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Abstract

In this study, for the first time, a nonlocal finite element model is proposed to analyse thermo-
elastic behaviour of imperfect functionally graded porous nanobeams (P-FG) on the basis of
nonlocal elasticity theory and employing a double-parameter elastic foundation. Temperature-
dependent material properties are considered for the P-FG nanobeam, which are assumed to
change continuously through the thickness based on the power-law form. The size effects are
incorporated in the framework of the nonlocal elasticity theory of Eringen. The equations of
motion are achieved based on first-order shear deformation beam theory through Hamilton’s
principle. Based on the obtained numerical results, it is observed that the proposed beam element
can provide accurate buckling and frequency results for the P-FG nanobeams as compared with
some benchmark results in the literature. The detailed variational and finite element procedure
are presented and numerical examinations are performed. A parametric study is performed to
investigate the influence of several parameters such as porosity volume fraction, porosity
distribution, thermal loading, material graduation, nonlocal parameter, slenderness ratio and
elastic foundation stiffness on the critical buckling temperature and the nondimensional
fundamental frequencies of the P-FG nanobeams. Based on the results of this study, a porous FG
nanobeam has a higher thermal buckling resistance and natural frequency compared to a perfect
FG nanobeam. Also, uniform distributions of porosity result in greater critical buckling
temperatures and vibration frequencies, in comparison with functional distributions of porosities.

Keywords: Thermal buckling; Thermal vibration; Porous functionally graded nanobeam; Finite
elements; Nonlocal elasticity.

1. Introduction

Developing nano and micro-technologies have enabled the design of many nano/micro-structures
with a wide range of functions and applications. In this category, there are many nano/micro-
systems that work in thermal environments and under thermal stresses, which may lose their
functionality due to problems such as phase changing. In order to overcome these difficulties
functionally graded materials (FGMs) would be a great solution, which are able to stay stable in
ultra-high temperatures [1,2].

! Corresponding author E-mail address: arashimaniaria@gmail.com.
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The enhanced mechanical, chemical, and electronic properties of nano/micro-structural elements,
such as nano/micro-scale beams and plates, motivates the analysis of these small scale structures
where the size effects are significant. Hence, the study of nanostructures has gained immense
interest by scientists in recent years. There are two major methods to model nanostructures,
namely molecular dynamic (MD) simulations and continuum mechanics. However, MD
simulations require great computational effort to model the nanostructures with many atoms and
classical continuum mechanics theory is unable to incorporate size effects in micro/nano scale
structures, which results in over prediction of their responses [3-9]. In order to overcome these
problems, Eringen’s nonlocal elasticity theory [10], which is the most popular high-order
continuum mechanics theory, may be the best solution. This non-classical theory captures size
effects with high accuracy [10-15] in modelling micro and nano structures. The basis of
Eringen’s nonlocal elasticity theory is that the stress state at a given point is not only a function
of the strain at that specific point, but also is a function of the strain at all other adjacent points of
the continuum. Consequently, this theory is able to simulate the long range forces between atoms
and molecules [10].

A novel class of composite materials are functionally graded materials (FGMs), which have been
used in many engineering applications. Employing FGMs can remove interface difficulties and
relieve thermal stress concentrations in structural components, that are the main problems with
typical laminated composites. The advantageous properties of FGMs are naturally achieved as
their material composition changes gradually and continuously as a function of position in
specific spatial directions [16,17,18]. Generally, an FGM is build-up of two distinct material
constituents, such as ceramic and metal phases. In an FGM, the ceramic component is chosen as
a high temperature resistor, due to its low thermal conductivity, where the metal constituent is a
ductile material, which can avoid fracture caused by thermal stresses. Recently, some
outstanding studies on the examination of vibration and buckling of FG nano structures by
employing high-order continuum theories (nonlocal elasticity) have been reported. Using the
third order plate theory, Daneshmehr and Rajabpoor [19] analysed the static stability of nonlocal
FG plates, considering different boundary conditions. The resonance frequencies of FG
micro/nanoplates were investigated by Nami and Janghorban [20] on the basis of the nonlocal
elasticity and strain gradient theory. Based on their research, each of these two size dependent
approaches can be interpreted with distinct physical meaning of the small scale structures. The
free vibrations of FG Timoshenko nanobeams in the framework of nonlocal elasticity using
Navier’s solution was analysed by Rahmani and Pedram [21]. Later, the thermoelastic behaviour
of an FG Timoshenko nanobeam was studied by Ebrahimi and Salari [22], using nonlocal
clasticity theory and Navier’s solution. They investigated the free transverse vibrations of
nanobeams employing Euler-Bernoulli theory (EBT) and a semi-analytical differential transform
method, considering gradually varying material distribution [23]. In a separate work, they
analysed thermo-mechanical vibration of compositionally graded EBT nanobeams with various
boundary conditions exploiting a semi-analytical differential transform method [24]. Nejad et al.
[25] used the generalised differential quadrature method (GDQM) and proposed a solution for
the static stability problem of EBT nanobeams made of two-directional FGMs. A similar solution
was also employed by Ansari et al. [26] to analyse the thermal vibration response of postbuckled
piezoelectric Timoshenko nanobeams based on nonlocal elasticity theory. Ebrahimi et al. [27]
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examined the thermomechanical vibrations of FG nano beams based on stress gradient theory by
investigating various boundary conditions. Nguyen et al. [28] used a computational approach to
investigate the bending, buckling and vibration of FG nanoplates based on a quasi-3D theory.
Shafiei et al. [29] examined the vibration of bi-dimensional perfect and imperfect FG porous
nano/micro-beams, utilizing GDQM in the framework of nonlocal elasticity and modified
coupled stress theory.

In addition to these analytical and computational studies, there are a few investigations which
have used FEM to study the vibration and static responses of FGMs. Proposing a new beam
element, Chakraborty et al. [30] investigated the vibration behaviour of FGMs, considering
thermal effects, based on first-order shear deformation theory. Eltaher et al. [31] developed a
two-noded and six degrees-of-freedom FE element to examine the free vibration of FG
nanobeams in the framework of nonlocal elasticity theory, employing Euler-Bernoulli beam
theory. Later, in a distinct work, the same two-noded element was employed by Eltaher et al.
[32] to analyse the static response and stability of FG nanobeams. Aria and Friswell [33]
proposed a novel 5-noded nonlocal beam element to investigate vibration and buckling
behaviour of FG nanobeams.

