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Abstract 

Dynamic properties of the contact interfaces in joints and mechanical connections 

have a great influence on the overall dynamic properties of assembled structures. 

Uncertainty and nonlinearity are two major effects of contact interfaces which 

introduce challenges in accurate modeling. Randomness in surface roughness 

quality, surface finish and contact preload are the main sources of variability in the 

contact interfaces. On the other side, slip and slap are two mechanisms responsible 

for nonlinear behavior of joints. Stochastic linear/nonlinear models need to be 

developed for such uncertain structures to be used in dynamic response analysis or 

system parameter identification. In this paper, variability in linear behavior of an 

assembled structure containing a bolted lap-joint is investigated by using 

experimental results. A stochastic model is then constructed for the structure by 

employing a stochastic generic joint model and the uncertainty in the joint model 

parameters is identified by using a Bayesian identification approach.  

 

Introduction 

The aim of using joints and fasteners in many engineering structures is to transfer 

forces and moments between different substructures through frictional contact 

interfaces. Due to the lack of information about the various parameters- such as 



contact stiffness and damping, surface roughness quality, preload etc.- frictional 

contact interfaces introduce uncertainty in the dynamic properties of assembled 

structures. Measurement, quantification and modelling of this uncertainty is a step 

forward in engineering structural design. Since deterministic modeling and 

identification do not provide promising results for assembled structures, stochastic 

modeling and uncertainty quantification approaches should be developed.  

Contact interfaces are among the main sources of uncertainty in assembled structures 

[1]. There are principally two classes of uncertainty in joints. The first, and most 

important, class of uncertainty arises from the deformation of asperities and the 

consequent relaxation of the joint [2], for example there can be as much variation as 

±30% of the expected tension in a bolt when using the torque tightening method and 

bolt tension can drop by more than 40% over a short period of exposure to vibration. 

Also there are cases when bolt tension can increase rather than decrease depending 

upon the excitation frequency and vibration level. Bolt tension generally reduces 

quickly just after tightening. The second type of uncertainty in joints is due to the 

assembly process and the accumulation of engineering tolerances.  

Variability in contact interface parameters due to the deformation of asperities can 

be attributed to the randomness in the preload and contact surface characteristics such 

as surface finish (or roughness quality). Variability and repeatability in the dynamic 

response of assembled structures have been studied by Brake et.al. [3]. Gangadharan 

et al. [4] identified the stochastic welded joint model parameter in a car body by 

employing two coupled and uncoupled models. Lopez et al. [5] considered the 

connection between two substructures of a space structure as random springs and 

investigated the uncertainty in structural responses such as FRFs due to the 

uncertainty in joint parameters. Guo and Zhang [6] identified the uncertainty in joint 

model parameters by using updating approaches. Castelluccio and Brake [7] 

employed FE simulation to investigate the model input and form uncertainties in 

threaded fasteners. They characterized the source of uncertainty and variability in 



modelling fasteners as uncertainty in geometry, materials, mechanics and 

methodology.  

Stochastic model updating methods can be generally categorized into two groups. 

These are probabilistic and non-probabilistic methods. Non-probabilistic methods 

include interval updating e.g. [8] [9] [10] and fuzzy model updating e.g. [11] [12] 

[13], while perturbation methods such as [14] [15] [16] [17] and Bayesian updating 

[18] [19] [20] are examples of the probabilistic methods. Govers et al. [21] compared 

the interval updating methods with perturbation methods and concluded that interval 

model updating is more conservative than perturbation methods although in the case 

of limited data the interval approach seems to be more suitable because it does not 

involve any probabilistic assumption. The review paper by Simoen [22] and 

references therein show the considerable attention that has already been paid to the 

subject of non-deterministic model updating. Recently there has been great attention 

on the use of Bayesian model updating in the context of stochastic model updating. 

The choice of likelihood functions is often assumed to have a normal distribution 

while the validity of this assumption cannot be readily assessed.     

In this paper stochastic modeling and uncertainty quantification of the contact 

interface of a bolted lap-joint is considered. First, two sets of beam substructures are 

provided and are combined to build a set of nominally identical assembled structures. 

