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EQUIVARIANT ALEXANDROV GEOMETRY AND ORBIFOLD
FINITENESS

JOHN HARVEY

ABSTRACT. LetacompactLie group actisometrically on a non-collagsi
sequence of compact Alexandrov spaces with fixed dimensidruai-
form lower curvature and upper diameter bounds. If the secpi®f
actions is equicontinuous and converges in the equivafianmov—
Hausdorff topology, then the limit space is equivariantyrteomorphic
to spaces in the tail of the sequence.

As a consequence, the class of Riemannian orbifolds of dirnen
n defined by a lower bound on the sectional curvature and themel
and an upper bound on the diameter has only finitely many membe
up to orbifold homeomorphism. Furthermore, any class ofpsatral
Riemannian orbifolds with a lower bound on the sectionalature is
finite up to orbifold homeomorphism.

1. INTRODUCTION

The Gromov—Hausdorff topology on the set of all compact mepaces
has been widely studied since its introduction by Gromov 3811[12].
Consideration of this topology led naturally to the defontof new classes
of metric spaces of geometric interest. The present workidens Alexan-
drov spaces.

An Alexandrov space has a lower curvature bound which génesahe
lower sectional curvature bound on a Riemannian manifoltes€ spaces
arise naturally as limits of sequences of Riemannian mbtsfaith a uni-
form lower sectional curvature bound.

One of the deepest results in Alexandrov geometry is Peréinabil-
ity Theorem [24], which states that if a sequence of compaexandrov
spaces has a uniform lower curvature bound, and neithersgomlvound-
edly in terms of its diameter nor collapses in terms of its efision, its
topological type does not change on passage to the limit.
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2 JOHN HARVEY

This result is almost omnipresent in Alexandrov geometryne @nay
construct the tangent cone of an Alexandrov space at a pbyitaking the
limit of the space under rescaling aroundThe Stability Theorem shows
that the space is locally homeomorphic to its tangent cametlzerefore, at
least topologically, its singularities are very contrdlle

Itis desirable to obtain an analogous convergence resthieiaquivariant
setting. Here the appropriate topology is Fukaya’'s eqiawhrtGromov—
Hausdorff topology [10].

In this vein, Searle and the author showed that an isomaetticraon an
Alexandrov space is locally determined by the isotropyaactt the point
[19]. The main theorem of the present work gives a sufficientition for
a convergent sequence @Gfactions on Alexandrov spaces with a uniform
lower curvature bound to be stable, in the sense that thérdignaction is
equivariantly homeomorphic to those in the tail of some sghgnce.

Theorem A. Let G be a compact Lie group and Iét; be a sequence of
compact Alexandrov spaces of fixed dimensipwith curvature bounded
below byk and diameter bounded above By each with an effective iso-
metric action ofG. Suppose thatX;, G) converges in the equivariant
Gromov—Hausdorff topology teX, I'), where X is also of dimensiom.
Suppose further that the sequence of actions is equicansiu

Then the groups: andI” are isomorphic and, for large, the spacesX;
are equivariantly homeomorphic tg.

Furthermore, ifd;: X/G — X;/G are homeomorphisms which witness
the Gromov—Hausdorff convergence of the orbit spaces,ttiee is a sub-
sequence for which the equivariant homeomorphi&ms- X; can be cho-
sen so that they descendio

The theorem can also be stated as follows: In the space obAtkrv
G—-spaces of dimensionwith curvature bounded below Bywith the equi-
variant Gromov—Hausdorff topology, every point has a neaghood con-
sisting only of Alexandrov spaces to which it is equivarigmtormeomor-
phic.

Placed in this form, the original Stability Theorem is alsmaor contri-
bution towards the question of how the geometry of a Rieneanmanifold
controls its topology. The problem of finding geometric doasts to de-
fine a class of manifolds which is finite up to homotopy, homergrhism
or diffeomorphism has a long history.

If the class is defined by bounds on sectional curvature, eli@mand
volume, then a convenient notation is to wme;f;ﬁ’v(n). This represents
the class of all Riemannian manifoldsz/, g) with £ < sec, < K, d <
diam(M) < D andv < vol(M) < V. Where a value is replaced with'*
the condition is understood to be deleted.
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The first such result is that of Weinstein, who showed thatgfo- 0,
M§7’j7’j(2n), the class of unformly pinched positively curved manifotids
even dimension, has only finitely many members up to homoi{agy.
Shortly after this, Cheeger showed that, fogz 4, M, (n) has finitely
many simply connected members up to dlffeomorphlsm [6]. 2R],[ Pe-
ters shows that this result still holds for= 4, as well as removing the
hypothesis of simple connectivity.

Grove and Petersen removed the upper bound on sectionatergyand
obtained finiteness oM;;ff’v'(n) up to homotopy [14]. Shortly afterwards,
in collaboration with Wu, this result was improved to showténess up
to homeomorphism for. > 4 [16]. As long as the dimension is not four,
the work of Kirby and Siebenmann [21] implies finiteness udifteomor-
phism.

Perelman’s Stability Theorem [24] showed thﬂdbx;;f’v'(n), the corre-
sponding class of Alexandrov spaces, is finite up to homephism. A
fortiori, this generalizes the Grove—Petersen—Wu finiteness tesailtdi-
mensions.

Theorem B uses the equivariant version of the Stability Téeoto gen-
eralize the homeomorphism finiteness result of Grove, Betteand Wu to
the area of Riemannian orbifolds. An orbifold is a mild gextieation of a
manifold, and, to give just a few examples, the concept hasdapplica-
tions in Thurston’s work on the Geometrization Conject88]] the con-
struction of a new positively curved manifold by Dearrid@ftand Grove—
Verdiani—Ziller [17], and string theory, such as Dixon, Mey, Vafa and
Witten’s conformal field theory built on a quotient of a tof8% The same
convenient notation can be used for orbifolds, here reptasit with O.

The first finiteness result for orbifolds is that of Fukaya][M@ho gener-
alized the result of Cheeger, showing that a subclag8;of" (n) is finite
up to orbifold diffeomorphism. Fukaya used a much more xﬁmte def-
inition of orbifold, considering only the orbit spaces oblal actions by
finite groups on Riemannian manifolds. This correspondsitatwhurston
called a “good” orbifold [33].

Working in dimension two, Proctor and Stanhope showed(ﬂ;g@g@) is
finite up to orbifold diffeomorphism [30], providing a firsegeralization of
the result of Grove, Petersen and Wu. The homeomorphisrarigsts result
was then shown in all dimensions by Proctor, provided thé@has only
isolated singularities [29]. Here that assumption is reeapeompleting the
generalization of Grove—Petersen—Wu’s homeomorphistefiass.

