
Durham E-Theses

Asynchronous Teams and Tasks in a Message Passing

Environment

HAZELWOOD, BENJAMIN

How to cite:

HAZELWOOD, BENJAMIN (2019) Asynchronous Teams and Tasks in a Message Passing Environment,
Durham theses, Durham University. Available at Durham E-Theses Online:
http://etheses.dur.ac.uk/13019/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

http://www.dur.ac.uk
http://etheses.dur.ac.uk/13019/
 http://etheses.dur.ac.uk/13019/
htt://etheses.dur.ac.uk/policies/

Academic Support O�ce, Durham University, University O�ce, Old Elvet, Durham DH1 3HP
e-mail: e-theses.admin@dur.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

2

http://etheses.dur.ac.uk

Asynchronous Teams and Tasks in
a Message Passing Environment

Benjamin Hazelwood

A Thesis presented for the degree of

Master of Science (By Thesis)

Department of Computer Science

University of Durham

England

October 2018

Asynchronous Teams and Tasks in a Message

Passing Environment

Benjamin Hazelwood

Submitted for the degree of Master of Science (By Thesis)

November 2018

Abstract

As the discipline of scientific computing grows, so too does the “skills gap” be-

tween the increasingly complex scientific applications and the efficient algorithms

required. Increasing demand for computational power on the march towards exas-

cale requires innovative approaches. Closing the skills gap avoids the many pitfalls

that lead to poor utilisation of resources and wasted investment. This thesis tackles

two challenges: asynchronous algorithms for parallel computing and fault tolerance.

First I present a novel asynchronous task invocation methodology for Discontinuous

Galerkin codes called enclave tasking. The approach modifies the parallel ordering

of tasks that allows for efficient scaling on dynamic meshes up to 756 cores. It

ensures high levels of concurrency and intermixes tasks of different computational

properties. Critical tasks along domain boundaries are prioritised for an overlap

of computation and communication. The second contribution is the teaMPI li-

brary, forming teams of MPI processes exchanging consistency data through an

asynchronous “heartbeat”. In contrast to previous approaches, teaMPI operates

fully asynchronously with reduced overhead. It is also capable of detecting individ-

ually slow or failing ranks and inconsistent data among replicas. Finally I provide

an outlook into how asynchronous teams using enclave tasking can be combined into

an advanced team-based diffusive load balancing scheme. Both concepts are inte-

grated into and contribute towards the ExaHyPE project, a next generation code

that solves hyperbolic equation systems on dynamically adaptive cartesian grids.

Declaration

The work in this thesis is based on research carried out at Durham University,

the Department of Computer Science, England. No part of this thesis has been

submitted elsewhere for any other degree or qualification and it is all my own work

unless referenced to the contrary in the text.

The work on enclave tasking in Chapter 2 was recently published as a preprint

on a collaborative piece of work [13]. Clarifications on my own contributions are

available in the text.

Copyright © 2018 by Benjamin Hazelwood.

“The copyright of this thesis rests with the author. No quotations from it should be

published without the author’s prior written consent and information derived from

it should be acknowledged”.

iii

Acknowledgements

First and foremost I thank my supervisor Tobias Weinzierl, for providing the op-

portunity to carry out this research and the valuable mentoring throughout. Also

thank you to Dominic Charrier, for guiding me through the features and complexi-

ties of the ExaHyPE codebase. I also give thanks to all members of the ExaHyPE

consortium who made this research possible. In particular Leonard Rannabauer for

providing the seismic user application from the ExaHyPE project in Chapter 3.

I appreciate support received from the European Unions Horizon 2020 research

and innovation programme under grant agreement No 671698 (ExaHyPE) [2]. This

work made use of the facilities of the Hamilton HPC Service of Durham University,

with thanks to Henk Slim for valuable support on these matters. I furthermore grate-

fully acknowledge the Gauss Centre for Supercomputing e.V. (www.gauss-centre.

eu) for funding this project by providing computing time on the GCS Supercomputer

SuperMUC and CoolMUC3 at the Leibniz Supercomputing Centre (www.lrz.de).

My final thanks go to my family and friends, who provided never-ending support

throughout.

iv

www.gauss-centre.eu
www.gauss-centre.eu
www.lrz.de

Contents

1 Introduction 1

2 Asynchronous Tasks 5

2.1 ADER-DG In ExaHyPE . 6

2.2 Summary Of Contributions . 9

2.3 Implementation . 11

2.4 Results . 26

2.5 Shortcomings Of The Presented Approach 36

2.6 Outlook . 37

3 Asynchronous Teams 39

3.1 Review Of Existing Approaches . 42

3.2 The teaMPI Library . 50

3.3 Results . 63

3.4 Outlook . 74

4 Conclusion and Synthesis of Contributions 77

v

List of Figures

1.1 Euler simulation with ExaHyPE logo density initial conditions. 1

1.2 Summary of ExaHyPE work packages. 3

2.1 ADER-DG handkerchief analogy. 6

2.2 ExaHyPE task characteristics. 7

2.3 Dependency graph for R and P tasks. 13

2.4 Example skeleton mesh resulting from an adaptive Cartesian grid. . . 16

2.5 Enclave tasking producer decision process. 18

2.6 Snapshot of enclave tasking on four cores. 19

2.7 Multicore scaling speedup. 30

2.8 Manycore scaling speedup. 31

2.9 Comparison of MPI data exchangers. 32

2.10 Hybrid MPI+TBB scaling . 35

3.1 teaMPI software stack. 41

3.2 Parallel and mirror message consistency protocols. 44

3.3 The heartbeat process for performance consistency data. 59

3.4 teaMPI on a 2:1 fat tree network topology. 61

3.5 Ping-pong benchmark results. 66

3.6 Capabilities of one versus two heartbeats. 68

3.7 Simulating slow behaviour patterns on a representative miniapp. . . . 69

3.8 LOH.1 visualisation. 71

3.9 LOH.1 benchmark message profile. 72

vi

List of Figures vii

3.10 Simulating slow behaviour patterns on the LOH.1 benchmark. 73

List of Tables

2.1 Euler benchmark application runtime characteristics. 26

2.2 Degree of freedom values for Euler benchmark application 27

3.1 Feature comparison of existing rank replication approaches. 49

3.2 Feature comparison including teaMPI 62

viii

List of Algorithms

3.1 Splitting the MPI COMM WORLD communicator into teams. 51

3.2 The MPI Recv function in the teaMPI library. 52

3.3 The MPI Sendrecv function in teaMPI. 55

3.4 Compare progress of replicas . 56

3.5 Compare consistency data between ranks for fault tolerance 59

3.6 Ping Pong acceptance test . 65

3.7 Miniapp . 66

ix

Chapter 1

Introduction

It has often been suggested that the “traditional” scientific method of theory and ex-

perimentation has to be extended to include a third pillar of science: simulation [46].

Simulations allow scientists to validate theories that either aren’t experimentally fea-

sible or for a fraction of the cost. It has allowed for gigantic leaps forward in science

and the community surrounding High Performance Computing (HPC) became a

thriving research area in its own right. More realistic models require ever larger

machines. As soon as the first petascale capable machine went into production in

2008 [4], HPC groups set their sights on the next milestone: exascale. It became

clear that previous guarantees about increasing performance, such as simply adding

more CPU cores with increasing frequency following Moore’s law no longer held at

such scales [54]. To progress further, a combined effort in both hardware and soft-

ware development was needed. In 2011 a large consortium of leading scientists in the

Figure 1.1: A simple visualisation of the 2D Euler equations with the logo of the
ExaHyPE project as initial conditions.

1

Chapter 1. Introduction 2

field came together to propose the International Exascale Software Project [18]. The

extensive roadmap aims to coordinate the advancement towards exascale computing

and outlines both the current state-of-the-art and issues surrounding it, alongside

potential avenues for future research. This thesis presents two novel contributions to

tackle two challenges faced at exascale as identified by the roadmap: faulty machines

and synchronisation. A machine is classified as faulty when it does not operate as

expected. This can be anything from power outages to performance regressions.

The number of machines required for exascale dramatically increases the chance

that one will fail, meaning that applications must become tolerant to such faults.

With large numbers of machines also come large variations in performance, mean-

ing that synchronisation among machines must be avoided at all cost. It is a waste

of time and energy for one process to hold all others back. Algorithms previously

designed for tightly coupled execution must be redesigned to allow for performance

variations and interruptions.

To provide a context for these issues and the contributions presented in this

thesis I rely on the ExaHyPE project. ExaHyPE is a simulation engine designed by

an international consortium of scientists to solve hyperbolic equation systems based

on highly accurate ADER-DG [21] coupled to robust Finite Volumes. Work on

the project begun in 2014 and is anticipated to finish in 2019, with the simulation

of “grand challenges” in astrophysics and seismology. The “engine” terminology

comes from its design prioritising a separation of concerns between the scientific

computing infrastructure and the application developer’s code. This means that a

group with limited HPC experience but in-depth subject knowledge will be able to

solve large-scale problems in a much shorter time-frame than previously possible.

The engine uses arbitrarily high-order Discontinuous Galerkin (DG) techniques

that have achieved widespread success as partial differential equation (PDEs) solvers

on supercomputers. Their properties allow for extremely high computational effi-

ciency by combining high arithmetic intensity with blocked cache efficient realisa-

Chapter 1. Introduction 3

Extreme Parallelism and Performance

 dynamic load balancing
hardware optimization of kernels

P
et

as
ca

le
 P

ro
to

ty
pe

Novel Numerics for Astrophysics

Exascale Environment

Astrophysics

Novel Numerics for Seismology

positivity preserving ADER-DG on adaptive
grids for non-ideal GRMHD with general EOS

ADER-DG for dynamic rupture on space-time
adaptive grids in heterogeneous, nonlinear material Seismology

G
ra

nd
 C

ha
lle

ng
e

D
em

on
st

ra
to

rs

energy efficiency (coop. with LRZ and RSC)
resilience, ... (coop. with FETHPC, etc.)

MHD turbulence and instabilities
gravitational wave during inspiral
GW/EM emission after merger

Seismic hazard assessment
uncertainty quantification

P
ea

no
 fr

am
ew

or
k

fo
r

pa
ra

lle
l a

da
pt

iv
e

m
es

h
re

fin
em

en
t,

S
pa

ce
-t

im
e

ad
ap

tiv
e

A
D

E
R

-D
G

 w
ith

 a
-p

os
te

rio
ri

su
b-

ce
ll

F
V

 li
m

iti
ng

Figure 1.2: An overview of the ExaHyPE project split into work packages. This
thesis presents work on the “Exascale Environment” in addition to “Extreme Par-
allelism and Performance.” From the ExaHyPE project proposal.

tions. They are also a great fit for application developers with support for dynami-

cally adaptive block-structured grids [20]. These fit into common predictions about

exascale capable codes [19]. Charrier and Weinzierl show that communication can be

minimised with ADER timestepping in combination with DG [12]. Recently, Dumb-

ser et al proved in practise that without the overhead of dynamic grids ADER-DG

is capable of efficiently scaling up to 180,000 cores on the Hazel Hen supercomputer

of HLRS in Stuttgart, Germany [22]. With the ExaHyPE engine, the goal is to

achieve comparable results while providing users with the complex grid topologies

and user-friendly features. Tavelli et al detail an application for these features in

their recent work. They model linear elastic wave equations with complex topogra-

phies on adaptive cartesian grids [72]. Figure 1.1 shows an example simulation of

the Euler equations.

To achieve its ambitious goals, the project is split into work packages assigned

to specialist teams (Figure 1.2). My Chapter 2 contributes dynamic load balancing

Chapter 1. Introduction 4

to “Extreme Parallelism and Performance.” I outline and validate an algorithmic

idea called enclave tasking developed in collaboration with my supervisor Tobias

Weinzierl and colleague Dominic E. Charrier [13]. This approach uses an asyn-

chronous task-based parallelisation paradigm to overlap computation and commu-

nication on dynamically adaptive grids.