Experimental modal testing is employed to study the effects of preload and surface 

roughness quality on the variability of modal parameters of the assembled beam 

structures. Then, a stochastic dynamic model capable of regenerating the 

experimental modal properties is constructed by introducing a new stochastic joint 

model. Finally, the Bayesian approach is adopted to identify the stochastic joint 

parameters by employing the stochastic model of the experimental modal properties. 

A new likelihood function is introduced and employed in this paper which does not 

rely on the assumption of a Normal distribution for the error function which is a key 

assumption in stochastic model updating.  



Experimental analysis of the bolted structures 

To check the effects of randomness in contact surface roughness parameters on the 

variability of the dynamic characteristics of assembled structures, i.e. natural 

frequencies and damping ratios, 25 nominally identical bolted beam structures are 

prepared. The beam structures are identical in dimensional and material properties 

and it is assumed that there is a variability between their contact surface parameters 

such as their contact surface profiles. The dimensions of the test structures are shown 

in Figure 1. The test structures, which are made from steel, have the material 

properties 𝐸 = 208 GPa and 𝜌 = 7860 kg/m3. 

 

Figure 1. The test structures: (a) dimensions of the substructures, (b) test set-up of 

the assembled structures, (c) samples of the substructures 

Joints have a great influence on the dynamic properties of assembled structures. In 

fact, the local flexibility and damping introduced by joints changes the overall 

dynamic response of the structures [23]. The equivalent stiffness and damping 

characteristics of the contact interfaces of the joints is a function of contact surface 

parameters such as surface roughness and preload [24] [25] [26]. Therefore small 



variability in the contact surface parameters results in significant effects on the 

overall dynamic characteristics. In this paper, experimental modal testing is 

employed to investigate the effects of variability in the contact interface parameters 

on the variability of natural frequencies and damping ratios.  

In the modal testing procedure, care has been taken to keep other types of 

uncertainties to a minimum. The beam substructures shown in Figure 1 are combined 

by using identical M8 bolts and nuts and nominally identical assembled structures 

are obtained. A KTC Digital Ratchet Torque Wrench model GEK030-C3 is used to 

tighten the bolts to a specific level. In this paper three torque levels are used, 7 Nm, 

15 Nm and 23 Nm. To minimise the effects of uncertainty in boundary conditions, 

free-free boundary conditions are used for the assembled beam structures by 

suspending them using flexible strings as shown in Figure 1.  

Hammer testing is employed in this paper and the amplitude of the applied forces to 

the structures is kept low to ensure that the structure behaves linearly. Three 

accelerometers are used to measure the response of the structures. Bolts and 

accelerometers mass characteristics change the natural frequencies of the assembled 

structures used in this paper in a range of frequencies which is comparable to the 

variation in the natural frequencies due to randomness in the contact interface. 

Therefore, a source of uncertainty in the test structures can be the variability in 

location and orientation of the bolts and accelerometers, which should be avoided in 

the test procedure. A unique arrangement of bolts, accelerometer locations and 

hammer impact point relative to the two substructures, as shown in Figure 2, is used 

in the modal testing of all assembled beam structures. This ensures the effects of 

unwanted uncertainty in the test results due to the test procedure are kept to a 

minimum level.  

 



 

Figure 2. Arrangement for the modal testing 

 Experimental FRFs corresponding to different bolt tightening torque levels are 

shown in Figure 3.  

 

Figure 3. The FRFs corresponding to 7 Nm (red), 15 Nm (blue) and 23 Nm (green) 

Figure 3 indicates that by increasing the contact interface preload (or bolt tightening 

torque) the natural frequencies increase. However, the change in the damping ratio 

is different for various modes and preloads. It is expected that there would be a bolt 

torque that maximises the damping ratios; for both low and high torque the 

dissipation would be low (if the joint is very stiff there is no micro-slip). It is worth 

noting that the mode shapes of the beam will affect the damping ratio as will be 

discussed in the last section of the paper, i.e. ‘joint model damping parameter’. To 

quantitatively investigate the effects of preload and variability in the contact interface 

on modal properties, the peak-picking modal parameter estimation approach [27] is 

used to extract the modal properties of the assembled structures using the 

experimental results presented in Figure 3. Figures 4 and 5 show the variability in 

the natural frequencies and damping ratios for different modes.  