Porous materials are also a unique kind of material with an increasing number of applications.
Recently, many scientists have shown interest in studying the mechanical properties of these
types of materials [34-37]. Also, the dynamic behaviour of porous materials has attracted the
attention of some researchers. Bo [38] examined the transverse vibration of elastic circular plates
embedded in fluid-saturated porous half spaces. The damped vibration response of automotive
double walls with porous materials was investigated by Yamaguchi et al. [39] employing the
finite element method (FEM). The bending vibrations of a thin rectangular porous plate saturated
by a fluid was examined by Leclaire et al. [40], using classical plate theory (CPT). Using energy
methods, Vashishth and Gupta [41] analysed the transverse vibration of an anisotropic porous
piezoelectric ceramic plate. The dynamic responses of heterogeneous porous micro materials
were investigated by Altintas [42]. Takahashi and Tanaka [43] studied a theoretical method for
the acoustic coupling caused by bending vibrations of porous elastic plates. The electro-thermo-
mechanical vibrational response of porous FG piezoelectric plates was investigated by Barati and
Zenkour [44] using a refined four-variable plate theory. The nonlinear static bending of FG
porous micro/nano-beams with uniform porosities was studied by Sahmani et al. [45]. Also, in
another investigation [46], they analysed the vibration response of FG porous micro/nano-beams
reinforced with graphene platelets. Khoei et al. [47] employed an enriched FEM to simulate
hydraulic fracturing procedure in fractured porous media. Mobasher et al. [48] proposed a new
non-local model for transport and damage in porous media. Na and Sun [49], presented a finite
strain model for frozen porous media on the basis of multiplicative kinematics.

Thermal buckling and vibration often occur in many structures, and these phenomena should be

considered to ensure structural safety. Thus, thermoelastic investigations of beam structures are

common in structural mechanics’ analysis. Most of the literature in the area of FGMs ignore the
influences of the thermal environment, elastic medium and porosity in their analysis. To the best
of the authors’ knowledge, this paper for the first time, proposes a nonlocal Timoshenko finite



element model to study the thermoelastic buckling and vibrational behaviour of imperfect FG
porous nanobeams embedded in a double-parameter elastic foundation on the basis of nonlocal
elasticity theory. The material distribution is applied as a through-thickness power-law variation.
Hamilton’s principal is employed to derive the weak form of the equations, including the
boundary conditions. Critical buckling loads and natural frequencies are obtained for various
boundary conditions, nonlocal parameters, porosity distributions, material graduations and span
to depth ratios by using a 5-noded beam element.

2. Formulation

2.1. Porosity-dependent functionally graded materials in thermal
environments

For a P-FGM beam (Fig. 1), the material properties change continuously along the z direction,
and are considered as [29]

P(2) = (B =B (242) + R ~2(B + R) 1)

Here, k denotes the non-negative power-law exponent, 4 is the porosity volume fraction and P,
and P,, show the corresponding material properties of the ceramic and metal constituents. The
Young’s modulus, E(z), shear modulus, G(z), material density p(z) and thermal expansion
coefficient a(z), of FGM-I (uniformly distributed porosity) are defined based on this material
graduation function as

E@) = (B~ E) (242) 4 E — (B, + B @
6 = G =G (2+2) 4 6. =26+ 6 3)
p(@) = (om—po) (5 + %)k + pe =5 (om + pc) 4)
a(z) = (am - ac) (% + %)k +ac— % (am + ac) (5)

Considering the functional porosity distribution (FGM-II), the relations of Young’s modulus,
E(z), shear modulus, G (z), material density p(z) and thermal expansion coefficient a(z), in
Egs. (2)-(5) will be defined in new forms as [29]

E@) = B = E) (2 42) + B~ 2B, + E)(1 - 22 ©)
6@ = Gn— 6 (2+2) 4 6.~ 2 (G + 61— 22 ™
o) = (om— ) (242) + e =2 (o + p) (1 — 22D ®)
a(2) = (am - a) (242) + @, ~2(am + @) (1~ 22) ©)
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Fig. 1 (a) Geometry of a porous functionally graded beam on a Winkler-Pasternak medium, (b)
uniform distribution of porosities (FGM-I), (c) functional distribution of porosities (FGM-II).

Based on the P-FG beam defined in Eq. (1), the upper and lower faces of the nanobeams are
ceramic-rich and metal-rich, respectively, and their material properties are given in Table 1. The
geometry of a P-FG nanobeam on a Winkler-Pasternak foundation is shown in Fig. 1.

The use of FGMs in high temperature environments results in unavoidable changes in material
properties. Accurate calculations of the response of FGMs at high temperatures, requires the
consideration of the temperature dependency of the material properties. The nonlinear equation
of thermo-clastic material properties as a function of temperature T (K) can be defined as [50]

P =Py(P_iT™*+1+P,T* + P,T? + P;T?) (10)

where Py, P_q, Py, P, and P; are coefticients for the temperature, T (K), that are given in Table 1
for different material properties of Si; N, and SUS304.



Table 1. Temperature dependent coefficients of Young’s modulus £ (Pa), thermal expansion
coefficient o (1/K), Poisson’s ratio v, and mass density p (kg/m3) for various materials [51].

Materials | Py | P, | P, | P, | P, | Pat300K
SizNy
E 348.43e+9 0 -3.070e-4 | 2.160e-7 | -8.946e- | 322.27e+9
11
a 5.8723e-6 0 9.095¢-4 | 0 0 7.475e-6
v 0.24 0 0 0 0 0.24
p 2370 0 0 0 0 2370
SUS304
E 201.04e+9 0 3.079¢-4 | -6.534e-7 | 0 207.79¢+9
a 12.330e-6 0 8.086e4 |0 0 15.321e-6
v 0.3262 | 0 -2.002¢-4 | 3.797¢-7 |0 0.318
p 8166 0 0 0 0 8166

2.2 Nonlocal elasticity theory
In nonlocal elasticity theory [5], the stress at a point X in an elastic body depends not only on the
strain at that specific point, but also on the strain at all points in the body. Thus, the nonlocal
stress tensor is given by

0= [, a,(x,x' ea)C(x") : g(x")dV (11)

Here, ay is the principal attenuation kernel function, which defines the constitutive equations for
the nonlocal influences at the reference point x produced by the local strain at the source x'. eya
shows the nonlocal parameter, which incorporates the nonlocal elastic stress field, where e is a
constant appropriate to each material and a is an internal characteristic length. C is the fourth-
order elasticity tensor, € is the strain tensor, V is the volume of the continuum and “:” designates

the double-dot product of tensors.

