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ABSTRACT A method to improve thermal management of $-Ga;O3 FETs is demonstrated here via sim-
ulation of epitaxial growth on a 4H-SiC substrate. Using a recently published device as a model, the
reduction achieved in self-heating allows the device to be driven at higher gate voltages and increases the
overall performance. For the same operating parameters an 18% increase in peak drain current and 15%
reduction in lattice temperature are observed. Device dimensions may be substantially reduced without
detriment to performance and normally off operation may be achieved.

INDEX TERMS FET, gallium oxide, molecular beam epitaxy, normally-off, self-heating, silicon carbide,

threshold voltage.

I. INTRODUCTION
Wide band-gap semiconductor materials commonly thought
of for use in power electronic devices include silicon car-
bide (SiC) [1], [2], gallium nitride (GaN) [3] and diamond.
SiC has shown the greatest potential to date in replacing sil-
icon for DC power applications, indeed 4H-SiC diodes and
MOSFETs are today commercially available. Diamond has
been touted as the ideal material for high power electronics
due to its large thermal conductivity, high breakdown field
and high bulk carrier mobility. It has the potential to compete
with both SiC for high voltage DC applications and GaN
for RF power applications [4]-[6]. However despite recent
advances, doping and substrate cost remains an issue [7], [8].
In contrast, beta-Gallium Oxide (8-Gaz03) could offer
an alternative to 4H-SiC for power applications. Its key
intrinsic material properties are competitive with diamond,
e.g., a band-gap of 4.8 eV and high breakdown field
8 MVem~! [9], [10]. Large scale growth is also far less
challenging and possible at a fraction of the cost [11].
Despite the material structure being first investigated in the
1960s [12] it is only much more recently this material has

been suggested for application in power electronic devices.
Indeed, Ga;Oj3 thin-films have been successfully employed
for a variety of applications including a window layer for
solar cells and a transparent conductive oxide [13]-[15]. This
holds promise for a larger degree of integration compared
with traditional wide band-gap semiconductors, e.g., into
display screens or transparent electronics [16].

In recent years basic FET devices have been demon-
strated [17]-[20], although p-type doping (which is noto-
riously difficult in wide band-gap semiconductors) is still
a practical challenge. The best oxide solution is yet to be
settled upon with work to date mainly focusing on Al,O3,
although in theory SiO; provides a greater band off-set and
hence reduced gate leakage [21], [22].

In this paper a SILVACO Atlas non-isothermal
model for B-Ga;O3 demonstrated in a recent paper
is employed to recreate a device demonstrated by
Higashiwaki er al. [18], [23]. The low thermal conductiv-
ity of B-Ga,03 (~0.2 Wem~!'K~!) [10] can be regarded
as perhaps the most severe drawback for very high voltage
applications. We demonstrate via simulation the advantages
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of engineering a thin film of B-GayO3 onto a good ther-
mal conductor such as SiC (~5 Wem™!K™!) to increase the
thermal performance of B-GapO3 FETs.
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FIGURE 1. Schematic showing the structure and doping of a) original
MOSFET device based on 3-Ga, 03 [18] and b) & c) adaptations made in
this paper.

1l. SIMULATION

Fig. 1 shows a cross-section of the FET modelled here. The
semi-insulating S-GayO3z substrate material is detailed in
the original paper as having a doping of 1.5 x 10'® cm™3,
while the dopant in the Molecular Beam Epitaxy (MBE)
layer is 7 x 10'7 cm™3 with half considered activated. The
Si ohmic dopant is 5 x 10" cm™ with 3 x 10" ecm™3
activated. A 20 nm Al,O3 Atomic Layer Deposited (ALD)
oxide layer covers the device with a source-drain spacing of
20 pum and gate length 2 pum. This device (Fig. 1a) suffers
from self-heating effects due to the relatively poor thermal
conductivity of $-GayO3 which reduces the saturated drain
current value. One way to mitigate this is to use a substrate
with a high thermal conductivity such as 4H-SiC. A recent
study has shown the positive impact this can have even
on Si based devices [24]. The lattice match of 8-Gay;Os3 to
4H-SiC is close at 3.04A compared to 3.07A respectively,
allowing for low defect density materials to be grown and
interfaces to be formed between B-GayO3; and 4H-SiC by
growth methods such as MBE used in this instance.