   

   

   

Figure 4. Variability in the natural frequencies: 7 Nm (red), 15 Nm (blue) and 23 

Nm (green) 

   



   

   

Figure 5. Variability in the damping ratios: 7 Nm (red), 15 Nm (blue) and 23 Nm 

(green) 

The experimental results presented in Figures 4 and 5 show that there is significant 

variability in the natural frequencies and damping ratios. The results show that the 

variability reduces at higher preload. The lower modes are likely to be more 

correlated because they are likely to depend mainly on one of the equivalent joint 

parameters, whereas for higher modes other joint parameters could become 

important. Variability in the damping ratios is higher than for the natural frequencies 

and there is no clear relationship between variability in the damping ratios and 

preload, although the results indicate higher variability in the damping ratios for 

lower preload, which is expected. Another observation is that there doesn’t appear to 

be any clear correlation between the different damping ratios, in contrast with 

frequencies shown in Figure 4 (especially the lower modes) where there are clear 

correlations. It is worth mentioning that since identification of damping is more 

sensitive to noise compared to the identification of natural frequencies, and all of the 

variability in the damping ratios shown in Figure 5 cannot be attributed to the 

randomness in the contact interface. The experimental results presented in this 



section are used in the next sections to construct an accurate stochastic dynamic 

model for the structure.  

 

Mathematical modeling 

There are two important steps in modeling mechanical structures: constructing an 

accurate model and improving its precision. An accurate model means a model which 

is potentially capable of representing the actual mechanical structure. Accurate 

modeling is not possible unless every single part of the actual structure is properly 

considered in its mathematical representation. Modeling mysterious and physically 

unknown sections such as joints is very important in constructing an accurate model 

for the structures. Having an accurate model, its precision can be improved by using 

experimental results and employing system identification approaches. Therefore, a 

precise model means a model which predicts the dynamic properties of an actual 

mechanical structure very closely. Without having an accurate model, approaching 

to a precise model is either impossible or is possible but results in a model with a 

poor physical justification, i.e. negative physical parameters such as stiffness 

coefficients. In fact, the model parameters may compensate for the inaccuracy in the 

modeling. Accurate modeling is even more important in stochastic structural 

modeling and identification. Compensation for the modeling inaccuracy results in 

erroneous distributions of the identified model parameters. Constructing accurate 

models capable of representing the variability in the dynamic properties of the 

contact interfaces in assembled structures is considered in this section.  

Modeling an assembled structure containing a joint contact interface is considered 

by using offset-beam and stochastic generic-joint elements. The dynamic modeling 

discussed in this section will be used to identify the joint model parameters by using 

experimental results in the next sections. A bolted structure, as shown in Figure 6(a), 

is considered. The structure consists of two beam substructures connected through a 

frictional contact interface provided by a bolted lap joint.  



 

Figure 6. The joined structure: (a) schematic, (b) corresponding FE model  

The structure can be divided into two beam sections and one joint section. The 

dynamic behaviour of the beam sections can be represented using different beam 

theories [28]. Beam sections can be represented by using analytical or FE models. 

The FE modeling approach is considered for the beam sections in this paper. 

Modeling the joint section has been considered by many researchers in the past and 

different linear [29] [30] [31] and nonlinear [32] [33] [23] [34] [35] [36] joint models 

have been proposed. In modeling the assembled structure shown in Figure 6(a), 

special care should be taken since the beam substructures are in contact in a region 

far from their centerlines at the joint section. This fact should be considered in the 

modeling, as described in the following.  