Theorem B. For any k, D, v, n, the cIassO;;ff; (n) has only finitely many
members up to orbifold homeomorphism.
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By Weyl's asymptotic formula, which Farsi has shown is vdbd orb-
ifolds [9], a Laplace isospectral class of orbifolds hasdix®lume and
dimension. Stanhope has shown that, in the presence of a bwad on
Ricci curvature, such a class has a uniform upper bound odiateeter
[32], and so, just as in [29], the following corollary is ctea

Corollary C. Any class of Laplace isospectral orbifolds with a uniform
lower bound on its sectional curvature has only finitely mamgmbers up
to orbifold homeomorphism.

This generalizes the similar result of Brooks, Perry anceiRen for
Laplace isospectral manifolds [3]. While one cannot heardihape of an
orbifold, one can, at least in the presence of a lower seaitionrvature
bound, know that there are only finitely many possibilities.

Acknowledgements.This research was carried out as part of the author’s
dissertation project at the University of Notre Dame, wtik ever-helpful
advice of Karsten Grove. During that time, the author wapseted in part
by a grant from the U.S. National Science Foundation.

The author is grateful to Vitali Kapovitch and Curtis Pro foteresting
and helpful conversations on this subject, and to Karst@vé&ior pointing
out the possibility of using [13] to prove Proposition 3.2.

2. PRELIMINARIES

2.1. Gromov—Hausdorff topologies. A general approach for proving finite-
ness results such as Theorem B [16, 24, 29] is to combine aaximgss or
precompactness result for the class under consideratitnangtability re-
sult. A particularly useful topology (in fact, a metric) dmetset of isometry
classes of compact metric spaces was proposed by GromovGi@pnov’'s
metric generalizes the Hausdorff metric on the closed salide compact
metric space.

Definition 2.1. Let (X, dx) and(Y, dy) be metric spaces. Afunctioft X —

Y (not necessarily continuous) is called an Gromov—Haudeafproximation
if, forall p,q € X, |dx(p, q) — dy(f(p), f(q))| < e and anc—neighborhood

of the image off covers all ofY’.

Definition 2.2. TheGromov—Hausdorff distandeetween two compact met-
ric spaceg X, dx) and(Y,dy) is the infimum of the set of all such that
there are Gromov—Hausdotfapproximations — Y andY — X.

The equivariant Gromov—Hausdorff topology was first defing&ukaya
[10], and achieved its final form some years later in his woithwam-
aguchi[11]. Consider the set of ordered p&iv$, ') where) is a compact
metric space antl is a closed group of isometries of. Say that two pairs
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are equivalent if they are equivariantly isometric up to atomorphism of
the group. LetMg, be the set of equivalence classes of such pairs.

Definition 2.3. Let (X, T'), (Y, A) € M¢,. Anequivariant Gromov—Hausdorff
e—approximationis a triple(f, ¢,v) of functionsf: X — Y, ¢: ' = A
andy: A — I' such that

(1) fis an Gromov—Hausdoréapproximation;
(2) if vy e ',z € X, thendist(f(yz), ¢(v) f(z)) < € and
() if A e A,z € X, thendist(f(v(N)z), Af(x)) < e.

Note that these functions need not be morphisms from theaeleat-
egory. The equivariant Gromov—Hausdorff distance is ddfinem these
approximations just as with the standard Gromov—Hausddsfénce.

An alternative definition was provided by Paulin (attribiifey him to
Bonahon) [23]. This definition requires the same group toaactoth
spaces. A different Gromov—Hausdorff approximation isdufee each fi-
nite subgroup, and that approximation must be exactly eqaimt with re-
spect to the action of the subgroup. Under this definition $paces might
be considered to be separated by a positive distance if iffeyahly by an
automorphism of the group.

By [11, Proposition 3.6], given a sequenceMd; , if the sequence of
underlying metric spaces converges in the Gromov—Hauismadlogy to
a compact metric space then there is a subsequence whicérgesun the
equivariant Gromov—Hausdorff topology.

By [10, Theorem 2.1], the sequence of orbit spaces correspgro a
convergent sequence g, must itself converge in the usual Gromov—
Hausdorff topology.

The following two examples demonstrate the types of coremrg that
can occur without the hypotheses of Theorem A. In the first dhe group
is not fixed. In the second example, the group has been fixeitskadtions
are not equicontinuous.

Example 2.4.LetZ,, the cyclic group of ordep, act freely onS? with orbit
spaceS®/Z, = L,,. Then, ap — oo, the limit action is that of a circle.
The lens spaces collapse to a limit orbit space homeomotpliie!.

Example 2.5. Let T? act isometrically on the round sphe$é. This torus
has two distinguished circle subgroups which act so as te gidisk for
orbit space. Consider the circle subgratjpof 72 which winds around the
first of these subgroupstimes and the second once. The orbit space of this
circle action is the so-called “weighted” projective spéﬁé;,,l. The limit
action on this occasion is that of the fidlf. The weighted projective spaces
collapse to a limit orbit space homeomorphic to an interval.
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Convergence of non-compact spaces can also be defined hygaadi
basepoint, provided that the closed metric balls around#sepoint are
compact. Such sequences are said to converge if, for every, the closed
metric balls of radiug around the basepoint converge. Where equivariant
convergence of non-compact spaces is considered in therpresrk, the
basepoint will always be fixed by the group. In this case, eagence also
reduces to the convergence of closed balls.

2.2. Basics of Alexandrov geometry.Certain curvature conditions define
precompact subsets of the set of all compact metric spac@sexample,
Gromov showed that the class of all Riemannian manifoldsroédsionn,
with diameter less thaf, and with Ricci curvature greater thém— 1)k is
precompact [12]. Strengthening the curvature conditioretpire a lower
bound on the sectional curvature provides much more steictuthe limit
spaces, and it is in this context that Alexandrov geometry fivat studied.

It is possible to show that, for a Riemannian manifold, theditoon that
sectional curvature be £ can be expressed as a triangle-comparison con-
dition. Grove and Petersen showed [15] that the closurﬂ/lgff;(n) is
contained within the class of all complete length metriccggasatisfying
this triangle-comparison condition. It is natural, themstudy this class in
its own right.

Definition 2.6. An Alexandrov spacef finite dimensiom > 1 is a locally
complete, locally compact, connected length space, witwai curvature
bound in the triangle-comparison sense. By conventiaik;dimensional
Alexandrov space is either a one-point or a two-point space.

Many fundamental results in this area were proved by Bur&gomov
and Perelman [5], and this paper is a good general referentleef subject.
They showed that the class of all Alexandrov spaces withature bounded
below byk is closed under passing to Gromov—Hausdorff limits, andeund
guotients by isometric group actions. Given a sequence afespwith a
uniform lower curvature bound and fixed dimenstarthe limit space has
dimension at most.