Although, to date, no agreement has been achieved on how to specify the material-dependent
length scale parameter experimentally, some studies have extracted the nonlocal parameter by
molecular dynamics simulations in CNTs [52,53,54]. In this paper a parametric study is
performed to analyse the effect of this parameter on the vibration behaviour of FG porous

nanobeams.



The solution of Eq. (11) is complicated. However, the linear nonlocal differential operator may
be used for the exponential nonlocal kernel function, i.e., L = 1 — (epa)?VZ2. Employing this

operator in Eq. (11), the following relation is derived

(1-(epa)?’V¥)o=C:¢ (12)
2

where, V2= % is the Laplacian operator.

For a beam like structure, the nonlocal behavior in the thickness direction can be neglected.

Therefore, the nonlocal constitutive relations take the form:

az XX

Oxx — (eoa)z 6;2 = E(Z)gxx (13)
2 azaxz

Oxz — (eoa) Ox2 = G(Z)yxz (14)

where g, is the axial normal stress, g,, is the shear stress, &, is the axial strain and y,, is the
shear strain, E'(z) is the elasticity modulus and G(z) is the shear modulus of the P-FG beams.

The constitutive relations for the classical (local) theory are obtained by setting eqa = 0.

2.3 Timoshenko beam theory based on nonlocal elasticity
The displacement field of a Timoshenko beam is defined as

U, (x,z,t) = ulx, t) —z¢p(x,t) (15)
uy(x,2,t) =0, (16)
u,(x, z,t) = w(x,t) (17)

Here, u and w denote the displacement components of the mid-surface in the x and z directions,

respectively, and ¢ is the slope and t denotes the time. The Timoshenko strains are given by

_dw _ou_ 09

Exx = ox  ox Zax (18)
1,0

Yaz =5 G — ¢) (19)

Eyy = €22 = Vxy = Vyz = 0. (20)

In order to derive equation of motion, Hamilton’s principle is exploited



) fff [T— (U +W,+VD]dt=0 1)

where U,W,, VT and T are the strain energy, the potential energy of the external forces, the
potential energy caused by the thermal stress and the kinetic energy, respectively. The variation

of the strain energy is

6U = fV 0 0€;jdV = fV(Jxx O€xy + 0y 0Yxz)AV (22)
The stress resultants are expressed as

Nyx = b [, 05 (2)dz, My =D [,200(2)dz, Qu, =b [, 04,(2) dz (23)

where A is the cross section area. The variation of the strain energy in terms of the stress

resultants, is
a8 98¢
8U = [ (N 5 = My 52+ Q1 2 — 01,600 ) dx (24)

The variation of the kinetic energy is given as

oT = ij(Z)A Otx (aat )dx + ij(Z)A ou, (aautz> dx

=[5 tmo 2 — my 225 (52) dx + [ (m, 52— 1my 96 (22) dae + [ (mp 208 (5 ) dx (25

where the mass moments of inertia are given by

mg 1
{ } fm{ }p(Z)dz (26)

m;
The variation of the work done by the external forces is expressed as
W, = — [ff, (féu + géw)av 27)
Here, f and q are the axial distributed forces and the transverse distributed forces, respectively.

Assuming the P-FG beam has been in a thermal environment for a long period of time, then the
temperature distribution can be considered to be uniform across the beam thickness. Hence, in

this study, a uniform temperature gradient is analysed. Also, the temperature is assumed to rise



from the stress free state temperature T, to the final temperature AT. Thus, the thermal stresses

occur in the P-FG as
ol =0T = —E(2)a(2)AT (28)
a,fy = 0. (29)

where o, is the thermal axial stress and axTy is the thermal shear stress. The variation of the

potential energy caused by the thermal stress can be written as [55]

T _ (LT (Pudbu | owobw
- fO Axx (6x ax +6x Bx)dx (30)

where the thermal stress can be written as

h/2

Aex = ~h/2

oldz (31)

By substituting Egs. (24), (25), (27) and (30) into Eq. (21), performing integration by parts, and
setting the coefficients of du, ¢ and édw equal to zero, the equations of motion for a

Timoshenko beam are deduced as

. ONxx 2%u 2¢ 0%u

du: —= —m0§+mlat AEXa2+f—0 (32)
_ OMyx 2% 2%u _

6 : Quz———— My tm—_5=0 (33)
. 9Q 02w ?w

ow: —E—my——+q—Au55 =0 (34)

The corresponding boundary conditions, resulting from the above mathematical process at x = 0

and x = L, are deduced as

du = either N,, — AL, Zu =0 or u=0 (35)
6¢ = either M, =0 or ¢ =0 36)
Sw = either Q,, — AL, ";W =0 or w=0 (37)

Substituting Egs. (18) and (15) into Egs. (13) and (14), and employing Eq. (23), the

corresponding stress resultants can be obtained as



02Ny P )
Nyyx = (eaO)Z 32 xxi_ Byx %): (38)
sz a
Quz = (ea0)* 22 + ks, G- — ), (39)
02 My | o
My, = (eaO)2 2 + (Bxxﬁ — Dyx a) (40)

where, the extensional coefficient A,,, the extensional-bending coefficient B,,, the bending

coefficient Dy, and the shear coefficient A,, are given by

Axx 1
{ } bfh}{/zz{ }E(Z)dz (41)
Dxx

Ay =b["]" G(2)dz (42)

In view of Eqs. (32)-(34), Egs. (38)-(40) can be expressed in displacement form as

_ 2%u R af o}
Nxx - (eao)z(mo Axdt2 —my Axdt2 - a - Ag;x 6x2) + (Axx x Bxx a)' (43)
a3 aq ow 93 a
sz = (eao)z(mo 6x6mt/2 - a - Agx %E)_;:) + kssz(% - ¢)' (44)

2%w 293¢ 23u 2%w ou
Mxx - (eao) (mO a2 -—m, W + my 9x9t2 + ™ Agx 9x2 - q) + (Bxx ax Dxx Ax ) (45)

Here, ky = 5/6 designates the shear correction factor.