The beam sections of the structure shown in Figure 6(a) are modelled using offset 

Timoshenko beam elements [37]. Usually in the FE method the nodes are located on 

center line of the beam elements. However, to be able to effectively assemble the FE 

model of the structure shown in Figure 6(a), the nodes should be placed at the bottom 

surface of the upper beam and the upper surface of the lower beam as shown in Figure 

(6b). By displacing the nodes, the stiffness matrix of the offset beam element is 

obtained as,  
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where 𝑞 = ℎ/2 for the upper beam and 𝑞 = −ℎ/2 for the lower beam, 𝑘𝐴 = 𝐸𝐴/𝐿 

and 𝑘𝐼 = 𝐸𝐼/(1 + 𝜙)𝐿3 and 𝐿 is the length of the beam element. 𝐸, 𝐴 and 𝐼 are 

Young’s modulus, area of the cross section and bending moment of inertia, 

respectively. 𝜙 = 12𝐸𝐼𝛼/𝐺𝐴𝐿2 gives the relative importance of shear deformation 

to bending deformation. 𝐺 is the shear modulus and 𝛼 is the shear area coefficient. 

The effect of offsetting on the mass matrix is negligible and hence the mass effect of 

the beam sections of the structure is modeled by using the mass matrix of 

Timoshenko beam element (Appendix).  

Next, modeling the joint section of the assembled structure shown in Figure 6(a) is 

considered. Due to the complexities that exist in the behaviour of the contact 

interface, there are no analytical equations governing the dynamic behaviour of the 

joint section and the joint section must be modeled using the FE approach. The joint 

section can be modeled by using generic joint elements [33]. To consider the 

randomness in the joint contact surfaces described in the previous sections, the joint 

model parameters may be considered as random fields to construct a stochastic joint 

model. Therefore, in this paper, the joint section is modelled by using 2-noded 

stochastic beam like generic elements [33]. In this regard, the stiffness matrix of the 

stochastic generic joint element is considered as,  
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where 𝑘𝑖(𝜃) = 𝑘𝑖0(1 + 𝜀𝑖̅𝑓𝑖(𝜃)) (𝑖 = 1,2). 𝑘𝑖0 and  0 < 𝜀𝑖̅ ≪ 1  (i=1,2) are the mean 

values and deterministic constants and 𝑓𝑖(𝜃) is a zero mean random field describing 

the variability in the stiffness parameters of the joint element. In equation (2), 
Ak is 

the axial stiffness of the beam structure and )(1 k  and )(2 k are the stochastic joint 

model parameters which can be identified by using experimental results as described 

in the identification procedure in next section. )(1 k  and )(2 k  represent the 

equivalent linear stiffnesses of the slap and slip mechanisms in the contact interface, 

respectively. It is worth mentioning that 𝑘1(𝜃) and 𝑘2(𝜃) are the distribution of 

stiffness parameters over the contact interface and in the cases that several joint 

elements of the kind introduced in equation (2) are used to model the joint section, 

𝑘1(𝜃) and 𝑘2(𝜃) are each governed by one random field for all elements. 

The slip mechanism in the contact interface of the joint contributes to the energy 

dissipation in the structure. To consider this energy dissipation, the following 

damping matrix is proposed for the joint section, 
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where c(𝜃) = 𝑐0(1 + 𝜀3̅𝑓3(𝜃)) . 𝑐0 and  0 < 𝜀3̅ ≪ 1  are the mean values and 

deterministic constants and 𝑓3(𝜃) is a zero mean random field describing the 

variability in the damping parameter of the joint element. The description given 



above about using several elements for modeling the joint section is applied to c(𝜃) 

as well. 

Because of the overlap of the two substructures in the joint section, the mass effect 

of the joint section is twice the mass effect of the beam section which means [𝑀𝑗] =

2[𝑀𝑏]. By assembling the mass, damping and stiffness matrices of the beam and joint 

elements, finally the dynamic model governing the free vibration of the assembled 

structure shown in Figure 6 is obtained as, 

[𝑀]{𝑞̈} + [𝐶(𝜃)]{𝑞̇} + [𝐾(𝜃)]{𝑞} = {0}  (4) 

where [𝐶(𝜃)] and [𝐾(𝜃)] contains the stochastic joint model parameters. In next 

section, the identification procedure for the joint model parameters is described.  