My Chapter 3 contributes resiliency features to the “Exascale Environment”

package. I introduce the teaMPI library, which allows existing applications to form

replicated distributed teams from the available resources with minimal changes to

existing code [38]. Replication is a previously overlooked form of fault tolerance in

HPC attributable to the expensive overhead in resources and performance. With the

teaMPI library I show that performance concerns can be vastly reduced from pre-

vious implementations with intelligent consistency checks. The use of teams allows

the library to detect heterogeneous performance and faults within the individual

processes without the significant overhead of previous solutions.

Chapter 4 takes these two contributions and outlines how they may be combined

into a diffusive load-balancing approach. Work is shared among teams to reduce the

overhead of resources required by replication. I finally give some concluding thoughts

on the ideas presented in this thesis.

Chapter 2

Asynchronous Tasks

Note: This chapter is based on a collaborative preprint paper with my colleague

Dominic E. Charrier and supervisor Tobias Weinzierl [13]. I originally identified the

issues of excessive synchronisation and limited concurrency of the previous approach

on adaptive grids. I then proposed the asynchronous tasks which has developed into

the work presented in the paper and this chapter. I furthermore carried out the

results for the paper and I reuse the data for this thesis.

The development of exascale capable software has proved to be remarkably diffi-

cult. Challenges lie in predicting the capabilities of future hardware. For the Peano

framework, upon which ExaHyPE is built, this has been visible in the approach to

shared-memory parallelisation. When it looked like cache-oblivious algorithms and

careful memory usage would be key, the code focused on its strengths of dynamic,

adaptive meshes. However, the next claim by hardware and software vendors alike

was that the efficient utilisation of many-core processors with wide vector registers

would be paramount. Peano was then modified to extract regular subgrids into

plain data-structures which could fit into highly vectorised parallel-for constructs.

Meanwhile, the HPC community was experiencing widespread success with task-

based parallelisation as a means to avoid the explicit synchronisation of parallel-for

methods [65]. Charrier and Weinzierl outline how the ADER-DG predictor-corrector

5

2.1. ADER-DG In ExaHyPE 6

3

1

2

Figure 2.1: A sketch of the handkerchief analogy for the three phases of ADER-DG:
predictor, Riemann and corrector.

scheme [21] underlying ExaHyPE can be modelled by tasks and additionally reduce

the synchronising communication among processes [12]. Unlike many codes that use

a task paradigm, it is neither feasible nor necessary to construct the task graph a

priori [65]. This is attributable to the grid data structures which can be dynamically

refined per time step.

2.1 ADER-DG In ExaHyPE

To provide the context and motivation for the contributions in this chapter, I sum-

marise ADER-DG for readers unfamiliar with the scheme. Full details are available

in the original work by Dumser and Käser [21]. I also outline some ExaHyPE specific

implementation details with respect to current parallel approaches.

There are three phases of ADER-DG: prediction, Riemann and correction. Each

phase requires the result from the previous, forming dependencies. An apt analogy

is the simulation of dropping a handkerchief (Figure 2.1). Instead of running the

simulation on the handkerchief as a single entity, it is split into smaller pieces (cells).

Moreover, the simulation timespan is split into timesteps. For each piece over a

2.1. ADER-DG In ExaHyPE 7

Figure 2.2: Visualisation of the arithmetic intensity and time contribution charac-
teristics of the three execution phases. The ‘+’ label corresponds to the corrector
that combines the contributions of the P and R tasks into the next solution. The
P tasks in ExaHyPE correspond to the STP.

timestep, the predictor is able to carry out a localised simulation (it locally spans

the full space-time polynomial). However, this amplifies any jumps in the solution,

such as a gust of wind, resulting in large gaps between the boundaries of each piece.

Therefore, a Riemann solve is performed on these interfaces which yields Riemann

solutions. To calculate the final state of each piece, the corrector phase sums up

the results of the previous phases. Once performed for each piece, the state of the

whole handkerchief is known for that timestep. The process can then be repeated

for the duration of the simulation timespan.

In ExaHyPE the handkerchief represents the computational domain, split into

cells that are traversed by the PDE framework Peano [77]. The three phases per cell

are modelled as tasks. The prediction task P , is the local higher order integration

of the PDE per cell. These P tasks typically take up the majority (75%+) of the

execution time. It has no dependencies from neighbouring cells. The result of

this task is then passed to a Riemann solver that is modelled as a second task, R.

The Riemann solver takes in data from the faces (interfaces) of neighbouring cells,

forming dependencies among tasks. Finally, the outcome of the two tasks is fed into

the corrector task +, to calculate the next solution.

2.1. ADER-DG In ExaHyPE 8

To utilise the performance of modern machines, the compute characteristics of

each task is important. The higher-order integration P of the PDE is compute-

intensive provided a high enough polynomial order p and a complex PDE. Typical

ExaHyPE applications use 3 ≤ p ≤ 9. It is also extremely cache-efficient as the data

is located in small array blocks. On the other hand, R tasks feature an extremely

low arithmetic intensity and are highly memory-bound. Each issues few flops per

byte that must be loaded from main memory. The corrector is usually cheap to

compute, requiring few calculations. However, if neighbouring cells are of differing

size (refinement levels), or require limiting with a Finite-Volume scheme, it can be

complex. Any parallel ordering of the tasks must not only satisfy the dependen-

cies but also account for these compute characteristics. If possible, the R and P

tasks should be intermixed among cores to avoid saturating the memory resources

available. If all R tasks are ran concurrently it will place excessive pressure on the

memory subsystem. A summary of the algorithm phases and their contributions to

the runtime is given in Figure 2.2.

As previously hinted if the grid were regular or even statically refined this would

be relatively trivial to manage. The task graph with its dependencies and properties

may be passed to a scheduler such as METIS to produce a satisfactory ordering

for the duration of the applications runtime [45]. An example application using

this approach is the SWIFT code designed by Schaller et al [65]. However, with

dynamic adaptivity the task graph becomes much more complex as the prolongation

and restriction along resolution boundaries has to be done in a well defined order.

Task dependencies also change along with the grid. This would render any task

graph invalid. Concurrency is difficult to exploit in these regions of the grid. In

ExaHyPE, the grid may change upon every traversal as few constraints are made

about the adaptivity.

To facilitate distributed-memory parallelism, Peano splits the computational grid

into non-overlapping subdomains. Each process then owns one of these subgrids,

2.2. Summary Of Contributions 9

which increases the complexity of the dependencies further. Cells along the bound-

aries must send and receive face data from neighbouring cells on other processes.

The parallel ordering must be entirely deterministic.

2.2 Summary Of Contributions

The contributions of this chapter are a novel task invocation paradigm, enclave task-

ing, which intelligently schedules work throughout the mesh traversal. Localised re-

gions of tasks are processed dependency-free from a background queue. The implicit

task graph yields high levels of concurrency. As the Riemann problems are com-

putationally cheap and must not be grouped into bursts for maximum throughput,

these are embedded directly into the traversal whenever the face is loaded. This

ensures that the bursts are optimally spread out. During the traversal the computa-

tionally heavy P tasks are placed into a queue that is shared among threads. Tasks

are only polled for completion at the end of the traversal. Throughout, threads are

free to dynamically steal work from this queue to ensure maximum concurrency and

intermix the R and P tasks. The producer-consumer idiom is well-suited to this

algorithm.

However, once the dynamic adaptivity and communication cells are considered,

it is no longer possible to spawn all P tasks into the shared queue. In both cases the

execution ordering must be well-defined and deterministic, yet there still exists large

areas of the grid where such constraints are not imposed. If the ratio of such cells

to the rest is low, it is enough to processes them during the traversal in addition

to the R tasks. Provided that the other threads remain busy with the work in the

shared queue then the concurrency will not be effected. To support such a scheme, a

marker-and-cell realisation is implemented. The cells on refinement and sub-domain

boundaries are marked and processed during the traversal. When visualised on top

of the grid, the marked cells form a skeleton mesh around large areas of trouble-free

2.2. Summary Of Contributions 10

cells. The term used to define such areas is enclaves, first used in a HPC context by

Sundar and Ghattas [71].

The second contribution of this chapter is owing to an additional benefit that the

enclave concept provides. By postponing the execution of the computationally heavy

P tasks, the cells along the MPI boundaries get processed much earlier during the

traversal. This increases the length of the communication window as the data may

be sent out earlier. Communication may be overlapped with computation. Waiting

for incoming data is wasting time and energy. A näıve implementation with only

non-blocking communication function in MPI does not immediately lead to asyn-

chronous transfers of data. To achieve this the MPI library must be regularly polled

to ensure the “progress” of messages in the network subsystem. Most applications

therefore accept that they must sacrifice a whole thread per node for this important

functionality [39, 75, 79]. However, the producer role in the enclave concept can

be exploited to ensure message progress natively. Memory and network bandwidth

are critical resources, and it is predicted that these will be the bottlenecks for many

exascale HPC applications [18]. Therefore in addition to the properties of enclave

tasking, intermixing memory and compute intensive tasks, I also investigate varia-

tions on the communication scheme to minimise the contribution of data transfer

through the network on the ExaHyPE code. The concept of overlapping communi-

cation with computation is not new, especially with DG [3, 47, 71], but I summarise

the cumulative advantages and unique properties of the enclave tasking concept:

1. A task schedule is derived from the grid on the fly, allowing for unconstrained

dynamic adaptivity. Constructing such a task graph would be expensive if the

grid is frequently modified by the adaptivity [48, 50, 66].

2. No assumptions about the grid structure are made, or restrictions to specific

subgrid regions/enclaves [47, 66, 71].

3. Tasks of different compute characteristics are efficiently mixed to avoid satu-

2.3. Implementation 11

rating critical resources.

4. Overlaps communication with computation without sacrificing a whole thread

for ensuring message progression.

Enclave tasking combines all of these concepts into one powerful methodological

tool. The three important phases of the code are all able to operate concurrently:

while the lightweight producer supplies tasks to the thread-shared work queue, it

kicks off MPI transfers and polls the MPI engine. The threads and network sub-

system are then free to complete their tasks completely asynchronously until the

barrier at the end of the traversal. Such an approach minimises the idle time of all

critical resources: memory, threads and network.

The remainder of the chapter is organised as follows: I describe how the task

graph is implicitly constructed from the computational mesh and operator con-

straints (Section 2.3.1) before discussing the implementation details of the enclave

tasking and MPI realisation code in Section 2.3.3. I then present the results of scal-

ing up to 756 cores on an example ExaHyPE benchmark application (Section 2.4).

Finally, I present a brief outlook into future work on enclave tasking and the short-

comings of the present approach.

2.3 Implementation

2.3.1 Discontinuous Galerkin On Dynamically Adaptive

Cartesian meshes

I now expand on the overview given in Section 2.1, outlining all tasks with depen-

dencies and compute characteristics which must be managed by the proposed task

runtime.

As previously discussed, in ExaHyPE a PDE is first evaluated with a higher-

order integration over all cells of the computational grid. This Space-Time predictor

2.3. Implementation 12

(STP) phase contains the P tasks for our enclave tasking approach. However, as

DG represents the grid as discontinuous polygons, a Riemann solve is introduced

that is then integrated over all faces of the cell. The work of Charrier and Weinzierl

cast the whole ADER-DG scheme into tasks [12], and I use a representation of P

and R tasks for cell-wise and face-wise integrations here. As both use the same PDE

terms, they are directly comparable in terms of arithmetic intensity with a disregard

to the cache efficiency [78]. For relatively simple PDE’s, an intensity of around 0.1

flop/byte is expected. However, it is more useful to consider the cache-aware roofline

model proposed by Ilic et al [41]. This model accounts for the flops performed for

data that already resides in main memory. As the integration over the cell with high

order polynomials is stored in small array blocks, the arithmetic intensity relative to

the caches is much higher than the integration over the faces. These must usually

load the data from main-memory. The STP per cell is completely independent

of other cells with the discontinuous polygons of DG. As the polynomial order is

increased, the P tasks become increasingly compute-bound. Charrier and Weinzierl

show that this decomposes into a single independent task per cell, P . This task

mandates an output dependency only onto follow up computations.