Substituting Egs. (43)-(45) into Egs. (32)-(34) the governing equations of motion with respect to

the displacements for a Timoshenko beam is achieved as

0%u 22%¢ 2%u 9%¢ 2%u
(x5 = B 55) = (1= (a0 5 (mo 5 —m 58 — f — AL T, (46)

ow 9%u 92
k sz dx -k szd) xﬁ'l' Dxxﬁ

- 2 Pu_ o 09 ¢ _ d%u
= (eap) (m1 axtarz M2 szatz) M2 5 ~ M5 47
92 ap 02
Koflas (22 = 22) = (1 = (eap)® =) (mo 2 — g — AL %), (48)
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By multiplying Egs. (46)-(48) by éu , §¢ and dw respectively, and performing integration over

the beam length, the weak form is deduced as

fOL [(A uodu _p 9 65u) (1 — (eay)? a—zz) (mo T su—m t(f Su + féu —

XX 9x 9x XX 9x 9x
ou ddéu oudép o 06¢
AT SEB) 4 (kg 22500 + KAy 9O — By 2208 4 p, 20900y 4

(1= (a0)? 25) (=my 2266 +my 2L 69 + kyAy, (—p 222 4 2200y 4 (1 -

aw 88
(eay)? ﬁ) (mg a—:8w + qéw — AL, aw W)] dx (49)

In Eq. (49), by neglecting the time dependent terms, the weak form related to buckling can be

obtained.

2.4 Finite element formulation
A five-node beam element, with four equally spaced nodes and one node at the middle is shown
in Fig. 2. This element has ten degrees-of freedom including three axial, three rotational and four
transverse displacements, which are defined at the neutral axis. Hence, the nodal displacement
vector is given by

q = {ug Uy Uz Wy Wy W3 Wy 1 by 33" (50)
w
: : :
¢Q - 1 gy | bl
\ N
L L/3 L L/3 | L/3
r L/Z] | | L/2
| 1

Fig. 2 Beam element with ten degrees of freedom.

The domain of the beam is discretized into a number of elements. The weak form is considered

for each of the discrete elements of length L with domain U¢ = (x,, X,41). By assuming the

solutions

u(x, t) = X, w0t wix, t) = Xl wap; (et ¢(x,t) = B, ¢;6;(x)e’"  with
2

k, is the shear stiffness related to the Pasternak medium, A is the cross section area, a is the

no axial forces and q = k —k,,w, where k,, is the linear stiffness of the Winkler medium,

linear thermal expansion coefficient and AT is the temperature change, one achieves the general
form of Eq. (49) for all nodes of a single element, as

11



(A 2222 B, 22250 4 (1~ (eap)? ) (mow? @S — my?65p—AL, 22 22) 4

0 XX9x 9x X ox ox *X 9x 0x
oy dp 056 00 066 92
(ksA,,066 — kSszaSG — By %E + Dy, ag} + (1 - (eao)z ﬁ) (m2w2666 —

&Y 0 as 92
myw?ps0) + kA,,(—0 a—;p + %a—:}) + (1 — (eay)? ﬁ) (mow?Y&y + k, Y& +

LT VLT P
P ox ox A dx ox )] dx = 0. GD

Here, ¢;(x), ¥;(x) and 0;(x) are the shape functions. The axial displacement of a point that is
not on the neutral axis is a linear function of both u and ¢, therefore the degrees of the
polynomials for ¢;(x) and 0;(x) have equal orders. Since the shear strain is a linear function of
both the rotation ¢ and the slope of displacement, dw/dx, the degrees of the polynomials for
Y;(x) are one order higher than for ¢;(x) and 6;(x), in order to satisfy the compatibility
conditions. Cubic polynomials for ¥;(x), and quadratic polynomials for ¢;(x) and 6;(x), are
selected based on the Lagrange interpolation formula, and defined as [56]

1,01 = 1 =1 =20), [p2,0,] =41 =), 93,651 = —C(1 - 20),
Pi=1-0(1-30)1-30, ¥, =%0-0(1-2¢), ¥s=7¢0 -1 =30,
e =(1-30) (1-3¢). (52)

The equation of motion for a beam is given by

MU + (K - PK,)U =0 (53)

Here, K, M and I_(p denote the global stiffness, mass and geometric stiffness matrices,

respectively. U is the displacement vector. The following eigenvalue relation is deduced from
Eq. (53) for free vibration investigations,

(K- w?>M)U =0 (54)

Furthermore, for buckling analysis, by ignoring the time dependent terms in Eq. (53), the
following equation is solved

(K- P, K,)U=0 (55)

In order to achieve the thermal buckling results for temperature dependent material properties, an
iterative procedure is implemented as follows:

I.  Calculate the material properties at the free stress temperature T = Tj,.
II.  Solve Eq. (51) and derive the critical buckling load AT,,, which is the critical bucking
load for temperature-independent material properties.
III.  Update the temperature of the environment as T = AT, + T, and obtain the new critical
buckling temperature at T

12



IV.  Repeat step (III) to achieve a satisfactory error tolerance.

ATH1-ATE,
ATE,

&= <0.1% (56)
The global matrices can be assembled in a standard procedure, by partitioning the element
matrices based on the degrees of freedom of each end node, and the internal degrees of freedom,
and given in the form

K0 k13 - 0 0 0 mit 0 m!d
[KV] = [ 0 k22 k23], [1_(;1] = [0 kZZJZ 0], [MY] = [ 0 m22 0 ] (57)
K31 k32 33 0 0 0 m3t 0 m

where

k't = Axxkaar, k'3 = —Byxkaai, k23 = —Axzkpers k33 = ksAxzkaatDxxkaar,

k*? = ksAyxzkpp1s mtt = mowzkaa+(ea0)2m0w2kaala mb3 = _mlwzkaa(eao)zmlwzkaalr
m*? = myw?kaq + (eag)*myw®koqq, m*? = mow?ky, + (eag)*mow?kypy,
kIZ)Z = —EAaAT(kbbl + (eao)zkbbz). (58)

These matrices are explicitly defined in Appendix A.

3. Numerical results

The effects of P-FG material distribution, porosity, nonlocal effect, elastic foundation and
thermal effect on the nondimensional natural frequencies and critical buckling temperature of P-
FG nanobeams are examined in this section. The bottom surface of the P-FG nanobeam is pure
steel (SUS304), and the top surface of the beam is pure ceramic (SizN,), the corresponding
material properties are given in Table 1. The following non-dimensional parameters are used in
this section

2
~ 2 [PcA 5 L? kyL* fepl
O = wlL ’— P.=AT.,.a,—,K,=—,K, = 59
Ecl > ' CT crmyz > Bw Ed > P Ecl ( )

where @, P, K,, and K, are related to the frequency, buckling parameter, the linear stiffness of
the Winkler foundation and the shear stiffness corresponding to the Pasternak foundation. I is the
second moment of inertia. The subscripts (), and (). denote the material properties of SUS304
and Siz N, at ambient temperature, respectively.