Let X be an Alexandrov space, and je€ X. Then, also by [5], there is
a uniquely defined tangent conepafl,, X', which can be obtained as a limit
object by rescaling{ aroundp. 7, X is itself an Alexandrov space, with
curvature> 0.

The most important singularities of an Alexandrov spacetarextremal
subsets, introducted by Perelman and Petrunin [26]. Thardis functions
in an Alexandrov space have well-defined gradients, andpbssible to
flow along these gradients. The gradient flow gives a natuaslter under-
stand an extremal subset.



EQUIVARIANT ALEXANDROV GEOMETRY AND ORBIFOLD FINITENESS 7

Definition 2.7. Let X be an Alexandrov space. A subgetC X is extremal
if, for everyp € X, the flow along the gradient dfist(p, -) preserved-.

Trivial examples of extremal sets are the empty set, andritieeespace
X. Any point having a space of directions with diameterr /2 is extremal,
as is the boundary of an Alexandrov space. The extremal tsustsatify the
space into manifolds, and informally they are usefully thiouof as strata
with small normal spaces. Of greatest interest for the topder discussion
is the following result [26].

Proposition 2.8. Let X be an Alexandrov space, and I@tbe a compact
Lie group acting onX by isometries. LeX be the closure of the set of
points in the orbit spac&’/G which are the image of points with isotropy
H. ThenX*# is an extremal subset of/G.

Extremal sets survive the passage to Gromov—Hausdorffdjrand so
for any extremal sef’, and any poinp € F, there is a well defined tangent
subconel,, E C T,X which is also extremal. Conversely,#f is a closed
subset ofX such thafl), E is extremal for eachp € £, thenE is an extremal
subset.

2.3. The Stability Theorem. A crucial advance in the understanding of
Alexandrov spaces was made by Perelman with his proof of thkilBy
Theorem [24]. The author recommends the treatment by Kégoj20]
for those who wish to learn more about this deep result.

The statement of the theorem given here is a relative vexsidterel-
man’s original theorem. It was proved by Kapovitch for theeavhere
only one extremal subset is under consideration, but as wiasegl out by
Searle and the author [19], it is in fact true in greater galitgr

Theorem 2.9 (Stability Theorem [24, 20, 19])Let X; be a sequence of
compact Alexandrov spaces of dimensiamith curvature uniformly bounded
from below, converging to a compact Alexandrov spacef the same di-
mension. Let;, = {E¢ C X,}.ca be a family of extremal sets ii;
indexed by a setl, converging to a family of extremal sefsn X.

Leto(z): N — (0, 00) be a function withHim, ., o(i) = 0. Letd;: X —
X; be a sequence ofi)-Gromov—Hausdorff approximations.

Then for all largei there exist homeomorphis#ts (X, &) — (X;, &),
o(i)—close to¥;.

This result implies all the previously known finiteness testor mani-
folds, other than diffeomorphism finiteness in dimensiaurfdt also has a
vital application in Alexandrov geometry. Consider the stonction of the
tangent cone to an Alexandrov space by the convergence cktiigence
obtained by rescaling the metric around a certain point. Bgracompact
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version of Theorem 2.9, the local structure of the spacensralbed by the
tangent cone.

Corollary 2.10. Let X be an Alexandrov space, and letc X. Then for
somery > 0, B.(p) = T,X forall r < ry. Furthermore, for small enough
ro the homeomorphism can be chosen so that, for every extrazhal,s
E N B,(p) is mapped td ,E.

These small conical neighborhoods are extremely usefiidarstudy of
Alexandrov spaces, and so it will be convenient to make theviing def-
inition.

Definition 2.11. An open subset/ of an Alexandrov spac& is called
cone-like arounag if p € U, and there is a homeomorphisfn U — 7, X

with f(p) being the vertex of the cone antiE N U) = T,FE for each
extremal setv.

For the proof of Theorem A, it will also be necessary to regjtire sta-
bility homeomorphisms to behave in a particular manner aepoint, or
near an orbit of a group action.

Proposition 2.12. Under the assumptions of Theorem 2.9,7det X and
let p;, € X; converge top. Then there is a smaklt > 0 such that for
0 < 6 < r and largei the homeomorphism® can be chosen to also
respect the distance fromin the annulus aroung. More precisely, for all
q € B,(p) \ Bs(p), dist(p:, 0;(q)) = dist(p, ).

If each of theX; and X admit an isometric action by compact Lie groups
G,; and GG, and these actions form a convergent sequence, then for some
subsequence the poinisandp may be replaced with the orbits; - p; and
G- p.

A brief proof will be given now, but reference to [20] is adetisfor a full
understanding of the details.

The proof of the stability theorem is carried out on a locadiba The
spaceX is covered by compact sets which are said térbmed

Definition 2.13. A compact subseP of an Alexandrov spacé is called
k—framed if P has a finite open covér, such that there are regular maps
fa: U, — RF. In other words,P is covered by fiber bundles over subsets
of R*,

If a k—framed set inX has a lift to.X;, then it is possible to use the fram-
ing to construct a homeomorphism between the framed setsseTlocal
homeomorphisms are all glued together to construct theagjlatmeomor-
phism. All of these results can be proved in parametrizedions, so that
the homeomorphisms respect certain maps.
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Proof of Proposition 2.12For a suitable choice aof the functionf(q) =
dist(p, ¢) is regular onB,.(p) \ Bs(p) as well as orB,.(p;) \ Bs(p;) for large
1, depending or. CoverX with framed sets so that for every framed set
which intersects this annulugjs the first co-ordinate of every framing map
fo- Then the local homeomorphisms between framed sets witkaflect
f on the annulus. The gluing of the local homeomorphisms casalréed
out to respecy on the annulus as well.

For the case of a group action, the orbit spake&~; converge taX /G,
and the distance functions in the orbit spaces have the segesegularity
property. The lifts of these functions 8, and X are regular over points
where they are regular in the orbit space, and so the prodfeapplied in
this case also. O

3. EQUIVARIANT STABILITY

Itis well known that a Gromov—Hausdorff convergent seqearan, after
passing to a subsequence, be reduced to a Hausdorff conseggience in
an enveloping metric space. This provides a more concrgéetodf study,
adding some convenience. This result can be generalizée tequivariant
setting, and so the slice theorem holds in the envelopingiersgiace. The
proof of Theorem A is based on a study of this enveloping space

First, however, it is necessary to investigate the phenomehequicon-
tinuous sequences of actions. The additional assumptiequitontinuity
is needed to establish the existence of a limit.