The integrations over the faces also provide one task, R, per grid face. Although

the R tasks of the faces of the cell are independent, each requires input from the

adjacent cells from a Riemann solve. This couples cells with shared faces, with

2 · d of these dependencies per cell. Provided no resolution boundary exists between

the cells, a simple extrapolation is enough or else the outcome is projected from

more/less neighbouring cells. The Riemann solves require data usually residing in

main memory because of cache capacity. Each contain few floating point operations,

and are memory bound.

When talking of tasks and dependencies it is helpful to visualise the task graph

(Figure 2.3). Two types of tasks exist, cell P and face R tasks. The P tasks have

no spatial dependencies, only temporal upon the previous solution. The face tasks

2.3. Implementation 13

Figure 2.3: A subset of task dependencies for the three phases of computation in
a simplified 1D case. Enclave cells are shown as filled. Skeleton cells are empty.
The corrector combines the STP and 2 · d Riemann solves. Cells along refinement
boundaries (empty), may require more or less input faces for the Riemann solves.

from the Riemann solves require input data from all neighbouring cells. More or less

cells input data into the R tasks along adaptivity boundaries. The two task types

leads to two traversal types: one over the cells, one over the faces. Each traversal

type is embarassingly parallel, with no internal spatial dependencies among them.

Dependencies only exist between traversal types. All R tasks are independent of

other R tasks, and likewise for P tasks.

Two main variations on the traversal exist depending on whether the P tasks

feed into the R tasks. If no such dependency exists, then both may be spawned

directly in a single traversal and represents the most trivial case. At the end of

the traversal (or at the start of the next), there must be a wait barrier for any

pending tasks. The next traversal then combines the contributions from the two

task types and launches the computation of the next solution. No task graph or

complex depending tracking required.

When R tasks depend on P tasks it gets a little more tricky. By sticking to a

2.3. Implementation 14

single traversal when spawning the R and P the dependencies must be also passed

with the tasks. Although this is supported in libraries such as TBB among others, it

is more efficient to resolve these dependencies ourselves with domain-specific knowl-

edge. Therefore the following approach is proposed. First, the R tasks should be

issued when the face is loaded during the traversal. When the 2d adjacent faces of a

cell have been updated, the P tasks may be spawned. The issue with this approach

is that with explicit time stepping it requires such time stepping to be optimistic

as shown by Charrier and Weinzierl [12]. Such a scheme is supported in ExaHyPE,

where the three phases are fused together into a single timestep. P tasks could then

be spawned with an inadmissible time step size. By neglecting the dependencies in

an optimistic fashion it may be the case that some computations be rolled back and

done again with a correct time step size.

Even with efficient dependency management undertaken, this approach still faces

several complications in a real-world implementation. I discuss some of these com-

plexities here and the solutions are presented in the following section.

ExaHyPE implements a non-overlapping domain decomposition. This means

that any cells along the boundary contribute only half of the data for the Riemann

solves (R tasks). These are computed redundantly on both ranks, which then must

swap data with the required neighbours. If the tasks of such cells were passed to

the job scheduler then the permutation would not be known a priori, which severely

complicates the MPI exchange. It is more efficient therefore to impose temporal

dependencies on these cells such that the data can be exchanged deterministically.

The second issue stems from the maturity of task runtime systems such as

OpenMP, TBB or C++. Out of the box each struggle to balance the complex re-

quirements for balancing the execution of R and P tasks. For example, all threads

must not access the main memory concurrently by avoiding bursts of cache capacity

misses.

The Riemann solves often impose additional constraints on the ordering of tasks.

2.3. Implementation 15

In the work of Berger and Colella they project the solution onto the finest grid along

refinement boundaries and solve the problem there [6]. The outcome must then be

restricted up to the coarsest grid. If the grid traversal is modelled as a depth-first

recursive function this is simple to realise. The restriction operators may be done

while backtracking to the coarser grid. With a complex grid this will impose many

task dependencies as the computations on the coarser cell must complete before

following the recursion down to finer levels and vice versa. This effectively serialises

the mesh traversal and may starve the task consuming threads.

The performance of the implementation will be dictated by the throughput of

tasks. This will be maximised with an ability to:

1. Avoid saturating the network and memory subsystem while cores remain idle.

2. Avoid synchronisation with other tasks.

3. Exhibit high levels of potential concurrency for many-core processors

Dynamic adaptive mesh refinement typically makes satisfying these constraints chal-

lenging. If cells refine late in the traversal, the allocation of memory and initialisation

of data structures will have to be completed before eventually spawning the tasks.

By this time the task-consuming threads will be starved of work. In the following

section I show how enclave tasking is able to avoid such scenarios.

2.3.2 Enclave Tasking

In ExaHyPE, simple constraints are placed upon the computational mesh. The first

is the topology of the underlying grid, which is typical of a many software solutions.

A user provides the application with a maximum-mesh-width and a maximum-mesh-

depth. Starting with a conformal grid of a single cell, the initial regular mesh is

created by dividing the cell a fixed number of times equidistantly until each cell

is at most maximum-mesh-width in size. Only square cells are supported. This

level is defined at `min. The Peano package implements tri-partitioning, splitting

2.3. Implementation 16

Figure 2.4: An adaptive Cartesian mesh (not distributed among processes) where
the Riemann solves along adaptivity boundaries are shown by arrows. Cells involved
in Riemann solves form a skeleton around the enclave cells in grey.

a cell results in 3d cells on the finer level. Topologies of this type are quadtrees,

octrees and forests of trees [20]. The work of Berger and Colella also imposes such

constraints [6]. In ExaHyPE, tree grids are used.

The user then specifies a refinement criterion, of which there are two types. If the

criterion is only specified for time t = 0, it follows a static refinement pattern and the

grid will remain the same for the duration of the simulation. Although naturally such

a set up is supported, it does not make use of the advanced dynamically adaptive

mesh refinement capabilities of the ExaHyPE engine. Performance trade-offs have

to be made to support these features, yet the enclave tasking approach seeks to

minimise this. If a user chooses to refine a cell, either statically or dynamically

during runtime, the new cells will be created on the finest level denoted `min+1 = ˆ̀.

Further refinement is possible, provided that ˆ̀≤ `max (maximum-mesh-depth). The

assumption imposed on top of the dynamic refinement is that cells only refine and

coarsen along existing refinement boundaries. This means that a cell on level ` may

be refined if one of the adjacent cells is on a finer level. The assumption is extended

to coarsening too. A cell can only coarsen if an adjacent cell is also coarser. Cells

surrounded by cells on the same grid level will neither refine nor coarsen.

2.3. Implementation 17

The assumption on the refinement patterns is reasonable in hyperbolic problems.

CFL conditions ensure that any shock waves will not propagate further than a cell

per time step. If the CFL condition is violated the computations are rolled-back with

a new time step. With elliptic problems, users will specify the regions of interest

via an initial refined grid. The mesh will then be developed further throughout the

simulation. The errors from these regions are mirrored by the grid, where the finer

levels follow the problematic regions. The dynamic refinement criterion can be made

to refine an additional level around these areas to fit the assumption. A potential

sticking point is applications with highly non-linear equations. The areas of interest

may be completely non-localised. However, the ExaHyPE project can still be used

by applications with such properties. Domain-specific knowledge can be leveraged

in tandem with intelligent refinement criteria to predict such “random” areas of

interest and avoid non-local mesh refinement. These refinements appear random to

the mesh, not the application.

Definition 2.1: Skeleton Grid

Contains the critical cells that occur on communication or refinement bound-

aries and therefore must be processed with priority yet yield limited concur-

rency.

Definition 2.2: Enclave Cell

A cell where all neighbours are on the same level and no neighbour is remote.

In Figure 2.4, I show how the grid structure can be exploited by the proposed

enclave tasking method. Suppose an adaptive grid is split into sub-domains to

exploit distributed memory parallelisation. The skeleton grid is then formed on each

sub-domain by those cells either requiring communication with other processes or are

hosted on a different level to at least one adjacent cell (Definition 2.1). Exploiting

the knowledge that skeletons usually occurs in localised areas, it leaves the remaining

cells in the grid to form large enclaves (Definition 2.2). These cells produce tasks

without dependencies that can be processed by idle threads.

2.3. Implementation 18

Figure 2.5: A flow chart summarising the decision process made by a producer for
a cell during the mesh traversal.

For the mesh traversal scheme outlined in Section 2.3.1, enclave tasking is a task

invocation paradigm that decides per cell encountered in line with the traversal:

(a) If the cell is a member of the skeleton grid, process the R and P tasks imme-

diately with the current thread, or

(b) Process the R tasks directly by the current thread and push the P task onto

a shared task queue to be processed asynchronously. It may be the case that

the same thread picks up this task later when it becomes idle at the end of

the traversal with no more “critical” work left.

This choice is summarised by the flow chart in Figure 2.5. At the end of the traversal,

any remaining tasks in the queue are waited upon. To increase the rate at which

the queue is filled to avoid work-starvation, multiple producer threads traverse the

grid. It has no effect on the algorithm described.

Equally, the R tasks could also be placed into the shared queue. However, as

they are cheap in terms of computation and exert dependencies on spawning of P

tasks, it makes sense to process them immediately during the traversal. This ensures

that they are not processed in batches by all threads and thus saturate the memory

bandwidth. This insight gives enclave tasking an arithmetic-aware character. Any

other small tasks that exist are also processed immediately during the traversal.

I summarise that the described methodology satisfies the various constraints and

efficiency concerns of the context described in the previous section. By processing

the Riemann solves deterministically directly in the traversal it ensures that no

2.3. Implementation 19

Figure 2.6: An illustrated snapshot of enclave tasking with four cores on a small
subdomain of a mesh. Core 0 traverses the grid and processes all Riemann solves
(R) and any solves along a refinement transition or communication boundary (S).
All remaining cells’ P tasks are spawned into a shared queue and are processed when
a core runs idle. They take previous R tasks as input dependencies. Tasks from the
skeleton cells along communication boundaries trigger message tasks (M). In this
case S and R trigger M . Only a subset of skeleton cell’s tasks are shown for clarity.

bursts of memory intensive operations occur.

Additionally, this deterministic behaviour is extended to the cells along the non-

overlapping domain decomposition boundaries. It is known from the prescribed

mesh traversal ordering. As all cells do not immediately process their intensive P

tasks, it allows the MPI skeleton cells to be processed earlier. This extends the

window allowed for data transfer and later I discuss the implications this has on

the MPI data transfer implementation. Is it better to adopt a scheme alike the R

tasks and let the data trickle through the network subsystem as and when required

or aggregate into one big message that can be sent en masse? I will show that by

allowing the data to be sent in the background, the window is large enough that it

does not matter in practise.

With the dynamically adaptive refinement also processed deterministically via

the producers following the traversal, bursts of memory allocations/deallocation-

s/initialisations do not occur. The Riemann solver algorithms are free to impose

any constraints on the mesh traversal ordering without a major negative impact on

2.3. Implementation 20

the concurrency. While the producer is handling the refinement, the other threads

continue to take P tasks spawned by the traversal of earlier cells. An example

execution ordering exhibiting the promises of increased concurrency is shown in

Figure 2.6.

2.3.3 Tailoring The Task Runtime

So far I have outlined the generic idea of enclave tasking and the benefits it promises.

