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The effect of a movable mass on the aeroelastic stability of 1 

composite hingeless rotor blades in hover 2 

M.R. Amoozgar*, A.D. Shaw†, J. Zhang*, M.I. Friswell‡ 3 

College of Engineering, Swansea University, Swansea, Wales SA2 8PP, United Kingdom 4 

Abstract 5 

In this paper, the aeroelastic stability of a composite hingeless rotor blade with a chordwise movable 6 

mass is investigated. The point mass is located near the tip of the blade and its chordwise location is 7 

variable with respect to the elastic axis and can be moved during the flight. This movable mass is 8 

added to the blade to actuate the blade twist during flight. By actuating the mass in the chord direction 9 

of the blade during the flight, a bending moment which is the result of the centrifugal force of the 10 

mass and its offset is induced on the blade. This bending moment induces twist in the blade, due to 11 

bend-twist coupling in the composite lamination. The blade is modelled by using the geometrically 12 

exact fully intrinsic beam equations along with the variational asymptotic beam sectional analysis. 13 

The aerodynamic loads are simulated by using the two-dimensional strip theory combined with a 14 

uniform inflow. The nonlinear partial differential aeroelastic equations are discretized by a time-space 15 

scheme, and the converged results are compared with those reported in the literature and a very good 16 

match is observed. The results show that by positioning the mass near the tip of the blade, and also by 17 

using the ply angle of about 30 degree in this configuration, the highest possible twist change is 18 

achieved when the mass moves from the leading edge to the trailing edge of the blade. Moreover, the 19 

spanwise location of the mass slightly changes the stability boundaries, while the chordwise 20 

movement significantly affects the aeroelastic instability.   21 

Keywords: Morphing blade, Aeroelastic stability, composite material, bend-twist coupling, fully 22 

intrinsic equations, concentrated mass.  23 
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Introduction 25 

During the past decades of development in rotorcraft industry, different concepts have been suggested 26 

to enhance the performance of the vehicle and at the same time to decrease the pollution, noise and 27 

vibration, by changing the shape of the blade. Blade twist morphing is a concept which could modify 28 

the shape of the blade in flight to achieve the best performance in each flight condition. For helicopter 29 

rotors, the twist distribution that minimizes the power requirement is different in each flight condition 30 

[1]. Therefore, the predefined blade twist variation normally is chosen as a compromise between 31 

different flight conditions. Blade twist morphing changes the blade twist during flight to allow the 32 

rotorcraft to fly in an optimum condition in terms of twist variation. Han et al. [2] showed how the 33 

performance of a helicopter during flight could be improved by dynamic blade twist. They 34 

demonstrated that the dynamic blade twist improves the performance and reduces the rotor power 35 

requirement. Chen and Chopra [3] studied the effect of piezoelectric actuators on the twist change of 36 

blades. The piezoelectric patched were positioned on the top and bottom of the blade and about 0.4o of 37 

twist change was achieved. Then this concept was tested in hover condition, and it was proved that a 38 

linear twist change of about 0.6o can modify the rotor lift by 10% [4]. Reduction and control of the 39 

vibratory loads of a composite box beam blade with using the smart materials was considered by 40 

Chattopadhyay et al. [5]. It was found that the number of actuators and their location have significant 41 

effect on the reduction of dynamic loads. Cesnik et al. [6] developed an analytical model for 42 

modelling an active twist rotor blade with distributed anisotropic strain actuators. This active twist 43 

rotor aimed to reduce the vibration and noise of the blade, and good correlation with experiments was 44 

observed. This study developed further to cover the forward flight condition by Shin and Cesnik [7]. 45 

Prashant and Sung [8] analysed how the active twist concept affect the active vibration reduction of 46 

composite blades with imperfections. They showed that the rotor vibratory loads and also the energy 47 

input may be influenced by introducing imperfections to the blade. Twist distribution modification of 48 

a tiltrotor blade based on shape memory alloy torque tube was studied by Prahlad and Chopra [9]. In 49 

this study, the actuation behaviour was tuned by the heat treatment of SMAs. Mistry et al. [1] 50 

developed a warp-induced twist variation concept for rotary-wing applications. In this method, the 51 



 
 

twist of the blade changes by rotation of a threaded rod. More recently, Amoozgar et al. [10, 11] 52 

developed a novel concept for twist morphing of composite blades. In this study, the twist of the blade 53 

was the result of mass movement and stiffness tailoring of the composite blade.  54 