3.2. Thermal buckling analysis
A convergence study is performed for the buckling behaviour of the proposed element. Figure 3
gives the critical buckling temperature of nonlocal FGM-II beams with different boundary
conditions at L/h = 20,k = 1,eya/L = 0.1,4 = 0.3, K,, = 10 and K, = 5. This plot, shows
that the results for the proposed element converge rapidly as the number of elements increases.
Eight elements for pinned-pinned, and fifteen elements for fixed-pinned and fixed-fixed,
boundary conditions are sufficient to achieve reasonable accuracy in the numerical calculations.
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Fig. 3. Convergence rate of the proposed element for different boundary conditions (L/h = 20,
AT = 80(K), k = 1,K,, =10,K, = 5,eqa/L = 0.1,4 = 0.3).

To validate the proposed model, the dimensionless thermal buckling parameter P, for the
proposed model is compared with those obtained by Wattanasakulpong et al. [57] in Table 2. In
order to have an accurate comparison, the material properties are considered as Table 1 in both
studies, and the thermal moment in the potential energy equation (Eq. 30) is ignored.
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Table 2. Nondimensional thermal buckling P, of pinned-pinned beams with L/h = 20 for
various material distributions.

Ref.

[57]
SizNy 1.154 | 1.185
k=0.2 0.990 | 0.991
k=0.5 0.870 | 0.882
k=1.0 0.786 | 0.805
k=2.0 0.731 | 0.749
k=5.0 0.690 | 0.697
k=10 0.665 | 0.664

SUS304 | 0.608 | 0.613

Material | Present

The variations of the nondimensional critical buckling parameter P.,. for pinned-pinned, fixed-
pinned and fixed-fixed beam with different material distributions k, foundation stiffnesses
(K, Kp), and porosity changes A are given in Table 3 for FGM-I (uniformly distributed
porosities) and FGM-II (functionally distributed porosities) nanobeams (ega/l = 0.2) with a
span to depth ratio of L/h = 20. Tt is seen that for each porosity volume fraction, when the
power law index k increases the nondimensional critical buckling reduces. When the power law
index grows, the metal component turns out to be dominant in the material composition of the
FG beam, and this situation results in a reduction in both the elasticity modulus and the
transverse bending stiffness. Moreover, it is found that, as the porosity volume fraction grows,
the nondimensional critical buckling parameter increases. It is noted that a P-FG beam with the
functional distribution of porosities (FGM-II) is statically stable for lower thermal loadings,
compared with a P-FG beam with uniformly distributed porosities (FGM-I).

Table 3. Nondimensional critical buckling parameter P.. for FGM-I and FGM-II beams for
pinned-pinned, fixed-pinned and fixed-fixed boundary conditions considering various material
distributions k, elastic foundations (K,,,Kp) and porosity volume fractions A. (L/h =
20,eqa/l = 0.2).

Pinned-pinned

k (K, Kp) FGM-I FGM-II
Perfect
A=01|1=02 | A=03 | A=0.1 A=02 | 1=0.3
0.1 (0,0) 1.0568| 1.2047| 1.4022| 1.6615| 1.1479 1.2537| 1.3779
(10,5) 1.6169| 1.8814| 2.2327| 2.7117| 1.7591 1.9222| 2.1104
0 (0,0) 0.8676| 0.9635| 1.0834| 1.2379| 0.9335 1.0087| 1.0951
5

(10,5) 1.4035| 1.6123| 1.8646| 2.2175| 1.5197 1.6528| 1.7877
1 (0,0) 0.7837| 0.8598 0.952| 1.0655| 0.8398 0.9035| 0.9761
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(10,5) 1.3033| 1.4875| 1.7263| 2.025| 1.4078| 1.5269| 1.6638
(0,0) 0.6885| 0.748| 0.8188| 0.9044| 0.7355| 0.7897| 0.8518
° (10,5) 1.1967| 1.3652| 1.5879| 1.8991| 1.2925| 1.4036| 1.5327
Fixed-pinned
k (K Kp) FGM-I FGM-II
Perfect
2=01[21=02[2=03[A=01] 2=02 | 1=03
o (0,0 1.9151| 2.1557| 2.4666| 2.9301| 2.063 2.231| 2.4225
' (10,5) 2.377| 2.7046| 3.1852| 3.8128| 2.5616| 2.7691| 3.0573
05 (0,0 1.5999| 1.7615| 1.9588| 2.2038| 1.7109| 1.8357| 1.9765
' (10,5) 2.048| 2.2969| 2.6084| 3.0517| 2.1967| 2.3637| 2.5516
(0,0) 1.4687| 1.6043| 1.7458| 1.9323| 1.5683| 1.6637| 1.7857
1 (10,5) 1.9023| 2.1222| 2.3967| 2.7455| 2.0377| 2.1902| 2.3627
5 (0,0) 1.3001| 1.4082| 1.5368| 1.6922| 1.3866| 1.4846| 1.5966
(10,5) 1.7545| 1.9625| 2.2335| 2.6133| 1.8854| 2.0359| 2.2112
Fixed-fixed
k (K, Kp) FGM-I FGM-II
Perfect

1=01]2=02[2=03]2=01] 2=02 [1=03
o (0,0) 3.2194| 3.6016| 4.1024| 4.627| 3.4515| 3.7171| 3.9385
' (10,5) 3.6099| 4.0707| 4.5453| 5.4028| 3.8754| 4.0971| 4.3921
. (0,0) 2.6705 2.96| 3.2695| 3.5247| 2.8811| 3.0752| 3.2967
® (10,5) 3.0913| 3.4185| 3.7428| 4.187| 3.2963| 3.5285| 3.7116
] (0,0) 2.4584| 2.6857| 2.9241| 3.1128| 2.5974| 2.8014| 2.9905
(10,5) 2.8327| 3.1456| 3.4925| 3.7828| 3.0507| 3.2567| 3.4928
(0,0) 2.2438| 2.4172| 2.6193| 2.8479| 2.384| 2.5432| 2.7259
° (10,5) 2.6632| 2.9641| 3.3261| 3.8336| 2.8752| 3.0926| 3.3525

The variations of critical buckling temperature AT, with span to depth ratio L/h, are plotted in
Fig. 4 for perfect, FGM-I and FGM-II nanobeams (ega/L = 0.2) with various boundary
conditions and power index of k = 1. The critical temperature decreases as the span to depth
ratio increases, and this variation happens quickly at smaller slenderness ratios. It is observed
that the FGM-I nanobeam has higher critical buckling temperatures in comparison with perfect
and FGM-II nanobeams. The influence of the functional distribution of porosities (FGM-II) on
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the critical buckling temperature is not so significant (especially for the pinned-pinned boundary
conditions), although the critical buckling temperature is influenced significantly by the uniform
distribution of porosities (FGM-I). Also, for high span to depth ratios the critical temperatures
for all three beams (perfect, FGM-I and FGM-II) converge to a unique value, which happens at a
higher rate for the pinned-pinned boundary conditions.