Definition 3.1. Let X; be a sequence of compact metric spaces, and let
G be a compact Lie group which acts by isometries on each of them
mapp;: G x X; — X;. Then the sequence éf—actions will be called
equicontinuoud, for some fixed metric ordz, and for every > 0, there is

ad > 0 such that for every € G, p € X; and for each, p; *(B.(pi(g,p)))
contains a ball of radiug around(g, p) in the product metric.

As will be seen in Lemma 3.4, equicontinuity implies conwarge. The
converse is a little trickier. In fact, if the representasvfrom an equiva-
lence class inV(g, are chosen in a particular way, even a constant sequence
in Mg, might not be equicontinuous. For example, consider an mctfo
T? on a metric spacé& . By changing the group by a sequence of automor-
phisms(} %) € SL(2,Z) with & — oo a non-equicontinuous sequence of
equivalent actions o is generated.

The following proposition shows that, at least in the casAlekandrov
spaces with a uniform lower curvature bound, it is alwayssfe to find
appropriate automorphisms rendering a convergent segusqnacontinu-
ous.
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The proof of this result relies on the center of mass constmidrom
Grove—Petersen [14], which allows for the constructionasftmiuous maps
from discrete ones. In the review of this construction, beanind that the
Riemannian manifold will be the compact Lie groGpwith a bi-invariant
metric.

Let (M, g) be a complete Riemannian manifold, witim M = n, sec g >
k,vol(M, g) > v anddiam(M, g) < D.

A minimal y—net forM is defined to be a set of points i such that the
p—balls cover all ofM but the£—balls are disjoint.

It is shown in [14] that certain constantsk > 0 andN € N exist which
depend only om, k, v and D, but not on the manifold/ itself, so that the
following hold:

(1) For any minimal:—net, a ball of radiug will have non-empty in-
tersection with at most of the y—balls centered on the members
of the u—net. N depends only on, £ and D.

(2) Letpy,...p, € M, and let), ..., \,, > 0 be weights, so that
YA = 1. Letn < r(1+R+---+R™ 1)L If dist(ps, pj) < 1n,i,j =
1,...,m, then a center of mag¥p,...pm, A\1,..., \n) is defined
which depends continuously on theand the);, is unchanged on
dropping any point with weight 0, and satisfiéist(C, p;) < n(1 +
R+ ---+ R™) for each:.

Write K =1+ R+ ---+ RV,

Proposition 3.2. Let G be a compact Lie group acting by isometries on a
compact Alexandrov space of dimensiom and curvature bounded below
by k. Suppose that a sequence of Alexandrov spaGesith the same di-
mensiom and lower curvature bounk is also acted on isometrically ly.

If (X;, G) converges td.X, ) in the equivariant Gromov—Hausdorff topol-
ogy, then there is always an equicontinuous sequence oéspeiivalent
to (X;, G) in Mg,

Proof. First fix a bi-invariant Riemannian metricon ¢, and fix constants
N and K as above, which are appropriate to the metricWhen a com-
pact Lie group acts on a compact metric space by isomethiesadtion
induces a continuous norm on the group. hglp be norms orG defined
by pi(g) = sup,ex, dist(x, gz) andp(g) = sup, x dist(x, gz). The norms
induce distance functions (g, 2) = p(gh~'). These distance functions
are continuous with respect to the Riemannian metric.

Choose a sequeneg— 0 and( f;, ¢;, ), a triple of functionsf;: X —
X;, ¢;: G = G andy;: G — G such that

(1) f; is an Gromov—Hausdoré&—approximation;
(2) ifg € G,z € X, thendist(f;(gz), ¢:(g) fi(z)) < €; and
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(3) if g € G,z € X, thendist(f;(v(g)z), gfi(x)) < €.
Lemma 3.3. The function); may be chosen to be continuous.

Proof. Let ; > 0 be such thatl, (g, h) < 2v; = d,,(g9,h) < €. Let A4,
be a minimal;,—net in(G, o). Letn; > 0 converge to 0, but let eacj be
large enough that,(g, h) < 4¢, = d,(g,h) < n;, and choose a minimal
ni—netB; C (G, o).

Define a mapy: A; — B; by mappingp € A; to an element ofB;
nearest (in ther metric) tovy;(p). If, for somep,q € A;, d,(p,q) < 2v;,
thend, (a(p), a(q)) < 3n;. There is an induced map between the Euclidean
spacesR“i — RPi, where the coordinate for any € B; is obtained by
summing the co-ordinates for each elementof(p).

Then a continuous map;: (G, p;) — (G, p) may be defined by com-
posing mapsG, p;) — R4 — RB — (G, p).

Let A; = {p},...,p!} and choose smooth functiof: (G,o) — R4,
each having their support in the ball of radiysaroundp?, with =, f/ =
and f/(p¥) # 0 = j = k. The map(G, p;) — R is given by
g — fJ(g). Note that points in the image of this map have at myst
non-zero coordinates.

The map fromR4: — RPi is that induced by, and the map from
RB: — (G, p) is given by the center of mass construction. Note that in the
domain points have at moat non-zero coordinates, and the corresponding
elements of3; are at pairwise distance at mast.

To verify thaty; will serve as part of the equivariant Gromov—Hausdorff
approximation, itis enough to show thatv; (¢), ¥;(g)) is uniformly bounded
overG, and that this bound is converging to zero. pgt. .. ,pf.“ be those
elements of4; within v; of ¢ in the o metric. Their images iB; undemEi
are then at mosy; from «;(g) in theo metric. The point;Z,—(g) is obtained
from the elements oB; via the center of mass construction, and so is at
most3n; K from any of them. This gives a global boundgf3K + 1) for
the difference between; andq);. 0

Now, by the continuity of the distance function with respect tq it is
clear that for large the (hnow assumed to be continuous) mapvill be an
almost homomorphism in the sense of Grove—Karcher—Ruh [IBht is
to say, for eachy, h € G, d,(V;(gh)y;(h) =1, :(g)) < q for a fixed small
q. By [13, Theorem 4.3], there is then a continuous group hoorpirism
within 1.36¢ of ¢;, and again by continuity of, for large enough this
means); may be taken to be a homomorphism of Lie groups.