Aeroelastic analysis of helicopter rotor blades is a key design requirement. Hingeless rotor blades are 55 

normally considered as cantilevered beams, and the common type of aeroelastic instability is the one 56 

characterized by the coupling between lead-lag bending, flap bending, and torsion deflections of 57 

blades. The frequency of this instability is usually near to the lead-lag natural frequency [12]. There 58 

are some review papers dedicated to surveying different models used for composite rotor blade 59 

analysis [13]. One of the first studies concerning with the aeroelastic stability of composite rotor 60 

blades, was considered by Hong and Chopra [14]. It was found that depending on the laminate design 61 

of the box beam, different stability characteristics may be obtained. Panda and Chopra [15] 62 

determined the aeroelastic stability and response of composite hingeless rotor blades based on 63 

moderate deflection beam theory in forward flight. The effect of ply orientation and elastic coupling 64 

on the vibration and stability was shown. The effect of transverse shear deformation on the modelling 65 

of the rotor blade for aeroelastic analysis and response of composite rotors has been presented by 66 

Smith and Chopra [16] in forward flight. They also showed that the unsteady aerodynamic increases 67 

the vibratory load up to 30%. Kim and Dugundji [17] investigated the large amplitude, nonlinear 68 

aeroelastic behaviour of composite hingeless rotor blades in hover condition. Numerical results 69 

showed that in moderate amplitude, the nonlinear aerodynamics is dominant, and nonlinear static-70 

dynamic structural couplings can affect the aeroelastic behaviour at large amplitudes.  The aeroelastic 71 

response and vibratory loads of an elastically tailored composite rotor blade has been determined by 72 

Smith [18]. It was highlighted that the positive or negative elastic couplings have stabilizing or 73 

destabilizing effect on the lag mode damping. Tracy and Chopra [19] studied the aeroelastic stability 74 

of a composite hingeless rotor blade in hover flight. In the positive collective pitch angles, the lag 75 

damping mode stabilizes with negative chordwise bending-torsion coupling. The influence of fibre 76 

orientation and stacking sequence on the aeroelastic stability of composite rotor blades has been 77 



 
 

investigated by Jeon et al. [20]. The lag mode instability is influenced by the bending-twist coupling 78 

in the symmetric lamination, and the extension-twist coupling in the antisymmetric configuration.  79 

A new formulation based on exact beam formulation and unsteady dynamic wake aerodynamic model 80 

was considered by Shang et al. [21] for aeroelastic stability analysis of composite hingeless rotor 81 

blades. The initial twist and curvature of the composite blade can improve the aeroelastic stability and 82 

reduce the static loads. Jeon and Lee [22] considered the aeroelasticity of a composite rotor blade 83 

using a finite element method based on large deflection beam theory in forward flight. It was 84 

proposed that when the deflection is large, the full finite element should be used instead of modal 85 

approach to predict the stability behaviour accurately. An analytical model for investigating the 86 

aeroelasticity of composite blades with swept tips was proposed by Friedmann et al. [23]. The tip 87 

sweep can have destabilizing effect on the blade, while this instability can be removed in some certain 88 

ply angles of the composite blade. Bao et al. [24] designed and tested several Mach scaled composite 89 

blades to reduce the vibratory loads of the blade and good correlation in hover condition was 90 

observed. Friedmann et al. [25] examined the compatibility between the composite cross-sectional 91 

analysis based on variational asymptotic approach and a moderate deflection beam model, and the 92 

results were validated with experimental data. The aeroelastic stability behaviour of an isolated 93 

composite hingeless rotor blade has been determined by Fulton and Hodges [26]. The blade was 94 

modelled by a geometrically exact beam formulation without any restrictions on the rotations and 95 

displacements magnitudes. The analysis showed that the non-classical couplings affect the aeroelastic 96 

stabilities, and therefore must be considered in general purpose analysis. Lim and Lee [27] studied the 97 

aeroelastic analysis of bearingless rotor blades considering a composite flexbeam by using a large 98 

deflection beam theory. They showed that the bending-torsional coupling of the composite layup 99 

could change the stability of the lag mode. The aeroelastic stability of composite hingeless rotors by 100 

using the free-wake aerodynamic model has been also considered by Xiao et al. [28].  101 

Byers and Gandhi [29-31] explored the influence of a moving mass in the spanwise direction on the 102 

aeroelastic stability to produce a vibration absorber. They showed the Coriolis forces couple the 103 

flapping and the lead-lag motion together and hence affect the rotor stability. The effect of embedded 104 



 
 

chordwise absorbers on the stability of the rotor system was studied experimentally and analytically 105 

by Kang et al. [32]. They showed that using the chordwise absorbers improves the stability of rotors. 106 

To add to the aforementioned literature, in this study a new twist morphing concept based on the mass 107 

movement is introduced, and the effect of this morphing concept on the aeroelastic stability 108 

boundaries of the composite hingeless rotor blade in hovering condition is determined. The blade 109 

structural model is based on the geometrically exact fully intrinsic beam equations [33] and the 110 

aerodynamic loading on the blade is a combination of the quasi-steady strip aerodynamic theory and 111 

the uniform inflow [34]. The added mass is modelled as a concentrated mass attached to the blade 112 

which can move in different directions [10], and the cross-sectional characteristics are determined by 113 

using the variational asymptotic approach [35].   114 

  Problem Statement 115 

A composite hingeless rotor blade is modelled here as a cantilevered beam attached to the blade hub. 116 