A simple constant thermal conductivity and low-field
mobility model was used for this study with main parameters
summarised in Table 1.

As many (-Ga203 parameters are not fully established
yet care is needed to not pick unrealistic values. Electron
effective mass is taken to be 0.28 m,, giving a calculated local
conduction band density of states N. = 3.72x10'® cm™3,
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TABLE 1. Simulation parameters.

Material Parameter Value
B-Ga203 Bandgap Energy 48eV
Thermal Conductivity 0.13 Wem'K!
Effective Mass 0.28 my
Local Conduction Band Density of ~ 3.72 x 10" cm™
States
Epitaxial Layer Mobility 118 ecm?V-is™!
Epitaxial Layer Dopant 7x 107 ¢em?
Concentration (3.5x 107 cm?
activated)
Substrate Mobility 20 cm*V-is’!
Substrate Dopant Concentration 1.5x 10" cm?
4H-SiC Bandgap Energy 323 eV
Thermal Conductivity 3.7 Wem 'K
Effective Mass 0.41 my
Local Conduction Band Density of 5 x 10'8 cm™
Stateas
Substrate Mobility 460 cm?V-s™!

Substrate Dopant Concentration 1.5x10"%cm?

B-Ga203 parameters taken from [12 & 25] whereas standard SILVACO
parameters are used in the case of the 4H-SiC substrate

mobility of the channel layer and mobility of the semi-
insulating substrate are set to be 118 and 20 cm*V~!s~!
respectively [25].

A parameter (LAT.TEMP) was added to the model to
account for poor heat flow in B-GapO3 material. The lat-
tice temperature coefficient for the temperature dependence
of electron mobility TMUN=2.0 was used as seen in
Equation (1).

—TMUN
i ) (1)

tap = MOUN (300
where w,o represents electron mobility adjusted for lattice
temperature, MUN the originally input mobility value, Ty,
lattice temperature and TMUN the temperature dependence
coefficient.

The material parameters of 4H-SiC are much better estab-
lished and standard SILVACO parameters were used for this
material.

1Il. RESULTS & DISCUSSION
Fig. 2 demonstrates the immediate benefit of switching to
a 4H-SiC substrate for this technology, output character-
istics are displayed for the original device as well as the
modelled version on a 4H-SiC substrate simulated to have
the same doping level (1.5 x 1016 cm™3) as the original
B-Ga203 substrate. Peak drain current increases for all gate
bias points, an increase of 19% is seen for Vg = +8V with
peak lattice temperature reducing by 15% at this bias point,
far extending the realm of operation of the original device.
A visual comparison is shown in the form of a heat contour
map for the original device and the 4H-SiC substrate version
in Fig. 3. For the 8-Ga;03 device at a Vgs of +8V and Vq
of +40V the lattice temperature reaches a peak of 166° C,
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FIGURE 2. Comparison of the output characteristics from a 8-Ga, 05
MOSFET and the same on a 4H-SiC substrate, both are simulated to have
a 300 nm thick epitaxial layer.

b)

_

FIGURE 3. Lattice temperature at Vgs = 8V for 8-Ga, 05 (a) and
4H-SiC (b) substrate.

for the same bias on a 4H-SiC substrate the peak lattice
temperature reaches only 98° C.

The 4H-SiC version remains normally-on although this
can be shifted in both cases by a reduction in thickness of
the epilayer. Fig. 4. Shows the shift in threshold voltage
(V1) for modelled devices as the simulated epitaxial layer
thickness is reduced, there is also an associated reduction in
temperature.