Finally, it is necessary to check that it is in fact @oemorphisnof Lie
groups. LetH; be the kernel of);. Then(X, H;) — (X, 1) in M. It
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follows that X/H; — X in the Gromov—Hausdorff topology. However,
since dimension cannot increase in the limit [5], and sifteeHHausdorff
measure must convergl; must eventually be trivial. O

Lemma 3.4. Let G be a compact Lie group and €K, G) be a sequence
of G—spaces inVIg, which converges t0X, ') in the equivariant Gromov—
Hausdorff topology. Suppose further that this sequencetadras is equicon-
tinuous. Then there is a subsequencg such that there is a metric on
X = X[, X, that

(1) restricts to the original metric on each &f;; and X;

(2) is invariant with respect to an action @f, which restricts to the
original action on each of th&,;; and

(3) induces a convergence o&f;; to X in the Hausdorff metric on the
closed subsets of;

and therefore? is, after factoring out any ineffective kernel of its actmm
X, isomorphic tal.

Proof. Fix Gromov—Hausdorft;,—aproximationsf;: X; — X which wit-

ness the Gromov—Hausdorff convergence of the underlyingicrspaces.
Using these approximations, it is possible to define a Imgitr—action on
X as follows.

Consider the actions as continuous maps G x X; — X;. Fixing
a metric on@, the functionsidg x f; are Gromov—Hausdorff approxi-
mations showing the convergence@fx X; to G x X. By the Grove—
Petersen—Arzela—Ascoli Theorem, one can extract fronegfuécontinuous
subsequence; a compact subsequence converging to a continuous map
¢: G x X — X [15, Appendix]. Itis clear that this map is also an isomet-
ric action.

Now pick approximationg;: X — X; such thaty; o f; is close to the
identity. Leth;: X; — X;,; be defined byh;, = ¢;,.1 o f;. Thenh; is
a Gromov—Hausdorfie;—approximation which is almost equivariant with
respect to the action @f, and sqh;, id¢, ids) can be used as an equivariant
Gromov—Hausdorfi;,—aproximation. The quantity; depends both og;
and on the rate of convergence of theo ¢.

It is then possible to place a metric on the disjoint uni®n[ [ X;.4
such thatdist(z, h;(x)) = r; (see Burago, Burago and Ivanov [4, Corol-
lary 7.3.28]). This metric can be renderédinvariant by the usual av-
eraging procedure, at a small cost—s now a Gromov—Hausdorffr,—
approximation. The restriction of the metric £6; and to X;,; is un-
changed. Letl; be the Hausdorff distance betweéh and X;,; in this
metric.
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Following Petersen [28, p297], pass to a subsequence sd,that?2
for all i. Then, by gluing the metrics on each of the [[ X;,1, a G—
invariant metric or] [, X; can be constructed, which restricts to the original
metric on eachX;. This space can be completedbin such a way that
X = X [, X, andX; converges toX in the Hausdorff sense ifv'.

Since] [, X, is dense int, the isometriadz—action can be extended to an
isometric action on all oft’, and the extension t& is the limitingG-action
constructed at the beginning of the argument.

This action is, after factoring out any ineffective kerrtéle limit of the
G—-actions in the equivariant Gromov—Hausdorff topology. U

It is now possible to proceed to the proof of Theorem A. Theprelies
on a result of the author from the general theory of transédion groups
[18], given here as Theorem 5.4. This result, along with tiséification for
its application here, is reviewed at the end of the paperettién 5.

Proof of Theorem AEnvelop the convergence.

By Lemma 3.4, one may assume by passing to a subsequendetigaist
aG-invariant metric ont’ = X [ [, X; which restricts to the original metrics
and actions on each of th¥;, with X, converging toX in the Hausdorff
metric on the closed subsets&f Fix approximation®,: X; — X.

Let G’ be the ineffective kernel of th&—action onX (it will be shown
later that this is trivial). Now(X;, G), converges t¢ X, G/G’) in the equi-
variant Gromov—Hausdorff topology. Let G — G /G’ be the projection
map. Then equivariant Gromov—Hausdorff approximationsnff X;, )
to (X, I") which witness the convergence are given by the trigler, s)
wheres is a (possibly discontinuous) sectionmaf

The cohomogeneity is constant.

By applying the slice theorem t&, as a sequence of poings € X;
converges tp € X the isotropy groups, must be larger thai:,,. In
particular, the principal orbits of have dimension no greater than those of
X;. In other wordsdim(X/G) > dim(X,;/G).

On the other hand, the orbit spackg/G converge taX /G under a uni-
form lower curvature bound, so it follows that;/G and X/G have the
same dimension, and are therefore homeomorphic by Persli@tability
Theorem.

The radius of the tubes is bounded.

Here the termubeis used in the transformation groups sense, meaning
the image of a slice under translation by the group.

Let p € X, and letp be its image inX/G. As described by the author
and Searle [19, section 3.4], a tube in an Alexandrov spamendrthe orbit
G - p can be constructed by choosing a strictly concave functiam a
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neighborhood’ of p which achieves its maximum at This construction
is due to Perelman [25].

The gradient flow of. gives a retractiow: U — p. The functionh lifts
to a functionh on a neighborhood off - p. The gradient flow of: then
gives aG—invariant retractionr onto GG - p, showing that neighborhood to
be a tube around the orbit.

By Perelman and Petrunin [26, Lemma 4.3], the constructidgni® such
that strictly concave function's; exist on neighborhoods i, /G converg-
ing to h. Let p; be the maxima of thé,. Letr be such that, for large
B.(p;) is contained in the domain of concavity ff

This establishes the existence of a sequence of ppints p such that
there are tubes of a fixed radiusround eacld- - p; andG - p. Clearly the
orbitsG - p; are of the most singular type possible in the neighborhood.

The orbit-type survives passage to the limit.

It is claimed that for every subgroud C G, after passing to a subse-
quenceX” — X Recall thatX/? is a subset of; /G, the closure of the
set of orbits with isotropy typéf.

Letp; € X . Then there are poings € X; abovep; which have isotropy
containingH. Any accumulation poinp of the sequence,; is also fixed by
H, and lies above some accumulation point of ihe

Next it is claimed that if, in factp is fixed by some larger groufs, then
there is a sequengg — p of points inX; which are fixed byx'.

Fix r so that the tube of radiusaroundG - p can be approximated by
tubes of radiug- aboutG - p;, with p, — p. By Proposition 2.12, for
large: the tubes around: - p; are homeomorphic to those arou6d p.
Homeomorphism of the tubes implies homotopy equivalendbebrbits,
so the orbits are all of the same dimension, and have the sambar of
components. In the case th@ts finite, this proves the claim.

Consider a tube in the enveloping spacearoundG - p, and fix for the
remainder of the proof a decomposition of the tube into slateeach point
of the orbit. After pickingp; to lie in a slice atp, G,, = L; must be a
subgroup of full dimension i .