Pinned-pinned Fixed-fixed
675
625 550
575 —»— Perfect 500 —»— Perfect
525 450 | —6—FGM-I-A=0.2
475 | —6—FGM-I- A=0.2
4001 FGM-II- A=0.2
425 | T PRV ASE
Z375 | —%—FGM-II- A=0.2 2350
5325 | 5 300
275 | 250 |
225 | 500 |
175 |
150 |
125 |
100 |
75 |
10 15 20 25 30 35 40 45 50 15 25 35 45
L/h L/h
Fixed-fixed
595
545 —*— Perfect
495 —6—FGM-I- A=0.2
445 |
—— FGM-II- A=0.2
o395 ¢
345 |
295 |
245 |
195 |
145 |
95 1 1 1 1 1
20 25 30 35 40 45 50

L/h

Fig. 4. Critical buckling temperature AT, for perfect, FGM-I and FGM-II nanobeams with pinned-pinned, fixed-pinned
and fixed-fixed boundary conditions (eqa/L = 0.2, k = 1).
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3.2. Thermal vibration analysis
A convergence study is performed for vibration behaviour of the proposed element. Figure 5
shows the nondimensional fundamental frequencies of nonlocal P-FG beams with different
boundary conditions for L/h = 20, ega/L = 0.1,K,, = 10,K, = 5 and k = 1 at AT = 80. The
frequencies predicted by the proposed element converge rapidly as the number of elements
increase. Eight elements should to be enough to obtain reasonable accuracy in numerical
calculations.

- Pinned-pinned _ Fixed-pinned
0.59075 |}
0.8248 | %
ceeefee AT=80 (K) L e & AT=80 (K)
08246 | } 059068 |
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% : W
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: 0.59054 |
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'3-._ 050047 | 2
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Fig. 5. Convergence rate of the proposed element for different boundary conditions (L/h =
20, AT =80, k = 1,K,, = 10,K, = 5,epa/L = 0.1).

The reliability of the vibration response for the proposed FE model can be concluded from Table
4, where the nondimensional natural frequencies of the FG nonlocal Timoshenko beam on the
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Winkler-Pasternak foundation with thermal loading, are given and compared to the analytical
solution of Ebrahimi and Barati [58].

Table 4. Comparison of the non-dimensional frequency @ of an FGM-I nanobeam on elastic
foundation for pinned-pinned boundary conditions with different temperature variations AT,
elastic stiffnesses (K,,, K;,) and nonlocal parameters eqa/L (L/h = 20, k = 1).

eoa/L | (Ky,K,) |AT(K) | Present| Ref. [58] Error

20 |5.58038| 5.56965 | 0.19%
(0,0)

40 |5.19787| 5.20291 | -0.09%

20 [9.29645| 9.30304 | -0.07%

(25,10) | 40 |9.05918| 9.08822 | -0.32%

20 [5.28998| 5.28078 | 0.17%
(0,0)

40 14.88365| 4.89213 | -0.17%

20 |9.09377| 9.13302 | -0.43%
(25,10)

40 |8.85757| 8.91395 | -0.63%

The variations of the nondimensional fundamental frequency @ for pinned-pinned, fixed-pinned
and fixed-fixed beams with various material distributions k, foundation stiffnesses (K,,, Kp),
temperature changes AT and nonlocal parameters eya /! are given in Tables 5 and 6 for FGM-I,
and FGM-II beams, respectively. It is found that for each kind of thermo-mechanical loading,
when the power law index k grows, the nondimensional frequency decreases. As the nonlocal
parameter increases the nondimensional frequency reduces and the nonlocal parameter has a
softening effect on the natural frequency of both FGM-I and FGM-II beams even with a small
increment of the nonlocal parameter. Also, the foundation parameters have an increasing effect
on the nondimensional frequencies by providing a greater stiffness to the whole system. For
example, at ega/L = 0.2, AT = 40(K) and k = 5, for pinned-pinned boundary conditions, when
the foundation stiffness increases from (0,0) to (10,5), the nondimensional frequency of FGM-I
and FGM-II nanobeams increases by 41% and 39%, respectively. Furthermore, the functional
distribution of porosities (FGM-II) results in a smaller frequency in comparison with a uniform
distribution of porosities (FGM-I).

Table 5. Nondimensional natural frequency @ of FGM-I for pinned-pinned, fixed-pinned and
fixed-fixed boundary conditions considering various material distributions k,elastic foundations
(K,,, Kp) and nonlocal parameters eqa/l. (L/h = 20,4 = 0.1).

Pinned-pinned

k (Kw, Kp) ea/L =0 e,a/L =0.2
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AT (K) AT (K)
0 20 40 0 20 40
(0,0) 9.1985 8.8498 8.4803 9.109 8.7571 8.3839
o (10,5) 11.9928 11.7167 11.4293 11.9231 11.6458 11.3573
(0,0) 16.0649 15.3908 14.6719 15.9086 15.2282 14.5018
o (10,5) 21.1753 20.6494 20.1006 21.0545 20.5267 19.9755
(0,0) 21.9855 20.997 19.9379 21.7716 20.7737 19.7031
1 (10,5) 29.2158 28.4532 27.6554 29.0516 28.2861 27.4849
(0,0) 26.7267 25.4427 24.0593 26.4667 25.1702 23.7715
° (10,5) 35.8124 34.8336 33.8071 35.6139 34.6315 33.6008
Fixed-pinned
epa/L=0 eoa/L=0.2
k (Ko, Kp) AT(K) AT(K)
0 20 40 0 20 40
(0,0) 14.2943 14.0204 13.7364 14.1328 13.8519 13.5602
o (10,5) 16.4677 16.2238 15.9724 16.3575 16.1089 15.8526
(0,0) 24.9724 24.4482 23.9023 24.6902 24.1522 23.5911
o (10,5) 28.9563 28.494 28.0158 28.7675 28.2962 27.8084
(0,0) 34.1845 33.421 32.6233 33.7983 33.0142 32.1939
1 (10,5) 39.8305 39.1617 38.4683 39.5759 38.894 38.1866
(0,0) 41.5546 40.5688 39.5351 41.0852 40.0724 39.0088
° (10,5) 48.6637 47.8066 46.9159 48.3588 47.4849 46.5761
Fixed-fixed
epa/L=0 e,a/L=0.2
k (Ko, Kp) AT(K) AT(K)
0 20 40 0 20 40
(0,0) 20.6045 20.3824 20.155 20.3564 20.1227 19.8829
o (10,5) 22.2486 22.0375 21.822 22.0899 21.8697 21.6445
(0,0) 35.9858 35.5668 35.1356 35.5524 35.1105 34.6551
o (10,5) 39.0055 38.6095 38.2032 38.7355 38.3219 37.897
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(0,0) 49.2459 48.6412 48.0169 48.6528 48.0143 47.354
1 (10,5) 53.532 52.9628 52.3771 53.17 52.575 51.9619
(0,0) 59.8529 59.0788 58.2768 59.1323 58.3139 57.4646
° (10,5) 65.2574 64.532 63.7833 64.8265 64.0678 63.2836

Table 6. Nondimensional natural frequency @ of FGM-II for pinned-pinned, fixed-pinned and
fixed-fixed boundary conditions considering various material distributions k,elastic foundations
(K., Kp) and nonlocal parameters eqa/l. (L/h = 20,41 = 0.1).