However, there are implementation challenges. At its core enclave tasking relies on a

producer-consumer pattern. A main thread(s) follows the mesh traversal and spawns

most of the work into a background queue. Any critical tasks are processed directly.

Upon completing the traversal, it waits while other threads complete tasks from the

queue. To provide some context for the potential pitfalls I first outline an idealistic

scenario. While the producer spawns the tasks, the consumers immediately start

work on them. With the perfect balancing of workload and hardware resources the

traversal will complete and at the same time the threads will have completed their

work in the shared queue. Also at this moment, the incoming data will have already

arrived from neighbouring processes and then the next timestep can begin. In the

rest of this section I explain what improvements to the tasking runtime and MPI

communication were made to the original idea to get as close to this situation as

possible.

Task Fusion

The first choice is how to manage the potentially millions of tasks created by the

traversal. It would be entirely feasible to write an implementation of enclave tasks

based on plain threads (pthreads or C++11) and is indeed something we did try

at first. However, it soon became clear that it is advantageous to leverage the

enormous amount of research-hours put into modern task systems. Although the

functional requirements for a dedicated library are small, some are difficult to im-

2.3. Implementation 21

plement efficiently. The main deal-breaker is the ability to spawn large amounts

of asynchronous tasks. Although the popular OpenMP library was considered, the

restrictions it places to aid simplicity make it infeasible for a codebase as complex

and dynamic as ExaHyPE. In particular, completely asynchronous tasks are not

supported, they must be spawned and completed during well defined omp parallel

clauses. This could change with future versions. Intel’s Threading Building Blocks

(TBB) proves to be a much better solution [58]. Fully asynchronous “fire-and-

forget” tasks are spawned via the tbb::enqueue function, which fairly distributes

tasks between threads in a roughly FIFO order. Although TBB is theoretically ca-

pable of handling the quantity of small tasks, spawning each P task into TBB’s own

work queue induced significant overhead by polling the task queues too frequently.

The small tasks also suffer from NUMA [49]. Intel’s own recommendation is that

tasks spawned via the enqueue command must contain at least 10,000 execution

cycles [43]. Therefore, an additional task management layer is added atop TBB to

fuse tasks together. To differentiate between real tasks and asynchronous enclave

tasks, the latter are referred to hereon as jobs.

Now when a task is “spawned” it is actually added to a tbb::concurrent queue

shared among threads. The actual TBB tasks that get spawned (via tbb::enqueue)

are referred to as job consumers. With n cores available, up to n − 1 of these job

consumers may be running at a time. During the traversal, it is usually more efficient

to allocate resources fairly between producer and consumer threads until the end of

the traversal. At this point, all n−1 consumers are spawned or are already running.

This minimises the traversal time ensuring tasks are not starved of work and that

MPI data is sent out early. At the end of the traversal the remaining consumer tasks

are then spawned to quickly process the remaining jobs.

The consumer tasks take jobs from the shared queue and process them. Once

finished with their tasks, they requeue themselves. Deciding upon the amount of

tasks a consumer should take from the queue is a complex decision, and depends

2.3. Implementation 22

on a variety of factors and constraints. A grain size of tasks must be chosen. For

example, if the P tasks for one application are computationally cheaper than another

(i.e. fewer PDE terms or lower order), then it should take more tasks in one rush.

Machine properties also come into play here, and if too few jobs are taken at once

then contention among threads will occur. The literature agrees no single grain

size represents a global maximum in throughput. Rather it is better modelled as

a plateau with a wide range of acceptable choices [57]. Although this could be

deployed to the machine learning model designed by Charrier and Weinzierl [14],

in ExaHyPE a simpler deterministic model was chosen (Equation 2.3.3) to balance

efficiently fuse tasks for consumers.

max

(
j

n
, jmin

)

Where j is an estimate of the number of jobs in the queue, jmin is a fixed value for

the smallest number of jobs that may be taken and n is the number of consumer

tasks available. Although it may be modified on a per application basis, jmin = 4

has proven to be a suitable value for many applications tested with ExaHyPE. This

manual job stealing works well in tandem with TBB’s own task stealing mechanisms

and allows for fusing multiple asynchronous tasks.

2.3.4 Tailoring The MPI Runtime

By prioritising the execution of critical tasks along MPI sub-domains, enclave task-

ing is implicitly “communication-aware”. If the data transfers are initiated with the

non-blocking operations (MPI Isend/Irecv) then it is possible to perform the com-

munication asynchronously. Meanwhile, the tasks continue to be executed by the

job consumers. Although this is not a feature unique to enclave tasking, other solu-

tions usually require workarounds [3, 47, 71]. It fits elegantly into the methodology

outlined here. The work of Hoefler and Lumsdaine dives into these issues and so-

2.3. Implementation 23

lutions in detail [39]. However, two fundamental concepts underpin successful MPI

background communication: the communication protocol and message progression.

Definition 2.3: MPI Message Progression

The act of tripping the MPI engine to ensure pending (non-blocking) opera-

tions complete.

Definition 2.4: Eager Protocol

The sender assumes the receiver has enough memory to buffer the message

without posting the matching receive.

Definition 2.5: Rendezvous Protocol

The sender must wait until the matching receive has been posted before be-

ginning the data transmission.

MPI implementations are free to choose whatever communication protocols they

want provided that it adheres to the MPI standard. Two common protocols used by

most implementations are eager and rendezvous (Definition 2.4-2.5). If a message

is sent eagerly, the sender assumes the receiver will have enough memory to buffer

the message even if the matching receive has not yet been posted. In contrast,

the rendezvous protocol requires the matching receive to be posted before the com-

munication can begin. Although eager sending minimises synchronisation between

communicating ranks, it may incur significant memory and performance overheads

if used excessively with large messages. Therefore, MPI implementations commonly

have a message size cut off parameter to switch between the two.

Sometimes the MPI standard is deliberately vague to give the implementations

some leeway in (as of yet) unsolved challenges. Automatic message progression is one

example [39, 79]. To get non-blocking long-running MPI functions to complete in the

background, it is necessary to “progress” the underlying MPI engine to complete the

communication. This can be achieved with five common, not necessarily orthogonal,

approaches:

2.3. Implementation 24

1. Call MPI Test on the MPI Request object returned by the non-blocking oper-

ation. Multiple function calls may be necessary to complete the request.

2. Call MPI Iprobe on the receiving rank, with source and tag parameters. The

source and tag can be their MPI ANY SOURCE or MPI ANY TAG wild card values

respectively, but this will incur additional overhead. Again multiple function

calls may be necessary to complete the request.

3. Call MPI Wait on the request object returned by the non blocking function.

4. Call MPI Probe on the receiving rank, with a source and tag parameters. Again

these can be replaced with their wild card counterparts.

5. Use a dedicated helper thread to ensure progress automatically. Often pro-

vided by MPI implementations, although some applications implement their

own [75].

The first two approaches are semi-asynchronous, as they allow computation to occur

between MPI Test or MPI Iprobe function calls. The next two convert the opera-

tion to blocking and defeat the point of non-blocking communication. They will

not return until a message has been received, ensuring progress. These are usually

used when no more work is available and the application has to wait for the com-

munication to complete before proceeding. Although this is the fastest and simplest

way to ensure progress, it naturally defeats the point of asynchronous communica-

tion. The last option, an additional helper thread, rarely improves performance for

small messages owing to excessive context switching. For communication-heavy ap-

plications with frequent large messages it has been shown to pay off [39]. However,

naturally this involves sacrificing a valuable thread that should be used to perform

computation. With enclave tasking, sufficient and well-timed calls to MPI Test and

MPI Iprobe can be elegantly built in the algorithm and I detail three different ap-

proaches for doing so. I call these techniques exchangers.

2.3. Implementation 25

First, I present the symmetric exchanger. This approach exploits the symmetry

of the data transfer in ExaHyPE to post the Irecv’s as early as possible. When a cell

issues an Isend to a neighbouring rank, it knows that it will receive one in return and

posts the Irecv. This is because the Riemann solves are executed redundantly on

neighbouring ranks. This exchanger avoids the late receiver pattern and is designed

for an implementation using the rendezvous communication protocol.

The second approach is called an immediate exchanger. The Isend’s are issued

immediately by the producer processing the boundary cells. Only, when an Iprobe

detects that a message is available is a matching Irecv posted.

Finally the third approach that is widely used in HPC and therefore acts as

the baseline is the aggregate exchanger. During the traversal, all the messages are

pushed into a single buffer that is sent out en masse at the end. Once the receiver

knows the length of the whole buffer it posts an Irecv.

All three exchangers ensure message progression by plugging into the wait barrier

at the end of the traversal, at which time the remaining STPs are processed. Other

solutions issue a blocking wait at this point for pending communication requests

with MPI Wait/Waitall. Although such an approach is simple and ensures guaran-

teed progress, it wastes the computational resources of the master thread. Enclave

tasking instead models a logically blocking wait. The main thread should first en-

sure that all available job consumers are running. Then in a loop it should progress

the existing requests using MPI Test and MPI Iprobe, but additionally also process

some tasks from the shared queue. This offers a distinct advantage over other ap-

plications, which either waste the thread with a blocking MPI Wait or sacrifice a

thread to constantly poll the MPI implementation.

2.4. Results 26

Table 2.1: The benchmark’s characteristics on one Broadwell core for a 27 × 27 ×
27 grid. Two values for arithmetic intensity (AI) as flops per byte are reported:
flops per byte relative to L1 cache access [78] and relative to main memory access
(DRAM) [41].

Order Mflop/s Bandwidth (MByte/s) AI vs. L1 AI vs. DRAM

3 1464.35 568.18 0.08 2.38
6 2893.11 388.90 0.10 6.73
9 3111.02 199.60 0.11 14.28

2.4 Results

In this section I introduce the benchmark application I use to assess the enclave

tasking idea. It is evaluated in comparison to a previous parallel implementation

that serves as the baseline. I then introduce the three systems and the results on

each. Throughout I discuss the implications and insights. The results are largely

the same as those found in the original work [13].

The application studied is a standard benchmark, which models compressible

Euler equations solved with explicit timestepping [53]. The equations have five un-

knowns and the initial conditions are shown in Figure 1.1. These are chosen such

that the application does not exhibit any shocks yet showcases the dynamic AMR

features of the code. The refinement criterion is simply gradient-based. If the solu-

tion is smooth then the surrounding mesh is coarsened, and if the gradient of the

five unknowns exceeds a threshold the cell is refined. Otherwise the grid construc-

tion remains the same as outline in Section 2.3.1. The grid depth is constrained by

`min and `max using a tri-partitioning scheme. The mesh refinement depth ∆`, is

defined as `max − `min. Leaf nodes of the tree contain Lagrange polynomials with

Gauss-Legendre points. In this set of experiments polynomial orders p ∈ {3, 6, 9}

are studied for a range of runtime properties. The higher the order, the higher

the workload and arithmetic intensity per enclave job. Order 9 is still lower than

many other applications in HPC, yet represents a lower bound of anticipated perfor-

2.4. Results 27

Table 2.2: Degrees of freedom values for all experimental set ups for various grid
sizes, order and levels of refinement performed on a single machine. Values for
81× 81× 81 with AMR are omitted as they exceed the available memory resources
for a single node.

27× 27× 27 81× 81× 81

∆` p = 3 p = 6 p = 9 p = 3 p = 6 p = 9

0 1259712 6751269 19683000 34012224 182284263 531441000
1 1642432 8802409 25663000 — — —
2 3346368 17934441 52287000 — — —

mance [40]. The solution in each cell with five unknowns is spanned by 5 · (p + 1)d

doubles. I use the three dimensional setup (d = 3). From these set ups bring an

application dominated by the compute-bound P tasks. In Table 2.1 the effect p has

on the runtime characteristics is shown. The R tasks are computationally cheap

yet load large amounts of data from the main memory. Therefore the arithmetic

intensity remains around 0.1. Increasing the value of p however leads to a much

higher intensity relative to the main memory access. This attributable to the use of

small arrays that fit into the low level caches, a key selling point of DG.