Let K, be the identity component df’, and hence also of the;. Let
I' = K/Ky. Now it is clear thatX;/ Ky — X/ Ky, and this convergence is
equivariant with respect to the actionlof

Sincel fixes the image op, p € X/K,, there are pointg; € X,;/K
converging tg which are also fixed by. As noted in the previous section
of the proof, these pointg are of the most singular type possible locally,
and so they must correspond to fixed pointd@f ¢; € X;. Thesey; then
have isotropy types as required.
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Construct the homeomorphisms.

Recall that the setX” and X# are extremal subsets of the orbit space.
By the Stability Theorem, the convergente/G — X/G insideX /G can
then be used to establish homeomorphigmsX /G — X;/G which carry
X*H to X[ for every subgrougi. These); are Hausdorff approximations
in the spaceY’ /G.

Now consider the spac&/G as an abstract orbit space (see Definition
5.1). Letf: X/G — X /G be the obvious embedding of /G as the
orbit space ofX C X. Let f; be the embedding; o f. Clearly f; con-
verges tof. Now each of theX; is aG—space oveX /G. The convergent
sequence of embeddings int/G can be used to apply the Covering Se-
guence Theorem 5.4, to obtain strong equivalence okthée, equivariant
homeomorphisms aoX; with X which descend té,.

Remove the subsequence.

Return to consideration of the original equicontinuousisege( X;, ).

If there is noN, such that, for alln > N,, the spac€ X,,, ) is equiv-
ariantly homeomorphic to the limitX, GG), there would be a subsequence
(X, G) of spaces converging toX, ), but none of which are equivari-
antly homeomorphic toX, G). However, by what has already been shown,
that subsequence must itself have a subsubsequence wiigh is equiv-
ariantly homeomorphic toX, ) in the tail, and this would yield a contra-
diction. O

These arguments can easily be applied to pointed convesg&nmon-
compact spaces in the case where the group fixes the basepoint

Corollary 3.5. Let G be a compact Lie group and I€tX;, p;) be a se-
guence of pointed complete Alexandrov spaces of dimensimd cur-
vature bounded below by. Let G act isometrically on each ok, fix-
ing p;. Suppose the sequence converges to an actidhasf anothern—
dimensional complete pointed Alexandrov sp&&ep) in the equivariant
Gromov—Hausdorff topology. Suppose further that, for gver- 0, this
sequence of actions is equicontinuousiip; ).
Then for each?, ¢ > 0 and for largei there are open equivariant embed-

dings

Vit Bris(p) = Bree(p)

coveringBg(p;). Furthermore, there is a subsequence such that the embed-
dings can be chosen to cover stability embeddings of the spbices.

The non-equivariant version of the stability theorem maydmhrased as
follows: For everyX in the class of Alexandrov spaces of dimensionith
curvature bounded below Iy there is ar = (X, k) such that every space
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in the class within Gromov—Hausdorff distancef X is homeomorphic to
X.
Theorem A can be rephrased in the same manner, using Piopdi.

Theorem 3.6.Let be a compact Lie group acting by isometries on a com-
pact Alexandrov spac& of dimensiom and curvature bounded below by
k. Then there is some = ¢(X, G, k) such that any compact Alexandrov
space of dimension and curvature bounded below laywith an isomet-

ric G—action which is within equivariant Gromov—Hausdorff distec of

(X, G) is equivariantly homeomorphic {0, G).

4. ORBIFOLDS

Orbifolds were first introduced by Satake under the nAfmmanifolds
[31], as topological spaces locally modelled on a quotignEaclidean
space by a finite group. Some basic facts about orbifoldssarewed here.
The reader may refer to, among others, the book by Adem, lagidaRuan
[1] or Thurston’s notes [33] for further information.

Definition 4.1. A smoothn—dimensionabrbifold chartover a topological
spacel is a triple (U, 'y, ) such thatl/ is a connected open subset of
R", T, is a finite group of smooth automorphismsotndr,: U — U is
al'y—invariant map inducing a homeomorphiﬁ}ViFU =U.

For convenience, a chart will sometimes be referred to asgbaver a
pointp. This will mean that the chart is over some neighborhoog of

LetU andV be open subsets of a topological spagend let(T7, Ty, 7))
and(f/, Iy, my) be orbifold charts of dimension over U andV respec-
tively. The charts are callecompatibleif, for everyp € U NV, there is
a neighborhoodV of p and an orbifold char(W, ['w,mw) over W such
that there are smooth embeddings: W < U and\,: W < V with
Ty 0 Ay = Ty andﬂ'U oAy = Ty

As usual, an orbifold atlas on a spa&ewill mean a collection of com-
patible charts covering’. Now the definition of an orbifold can be made.

Definition 4.2. A smoothorbifold of dimensiom is a paracompact Haus-
dorff space equipped with an atlas of orbifold charts of disienn.

An orbifold homeomorphism (respectively diffeomorphisisip home-
omorphism of the underlying topological space which camllgde lifted
to an equivariant homeomorphism (respectively diffeorhtam) of charts.
Borzellino and Brunsden (see [2]) have pointed out that dleignition of
an orbifold map is not sufficient for many purposes, thoughatppropriate
to the question currently under consideration. Four péssibfinitions of
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orbifold map are given there, of which this is the most naieéion, the
reduced orbifold map )

Let X be an orbifold, letp € X, and let(U,T",7) be a chart ovep
with 7(y) = p. The isotropy group of; will be called thelocal groupat
p, and will be written ad’,. It is uniquely defined up to conjugacy In
and choosing a different chart does not change the isonsrptyipe of the
group.

In fact, one can always choose a linear chart gveuch that the group
of automorphisms is isomorphic 1g,. By this is meant a chart of the form
(R",T',, m) where the action df, is via a faithful orthogonal representation
pp: I'y = O(n). Such a chart will be referred to adiaear chart around
p. The representation is also uniquely determined up to ispmem, and
will be called thelocal actionat p. The differential of the action af, at
the origin of the chart is also isomorphic tg.

A Riemannian metrion an orbifold can be given by fixing a finite atlas
and a partition of unity with respect to the correspondingecoand choos-
ing Riemannian metrics on the charts which are invarianh néspect to
the finite group action. An orbifold equipped with a Riemammmetric is
called a Riemannian orbifold. Once the metric on the orHifslgiven it
can be lifted to the maximal atlas in a canonical manner. Er®us no-
tions of curvature at points of an orbifold can then be defimgdeference
to the curvature of the charts.

It is straightforward to see that an orbifold with sectiooatvature> k is
also an Alexandrov space with curvature:. The tangent cone at any point
of an orbifold is then well-defined, and coincides with thealsotion of
tangent space for orbifolds. The notion of an extremal setfinads a very
natural application in orbifolds.