Pinned-pinned

ea/L =0 epa/L =0.2
k (K, Kp) AT (K) AT (K)
0 20 40 0 20 40
o1 (0,0 9.0273 8.666 8.2822 8.9395 8.5749 8.1871
' (10,5) 11.6095 11.3208 11.0196 11.5402 11.2503 10.9477
05 (0,0) 15.9251 15.2242 14.4749 15.7702 15.0626 14.3053
' (10,5) 20.6828|  20.1301 19.5518|  20.5615| 20.0066|  19.4256
1 (0,0) 21.9296|  20.9001 19.7944|  21.7164| 20.6769|  19.5591
(10,5) 28.6886| 27.8847| 27.0417| 28.5226| 27.7154|  26.8686
(0,0) 26.795 25.456| 24.0106| 26.5344| 25.1824|  23.7207
° (10,5) 35.3149|  34.2805 33.1932| 35.1132 34.0746| 32.9824
Fixed-pinned
epa/L=0 eoa/L=0.2
k (K, Kp) AT (K) AT (K)
0 20 40 0 20 40

o1 (0,0) 14.0256 13.743 13.4495 13.8671 13.5772 13.2757
' (10,5) 16.0278 15.775 15.514| 15.9169| 15.6591|  15.3928
05 (0,0) 24.7493|  24.2061 23.6394|  24.4698 23.912| 23.3294
' (10,5) 28.4461| 27.9641| 27.4649| 28.2537| 27.7621| 27.2526
1 (0,0) 34.0884| 33.2952| 32.4654| 33.7034| 32.8887| 32.0351
(10,5) 39.348| 38.6486| 37.9225| 39.0864 38.373| 37.6317
5 (0,0) 41.6488|  40.6228 39.546 41.1785 40.1242 39.0161
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(10,5) 48.2908 47.392 46.4568 47.9752 47.0585 46.1038
Fixed-fixed
epa/L=0 e,a/L=0.2
k (K, Kp) AT (K) AT (K)
0 20 40 0 20 40

(0,0) 20.2127 19.985 19.7514|  19.9694|  19.7296 19.4831
> (10,5) 21.7244 21.5076 21.2859 21.5636 21.3372 21.1053
(0,0) 35.6574| 35.2251| 34.7797| 35.2282 34.772|  34.3013
o (10,5) 38.4534| 38.0439| 37.6233 38.176| 37.7478| 37.3075
(0,0) 49.099| 48.4731| 47.8263 48.508| 47.8468| 47.1624
1 (10,5) 53.0825| 52.4917| 51.8832 52.707| 52.0889| 51.4513
(0,0) 59.9783| 59.1749| 58.3422|  59.2566 58.407| 57.5248
° (10,5) 65.015 64.2598 63.4796 64.5644 63.7738 62.956

In Fig. 6 the fundamental frequency of an FG nanobeam on an elastic foundation is plotted for
different boundary conditions with respect to the temperature variations and various Winkler-
Pasternak foundation parameters. The compressive axial forces caused by the thermal loads
created from the temperature changes can make the beam statically unstable by passing the
critical value. The temperature rise essentially softens the stiffness of the beam, which results in
the reduction of the nondimensional frequency. This trend continues until the critical temperature
is reached. Also the existence of the elastic foundation provides more rigidity to the system,
which increases the nondimensional frequency. This behaviour also occurs until the critical
temperature is reached. Moreover, based on Fig. 6, by comparing the frequency changes before
the critical point, it is found that the shear stiffness (Pasternak foundation) of the foundation
gives more bending rigidity to the system than the linear stiffness (Winkler foundation).
Furthermore, as expected, the critical temperature is distinct for each of the boundary conditions,
for example, considering the foundation with K,, = 30 and K = 15 values of foundation
stiffness, the critical temperature will be 89.3K, 114.24K and 161.14K for pinned-pinned, fixed-
pinned and fixed-fixed boundary conditions, respectively.
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Fig. 6. Influence of the Winkler-Pasternak elastic foundation on the nondimensional frequency of the FGM-I
nanobeam with respect to temperature rise for different boundary conditions (k = 1,L/h = 50,eqa/L = 0.2,A =
0.1).
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The effect of the material graduation £ and span-depth ratio L/h on the nondimensional
frequency of the FGM-I and FGM-II porous (4 = 0.1) nanobeams (eya/L = 0.2) resting on an
elastic foundation (K, = 300, Kp = 150) and made of Si3N,/SUS304 are shown in Fig. 7 for
different boundary conditions and temperature rises. The functional distribution of porosities
(FGM-II) leads to a lower frequency in comparison with the uniform distribution of porosities
(FGM-I), which is caused by the reduction of the stiffness of the P-FG beam. Also, considering
the L/h = 150 beam, both types of PFGMs (FGM-I and FGM-II), reach their critical point at
the ceramic dominant region. Specifically, the FGM-II beam attains the critical point in a more
ceramic dominant area where for the fixed-pinned beam, with k = 0.09, the FG beam can almost
be considered as a pure ceramic beam. For L/h = 150 nanobeams with pinned-pinned
boundary conditions and a temperature rise of AT = 90, the nondimensional natural frequencies
decrease to zero at k = 0.775 and k = 0.193 for the FGM-I and FGM-II nanobeams,
respectively. Meanwhile, this temperature rise is much less than the critical temperature for
L/h = 100 and L/h = 50 nanobeams. This means that the nondimensional frequencies
regarding these two nanobeams will never reach zero at AT = 90. For fixed-pinned nanobeams
with span to depth ratios of L/h = 150, the critical buckling temperature is AT = 95, which
occurs at k = 0.412 and k = 0.09 material graduations for the FGM-I and FGM-II nanobeams,
respectively. Furthermore, for fixed-fixed nanobeams, the corresponding critical temperature of
L/h = 150 is AT = 100, which happens at k = 0.508 and k = 0.15 material distributions, for
the FGM-I and FGM-II nanobeams, respectively.
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Fig. 7. Influence of the material distribution & and span-depth ratio L/h on the nondimensional frequency of the FGM-I
and FGM-II nanobeams for different boundary conditions (eqa/L = 0.2,1 = 0.1,K,, = 300, K, = 150).