The degrees of freedom (DoF) depends upon on the number of cells, the number

of unknowns and the polynomial order p. The DoF counts for all the experiments

performed on a single machine are given in Table 2.2.

The explicit time stepping is based upon the ADER-DG scheme outline in Sec-

tion 2.3.1 and the literature provides further details [12, 21, 75]. To combat the

non-linearity of the Euler equations, p + 1 Picard iterations are used. This ensures

that the P tasks contain sufficient flops and we do not see any effects of load im-

balance among cells. The plain Rusanov solver from [53] is used on the faces in

the R tasks which are solved directly in the traversal. The outcome of the P tasks

is fed into the Rusanov solver to follow the ADER-DG predictor corrector scheme.

Cells are not stored redundantly along MPI sub-domain boundaries. However, the

computation of the R tasks is done on both neighbouring ranks as they exchange

2.4. Results 28

the input for the Riemann solve. The outcome is then calculated redundantly. The

application uses fixed global timestepping so all tasks use the same timestep after

the first solve.

All result data includes only the timestep time, which neglects many influen-

tial yet irrelevant factors for this thesis such as grid setup, IO and load balancing

costs. Unless noted otherwise, the simulation is allowed to run for 20 timesteps.

This is long enough to ensure accurate results yet no dynamic AMR is triggered in

this time which greatly simplifies calculating the DoFs and average time data. It

has no real effect on the performance of the algorithm as validated experimentally.

Normalised time is reported as the time per degree of freedom update per Picard

iteration. Speedup metrics are compared against an optimised serial version of the

code without shared or distributed memory parallelisation support and their respec-

tive overheads. Both metrics allow for comparisons to be drawn against different

experimental set ups such as grid size and polynomial order.

In all cases, the code must effectively manage the potentially millions of tasks

produced, where each has completely different compute characteristics. While few

real-world examples exist where the grid changes at every timestep, the choice of

experiments represents a lower bound on the performance of enclave tasking. If some

of the assumptions and constraints are loosened, severe performance engineering can

be undertaken to quantitatively improve the results presented.

To evaluate the performance of enclave tasking, it is compared to the previous

implementation based on conventional TBB parallel fors. In this implementation,

enclaves are processed one after another in a series of parallel fors, and the bound-

aries processed serially [77]. The two methods make for a good comparison: enclave

tasking substitutes a series of synchronisation points for a task management over-

head.

Two different machines are used to perform the experiments. The first is a

conventional multi-core cluster whereas the second features many-core processors.

2.4. Results 29

These are anticipated to be the building blocks of exascale applications. The speci-

fications are:

a) Hamilton. An Intel E5-2650 v4 (Broadwell) cluster with 2 × 12 cores per

node. They run at 2.20 GHz up to 2.80 GHz TurboBoost and are connected

by Omnipath. 64 GB TruDDR4 memory is available per node, with 256 kB

L2 cache and 30 MB L3 cache. All counter measurements were reported by

this machine with Likwid [74].

b) CoolMUC3. A Xeon Phi 7210-F (KNL) cluster with 64 cores per node and

up to 256 Hyper-Threads, configured in the quadrant clustering mode. The

cores run at 1.30 GHz up to 1.50 GHz with TurboBoost and are also connected

by Omnipath. 96 GB DDR4 memory (80.8 GB/s) is available per node with

16 GB High Bandwidth Memory (460 GB/s) per node available as a cache.

The on-chip cache configuration is as follows: on level 1 there are 64 × 32 KB

8-way set associative instruction caches and the same for the data caches. On

level 2 there are 32 × 1 MB 16-way set associative shared caches.

For compiling the code I used the tools provided by Intel’s Parallel Studio 2017.

In particular their TBB library for shared memory support along with Intel MPI

for distributed memory message passing. I now present the experimental results, in

order of increasing machine scale. First I demonstrate good scaling on a conventional

multicore machine. I then show that enclave tasking along with many other codes

suffer from the more complex many-core machines. Finally, I compare the three

exchangers outlined in Section 2.3.4 and then demonstrate the distributed-memory

scaling up to 756 cores.

2.4.1 Multicore Shared Memory Scaling

The first results presented with enclave tasking (Figure 2.7) validate many of the

hypotheses made. It is clear that given a regular grid, the enclave idea does not

2.4. Results 30

1 2 4 8 12 24

1

2

4

8

12

24

cores

sp
ee
d
u
p

0 0+E
1 1+E
2 2+E
ideal

(a) p = 9

1 2 4 8 12 24

1

2

4

8

12

24

cores

sp
ee
d
u
p

0 0+E
1 1+E
2 2+E
ideal

(b) p = 3

Figure 2.7: A best (p = 9) and worst (p = 3) case comparison of the shared
memory speed up with (+E) and without enclave tasking on a multi-core machine
(Hamilton). The numerical labels refer to the permitted number of refinement levels
allowed. A value of zero denotes a regular grid.

justify its task management overhead. Instead, a single large parallel-for over all

cells yields better results. However, as soon as adaptivity is brought in, enclave

tasking shows its true potential. By exhibiting only a single synchronisation point

per timestep it is able to scale to many more cores than the parallel-for based

solution provided the order is sufficiently high (Figure 2.7a). It is able to keep all

cores busy, while the producer processes the AMR skeleton cells. The extraction of

regular sub-grids severely limits the concurrency of the non-enclave approach. With

higher levels of non-localised adaptivity with ∆` = 2, the ratio of skeleton cells to

enclave cells drastically increased and reduces the potential concurrency. For a high

enough order and therefore high computational load per P task, this has a reduced

impact. The difference can be seen in Figure 2.7a compared to Figure 2.7b.

2.4.2 Manycore Shared Memory Scaling

The results from the previous experiment are reran this time on a the KNL many-

core architecture with 64 cores per node. The story is largely the same, with enclave

tasking proving effective at combating the dependency challenges of adaptivity (Fig-

2.4. Results 31

1 2 4 8 16 32 64

1

2

4

8

16

32

64

cores

sp
ee
d
u
p

p3-0 p3-1 p3-2
p6-0 p6-1 p6-2
p9-0 p9-1 p9-2
ideal

(a) Parallel-for

1 2 4 8 16 32 64

1

2

4

8

16

32

64

cores

sp
ee
d
u
p

p3-0 p3-1 p3-2
p6-0 p6-1 p6-2
p9-0 p9-1 p9-2
ideal

(b) Enclaves

Figure 2.8: A comparison of the two approaches on a many-core machine for a range
of polynomial orders p ∈ {3, 6, 9} and levels of adaptivity ∆` ∈ {0, 1, 2}.

ure 2.8). Although the code benefits from two threads per 2-core tile, oversubscribing

two threads onto one core did not pay off. Again, strong scaling effects can be seen

even with low core counts unless the order is sufficiently high (p = 9).

Although the scaling looks smoother in Figure 2.8b, a closer look shows that

only for a small subset of the experiments with fairly regular grids and high order

does the code increase by a factor larger than 32. With clock speed over 50% less

compared to the multi-core architecture in the previous experiment, the use of a

many-core architecture does not pay off with either approach. While the many-

core architecture is built for high intensity workloads such as the high order P

tasks, the performance is polluted by the irregular data access of the R tasks and

dynamic adaptivity. The high bandwidth MCDRAM used in cache mode does help

somewhat with these issues, and contributes to the smoother scaling than that of

a multicore architecture. Ultimately, with codes featuring high intensity workloads

and regular data access few and far between, it is no surprise that since undertaking

these experiments Intel has chosen to discontinue their many-core architecture [42].

2.4. Results 32

AGG IMM SYM AGG
Intel

IMM
Intel

SYM
Intel

AGG
Test

IMM
Test

SYM
Test

AGG
Intel
Test

IMM
Intel
Test

SYM
Intel
Test

0

10

20

30

40

50

av
er
a
ge

ti
m
e
p
er

ti
m
es
te
p
/s

Recursion unrolling
Skeleton traversal
MPI exchange

Remaining enclave tasks
and MPI

Figure 2.9: Comparison of baseline implementation (left stacked bar) with enclave
partitioning (right stacked bar). Runtimes for the Euler benchmark with p = 6
on regular grid hosting 182,284,263 dofs on 30 ranks. AGG, IMM, SYM are three
different send/receive strategies. Intel denotes the usage of Intel’s MPI progression
thread. Test denotes manual MPI progression through Test calls.

2.4.3 MPI Data Exchange Configuration

To efficiently scale up the code onto multiple machines, I now evaluate the three

MPI data exchangers introduced in Section 2.3.4. In ExaHyPE and by extension

most DG codes, the communication between neighbouring cells along sub-domain

boundaries makes up for most of the data transferred over the network. Therefore

the negligible effects of other communication such as time-step size reductions can

be ignored here. The three exchangers are Symmetric (Sym), Immediate (Imm) and

Aggregate (Agg). To summarise, Sym exploits symmetry in the grid to issue early

matching receives for sends. Imm issues sends immediately during the traversal

that are picked up by the receiver lazily using a probe. A matching receive is then

issued. Finally, by following the conventional approach of pushing all data into one

large buffer to send off at the end of the traversal, the Agg exchanger provides a

methodological baseline [37].

The application is the same one used for the shared-memory experiments, al-

2.4. Results 33

though the grid size is increased to 81× 81× 81 to give 273 cells per MPI rank with

27 ranks. ExaHyPE introduces two management ranks which again can be ignored.

The results in Figure 2.9 compare the exchangers for p = 6. I additionally compare

enclave tasking against the parallel-for approach.

An excellent result for enclave tasks is that the communication is effectively

hidden by the processing of the asynchronous tasks. Even better, the tasks are

processed throughout the traversal. This is shown in Figure 2.9 by the small area

of white bars. The findings from the shared-memory results are repeated here: the

parallel-for approach takes much longer to complete the traversal as it must also

compute the P tasks directly.

To further improve the performance of the data exchange, two optimisations are

introduced denoted by Test and Intel in Figure 2.9. The Test optimisation ad-

ditionally polls MPI Test on pending MPI Request objects throughout the traversal.

In both methodologies MPI Test and MPI Iprobe are called repeatedly to progress

outstanding messages. The Intel optimisation signifies the use of the Intel feature

providing a helper thread to manage the asynchronous communications. It is en-

abled via the I MPI ASYNC PROGRESS environment variable. In this experiment the

ranks are pinned to a socket each (via I MPI ASYNC PROGRESS PIN), so each rank

must sacrifice a core from the socket to the progress thread. This is one of the

limitations that enclave tasking seeks to prevent.

The effect of maximising the communication window with enclave tasking means

that the different exchangers and optimisations have little impact on the results. The

communication wait time is fairly minimal already. However, the effects of the op-

timisations can be more clearly seen for the parallel-for based implementation. The

Test option has limited impact, as the Intel MPI implementation seems capable

of asynchronously transferring data with only minimal polling required to progress

messages. The trade-offs presented by the Intel optimisation are clear. By sacrific-

ing a core per rank to MPI management, the communication time may be reduced

2.4. Results 34

yet the traversal time increases.

With Imm and Agg performing well in all cases, it seems the late receiver pat-

tern with a probe to pick up the message followed by an Irecv has to be avoided

for other reasons than runtime. Although the Imm exchanger is slightly more effi-

cient than the other two in this experiment, there are other properties to consider.

For larger numbers of ranks or applications with more complex PDEs, the memory

requirements of Imm may go up dramatically. This is because of its reliance on a

late-receiver pattern and therefore potentially extensive buffering on the sender or

receiver side, with rendezvous or eager protocols used respectively. The Agg ex-

changer however adds extra memory buffers and transfer costs while providing little

benefit for enclave tasks. The parallel-for approach benefits from the aggregation as

the buffer is completed at the end of the traversal and the data is sent with minimal

latency. The network architecture may also play a role in the choice of exchanger.