Proposition 4.3. Let X be an orbifold of dimension, I" a finite group, and
p: I' = O(n) a linear representation of. Let X* be the closure of all
points with local actiorp. ThenX? is an extremal set ok .

Proof. The result is clear where = 1. Letp € X? and consider the local
actionatp byI',. The tangent cone atis the cone on the quotient of the unit
sphere byl",. Consider the image of those points in the unit sphere having
isotropy isomorphic te. The closure of the cone on this setlisX” and

by induction it is extremal iff,, X. SinceX?” is closed, itis extremal. [

The following lemma now shows that a linear chart aroproén be ex-
tended over any cone-like set aroynd

Lemma 4.4. Let X be an orbifold, and lep € X. LetU be a cone-like set
aroundp. Then there is a linear chart ovér aroundp.
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Proof. Consider the differential of the local action Bf onR,,. The quo-
tient of this action is the tangent conepafl}, X .

Let f: U — T,X be a homeomorphism carrying each extremalset
U to T,E. Note that becausg is cone-like,f preserves the local action at
every point.

Using a maximal atlas, covér by the ranges of all possible linear charts,
{Ux} ek Discard anyU, such thatf(U,) is not the range of a linear chart
inT,X.

Observe that this reduced family still covdrs Suppose some € U
is not in any element of the reduced family. Then for everg K such
thatq € Uy, f(U,) is not a linear chart. Buf(q) is covered bysomdinear
chart, and the intersectid’ of the range of this chart witli(U,,) is also
covered by a linear chart. Then becayseé(1V) cC U, it too is covered by
a linear chart. It follows thaf (W) = U, for some)\ € K, and is in the
reduced family.

Select a countable subcovér,, Us, . . ., and writeV; for f(U;). LetT;
be the local group acting on the chaffsandV;. The charts;, Vs, ...
can be glued together to construct a chart over all;,0X. The gluing
requiresI’, : N(I';)] copies ofV;. The manner of this gluing gives a set
of instructions which allows one to glue the chalig U, . .. together to
obtain the desired chai.

Since this chart is built by gluing together charts from theifold atlas,
it is compatible with the atlas. O

By the Stability Theorem 2.%7;;7’,37;(71) contains only finitely many topo-
logical types. To prove Theorem B, it is therefore sufficismprove the
following.

Theorem 4.5. Let X be a compact topological space. Then, up to orb-
ifold homeomorphism, there are only finitely many orbifdidstures onX
which belong ta0;,”; (n).

Proof. Aiming for a contradiction, lelO; be a sequence of orbifolds in
ngg(n), all of which have underlying topological spa¢g and no two
of which are orbifold homeomorphic. By compactnessMéx;f;(n),
a subsequence @P; converges in the Gromov—Haudorff sense to some
Y € Alex}f;}'(n) which also has underlying spacé. Abusing notation,
the subseqﬁence will still be written és. Since there will be many more
instances of passing to subsequences, this abuse of motalibe repeated
throughout the proof.

By Stanhope [32] there is a uniform upper bound on the ord#érelocal
group of a point in(’);f;(n). Recall a finite group has only finitely many
linear representation’s’ in a given dimension. It followd @dathe possible
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local actions up to isomorphism can be listed by G, — GL(n), for
¢ =1,...,mwherem is some finite number. Let! be O?*, the closure of
the subset oD); with local group action isomorphic tef. By Proposition
4.3 theE! are extremal sets.

Passing to a subsequengetimes if necessary, one may assume that
each sequencg! converges to an extremal subsgt C Y. Now, by the
Stability Theorem 2.9, there are homeomorphigmsY — O; which are
Gromov-Hausdorff approximations and carry each offhento theE?.

To prove the result, it is now sufficient to show tigt: O; — O, given
by hi; = h; o h;! is an orbifold homeomorphism.

Let p* be a set of points ifr” such thaft” is covered by cone-like metric
balls U~ centered ap®. Then the set,(U*) are also cone-like around
p¢ = hi(p®), and covelO,. Denote these sets by*.

By Lemma 4.4 each’® is covered by a chaf{/¢, ['ye, mye ). By passing
to a subsequence, we may assume thaﬁi;hé)rm a convergent sequence
in the pointed equivariant Gromov—Hausdorff topology,\aging to some
object(U®, I'ye) € M,

Now, by Theorem A,Uﬁ and U are equivariantly homeomorphic by
someF;: U* — U2. The F; induce homeomorphismg: U2 /T —
U“/Fpa which are Hausdorff approximations witnessing the Hau$don-
vergence of the orbit spaces inside the enveloping orbidespa

Write p$ for the isometrﬁf/Fpg — Uf* induced byrye.

1R

Ue Ue

i i

Uia/rp? <T 0a/rpa

|le§1

Ug +—— U®

i

=

IR

R

>

Now the gap may be filled in by a homeomorphigm U /T« — U®
given byh; 'oufo fi. Thep; make up a sequence of Gromov—Hausdorff ap-
proximations, and the sequence converges to some isomeW/Fpa —

Ue.

Then thef; may be adjusted slightly, setting = (u$)~! o h; o ¢. Since
¢; converges t@, these homeomorphismswill also withess the Gromov—
Hausdorff convergence ciff‘/Fp? to U*/T' .. By Theorem A, new equi-
variant homeomorphisns; : Ue — Uf‘ can be chosen which will induce
the homeomorphismsg.
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This gives a non-smooth orbifold chart ovéf, (U, T, ¢) such that
theh,: U* — Uy are orbifold homeomorphisms. The malps are then
also orbifold homeomorphisms. O

5. TAMENESS OFALEXANDROV SPACES

This section will provide the necessary background to Téaeo5.4 and
justify its application in Theorem A. The result is a refinerhef Palais’
classification ofGG—spaces [22] for orbit spaces which are “tamely parti-
tioned”, and appears in [18]

For a subgroug{ of GG, write (H) for the conjugacy class di. Say that
(H) < (K) if K has a subgroup which is conjugateHo

Definition 5.1. Let G be a compact Lie group. Then abstract orbit space
for GG is a locally compact, second countable spZcegether with a par-
tition {Z(1)} wce of Z such that, for eachH), U {Z) | (K) < (H)} is
open.

A G—-space ovel is then a space with an action 6f by homeomor-
phisms, such thaX' /G is homeomorphic t&, via a homeomorphism that
carries the orbit-type partition of /G to the partition or?.

The notion of tameness used is quite a mild topological ptgpand it
will be shown that the orbit spaces of isometric group actmmAlexandrov
spaces satisfy it. The definition first requires the concéat controlled
homotopy.

Definition 5.2. Let I/ be an open cover of a topological space Then a
mapf: Y x [0,1] — Z is called a/—homotopyf for eachy € Y there is
somelU € U such thatf(y,t) € Uforall0 <t < 1.