 

Parameter identification procedure 

Identification of the stochastic joint model parameters described in the previous 

section is considered by using experimental natural frequencies and employing the 

Bayesian identification approach as described in this section. 

The natural frequencies of the assembled structure can be related to the joint element 

stiffness parameters by the following equation, 

𝐲 = 𝐟(𝛉)                                                                                                                 (5) 

where 𝛉, is the vector of joint element stiffness parameters, i.e. 𝛉 = [𝑘1, 𝑘2]𝑇, 𝐲 =

[𝑓1, … , 𝑓m]𝑇 is one set of measured natural frequencies (or observations) and 𝐟 

represents the mathematical model of the un-damped structure described by equation 

(4). Our goal is to identify the distribution of the joint element stiffness parameters, 

i.e. 𝑘1(𝜃) and 𝑘2(𝜃), by using the Bayesian identification approach provided that 𝑁̅ 

sets of observation data (i.e. natural frequencies) are available. 

Based on the Bayes’ rule, the following equation governs the posterior probability of 

model parameters [38], 



𝑝(𝛉|𝐲) =
𝑝(𝐲|𝛉)𝑝(𝜽)

𝑝(𝐲)
≅ 𝑐𝑝(𝐲|𝛉)𝑝(𝜽)  (6) 

where 𝑝(𝜽) is the initial (prior) probability which includes any prior information 

about the joint element stiffness parameters and 𝑝(𝐲|𝛉) is the likelihood function 

which is the probability of having observed 𝐲 given the joint element stiffness 

parameters 𝛉. 𝑝(𝐲) is the probability of the observed data which is usually considered 

as a constant. Equation (6) describes the joint parameter distribution and the 

individual posteriors, i.e. 𝑝(𝜃𝑝|𝐲), can be obtained by integrating equation (6) [39], 

where 𝜃𝑝 is one of the joint model parameters described in 𝛉, i.e. 𝜃𝑝 = 𝑘1 or 𝜃𝑝 =

𝑘2. There is no closed form solution for such a posterior probability calculation and 

usually numerical methods are used to estimate 𝑝(𝜃𝑝|𝐲).  

Hasting [40] proposed the Monte Carlo Markov Chain (MCMC) algorithm for 

sampling the posterior probability by using equation (6). A good description about 

using MCMC algorithm in the context of structural dynamics can be found in [41]. 

The MCMC algorithm generates samples from the posterior probability of each 

parameter by constructing a Markov chain. The details of constructing Markov 

chains by using the Metropolis-Hasting algorithm ( [40], [42]) and employing the 

Gibbs sampling approach is described in [43].   

The main part of equation (6) is the likelihood function 𝑝(𝐲|𝛉). It is usually assumed 

in stochastic model updating that a Normal distribution describes the error function. 

This assumption limits the application of stochastic model updating since a good 

prior distribution for the parameters must be used to guarantee convergence. In this 

paper a new likelihood function is introduced which does not rely on the assumption 

of a Normal distribution for the error function. 

The likelihood function 𝑝(𝐲|𝛉) in equation (6) is obtained in this paper as follows. 

For a given set of model parameters 𝛉, the vector of natural frequencies 𝐲̅ is 

calculated by means of the system model 𝐟. On the other side, since 𝑁̅ sets of 

observation data are available, i.e. 𝒀 = [𝐲(1) 𝐲(2) ⋯ 𝐲(𝑁̅)], it is possible to 



estimate the distribution function (or statistical model) of each observed data- i.e. 