This experiment was ran on the Omnipath-based Hamilton cluster, which is capable

of handling the many small messages issued by Imm and Sym. When performing

additional experiments (not shown) on an older Infiniband-based cluster, the Agg

exchanger is the better choice. In ExaHyPE the default is to use enclave tasking

in tandem with the Imm exchanger yet providing the option of the slightly less

performant yet more memory efficient Sym exchanger for larger set ups. On older

Infiniband systems the Agg exchanger should be used. These options are available

at compile time.

Now that the optimal configurations for the MPI exchange has been found, I

move onto the results from up-scaling the application onto multiple nodes of the

Hamilton cluster.

2.4.4 Hybrid MPI+TBB

In this experiment, the grid size is increased to 81×81×81 such that each rank gets

the same number of cells as in the shared-memory experiments. The refinement

2.4. Results 35

54 108 216 432 756

10−8

10−7

cores

n
or

m
al

is
ed

ti
m

e/
s

813 + ∆` = 0

813 + ∆` = 1

813 + ∆` = 2
linear trend

Figure 2.10: Normalised time (per dof per grid sweep) for p = 6 on the Ivy Bridge
cluster. The trend line denotes a linear speedup. ∆` denotes the number of added
adaptivity levels relative to a base grid of 81× 81× 81.

criterion remains the same. The results with p = 6 show that the same linear

trend of shared-memory scaling can be seen when distributing the domains across

machines (Figure 2.10). Although the trend is offset from a real linear speedup, this

is the expected cost of introducing the TBB and MPI routines. Future work will

focus on lowering the overhead introduced by these.

An important feature of these results is that the scaling remains similar for

increasing levels of mesh refinement. The performance is somewhat reduced at-

tributable to sub-optimal distribution and load balancing of cells among MPI ranks.

Codes with adaptivity is where enclave tasking is designed to shine. Although any

good scaling code has to hide the communication behind computation, this is often

achieved manually by processing those cells along sub-domains first, sending out

the data and then continuing with internal work [75]. However, if a cell along the

boundary decides to trigger a refinement, the sending out of all data will be held

back by the refinement procedure. In enclave tasking, while the producer sends out

data one by one and may refine cells dynamically, the remaining cores are kept busy

by the jobs in the background queue. The only caveat to this is that enough inte-

2.5. Shortcomings Of The Presented Approach 36

rior cells must have already been processed and therefore spawned their jobs to the

queue before any delays are incurred by complex skeleton processing. If the ratio

of enclave to skeleton cells is high, this drawback will not materialise owing to the

underlying traversal following a Peano curve [77].

2.5 Shortcomings Of The Presented Approach

The shortcomings of the approach come from the design decisions made to suit the

intended context. Although the adaptivity may be fully dynamic, the approach

performs best when the adaptivity is localised in the grid such that large enclaves

may form. If the ratio of skeleton cells to enclave cells is too high then there will

be insufficient work to be executed by the other threads in the background. This

materialises when the shared work queue empties before the end of the traversal.

Applications can tailor their refinement to avoid such random non-local patterns.

As mentioned previously, the approach does not pay off if the grid and therefore

implicitly created task graph does not change. Applications not requiring a dynamic

grid should create the task graph once. The result can be passed to a scheduler for

an optimal ordering to be used for the entire simulation. Experiments in Section 2.4

show that a standard parallel for over a grid without any refinement is more efficient.

Another design decision was to embed the R tasks into the grid traversal to

ensure no bursts of bandwidth-bound operations occur. Although this provides

a clear advantage, the approach only works if the timestep size is known or can

be estimated. Since the P tasks determine the timestep size, a sophisticated time-

stepping scheme with rollbacks must be used [12]. Such rollbacks become mandatory

for non-linear PDEs, which may unpredictably trigger refinement invalidating an

enclave.

The final shortcoming of this work is that distributed memory load balancing

and tailored task placement were considered out of scope but an area of future work.

2.6. Outlook 37

Some ideas to tackle these challenges are presented in the outlook and final chapter

of this thesis. Although both techniques would change the results quantitatively,

the outcomes remain qualitatively valid.

2.6 Outlook

Enclave tasking has proven to be an excellent fit into the design of ExaHyPE, a

ADER-DG code with matrix-free explicit timestepping. By spawning tasks during

the mesh traversal, high levels of concurrency can be ensured while performing

dynamic adaptive mesh refinement and MPI communication. No task graph has to

be set up. The approach tackles the previous implementations of limited scalability

on adaptive meshes and efficiently scales on multi-core, many-core and distributed

memory machines. By mixing compute and bandwidth bound tasks, enclave tasking

relieves pressure from the system’s critical resources.

An area for future research is deployed the regions of enclave tasks to an ac-

celerator. Sundar and Ghattas coined the term enclave tasking [71], ensuring that

enclaves on different accelerators do not have to communicate. It is well suited

to such hardware, as the data transfer cost may yet again be hidden behind the

computation. This is one of the key selling points of asynchronous computation

in HPC. On shared-memory systems, enclave tasking shows the benefit of fusing

multiple tasks (or jobs) together into batches. This would be a useful feature to be

supported natively in the task runtime. A comprehensive priority system for tasks

should also allow for more efficient scheduling of work between skeleton and enclave

cells.

On distributed memory systems, I compared three approaches to asynchronous

data exchange and show the potential of enclave tasking as a methodology overlap-

ping communication with computation. Although the immediate exchanger, firing

off data in small packets, proved most efficient on Omnipath systems, a callback

2.6. Outlook 38

mechanism for handling unexpected messages on the receiver side would greatly

reduce the memory buffering requirements. Modelling the exchanger using the one-

sided features of MPI-3 may prove effective in this scenario.

Overall, while the results showcased impressive scaling accounting for the com-

plex requirements of the ExaHyPE codebase, the implementation still requires per-

formance engineering to reduce the overheads imposed by the task and message

runtimes. A native implementation based on plain threads would eliminate the

need for the complex TBB task scheduler. Increasing the ratio of enclave to skele-

ton tasks would reduce the chance of thread starvation and increase the throughput

of tasks. Such an approach would have to more aggressively identify areas of the grid

to form enclaves. With ExaHyPE this could be done by tightening the constraints

upon the dynamic refinement capabilities of the code. For example if it is known

that dynamic refinement will not happen for a cell along a resolution boundary then

the cell may be included as part of an enclave. Likewise, the user applications could

utilise more intelligent refinement patterns that excessively refine to maximise the

size of enclaves and minimise grid refinement phases of the simulation. Such an

approach would be a trade off between increased cell counts over improved through-

put and scaling. An efficient load balancing of the tasks shared among cores and

machines is also an open topic. An idea for diffusive load balancing based on the

asynchronous teams introduced in the following chapter is discussed in Chapter 4.

Chapter 3

Asynchronous Teams

In many areas of large-scale computing, the success of a given approach is prelimi-

narily dictated by the performance. At exascale, a second success factor enters the

game: fault tolerance. Although quantifying the performance of a given solution is

usually trivial, proving a tolerance to “faults” is challenging. Faults in this thesis

refer to errors in hardware, such as outright failures or “silent” memory faults that

produce erroneous results. Barring HPC, almost every other field uses the idea of

replicated resources to ensure that maximum performance is achieved even when

faults occur [10]. For example, cloud computing, sensor networks, desktop grids and

peer-to-peer networks all base their fundamental fault tolerance capabilities upon

the idea of replicating resources. Traditionally HPC has relied on a technique called

checkpoint-restart. It requires applications to periodically save their state to an ex-

ternal storage medium that can be loaded in the case of a failure. Faults then reduce

the efficiency of an application, forcing rollbacks previously saved states. The suc-

cess of this approach is owing to three assumptions that have remained valid over

the past 40 years [28].

1. Application state can be saved and restored much quicker than a systems mean

time to interrupt (MTTI).

2. The hardware and upkeep (e.g. power) costs of supporting frequent check-

39

Chapter 3. Asynchronous Teams 40

pointing are a modest (perhaps 10–20%) compared to the systems overall

cost.

3. System faults that crash (fail-stop) the system are rare.

Work over the past decades in checkpoint recovery has largely focused on keeping

these statements valid. However, each one is challenged by exascale. Although

the mean time before failure of a single node is measured in years, combining the

large amount of nodes required to form an exascale machine reduces this value

dramatically. This is a troubling issue when the purpose of such machines is to

allow for much larger experiments to be carried out, which naturally increases the

time required to write a checkpoint. Several theoretical studies have been carried

out in the past decade that validate with current failure rates, replication will be

mandatory for an exascale application [9, 24, 25, 28, 59]. Without it, exascale

machines will spend most of the time writing and recovering from checkpoints rather

than computing “useful” results. This is achieved by modifying existing scaling

models such as Amdahl’s [1] and Gustafason’s [36] Laws to include reliability as

outlined by Zheng and Zhiling [80].

In the exascale software roadmap by Dongarra et al [18], replication is again

raised as a potential solution to the fault-tolerance challenges at exascale. Following

up on these ideas, several empirical studies presented implementations of process

replication and a thorough review is undertaken in Section 3.1.

In addition to (unpredicted) increasing hardware reliability, the issue process

replication faces to this day is that multi-million Dollar investments into exascale

computing is a difficult sell for vendors when requiring 2–3x redundant computation.

Replication based fault tolerance has since fallen out of fashion, replaced instead by

approaches that catch or mitigate faults. Run-through-stabilisation techniques pi-

oneered by the ULFM-MPI project [7, 15, 27] allow applications to use new MPI

features to continue running even when a process fails. Other alternate ideas in-

clude process migration teamed with failure prediction. Faults are predicted using

Chapter 3. Asynchronous Teams 41

Figure 3.1: The layers of a proposed software stack involving the teaMPI library.
Both ExaHyPE and Peano are optional. If the teaMPI layer is removed the appli-
cation will function identically to when replicated.

advanced detection techniques and processes are migrated before it occurs. Al-

though a large and promising research field, it is still not capable of handling all

errors and therefore still falls back onto traditional methods [11, 31–33, 67, 68, 76,

81].

The replication research proposed here will tackle, in parallel, another major

show-stopper raised in the exascale roadmap: heterogeneous system performance.

Even individual nodes may differ by up to 10% through effects such as component

binning and heat. Therefore, one of the main contributions of this project will be

how this imbalance can be reduced with replication. Clearly, for process replication

to be adopted it must also provide resilience without performance deficits.

In this chapter I present a new library, teaMPI, in which teams of MPI processes

are created transparently from the application to provide fault tolerance and detect

performance issues of team members [38]. I first define some of the key terms

that will be used throughout the chapter. Since the original idea of replicating

MPI processes is not new I carry out a review of the existing implementations in

Section 3.1. After a critical analysis of these approaches, I introduce my library and

its novel approach surrounding teams without synchronisation in Section 3.2. This

has several advantages over existing approaches such as the ability to detect faults

and performance issues of individual ranks with minimal overhead, as discussed in

Section 3.3. The chapter ends with some concluding remarks.

3.1. Review Of Existing Approaches 42

teaMPI overview

Rank replication is enabled by splitting a global pool of ranks into distinct

sub-pools called teams. Each team operates as a separate instance of the appli-

cation by exchanging messages through a new communicator. At application-

defined points, named heartbeats, the teams asynchronously exchange infor-

mation to compare the states of data and performance.