In the case where is metric and/ is a cover by metric balls of radius
5, ali—~homotopy may be called arhomotopy
It will be convenient to move from the partition on to the related fil-
tration. For the purposes of this paper, a filtration may reavéndex set
which is only partially ordered. FarH) € €, write Z- ) for the union
of all Z k) such tha{K) > (H). Z>y) is a closed set. These séfs s
make up a filtration ofZ indexed by the partially ordered s@{ but with
the reverse ordering.

Definition 5.3. Let Z be a filtered set (with the filtration indexed by a set
which is possibly only partially ordered). The filtrationgaid to betame
if for eachY C Z which is a union of elements of the filtration and for
each open cover of Z there are a neighborhodd of Y and a homotopy
h: (Z\Y)xI— Z\Y satisfying:

(1) his the identity on(Z \ V) x {0},
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2 h((Z\Y)x{1}) cZ\V,
(3) h is ali-homotopy, and
(4) h preserves every member of the filtration@n Y.

The key result oriz—spaces which is applicable in the proof of Theorem
A can now be stated.

Theorem 5.4 (Covering Sequence Theorem [18)et X be a G—space
having finitely many orbit-types, and [€t = X /G be its orbit space. Let
Z be an abstract orbit space which is compact, metrizabletaneely par-
titioned. Letf,: Z — Y be a sequence of embeddingsZoivhich carry
the partition ofZ to the orbit-type partition ot’, restricted to the image of
fn. Suppose thaf = lim,,_,, f, exists, and is also such an embedding.

Then, for large enough, the invariant subspaces of over the images
of f,, are equivariantly homeomorphic to that over the imag¢ odnd the
equivariant homeomorphisms induce the mgapsf .

In the case under consideration, where the orbit sgasen Alexandrov
space, and its partition is by extremal subsets, the renmnasults of this
section gives the necessary “tameness” requirement fdicapipn of the
theorem.

First, it will be established that tameness is a local priyp&ay that the
filtration is locally tame if, for each closed C 7 as above, and for each
y € Y, there is an open séf, containingy so that for each open covirof
Z there is a filtration-preservirig—homotopy-: (U,\Y) x[0,1] = Z\Y
deformingU, \ Y into Z \ V' for some oper/ D Y.

Proposition 5.5. Let Z be a compact metrizable space with a filtration. The
filtration is tame if and only if it is locally tame.

Proof. EndowZ with a metric, and replace the given coveémwith a cover
by e—balls, and aim to construct arRhomotopy.

Cover Z with finitely many open set§/, ..., Uy SO thatY is tame in
eachU;. Choose continuous functiomas: Z — [0, 1] so that the support
of eachq; is in U; and¥;a; = 1. Letr;: (U; \Y) x [0,1] - Z\Y
be ang—homotopy deforming/; \ Y into Z \ V' in a stratum-preserving
manner for some opdr D Y. (SinceN is finite,V may be assumed not to
depend on.) By an appropriate choice @f, one may assume further that
ri(Ui\Y) % [545,1]) € Z\ V and thaig; o r; is am—homotopy for
eachj. Extend eachr; overZ x {0} by the identity.

New homotopies?;: (Z\Y) x [0,1] — Z \ Y can be constructed by
Ri(z,t) = ri(x,a;(x)t). Write R7: (Z\Y) x [0,1] — Z for the homotopy
given by concatenatin@, ... R;. It is claimed thatR" is the required
deformation.
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Certainly since each; is stratum-preserving, eadk; is also, and so is
eachR’. Since each; is an%—homotopyRN Is ane—homotopy. It remains
only to show that?"¥ ((Z\Y) x {1}) c Z\ U for some open neighborhood
UofY.

For eachy € Z\ Y, there is some so thata;(¢q) > +. Because each
of the homotopies, changes the value af by no more thaqﬁl)g, there

is somek < N so thata,(R*"'(¢,1)) > § — zi77 > way and hence
R¥(q,1) € Z \ V. In other words, every € Z \ Y enters the compact
subsetZ \ V at some point in the construction &". The homotopy will
continue to deform the subsgt\ V, but its image must remain compact.

It follows that RV deformsZ \ Y into a compact subset, and its comple-

ment is the desired . O

Proposition 5.6. Let Z be a compact Alexandrov space, andAetC 7 be
an extremal subset. Then for each- 0 there are a neighborhood of £
and a homotopy:: (Z\ E) x I — Z \ E satisfying:

(1) his the identity on(Z \ E) x {0},

(2 h((Z\E)x{1}) c Z\V,

(3) his ane—homotopy, and

(4) h preserves the extremal subsetsof E.

Proof. The proof is by induction on the dimension &f If dim(Z) = 1,
Z is a circle or a closed interval, and the result clearly holsisppose the
result has been shown for all compact Alexandrov spacesnoémsion at
mostn — 1.

By Proposition 5.5 it is sufficient to show the result localGover E by
setsUy, ..., Uy which are cone-like around points,...,py € E. The
result is shown if it can be shown for eath

Choose a finite cover of by balls of radius;5;. Since eaclt; is cone-
like, these give finite covers; of each’,,Z. An inspection of the proof of
Proposition 5.5 shows that it will be sufficient to constrifgthomotopies
on eachl,, Z.

Since the tangent cone is not compact, Proposition 5.5 doeapply
directly to 7, Z itself. However, it does apply to the space of directions,
and so it is not too hard to adapt it to the cone.

Let o be the vertex of,, Z. By the compactness &f,, Z (which will be
written X3; for convenience), there are an unbounded increasing segoén
numbers) < t, < t; < ty,... and finite coverd’; of ¥, by balls of radius
; foreachj = 0,1,2,... sothat

WZ‘ = {Bo(tl)} U {VJ X (tj,tj+2> : j = 0, 1,2, .. } .

is a star-refinement éf;.
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By the induction hypothesis, for eaghhere is a homotopy on; \ X, £
deforming away from an open neighborhoodifE. This may be taken to
create aV,—homotopy on(¥;\ X,,E) x (¢;,t;4+2). By gluing these together,
aU,—homotopy on(3; \ £, E) x (to, 00) can be constructed.

The homotopy can then easily be extended by coning/tg-homotopy
onT,.Z \ T,,E, but it will not deform away from an open neighborhood of
the origin of the cone. Ifitis followed with a sufficiently sihradial strong
deformation retraction away from the origin, however, il watisfy all the
necessary properties.

This gives a/;—homotopy oril}, Z as required. These arg homotopy
onU;, and by Proposition 5.5 can be glued together to giverr-anmotopy
onZz. U
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