{𝑔𝑖(. ; 𝝌𝒊)|𝝌𝒊 ∈ Χ} , 𝑖 = 1,2, … , 𝑚- using the method of maximum likelihood [44]. 𝝌𝒊 

denotes the vector of statistical model parameters which is obtained by maximizing 

the likelihood function ℒ(𝝌𝒊, 𝑌𝑖), 𝑖 = 1,2, … , 𝑚 where 𝑌𝑖 is the ith row of the 

observed data matrix 𝒀. As an example, for a Normal distribution 𝝌𝒊 = [𝜎 𝜇]𝑇 and 

for a Beta distribution 𝝌𝒊 = [𝑎 𝑏]𝑇. The statistical parameter vector 𝝌𝒊 is obtained 

such that,  

𝝌̂𝒊 ∈ {𝑎𝑟𝑔 max Γ ; 𝝌𝒊 ∈ Χ}                                                                                      (7) 

where Γ can be either likelihood, log-likelihood or average log-likelihood functions. 

The statistical model fitted on some measured natural frequencies presented in Figure 

4 are shown in Figure 7. 

   

Figure 7. Fitted statistical models (solid lines) on measured natural frequencies 

(Bars): (a) 23Nm, Normal = 158.4 , 𝜎 = 0.625, (b) 15Nm, Normal 𝜇 = 1373.1 , 

𝜎 = 5.827, (c) 7Nm, Weibull, 𝐴 = 2035.08, 𝐵 = 819.5 

After estimating the statistical model for each observed natural frequency, the 

likelihood function 𝑝(𝐲|𝛉) in equation (6) is calculated as, 

𝑝(𝐲|𝛉) = ∏ 𝑔𝑖(𝑦̅𝑖; 𝝌𝒊)

𝒎

𝒊=𝟏

  (8) 

Identification of the joint model stiffness parameters are considered in the next 

section by using the method described in this section. 

 

 



Identification results 

Joint model stiffness parameters 

To identify the distribution of the joint model stiffness parameters, the experimental 

natural frequencies presented in Figure 4 are used. First, an undamped dynamic 

model is constructed for the structure shown in Figure 1 by taking [𝐶(𝜃)] = 0 in 

equation (4). Timoshenko beam elements, as introduced in equations (1), are used to 

model the beam sections of the structure and the joint element of equation (2) is used 

to model the joint section. Overall, 50 beam elements and 5 joint elements are used. 

In the FE model the material properties of the beam sections are taken as 𝐸 =

208 GPa and 𝜌 = 7860 kg/m3. Also the mass effects of the bolts and nuts, and the 

accelerometers are considered as point masses in the FE model with 𝑚𝑏 = 0.012 kg 

and 𝐼𝑏 = 3.45 × 10−6 kg. m2 for the bolts and nuts and 𝑚𝑏 = 0.0075 kg and 𝐼𝑏 =

9.84 × 10−8 kg. m2 for the accelerometers. 

The Metropolis-Hasting algorithm is used to draw samples from the posterior 

function defined by equation (6) and hence to identify the distribution of joint 

element stiffness parameters  )(1 k  and )(2 k  defined by equation (2). In this paper a 

Normal distribution function is considered to govern the initial probability of each 

joint element stiffness parameters, i.e. 𝜃𝑝~𝚴(𝜇𝑝, 𝜎𝑝).  Starting with an initial value 

for the joint element stiffness parameters vector 𝛉, new random samples are 

generated by using the initial distribution function defined for each parameter, i.e. 

𝜃𝑝~𝚴(𝜇𝑝, 𝜎𝑝), and are accepted based on an accept-reject criterion. This procedure 

is continued until enough samples are generated and hence the distribution of joint 

element stiffness parameters are identified. 

The mean value 𝜇𝑝 for the initial probability of each joint element stiffness parameter 

is estimated by updating a deterministic model using mean values of the first five 

natural frequencies, i.e. 𝑓j̅, 𝑗 = 1, … ,5. The deterministic model is obtained by 

choosing 𝑘𝑖(𝜃) = 𝑘̅𝑖 , 𝑖 = 1,2 in equation (2) and is updated by using the eigenvalue 

sensitivity approach [45]. The identified deterministic joint element stiffness 



parameters and the accuracy of the identified deterministic model are reported in 

Table 1 for the experimental results corresponding to a bolt tightening torque of 23 

Nm.  