Fig. 5 shows the output characteristic of a 100 nm epi-
taxial layer FET on 4H-SiC device compared to the original
B-Gay O3 FET. Self-heating is virtually eliminated at this gate
voltage (Vgs) of +8 V (lattice temperature = 53° C). Peak
drain current is understandably reduced due to the more
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FIGURE 4. Comparison of transfer characteristics for 3-Ga; 05 MOSFET
and the same on a 4H-SiC substrate.

restricted and hence resistive route but the nature of this
design and its improved thermal conductivity allows a much
higher Vg to be used.
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FIGURE 5. Output characteristic for 3-Ga, O3 substrate with 100 nm layer
thickness.

Fig. 6 shows how this device may be driven easily to
Vs = 20 V. A similar peak drain current to the original
device is achieved although on-resistance of the device is
increased. If however the source-drain gap is reduced to 10
pm a similar output characteristic to the original device may
be seen with a substantially reduced Vrt and a lower lattice
temperature (91° C at Vgs = +8 V).

Analyzing current density for the §-GapO3 FET at volt-
ages close to V the current path is partially forced through
the semi-insulating substrate, albeit at a much reduced level
due to the lower mobility of this layer. Reducing the MBE
layer thickness ensures this occurs at a more positive Vg
and impacts upon the threshold voltage. On the 4H-SiC sub-
strate the heterojunction present means negligible charge will
migrate in to this layer giving rise to the marginal difference
in VT between substrates. This is visualized in Fig. 7.
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FIGURE 7. Current route at Vgs = -8V for 8-Ga 05 (a) and
4H-SiC (b) substrate.

Below a thickness of 100 nm the device becomes
normally-off (below 75 nm for the 4H-SiC substrate). As
the MBE layer thickness approaches 100 nm the shift in
Vr plateaus and reducing beyond this point has little ben-
efit and begins to severely limit current performance. With
this reduced layer thickness less drain current is possible for
the same gate voltage as the restricted route increases the
resistance of the 8-Ga;O3; MBE layer.

A source-drain distance of 20 microns is relatively large
even for a power FET and utilising the 4H-SiC substrate
allows further device scaling to increase current performance.
Halving this to 10 microns and biasing at +8 Vg a sim-
ilar current level to the original device is obtained, still

VOLUME 5, NO. 4, JULY 2017

with a lower peak lattice temperature of 91° C. This scal-
ing will of course put further stress on the dielectric layer.
Simulation shows a maximum electric field of 1.22 MVcem™!
even at +20 Vs on the gate dielectric for the 100 nm on
4H-SiC device with reduced source-drain dimension. This
is well within the remit of either Al;O3 or SiO, as a gate
dielectric.

This demonstration allows many further routes to be taken
in terms of scaling, the suitable lattice match of these two
materials make it the perfect complement. Improvements
in processing of this technology will undoubtedly yield
more improvements from this promising material. It is
accepted that 4H-SiC substrates are expensive however
recent technological innovations such as those offered by
Siltectra GmbH mean substrates may be split and recy-
cled many times over [26]. The ability to grow high
quality large area substrates of B-GapOs also raises the
possibility of wafer bonding to high thermal conductivity
substrates.

IV. CONCLUSION

The replacement of the semi-insulating §-GayOs3 substrate
with a 4H-SiC alternative in this device yields two improve-
ments. Firstly the reduction in self-heating due to the order
of magnitude thermal conductivity of 4H-SiC compared to
B-Gay03. Secondly due to this it is possible to scale the
device in reducing the MBE layer thickness and reduc-
ing the source-drain gap, giving overall the same current
performance with a drastically reduced Vr.

Future work should focus on the best gate oxide for
this technology. Characterization of interface traps will shed
some light on this matter and the best route to practi-
cally scaling these FETs. Attention also needs to be payed
to ohmic metallization stacks as even in 4H-SiC devices
stability of these at elevated temperature can still be an
issue [27].
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