The blade has a composite rectangular closed box section as a spar. The blade is equipped with a track 117 

attached to the spar to allow for point mass chordwise movement in flight. This mass movement 118 

produces a variable in-plane bending moment due to the centrifugal force acting on the mass. This 119 

bending moment then turns to an equivalent torsional moment through the spar lag-torsion coupling. 120 

Therefore, the twist of the blade depends on the point mass chordwise movement. The point mass 121 

location along the blade coordinate system is denoted here as xp and yp, respectively. Figure 1 shows a 122 

schematic of the morphing system described above. The chordwise position of the mass (yp), shown in 123 

Figure 1, is able to change in flight and assumes a suitable mechanism may be designed. Thus, when 124 

the flight condition changes, the required blade twist, in terms of the optimum performance, changes. 125 

The spanwise location of the added mass is a fixed design variable. It is assumed that the added mass 126 

doesn’t have any offset in the z direction (zp=0). The origin of the coordinate system is located at the 127 

root of the blade and on the quarter chord of the section. The x axis is along the blade span, and the y 128 

axis is along the chord of the blade toward the leading edge of the blade. 129 

 130 



 
 

 131 

 132 

 133 

 134 

 135 

 136 

Figure 1: Schematic of the morphing twist change concept 137 

Aeroelastic Modelling 138 

The aeroelastic modelling of the blade is composed of two modules, the structural model and the 139 

aerodynamic loading model. The three-dimensional structural model of the blade can be divided into 140 

two parts. In the first part, a two-dimensional cross-sectional analysis is carried out by using the 141 

variational asymptotic approach [35], and the cross-sectional properties are obtained. Then the global 142 

behaviour of the blade is modelled by the one-dimensional nonlinear geometrically exact fully 143 

intrinsic beam equations [33]. This formulation has been successfully used for structural analysis of 144 

stationary and rotating beams [36-38].  145 

The geometrically exact fully intrinsic beam equations express the nonlinear behaviour of generally 146 

anisotropic, initially twisted and curved beam as 147 
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𝜕𝐹1/𝜕𝑥1 + 𝐾2𝐹3 − 𝐾3𝐹2 + 𝑓𝑎𝑒𝑟𝑜1
= 𝜕𝑃1/𝜕𝑡 + Ω2𝑃3 − Ω3𝑃2  148 

𝜕𝐹2/𝜕𝑥1 + 𝐾3𝐹1 − 𝐾1𝐹3 + 𝑓𝑎𝑒𝑟𝑜2
= 𝜕𝑃2/𝜕𝑡 + Ω3𝑃1 − Ω1𝑃3  149 

𝜕𝐹3/𝜕𝑥1 + 𝐾1𝐹2 − 𝐾3𝐹1 + 𝑓𝑎𝑒𝑟𝑜3
= 𝜕𝑃3/𝜕𝑡 + Ω1𝑃2 − Ω2𝑃1  150 

𝜕𝑀1/𝜕𝑥1 + 𝐾2𝑀3 − 𝐾3𝑀2 + 2𝛾12𝐹3 − 2𝛾13𝐹2 + 𝑚𝑎𝑒𝑟𝑜1
= 𝜕𝐻1/𝜕𝑡 + Ω2𝐻3 − Ω3𝐻2 + 𝑉2𝑃3 − 𝑉3𝑃2  151 

𝜕𝑀2/𝜕𝑥1 + 𝐾3𝑀1 − 𝐾1𝑀3 + 2𝛾13𝐹1 − (1 + 𝛾11)𝐹3 + 𝑚𝑎𝑒𝑟𝑜2
= 𝜕𝐻2/𝜕𝑡 + Ω3𝐻1 − Ω1𝐻3 + 𝑉3𝑃1 − 𝑉1𝑃3  152 

𝜕𝑀3/𝜕𝑥1 + 𝐾1𝑀2 − 𝐾2𝑀1 + (1 + 𝛾11)𝐹2 − 2𝛾12𝐹1 + 𝑚𝑎𝑒𝑟𝑜3
= 𝜕𝐻3/𝜕𝑡 + Ω1𝐻2 − Ω2𝐻1 + 𝑉1𝑃2 − 𝑉2𝑃1              153 

𝜕𝑉1/𝜕𝑥1 + 𝐾2𝑉3 − 𝐾3𝑉2 + 2𝛾12Ω3 − 2𝛾13Ω2 = 𝜕𝛾11/𝜕𝑡                                (1) 154 