The variations of the nondimensional frequencies of FGM-I and FGM-II nanobeams (eqa/L =

0.2) on elastic foundations (K,, = 10, K = 5), with material graduation k in the range 0 < k <
2 for various thermal loadings are plotted in Fig. 8 for pinned-pinned boundary conditions. The
closest result to the perfect FGM is the P-FGM with a functional distribution of the porosities
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(FGM-II), which reaches to the critical buckling point right after the perfect FG beam. At

AT = 140, the nondimensional frequency related to the perfect FG beam, declines sharply as the
value of the material graduation k grows until reaching the critical value at k = 0.493. This
means that, for a perfect FG beam with the material distribution of k = 0.493 and pinned-pinned
boundary conditions , AT = 140 is the critical buckling temperature. AT = 140 is also the
critical temperature for FGM-II with porosity volume fraction of A=0.1 at k = 1.088. With the
considered domain for the material graduation k, there are three critical points for the
temperature rise of AT = 145, at k = 0.36, k = 0.767 and k = 1.451, for perfect FGM, FGM-
II- 2=0.1 and FGM-I- A=0.1, respectively. By increasing the thermal loading to AT = 150,
another critical point appears. At this temperature difference, the corresponding critical points
are k = 0.26, k = 0.565, k = 1.003 and k = 1.302, for perfect FGM, FGM-II- 2=0.1, FGM-I-
2=0.1 and FGM-II- A=0.2, respectively. At AT = 155, the diagrams shift to the left and the
critical points are k = 0.184, k = 0.425, k=0.741 and k = 0.917, for perfect FGM, FGM-II-
2=0.1, FGM-I- A=0.1 and FGM-II- 2=0.2, respectively. This vibration behaviour is also
investigated for fixed-pinned and fixed-fixed boundary conditions and the results are shown in
Figs. 9 and 10, respectively. As expected, the bucking occurs at higher temperatures for these
two boundary conditions in comparison with pinned-pinned boundary conditions.
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Fig. 8. Influence of the material distribution k and porosity on the nondimensional frequency of the FGM-I and FGM-II

nanobeams with different thermal loadings for pinned-pinned boundary conditions (eya/L = 0.2,K,, = 10,Kp = 5).
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Fig. 9. Influence of the material distribution k and porosity on the nondimensional frequency of the FGM-I and FGM-II

nanobeams with different thermal loadings for fixed-pinned boundary conditions (eqa/L = 0.2,K,, = 10,Kp = 5).
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Fig. 10. Influence of the material distribution k and porosity on the nondimensional frequency of the FGM-I and FGM-II

nanobeams with different thermal loadings for fixed-fixed boundary conditions (eqa/L = 0.2,K,, = 10, K, = 5).

4. Conclusion

A five noded beam element is proposed to study the thermo-elastic behaviour of temperature-
dependent P-FG Timoshenko nanobeams subjected to a uniform temperature gradient through
the thickness direction in the framework of nonlocal elasticity theory. In order to incorporate the
size effects, Eringen’s nonlocal elasticity theory is employed. The governing equations and the
corresponding boundary conditions are deduced by exploiting Hamilton’s principle. Verification
of the proposed model is evaluated by comparing the results with the available data in the
literature. The influences of two kinds of porosity distributions related to the FGM-1 and FGM-II
beams, the nonlocal scale parameter, material distribution, temperature gradient, foundation
stiffness and slenderness ratio on the critical buckling temperature and natural frequencies of P-
FG nanobeams are analysed. It is concluded that that presence of porosity leads to increases in
the natural frequency. Also, it is seen that the functional distribution of the porosities results in
smaller fundamental frequencies, in comparison with the uniform distribution of the porosities.
The natural frequency reduces with an increase in the temperature and reaches zero at the critical
temperature. This reduction in natural frequency with increasing temperature is related to the
compressive stress caused by the thermal stress, which softens the beam stiffness. Based on the
results of this paper, the existence of porosities increases the critical buckling temperature. Also,
the uniform distribution of porosities (FGM-I) leads to higher buckling temperatures compared
with the functional distribution of porosities (FGM-II), which could be considered as a critical
factor in the optimisation and design of the porous functionally graded nanobeams.
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Appendix A

2 1 —1/2
kaa=i[ 1 8 1 ]
15
-1/2 1 2
7 -8 1
kaal =§ —8 16 _8 )
1 -8 7
L1 2
kaaz =13|-2 4 -2,
(1 -2 1

(128 99 —36 19
b = L |99 648 —81 —36
bb ™ 1680|—36 —81 648 99 |
[ 19 -36 99 128

[ 148 —-189 54 —13

ko — 1|-189 432 -297 54
bbl1 = 40L| 54 —297 432 —189|
| —13 54 —189 148
1 —5/2 2 -1/2
PO 5/2 7 -13/2 2
bbz = sl 2 —13/2 7 -5/2|
-1/2 2 —5/2 1
—83 —44 7

o _1|99 -108 9
bel ™ 10| —9 108 —99/
| —7 44 83

[—27 18 -9
1|63 =54 45
212|—45 54 —63|
| 9 —-18 27

kpeo =

where L is length of the beam element.

Data Availability

(AD)

(A2)

(A3)

(A4)

(AS5)

(A6)

(AT)

(A8)

All of the results given in the paper are simulated based on the proposed finite element model.
The paper contains full details of the developed finite element and the geometry and material
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properties for the examples. Hence, there is no raw data, and data in the figures and tables maybe
be reproduced by coding the described model.
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A 5-noded beam finite element is proposed to analyse thermo-elastic behaviour of
functionally graded porous nanobeams.

Nonlocal elasticity theory is employed to incorporate the size-dependent behaviour of the
nanobeams.

The finite element procedure and variational formulation are described in detail.

The axial and shear behaviour of the elastic foundation are considered based on Winkler-
Pasternak model.

The critical buckling temperature and the natural frequencies are calculated for various,
porosity distributions, temperature gradients, nonlocal parameters and boundary
conditions.