Table 1. Updating of the deterministic model @ 23 Nm 

 𝑓1̅ 𝑓2̅ 𝑓3̅ 𝑓4̅ 𝑓5̅ 𝑓6̅ 𝑓7̅ 𝑓8̅ 

Exp. 158.41 442.81 860.93 1383.5 2045.7 2869.4 3438.9 4279.7 

Updated 158.37 443.5 861.6 1382.7 2045.3 2809.0 3613.4 4172.2 

Error (%) -0.02 0.15 0.07 -0.06 -0.02 -2.10 5.07 -2.50 

 

It is worth mentioning that the pressure distribution over the contact interface is non-

uniform. Therefore ideally joint elements with different stiffness parameters should 

be used to model the joint section in the deterministic identification. However, 

increasing the number of unknown parameters could result in a badly conditioned 

problem which introduces difficulties in the identification procedure. Since 

identification of the deterministic model is mainly done to obtain an estimate for the 

mean value of the initial probability of each joint element stiffness parameter, the 

assumption of a constant distribution of bolt preload, which allows the modeling of 

the joint section using similar joint elements, is sufficient for this end.   

In the identification procedure the mean values 𝜇𝑝, 𝑝 = 1,2 and standard deviations 

𝜎𝑝, 𝑝 = 1,2 of the initial PDFs are considered to be 𝑘̅𝑖 and 𝑘̅𝑖/20, 𝑖 = 1,2, 

respectively. The identified deterministic joint element stiffness parameters for 

different bolt tightening torques are listed in Table 2. 

 

Table 2. The identified deterministic joint element stiffness parameters 

 7 Nm 15 Nm 23 Nm 

𝑘̅1 1690.2 1715.9 1763.2 

𝑘̅2 31047 34810 37402 



 

The Metropolis-Hasting algorithm is run and 20k samples are generated from the 

posterior function described in equation (5) to identify the distribution of the joint 

model parameters. It is worth mentioning that the first 5k samples are neglected to 

ensure that the initial condition has no effects on the final results. The identified 

distributions for the joint element stiffness parameters are shown in Figure 8.  

 

Figure 8. Identified distributions for the joint element stiffness parameters: 7 Nm 

(red), 15 Nm (blue) and 23 Nm (green) 

Figure 8 shows that the identified joint model parameters follow a Normal 

distribution. In Figure 9 the correlation of the identified joint model parameters is 

shown. The two identified parameters are statistically independent representing 

independent contributions to the normal and tangent stiffnesses of the joint. 

 

Figure 9. Correlation between the identified joint element stiffness parameters 



 

The experimental natural frequencies are compared with the identified natural 

frequencies in Figures 10-12 for different bolt tightening torques. 

 

 

Figure 10. Experimental (red) vs. identified (grey) natural frequencies: 7 Nm 

 

 

Figure 11. Experimental (blue) vs. identified (grey) natural frequencies: 15 Nm 



 

Figure 12. Experimental (green) vs. identified (grey) natural frequencies: 23 Nm 

 

The results presented in Figures 10-12 show that the modeling approach and the 

identification procedure presented in this paper can effectively predict the 

experimental results for the frequencies that are used in the identification. Although 

the experimental data shows a higher correlation between natural frequencies, the 

proposed model can also predict the correlation that is consistent with the 

experimental results. In the other words, if the experimental results show a high 

correlation between two natural frequencies, then the model prediction also shows a 

high correlation between those frequencies. Another interesting observation is that 

although the updated mean values of the higher frequencies (modes 6, 7 and 8 which 

are not used for identification) have higher errors when compared to the identified 

lower frequencies, the scatter of predictions from the model have similar size and 

correlation with the scatter of experimental data. There are some outliers in the 

experimental results which is due to the possibility of exciting nonlinearities in the 

impact testing or due to other types of uncertainties. Excitation of nonlinearities is 

more likely in the higher modes and this is one reason for the poor prediction of the 

proposed linear model for the higher modes. The other key aspect is that these higher 

modes could induced different local deformations in the joints, and hence different 

physical phenomena might be excited in the joints. 