𝜕𝑉2/𝜕𝑥1 + 𝐾3𝑉1 − 𝐾1𝑉3 − (1 + 𝛾11)Ω3 + 2𝛾13Ω1 = 2𝜕𝛾12/𝜕𝑡  155 

𝜕𝑉3/𝜕𝑥1 + 𝐾1𝑉2 − 𝐾2𝑉1 + (1 + 𝛾11)Ω2 − 2𝛾12Ω1 = 2𝜕𝛾13/𝜕𝑡  156 

𝜕Ω1/𝜕𝑥1 + 𝐾2Ω3 − 𝐾3Ω2 = 𝜕𝜅1/𝜕𝑡  157 

𝜕Ω2/𝜕𝑥1 + 𝐾3Ω1 − 𝐾1Ω3 = 𝜕𝜅2/𝜕𝑡  158 

𝜕Ω3/𝜕𝑥1 + 𝐾1Ω2 − 𝐾2Ω1 = 𝜕𝜅3/𝜕𝑡  159 

where, x1 is the spanwise coordinate of the beam reference line, 𝐹𝑖 and 𝑀𝑖 for i=1,2,3, are the internal 160 

forces and moments, 𝑉𝑖 and Ω𝑖 are the linear and angular velocities, 𝑃𝑖 and 𝐻𝑖 are the sectional linear 161 

and angular momenta, respectively. 𝐾𝑖 is the final curvature of the deformed beam, and 𝛾1𝑖 and 𝜅1𝑖 162 

are the strain measures. The aerodynamic force and moments on the blade are defined here by 𝑓𝑎𝑒𝑟𝑜𝑖
 163 

and 𝑚𝑎𝑒𝑟𝑜𝑖
 for i=1,2,3. All these parameters are defined in the deformed coordinate system except the 164 

initial curvature. The details of the formulation can be found in [33]. The cross-sectional properties of 165 

the composite spar is determined by VABS [35], which are then introduced in the beam formulation 166 

through the stiffness matrix as 167 

[
 
 
 
 
 
𝐹1

𝐹2

𝐹3

𝑀1

𝑀2

𝑀3]
 
 
 
 
 

=

[
 
 
 
 
 
𝐴11 𝐴12 𝐴13 𝐵11 𝐵12 𝐵13

𝐴12 𝐴22 𝐴23 𝐵21 𝐵22 𝐵23

𝐴13 𝐴23 𝐴33 𝐵31 𝐵32 𝐵33

𝐵11 𝐵12 𝐵13 𝐷11 𝐷12 𝐷13

𝐵21 𝐵22 𝐵23 𝐷12 𝐷22 𝐷23

𝐵31 𝐵32 𝐵33 𝐷13 𝐷23 𝐷33]
 
 
 
 
 

[
 
 
 
 
 
𝛾11

2𝛾12

2𝛾13

𝜅1
𝜅2

𝜅3 ]
 
 
 
 
 

                      (2) 168 



 
 

where A, B, and D are the composite spar cross-section stiffness components. It is noted that these 169 

stiffness matrices are different from the stiffness matrices obtained based on lamination theory. As the 170 

beam is clamped to the root, the fixed boundary conditions are applied to close the formulation.  171 

The aerodynamic loads in the hover condition based on the intrinsic expression of the Greenberg’s 172 

theory [34] is defined as 173 

𝒇𝑎𝑒𝑟𝑜 = 𝑪𝐵𝑎𝒇𝑎  

𝒎𝑎𝑒𝑟𝑜 = 𝑪𝐵𝑎𝑚𝑎 + 𝑪𝐵𝑎𝒙𝑎𝒇𝑎  

(3) 

where 𝒙𝑎 is the offset between the beam reference line, and the aerodynamic centre, and 𝑪𝐵𝑎 is the 174 

direction cosine matrix of deformed frame with respect to aerodynamic frame. In this study, it is 175 

assumed that the offset of the aerodynamic centre from the elastic axis is zero. The aerodynamic force 176 

and moment equations in the aerodynamic reference frame are [34] 177 

𝑓𝑎 = 𝜌∞𝑏 [

0
𝑐𝑙𝑎𝑉𝑎3

2 − 𝑐𝑑0
𝑉𝑇𝑉𝑎2

2 + 𝑐𝑑𝑎
𝑉𝑎3

𝑉𝑎2

−𝑐𝑙𝑎𝑉𝑎2
(𝑉𝑎3

−
Ω𝑎𝑏

2
) −

𝑐𝑙𝑎�̇�𝑎3𝑏

2
− 𝑐𝑑0

𝑉𝑇𝑉𝑎3
+ 𝑐𝑑𝑎

𝑉𝑎3
2

]  

𝑚𝑎 = 2𝜌∞𝑏2 [
−𝑏𝑐𝑙𝑎𝑉𝑎2

Ω𝑎/8 − 𝑐𝑙𝑎(𝑏
2Ω̇𝑎/32 − 𝑏�̇�𝑎3

/8)

