by coning to aUi–homotopy
onTpiZ \ TpiE, but it will not deform away from an open neighborhood of
the origin of the cone. If it is followed with a sufficiently small radial strong
deformation retraction away from the origin, however, it will satisfy all the
necessary properties.

This gives aUi–homotopy onTpiZ as required. These areǫ
N

homotopy
onUi, and by Proposition 5.5 can be glued together to given anǫ–homotopy
onZ. �
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