3.1 Review Of Existing Approaches

A review in the area of existing replication work investigates the challenges faced

by previous implementations and the solutions each one presents. As the number of

such projects is large and vary with intended use, the focus is on supporting process

replication in an MPI environment used by most scientific computing codes. First,

I explain the core features common to all approaches. As each share a common

goal they naturally share features. However, the approaches differ in each project

with varying degrees of success. In Section 3.1.3, I next introduce the projects and

which features they pioneered or innovated. Finally, the strengths and weaknesses

are critically evaluated to direct the contributions of this project.

3.1.1 Integration Of Replication

In all the existing work I found, the underlying replication aims to be as transpar-

ent as possible to the user’s application. This is common to many other areas of

replication, such as the RAID data storage virtualization technology. When saving

files redundantly it is not necessary for the user to know that these multiple copies

exist.

To realise this, MPI replication is implemented as a library that intercepts MPI

calls to handle the replication internally. The requirement to intercept MPI calls is

not unique to this area, therefore the MPI standard provides a dedicated “profiling”

3.1. Review Of Existing Approaches 43

interface: PMPI. The profiling layer of MPI is designed such that libraries can

intercept the calls to the MPI library and execute arbitrary code instead. Usually

the interceptor forwards the MPI invocation to preserve the function’s semantics.

The MPI standard requires that the core functionality be provided by “name shift”

functions prefixed by an upper-case P. Each function is declared twice. For example,

MPI Send is also declared as PMPI Send.

MPI library implementers have two approaches given by the standard to provide

this interface. If the compiler and linker support weak symbols (as most mod-

ern systems do), then the original MPI functions can be weakly defined. At link

time the symbols are overridden if another library provides a “strong” definition for

them. When an application calls MPI Send (or any other function declared in the

libraries’ header) the definition is provided by the library. The original functionality

of MPI Send is then available via the PMPI Send interface.

The other solution relies on the C macro preprocessor, and therefore the library

cannot be added at link time. I do not outline this usage here as it is not required

for modern systems. Interested readers are directed towards Section 14.2 (Profiling

Interface) of the MPI Standard [55].

For replication, this allows libraries to operate completely transparently. If an

application requests the number of ranks available to it through MPI Comm size, the

library can simply return the value given by PMPI Comm size and divide by the level

of replication.

One of the main disadvantages of the profiling layer is that it can only be used

by a single library at a time. Only one may intercept the MPI calls by overriding the

weak symbols. A workaround is provided by the PNMPI project [69, 70], which al-

lows multiple applications to use the profiling layer concurrently. Another potential

downfall for library developers is that with hundreds of MPI functions, missing out

any will result in application bugs. Thankfully, it is possible to generate the interface

for a library automatically using the wrap script developed by Gamblin [34].

3.1. Review Of Existing Approaches 44

(a) Parallel (b) Mirror

Figure 3.2: A comparison of the parallel and mirror consistency schemes. There a
two ranks, A and B, with a replication factor of two. Rank A sends a message to
rank B. The mirror mode must ensure that the ordering of messages is identical for
wildcard receives. Parallel mode must additionally acknowledge that the messages
were received.

3.1.2 MPI Consistency

For any area of replication, keeping the state of replicas consistent is an important

topic. Specifically for MPI, the state refers to the result of calculations and the

data sent between ranks. It must be identical among replicas. Existing approaches

adopt ideas from the wider field of fault tolerance, using active or passive replication.

Active replication is the scheme used by most, where messages are sent to all replicas.

This is in contrast to passive replication where a master replica is chosen that then

broadcasts results to slave replicas.

Two main protocols exist to ensure replicas remain consistent: mirror and par-

allel (Figure 3.2).

Definition 3.1: Mirror Consistency Protocol

Each message is duplicated to all replicas redundantly. For each message r2

are sent in total, where r is replication factor.

Definition 3.2: Parallel Consistency Protocol

Each message is only sent to the corresponding replica. For each message r

are sent in total, where r is replication factor.

3.1. Review Of Existing Approaches 45

The mirror protocol requires ranks to send/receive from all of its replicas, whereas

in the parallel mode ranks only send/receive with their respective replica pair. Mir-

ror sends m · r2 + c messages, where m is the number of original messages, r is

the replication factor and c is the small messages sent to ensure consistency among

replicas. The parallel protocol is more bandwidth efficient, sending only m · r + c

messages. However, the parallel protocol has to send many more messages than the

mirror protocol to ensure consistency. This leads to a larger value of c.

The mirror protocol only has to send extra small messages to ensure that MPI

behaves identically across replicas. Certain features of the MPI standard are allowed

to behave non-deterministically. Non-deterministic message passing means that a

message may not be sent the same way in two different runs of the application.

This subset of MPI functions raise issues with ensuring consistency among repli-

cas, as executing the same code on each replica may return different results. The

first example of this is the MPI ANY SOURCE parameter in receive operations, that

could allow replicas to receive messages in differing orders. Other features which ex-

hibit similar properties include: MPI Wtime, MPI Probe, and MPI Test. The replicas

communicate to ensure that the operation occurs identically.

The parallel consistency mode must also ensure that messages are sent. This

requires introducing many small messages into the system testing for completed

operations, but reduces the strain on the network bandwidth.

Micro-benchmarks that are either bandwidth sensitive or message rate sensitive

stress both the mirror and parallel consistency schemes respectively. The mirror

protocol suffers from large message sizes due to bandwidth constraints whereas the

parallel protocol suffers from small message sizes sent at high rates where latency

becomes a bottleneck [29]. When tested with multiple real world applications, it

was clear that most exhibit properties of the former, with larger messages sent less

often. Therefore the overhead of the mirror protocol is much larger than the parallel

protocol for many real world applications.

3.1. Review Of Existing Approaches 46

Passive replication is less popular for MPI, used by only a single existing imple-

mentation. This is because the result of operations must be broadcast to the cloned

slaves. Although it allows a library to easily vary the number of replicas per rank,

the increased latency is too greater price to pay.

3.1.3 Previous Implementations

In total I found five existing implementations matching my criteria, each taking a

different approach to provide replication. Two of these projects, rMPI and MR-

MPI, merged to form redMPI. None of the existing approaches are under active

development, or to the best of my knowledge, still supported.

rMPI

The rMPI project was the first empirical study on replicated MPI processes and

operates using the PMPI [29]. In theory this should allow rMPI to work regardless

of MPI version. However, the prototype includes a number of MPICH specific

function calls to implement collective operations in a point to point manner and as

a result is tied to a fixed version of MPICH. This is likely a result of being first out

of the gate, as a number of competing implementations were also released following

rMPI in 2011. After reiterating the need for examining replication as a solution for

resilience, the authors dive into the practical details of replicating MPI process by

introducing the two supported active consistency modes: mirror and parallel.

The library differentiates between master and replica messages by flipping the

higher order bit of the message tag. The implementation is therefore limited to

only duplex replication. It is also unable to support the simultaneous use of the

MPI ANY TAG and MPI ANY SOURCE parameters. Finally, it relies on the (commonly

valid) assumption that the underlying MPI implementation supports tags larger

than the 215 required by the standard.

3.1. Review Of Existing Approaches 47

MR-MPI

The modular redundancy MPI project (MR-MPI) from Oak Ridge National Lab-

oratory [26] can be seen as a polish of the rMPI prototype, freeing itself from a

number of its predecessors limitations. Although MR-MPI only supports the mirror

protocol, it is MPI implementation independent and supports arbitrary replication,

both fixed and partial. With partial redundancy, some ranks may have more repli-

cas than others. MR-MPI also natively supports collective operations by using the

MPI Reduce local function. Ultimately, performance results from their work largely

mirror the findings from the rMPI project.

redMPI

The redundant MPI (redMPI) project is a collaboration merging the two previous

libraries: rMPI and MR-MPI [8, 23].

Although work on rMPI and MR-MPI carried out performance testing and pro-

vided some initial results, there were many unanswered questions from the theoreti-

cal studies to tackle. First, the authors define a mathematical model to demonstrate

the effectiveness of replication combined with checkpoint-restart over the pure check-

pointing solution [23]. MR-MPI did include partial redundancy, so redMPI did too.

However, after an investigation it was found to not be an effective solution for fault

tolerance. The second focussed on error detection and correction [30]. In this paper

the authors define a new approach where replicas only send an envelope containing

a hash of the message content rather than the actual message. If a replication factor

of two is used, the error can be detected if the two hashes are different. A replica-

tion factor of three allows for error correction as the correct result can be decided

by a simple voting mechanism. This assumes errors are rare and therefore only one

replica will be at fault.

3.1. Review Of Existing Approaches 48

EchoMPI

The EchoMPI project [16] was also released in 2011, but adopted a consistency

scheme from fault tolerance traditionally known as passive replication in other fields.

It is another library that proves the versatility of the PMPI, providing a library that

is independent of the MPI implementation used. Passive replication implies that the

state from one replica is transferred to all others. The library introduces the concept

of “master ranks”, which broadcast the result of MPI operations to “clone ranks”.

This allows for arbitrary yet simple replication of individual ranks, but introduces

much larger latency overheads. Although a message only has to be sent once among

master ranks, it must then be broadcast to the clones. Therefore limited bandwidth

is saved at the expense of much high latency. The clones still do all computation,

as the necessary data is received from the respective masters. To ensure complete

coverage of the MPI library, the EchoMPI interface is generated using wrap [34].

The authors present future use cases for this style of replication such as parallelising

heavyweight profiling tools, investigated in a follow-up paper [61].

Send Determinism Replication (SDR-MPI)

The SDR-MPI project developed at INRIA differs to those discussed previously

in that it trades transparency and portability for simplicity and performance [51].

SDR-MPI modifies the MPI implementation, OpenMPI, to provide the consistency

among replicas. It then enforces an ordering of messages at a lower level which

requires marking the start and end of each communication between ranks. Although

it increases the efficiency of the mirror protocol, the requirement of a patched MPI

library is not worth the marginal gains.

The authors then later extend this implementation to allow replicas to share tasks

among themselves with custom constructs [60]. Applications create tasks through

an API and define sections in which they are executed. Within the section, tasks

are shared among replicas such that computation is not performed redundantly. At

3.1. Review Of Existing Approaches 49

Table 3.1: Feature comparison of existing rank replication approaches.

rMPI MR-MPI RedMPI echoMPI SDR-MPI

Fixed replication 3 3 3 3 3

Partial replication 3 3 3

PMPI 3 3 3 3

Error correction 3 3

Work-sharing 3

Overhead (1–5) 3/4 3/4 3/4 5 2

the end of each section the replicas coordinate their results.

Three issues exist with the SDR-MPI approach. First, as soon as the replicas no

longer carry out computation redundancy then all benefits of replication-based fault

tolerance are eliminated. Second, the work is split statically and does not take into

account heterogeneity among tasks. Finally, it requires applications to be rewritten

in a task language using their API and a custom MPI library. This imposes a lot

on the application developers.

3.1.4 The Takeaways From Existing Approaches

A summary of the features for each library is presented in Table 3.1. The first

project to benefit from existing work was the redMPI project, which analysed the

strengths and weaknesses of its predecessors (rMPI and MR-MPI), forming a much

improved library with a superset of useful features.

The first major learning point from the literature is that a “mirror mode” ap-

proach is problematic in a high performance environment because of the extra band-

width overhead it incurs. Even though the “parallel mode” is a much smarter ap-

proach, the existing implementations add too much latency overhead by excessively

communicating among replicas. In the following section I introduce a novel idea to

drastically reduce the impact of this.

The second takeaway, specifically from the redMPI project, is that partial repli-

cation is not likely to be a useful feature as the authors discuss in [23]. As the

3.2. The teaMPI Library 50

location of errors is usually unpredictable, it neither helps with resilience nor per-

formance and only adds complexity. Therefore we do not build this feature into the

library.