0
0

]  

 

(4) 

where 𝑐𝑙𝑎, 𝑐𝑑0
, and 𝑐𝑑𝑎

 are the airfoil lift and drag coefficients, respectively. The variables with 178 

subscript ( 𝑎) are expressed in the aerodynamic reference frame. The induced inflow velocity 179 

corrects the vertical component of the velocity as follow 180 

𝑉𝑎3𝑇
= 𝑉𝑎3

+ 𝜆  (5) 

The uniform induced inflow velocity determined by the blade element momentum theory at ¾ span, 𝜆, 181 

is given as [39] 182 

𝜆 = 𝑠𝑔𝑛[𝜃 + 𝜙(0.75𝑅)]
𝜋𝜎

8
 Ω𝑅 (√1 +

12

𝜋𝜎
|𝜃 + 𝜙(0.75𝑅)| − 1)  

(6) 



 
 

where 𝜎 is the blade solidity, and 𝜃 and 𝜙 are the blade pitch angle and elastic twist angle, 183 

respectively.  184 

Finally, by combining the structural and aerodynamic models together, the full aeroelastic equations 185 

can be obtained. To solve the nonlinear aeroelastic equations, a time-space discretization scheme is 186 

used [33]. In this method, every unknown variable is defined on the right and left hand sides of each 187 

node. By applying this scheme to the governing equations, the discretized equations of motion for the 188 

nth element in the vector format will be: 189 

�̂�𝐥
𝐧+𝟏−�̂�𝐫

𝐧

𝒅𝒍
+ (�̃�

𝒏
+ �̃�𝒏)𝐅

𝒏
+ 𝐟𝒂𝒆𝒓𝒐

𝒏
= �̇�

𝒏

+ �̃�
𝒏

𝑷
𝒏
   

�̂�𝐥
𝐧+𝟏−�̂�𝐫

𝐧

𝒅𝒍
+ (�̃�

𝒏
+ �̃�𝒏)𝐌

𝒏
+ (�̃�𝟏 + �̃�

𝒏
) 𝐅

𝒏
+ 𝐦𝒂𝒆𝒓𝒐

𝒏
= �̇�

𝒏

+ �̃�
𝒏

𝑯
𝒏

+ �̃�
𝒏

𝑷
𝒏
  (7) 

�̂�𝐥
𝐧+𝟏−�̂�𝐫

𝐧

𝒅𝒍
+ (�̃�

𝒏
+ �̃�𝒏) 𝐕

𝒏
+ (�̃�𝟏 + �̃�

𝒏
)𝛀

𝒏
= �̇�

𝒏
   

�̂�𝐥
𝐧+𝟏−�̂�𝐫

𝐧

𝒅𝒍
+ (�̃�

𝒏
+ �̃�𝒏)𝛀

𝒏
= �̇�

𝒏
  

 

where, subscripts r and l refer to the right and left hand sides of each node, ( ̂ ) represents the nodal 190 

value of each variable, and ( ̃ ), the tilde operator, converts any vector to its corresponding matrix. 191 

The element variable, ( ), defines the average of each variable such as F, as follows: 192 

𝐅
𝒏

=
�̂�𝐥
𝐧+𝟏

+�̂�𝐫
𝐧

𝟐
  

(8) 

In this way, any discontinuity, such as the point mass, can be taken into account. Hence, the following 193 

nodal equations are used to consider the nodal mass effect on the equations of motion: 194 

�̂�𝐫
𝐧 − �̂�𝐥𝐫

𝐧 𝐓
�̂�𝐥

𝐧 + 𝐟𝐚𝐞𝐫𝐨
𝐧 = �̇̂�𝐫

𝐧 + �̃̂�𝐫
𝐧�̂�𝐫

𝐧  (9) 

�̂�𝐫
𝐧 − �̂�𝐥𝐫

𝐧 𝐓
�̂�𝐥

𝐧 + �̂�𝐚𝐞𝐫𝐨
𝐧 = �̇̂�𝐫

𝐧 + �̃̂�𝐫
𝐧�̂�𝐫

𝐧 + �̃̂�𝐫
𝐧�̂�𝐫

𝐧  (10) 

where, �̂�𝐥𝐫
𝐧  is the slope discontinuity, and in this case it is simply the identity matrix. The added mass 195 

is introduced to the formulation through the generalized momentum-velocity relation as follows: 196 

{
�̂�𝒓

�̂�𝒓

} = [�̂�∆ −�̂��̃̂�

�̂��̃̂� 𝐼
] {

�̂�𝒓

�̂�𝒓

}  
(11) 