Joint model damping parameter 

As it was explained in the previous sections, the variability in the experimental 

damping ratios presented in Figure 5 is not as significant as the variability in the 

experimental natural frequencies. Also, due to the nature of damping extraction 

approaches, the existing variability cannot be attributed only to the variability in the 

contact interface parameters and a part of this variability is due to the error in 

damping ratio extraction from experimentally measured FRFs. Therefore, the 

experimental results presented in Figure 5 are not suitable for quantification of 

uncertainty in the damping parameter of the joint element. Instead, the mean values 

of experimental damping ratios presented in Figure 5 are a good measure of the 

overall contribution of the damping in the contact interface to the damping of 

different modes of the structure. The mean values of the experimental damping ratios 

are used in this section to identify a deterministic damping model for the joint section 

of the structure as follows.  

A deterministic model is constructed for the structure by considering 𝑐(𝜃) = 𝑐̅, 

𝑘1(𝜃) = 𝑘̅1 and 𝑘2(𝜃) = 𝑘̅2 in equation (4). 𝑘̅1 and 𝑘̅2 are identified by using mean 

values of the measured natural frequencies and employing the eigenvalue sensitivity 

approach as described in the previous sections. 𝑐̅ is identified by comparing the mean 

values of the first five experimental damping ratios presented in Figure 5 with their 

counterparts from the analytical model which are obtained from the eigenvalues of 

matrix [𝐴], where [46] 
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Comparison between experimental and identified FRFs and the corresponding 

identified damping coefficient of the joint element are shown in Figure 13. 



 

Figure 13. Comparison between the experimental and identified FRFs: 7 Nm (red) 

𝑐̅ = 0.14 Ns/m, 15 Nm (blue) 𝑐̅ = 0.12 Ns/m, 23 Nm (green) 𝑐̅ = 0.15 Ns/m 

The results presented in Figure 13 show that the damping matrix of equation (3) is 

capable of accurately representing the damping in the contact interface.  

The mean values of the experimental damping ratios for the first five modes are 

shown in Figure 14: 

 

Figure 14- mean values of the experimental damping ratios: 7 Nm (red), 15 Nm 

(blue), 23 Nm (green). 

Figure 14 shows that by increasing the mode number, the damping ratio, which is a 

measure of the amount of energy dissipated in the contact interface in each mode, 

initially decreases and then increases. Energy dissipation in assembled structures 



takes place in the joint contact interfaces mainly by a micro-slip mechanism. To 

determine the connection between the damping ratio of each mode and the position 

of the contact interface in the structure, the mode shapes of the identified 

deterministic finite element model are shown in figure 15, 

 

Figure 15- Mode shapes of the identified deterministic model (@ 23 N.m): beam 

sections (blue) and joint section (red) 

Figure 15 indicates that the curvature of the beam is smaller for modes 2 and 3 which 

results in a lower energy dissipation in the contact interface. 

 

Conclusions 

In this paper an experimental investigation of the effects of variability in the surface 

roughness quality and bolt preload on the variability of modal parameters of 

assembled structures was considered.  Experimental results show that there is a 

significant variability in the natural frequencies while variability in the damping 

ratios is much less than for the natural frequencies. A dynamic model was then 

constructed for the assembled structure in which the joint section was modeled using 

stochastic generic joint elements. A new likelihood function was proposed and the 

distribution of the stiffness parameters of the joint element was identified by using 

experimental natural frequencies and employing a Bayesian identification approach 

using the proposed likelihood function. The identified results showed a good 

agreement with experimental results for the lower modes used in the identification. 



The reason for the poor prediction of experimental higher modes by the proposed 

linear joint model can be attributed to the excitation of nonlinearities in the contact 

interface which is more likely in higher modes. Finally, a deterministic damping 

model was identified for the contact interface by using the mean values of the 

experimental damping ratios. 
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Appendix 

The mass matrix of Timoshenko beam element is given by, 
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where 𝑟 = √𝐼/𝐴  is the radius of gyration of the cross section. 
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