 
 

where, �̂�, 𝐼, and �̂� are the added mass value, moment of inertia, and location from the beam reference 197 

line. In this study, the moment of inertia of the added mass (𝐼) about its centroid is assumed to be 198 

zero. The added mass value and its offset from the reference line is zero everywhere except the 199 

location at which the mass is added to the blade: 200 

𝐼 = 0,    �̂�𝑀 = 𝑚𝑝,   �̂�𝑀 = [0 𝑦𝑝 𝑧𝑝]𝑇  (12) 

where M is the node at which the mass is added. 201 

First by removing all the time derivatives terms, the steady-state condition of the system is obtained. 202 

Then the nonlinear equations are linearized about the steady-state solution, and the aeroelastic 203 

frequency and damping are determined from the eigenvalue analysis. The aeroelastic stability of the 204 

hingeless rotor blade here is investigated here by checking the lead-lag mode damping as this mode is 205 

more prone to suffer from aeroelastic instability due to low values of drag force in this direction [12]. 206 

  Numerical Results 207 

To check the validity of the developed aeroelastic code, two cases are considered and compared with 208 

those reported in the literature. First the effect of adding a tip point mass with a weight equal to the 209 

blade weight, on the nondimensional first and second flap modes of an isotropic cantilevered beam is 210 

considered. The obtained results are compared with those reported by Wright et al. [40] in Figure 2, 211 

and shown to be a good match. Here m is the mass per unit length, R is the blade length, Ω0 is the 212 

rotating velocity, and EI2 is the flap bending stiffness of the blade. It is noted that here the added tip 213 

mass value is equal to the blade overall mass. 214 



 
 

 215 

 216 

Figure 2: Comparison of the change in frequency parameter with respect to the nondimensional rotating 217 

speed for an isotropic beam with a point mass 218 

To check the accuracy of the aeroelastic analysis results, a composite blade identical to the one used 219 

in [26] is considered next. The blade spar is a rectangular box section, with outer dimensions of 220 

12.804 mm and 8.944 mm with a wall thickness of 0.804 mm. The spar is made of AS4/3501-6 221 

graphite/epoxy with material properties described in Table 1. Each wall of the spar box has 6 layers of 222 

[02, ζ4] and the layups are antisymmetric with respect to the mid-plane of the cross-section as shown 223 

in Figure 3.  224 

Table 1: AS4/3501-6 graphite/epoxy material properties [26] 225 

Material property Value 

E11 (Gpa) 142 

E22 = E33 (Gpa) 9.81 

G12 = G13 (Gpa) 6 

G23 (Gpa) 3.77 

𝜔
√

𝑚
𝑅

4
/𝐸

𝐼 2
 

√𝑚𝑅4Ω0
2/𝐸𝐼2 

First flap 

Second flap 



 
 

ν12= ν13 0.3 

ν23 0.34 

The rotor blade characteristics are listed in Table 2. The nondimensional aeroelastic lead-lag damping 226 

of this box-beam case is determined for various blade pitch angles, and compared with those obtained 227 

by Fulton and Hodges [26] in Figure 3. The Timoshenko sectional stiffness matrices determined by 228 

VABS for this case are presented in Table 3.  229 

 230 

Figure 3: Comparison of the lead-lag damping of the composite blade 231 

 232 

Table 2: Hingeless rotor blade characteristics 233 

Parameter Definition Value 

𝛾 = 3𝜌∞𝑐𝑙𝑎𝑐𝑅/𝑚  Lock number 5.593 

𝜎 = 𝑁𝑏𝑐/𝜋𝑅  Solidity 0.0572 

c/R Chord/blade length 0.08986 
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L
ea

d
-l

ag
d

am
p
in

g

-12 -9 -6 -3 0 3 6 9 12

-0.04

-0.035

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

Present

Fulton&Hodges 1993





 

                     [02, ζ4] 

                     [02, ζ4]                      [02, -ζ4] 

                     [02, -ζ4] 



 
 

Nb Number of blades 2 

𝑐𝑑0
/𝑐𝑙𝑎  Drag coefficient to lift coefficient ratio 0.0079/6.283 

 234 

Table 3: Timoshenko stiffness matrix 235 

Stiffness ζ=0o ζ=20o ζ=90o 

A11 (N) 4.6×106 3.63×106 1.68×106 

A22 (N) 1.07×105 2.19×105 9.95×104 

A33 (N) 6.3×104 1.26×105 5.54×104 

B11 (N.m) 0 3.37×103 0 

B22 (N.m) 0 1.64×103 0 

B33 (N.m) 0 1.66×103 0 

D11 (N.m2) 4.6 1.07×101 4.6 

D22 (N.m2) 5.6×101 4.3×101 2.0×101 

D33 (N.m2) 1.0×102 7.79×101 3.7×101 

 236 

By evaluating the previous two test cases, it is clear that the developed aeroelastic code is capable of 237 

predicting the effect of added mass on the aeroelastic stability of composite hingeless rotor blades in 238 

hover. In what follows, the effect of added mass on the twist morphing and the aeroelastic stability of 239 

the composite blades is analysed. The blade characteristics are same as the one used in the previous 240 

section, except that the layup arrangement here is no longer antisymmetric. This is because here the 241 

bend-twist coupling is the main source of the twist morphing, and therefore, a unidirectional laminate 242 

consisting of 6 plies with fibre angle ζ in each wall is considered ([ζ]6). This composite configuration 243 

means that the B components of the stiffness matrix (Eq. (2)) become zero, while other stiffness 244 

values (A, D) are non-zero. This is because the lag-torsion coupling is the source of the twist change 245 

in this paper. Note that in all cases from here on, the rotor angular velocity is ΩR=1000 rpm, and it is 246 



 
 

assumed that the centroid of the spar box is coincident with centre of mass of the blade at the quarter 247 

chord of the NACA 0012 airfoil.  248 

 The mass magnitude is considered here as a fraction of the blade mass itself, and denoted as μ=mp/m. 249 

First the effect of added mass on the twist change of the composite blade is examined. In this case, the 250 

aerodynamic loading isn’t considered. Figure 4 shows the effect of different ply angles on the 251 

spanwise twist distribution of the blade for two locations of the mass. The upper domain is for the 252 

most aft position of the mass, while the lower domain is for the most forward location of the mass. By 253 

introducing the mass, the twist distribution of the blade changes, and the rate of change depends on 254 

the ply orientation. By moving the mass from the trailing edge to the leading edge of the cross-255 

section, about  𝛿𝜙𝑡𝑖𝑝 = 5.5𝑜 tip twist change is induced when the ply angle is ζ=30o.  256 

 257 

 Figure 4: The twist distribution of the blade for different layup angles and two chordwise positions 258 

(μ=0.05, xp/R=1) 259 

The effect of different ply angles on the tip twist value of the blade is determined and shown in Figure 260 

5. Here the spanwise location of the mass is at the tip of the blade. By increasing the ply angle, the tip 261 

twist first increases until a ply angle of about ζ=25o, and then decreases. This is true for both 262 
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chordwise locations of the mass. This ply angle is representative of the highest bending-twist coupling 263 

in the composite blade in this configuration. In should be noted that the ply angle not only changes the 264 

lag-torsion coupling but also it influences the rotating frequencies of the blade to some extent. 265 

 266 

 267 

Figure 5: The blade tip twist versus layup angle for (μ=0.05, xp/R=1) 268 

Figure 6 demonstrates the effect of spanwise location of the point mass on the actuation range of 269 

blade tip twist for different layup angles. The actuation range of blade tip twist is the difference of the 270 

tip twist between the aft and forward locations of the point mass; and therefore indicates the potential 271 

degree to which tip twist may be morphed in flight. The highest tip twist change occurs when the 272 

mass is located at the tip of the blade for all ply angles. Moreover, the maximum tip twist change for 273 

the spanwsie location of the mass between 0.5<x/R<0.8 is for ζ=10o, while from here on to the tip of 274 

the blade is for ζ=30o.  275 
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 277 

Figure 6: The blade tip twist actuation range versus spanwise location for different ply angles (μ=0.05) 278 

Finally, the effect of non-dimensional mass magnitude on the tip twist actuation range of the 279 

composite blade is analysed and shown in Figure 7. By increasing the mass magnitude, the amount of 280 

twist change increases for all ply angles. By considering all the results presented above, it is 281 

highlighted here that the mass magnitude and location affects the twist change of the blade 282 

dramatically. Depending on the spar configuration, there is one layup orientation that results in the 283 

highest twist change in the blade. Therefore, in terms of the blade twist morphing, moving a mass 284 

near the tip of blade has positive effects. Now in the what follows, the effect of the mass on the 285 

aeroelastic stability of composite blade is discussed. 286 

Figure 8 shows the effect of aerodynamic loads on the tip twist change of the blade when the mass is 287 

located at the tip. In this case, the blade pitch angle is zero. It is clear that by adding the aerodynamic 288 

loads and moments to the blade, the tip twist decreases. This is because the blade flap angle tends to 289 

decrease the lag bending moment applied on the point mass. This highlights the importance of the 290 

aerodynamic loads on the effectiveness of this morphing concept. 291 
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 292 

Figure 7: The blade tip twist actuation range versus mass magnitude (xp/R=1) 293 

 294 

Figure 8: The blade tip twist value with and without aerodynamic loads for different ply angles (μ=0.05, 295 

xp/R=1) 296 

Figure 9 illustrates the aeroelastic stability of the composite blade with respect to different layup 297 

angles. In this case the blade does not include any added mass. The blade is stable for ply angles 298 
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higher than about ζ=65o and smaller than ζ=1o. The instability domain is almost the same for all layup 299 

angles between these two boundaries, but the domain tends to get larger for ply angles between 300 

1o<ζ<10o. It is noted that as this blade is unstable in the region between 1o<ζ<65o, and the ply angle 301 

that needs to be selected for designing the morphing mechanism must be outside this range. However, 302 

it could be possible to design a cross-section to achieve required level of twist change subject to the 303 

aeroelastic instability constraints.  304 

 305 

Figure 9: The stability boundary of the composite blade without added mass 306 

The effect of nondimesional mass magnitude on the lead-lag aeroelastic stability boundaries is shown 307 

in Figure 10. In this case, the mass is located at the tip of the blade on the shear centre of the section. 308 

By increasing the mass magnitude, the unstable region decreases. Therefore, the point mass located at 309 

the shear centre of the blade, has a stabilizing effect. The left boundary of the unstable region stays 310 

unchanged by the additional mass until ζ=40o. Moreover, by introducing the mass to the blade, the 311 

layup angle that the blade enters into the stable region decreases. Therefore, by adding a mass to the 312 

blade and locating it exactly on the elastic axis of the blade, the aeroelastic stability of the blade 313 

increases.  314 
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 315 

 316 

Figure 10: Stability boundaries of the lag mode for different point mass magnitudes (yp/c=0, xp/R=1) 317 

 318 

Figure 11: Stability boundaries of the lag mode for different spanwise locations of the point mass (μ=0.05, 319 

yp/c=0) 320 
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Figure 11 shows how the spanwise location of the added mass changes the lead-lag aeroelastic 321 

stability boundaries. Here, the mass value is 5 percent of the blade weight (μ=0.05) and located at the 322 

shear centre of the blade. By moving the mass from the mid-span to the tip of the blade, the unstable 323 

region shrinks. It is noted that the point mass spanwise location has a minor effect on the lead-lag 324 

aeroelastic instability. This is because the mass doesn’t produce any lag moment and therefore, the 325 

bend-twist coupling doesn’t produce any torsional moment. 326 

The effect of chordwise movement of the point mass on the lead-lag aeroelastic stability of the 327 

composite blade is shown in Figure 12. By moving the mass from the leading edge to the trailing 328 

edge, the size of the unstable region increases. This indicates that the chordwise location of the mass 329 

critically changes the stability characteristics of the blade. Moreover, the ply angle at which the blade 330 

enters the stable region increases by moving the mass toward the trailing edge. By moving the mass 331 

toward the trailing edge, the lag moment due to the centrifugal force of the added mass, produces a 332 

nose up pitching moment which in turn increases the aerodynamic loads. Therefore, moving the mass 333 

toward the trailing edge has a destabilizing effect on the blade in this configuration.    334 

 335 

Figure 12: Stability boundaries of the lag mode for different chordwise locations of the point mass (μ=0.05, 336 

xp/R=1) 337 
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Finally, the aeroelastic lead-lag damping variation with respect to the blade pitch angle for the above 338 

case (yp/c= -0.25) when the ply angle is ζ=60o is shown in Figure 13. By increasing the blade pitch, 339 

the damping first decreases and then increases. Therefore, the blade pitch angle in this case first has a 340 

destabilizing effect and then has a stabilizing effect. This is the reason that in the above cases for a 341 

constant ply angle, by increasing the pitch angle, the instability region decreases.  342 

 343 

Figure 13: Normalized lead-lag damping for different pitch angles (μ=0.05, xp/R=1, yp/c=-0.25, ζ=60o) 344 

 345 

Conclusion 346 

The aeroelastic stability of the a composite hingeless rotor blade with an added mass is studied. The 347 

added mass is used as an actuation method to change the twist of the blade. By moving the mass in the 348 

chordwise direction, the bending-twist coupling of the composite layup of spar induces a torsional 349 

moment on the blade. This torsional moment then changes the twist of the blade. As the added mass 350 

may change the aeroelastic stability of the blade, the effect of its spanwise and chordwise location, 351 

and also its magnitude, on the blade lead-lag stability boundaries is evaluated. Introducing the mass to 352 

the blade, can change the twist distribution of the blade. The amount of twist induced in the blade 353 

depends on the layup angle, mass magnitude, mass location, and angular velocity of the rotor. The 354 

added mass influences the lead-lag aeroelastic instability of the blade. By moving the mass towards 355 
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the tip of the blade, the instability region decreases, while by moving the mass from the leading edge 356 

to the trailing edge of the blade, the unstable domain increases. Moreover, the mass magnitude also 357 

affects the stability boundaries of the blade. Therefore, this morphing concept may be subjected to 358 

aeroelastic instabilities, and in designing or modifying a blade to work with this morphing concept, it 359 

is essential to consider the aeroelastic stability as a design constraint. 360 
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