From the echoMPI library it is clear to see that an enforced master-clone topol-

ogy with traditional passive replication is also not a suitable candidate in a high

performance environment. The requirement to broadcast every result to clones and

have an MPI communicator per rank is much too heavyweight. It is conservative

in bandwidth overhead but adds large latencies per message. Although the bene-

fits of this approach is that fine-grained replication can be achieved, as previously

noted this is unlikely to be required. Clearly, the passive replication approach from

classical fault tolerance is not a good fit for high performance applications. Instead

an active scheme should be adopted where the replicas are responsible for their

consistency, effectively resembling the parallel replication protocol.

The SDR-MPI project shows the potential of work-sharing among replicas, but

the extensive changes to user code and the underlying MPI library nullify any po-

tential use cases. In this work, I show that it is possible to get the same increase

in performance with a PMPI wrapper that requires much less modification of user

code.

3.2 The teaMPI Library

In this section I discuss the architecture and some key design decisions surrounding

the teaMPI library. The implementation builds upon the lessons learned from study-

ing the previous projects in Section 3.1: the replication should be as lightweight and

transparent as possible. To deliver the replication, a C++ library is implemented

in the MPI profiling layer (PMPI) similar to the existing implementations in the

literature and is detailed in Section 3.1.1. In contrast, the SDR-MPI project re-

quires applications to change large amounts of code to enable replication. Using the

3.2. The teaMPI Library 51

PMPI layer provides two key advantages: (i) there is no requirement to modify the

existing application code and (ii) allows the library to operate independently from

the underlying MPI library implementation.

Algorithm 3.1 Splitting the MPI COMM WORLD communicator into teams.

1 // Duplicate MPI_COMM_WORLD first following recommended practise

2 PMPI_Comm_dup(MPI_COMM_WORLD, &TMPI_COMM_DUP);

3 PMPI_Comm_size(TMPI_COMM_DUP, &world_size);

4 PMPI_Comm_rank(TMPI_COMM_DUP, &world_rank);

5 team_size = world_size / number_of_teams;

6 // Calculate which team this rank belongs to

7 int team = world_rank / team_size;

8 // Split TMPI_COMM_DUP into number_of_teams sub-communicators

9 PMPI_Comm_split(TMPI_COMM_DUP, team, world_rank, &TMPI_COMM_TEAM);

10 // New rank and size returned to the application when called

11 PMPI_Comm_rank(TMPI_COMM_TEAM, &team_rank);

12 PMPI_Comm_size(TMPI_COMM_TEAM, &team_size);

The main idea of building the teams is to split a pool of ranks into teams of

replicated ranks. The application has no knowledge that these replicas exist. The

ranks are mapped into t equal sized teams of contiguous processes, lines 7–9 of

Algorithm 3.1. This default mapping can easily be modified to any one-to-many

function. To separate and de-synchronise replicas, the original MPI communicator

MPI COMM WORLD is first duplicated for preservation, as recommended by the MPI

standard for libraries, then split into t sub-communicators. Each team then has ac-

cess to a separate communicator, TMPI COMM TEAM, for messages that would usually

get sent via MPI COMM WORLD. This means that identical messages sent by different

teams are not subject to the strict message ordering imposed by MPI, where mes-

sages of the same tag and communicator cannot overtake. The code snippet for

splitting the communicator into teams is given in Algorithm 3.1.

An advantage of splitting the original communicator is that the mapping be-

tween real and logical rank identifier is handled automatically the MPI library.

3.2. The teaMPI Library 52

Algorithm 3.2 The MPI Recv function in the teaMPI library.

1 std::map<MPI_Comm, MPI_Comm> commMap;

2 int MPI_Recv(void *buf, int count, MPI_Datatype datatype,

3 int source, int tag, MPI_Comm comm, MPI_Status *status)

4 {

5 // Map communicator, e.g. MPI_COMM_WORLD -> TMPI_COMM_TEAM

6 comm = commMap[comm];

7 // Perform receive with correct replica of source rank

8 // No synchronising consistency checks here!

9 return PMPI_Recv(buf, count, datatype, source, tag, comm, status);

10 }

As a consequence, this greatly reduces code complexity as many of the original

MPI functions do not require large modifications. For all communication based

functions the only change required is to map the provided comm parameter to one

split for use in teams. If MPI COMM WORLD is used, then it is a simple mapping

to TMPI COMM TEAM. However, if the application makes use of other communicators

by splitting MPI COMM WORLD then TMPI COMM TEAM must also be split in the same

manner. When an application splits the MPI COMM WORLD communicator, the li-

brary splits the TMPI COMM TEAM communicator and stores the updated mapping in

a std::map<MPI Comm, MPI Comm>. The MPI Recv wrapper function is given in Al-

gorithm 3.2, where the only change is the communicator mapping. This also retains

the correct values in the MPI Status object. For example, the status→MPI SOURCE

field will automatically return the team rank of the source, not the global one. Other

implementations such as rMPI instead are forced to make large changes for many

functions. In rMPI each collective operation is replaced with a reduced efficiency

point-to-point counterpart. The MPI SOURCE field of MPI Status objects must also

be manually altered. Comparisons to other approaches cannot be made as each one

does not publish their lower-level implementation details or make their code open

source.

3.2. The teaMPI Library 53

3.2.1 The Heartbeat Consistency Model

One of the key differences with the teaMPI library compared to the approaches

detailed in Section 3.1 is in the way it ensures consistency among replicas. In all

the existing libraries I investigated, each one enforces a strong consistency model

(Definition 3.3).

Definition 3.3: Strong Consistency

The state of replicas is identical at every MPI function call.

This causes multiple issues, such as making sure that replicated non-blocking

messages complete identically and that messages are received with the same source/-

tag where wildcards are used. The paper introducing rMPI is an excellent collection

of the issues faced by this model [29], also discussed in Section 3.1.3. Additionally,

they implement the mirror mode as it more naturally supports fault tolerance (Def-

inition 3.1, Figure 3.2b). However, the quadratic relationship between the messages

and replication factor means that the bandwidth required is too high for the major-

ity of codes. Network bandwidth is often a critical resource for HPC applications.

Therefore I implement the parallel scheme, which only increases the bandwidth di-

rectly proportional to the number of teams. The rMPI project reported that this

introduced many small messages into the MPI subsystem to ensure the other replica

had sent its message. For MPI ANY * wildcards it also induces excessive synchroni-

sation as the replicas must ensure each receive from the same source/tag.

Weakening The Consistency Model

Definition 3.4: Weak Consistency

The state of replicas is identical only at application defined points (heart-

beats).

One of the core contributions of this work is that I weaken the consistency

model (Definition 3.4). Most applications do not need to ensure a consistent state

3.2. The teaMPI Library 54

among replicas on every MPI function call. Provided that the code uses MPI in

a deterministic way, then linking against the teaMPI library will not lead to a

change in the runtime behaviour. If the code uses non deterministic features such

as MPI ANY SOURCE, then this statement may not hold. For example, if a receive

is posted with a MPI ANY SOURCE source parameter the following may happen: one

replica receives a message from rank x while another replica receives a message

from rank y first. However, I assume that by the end of the iterations this will

have no effect on the overall application consistency. The outcome is eventually

deterministic.

Definition 3.5: Heartbeat

An asynchronous operation carrying data to compare the states of replicas.

Teams operate fully asynchronously, such that one may advance much further

through the execution than others. Applications are only required to check-in via a

“heartbeat” every so often, usually per iteration (Definition 3.5). As a “heartbeat”

operation is performed fully asynchronously, it does not hold faster teams back. To

keep integration cost of the library as minimal as possible for the user, this heartbeat

can be inserted with a single line of code and still allows the code to compile and

run as normal without linking to the teaMPI library.

Heartbeat Implementation

The heartbeat is realised via “hijacking” the MPI Sendrecv function call such that

with when passed MPI COMM SELF as a communicator parameter it operates as the

heartbeat (Figure 3.3). teaMPI can differentiate between heartbeats and calls

with the original semantics. Since a MPI Sendrecv with the host rank (i.e. using

MPI COMM SELF) is nonsensical, this is a safe choice. If for some reason an application

does require this functionality, MPI COMM WORLD can safely be used. This function

accepts many arguments with some perfect to leverage for teaMPI. The implemen-

tation of this heartbeat will be covered in the remainder of this section. However,

3.2. The teaMPI Library 55

Algorithm 3.3 The MPI Sendrecv function in teaMPI.

1 int MPI_Sendrecv(const void *sendbuf, int sendcount,

2 MPI_Datatype sendtype, int dest, int sendtag,

3 void *recvbuf, int recvcount, MPI_Datatype recvtype,

4 int source, int recvtag, MPI_Comm comm, MPI_Status *status)

5 {

6 int err = 0;

7 if (comm == MPI_COMM_SELF) {

8 if (sendcount == 0) { // Consistency buffer not provided

9 err |= heartbeat(sendtag);

10 } else { // Consistency buffer provided

11 err |= heartbeat(sendtag, sendbuf, sendcount, sendtype);

12 }

13 } else {

14 // Perform actual SendRecv (unmodified parameters omitted)

15 err |= PMPI_Sendrecv(..., mapComm(comm),status);

16 mapStatus(status);

17 }

18 return err;

19 }

3.2. The teaMPI Library 56

for now it is enough to know that the heartbeat is fully asynchronous (a regu-

lar MPI Sendrecv operation is still blocking) and consumes very little bandwidth.

First, I outline two initial uses of the heartbeat consistency scheme, the detection

of (i) slow or (ii) faulty ranks. Then I show that the overhead of such a consistency

scheme is minimal in most cases.

Measuring Performance Homogeneity

Algorithm 3.4 Compare progress of replicas

1: procedure compareProgress
2: for replica of this rank do
3: Isend current time to replica
4: Post Irecv for time from replica

5: MPI Testsome on pending requests check and progress received times
6: Process times which have been received

The first intended use of the heartbeat consistency scheme is to detect slow

ranks within a team. In Section 3.3, I show that this can pollute the performance of

applications. Such slow ranks can be considered close to broken where a slow-down is

a precursor to a failure. In general this means teaMPI must detect the performance

variations among replicas. By comparing the heartbeat times among replicas it is

then possible to detect if one is falling behind the others. This could be due to any

number of factors such as variations in processor binning, heat levels or network

traffic. Other replication libraries have no simple way to measure this because of

the strict consistency protocols, where the states of replicas are synchronised at

each MPI function call. Therefore it would have to be done on a much finer level

at each function call which would introduce many small messages into the network

sub-system. For example, measure which team reaches an MPI Wait call first. This

approach however will struggle to detect long running issues in ranks and will be

sensitive to small variations in the individual runtime behaviour of ranks such as

operating system interference. It also introduces extremely tight coupling between

teams.

3.2. The teaMPI Library 57

With teaMPI, the heartbeats are piggy-backed to carry timestamps. As men-

tioned previously, most scientific codes are iteration or loop based and therefore

inserting the regular MPI Sendrecv commands is just a single line addition in the

loop body. Algorithm 3.4 outlines the steps required to compare the progress of

replicas asynchronously using MPI non-blocking communication. It is imperative

that synchronisation is avoided among ranks, in this case specifically replicas, so

the library supports two modes of asynchronous communication. The first is used

when the underlying applications supports the eager send protocol. Eager sends are

where the data to be sent is transferred to a temporary buffer on the receiver until

the matching receive is posted. It is then copied into the supplied buffer. Owing to

memory and copy overhead on the receiver side, eager sends are only supported for

small messages. The default threshold for the Intel MPI library is 256kB, for which

the heartbeat messages easily fall under. If the receive is posted before the send

then the MPI Testsome operations ensure that the previously posted receives get

completed. If eager sends are not supported by the MPI library or disabled by the

user for their application, then these MPI Testsome operations become important

for making sure that heartbeat communication completes. This is known as manual

progression of MPI messages [39], and plays an important role in the contributions

outlined in Chapter 2.

How to process the received times is flexible. The simplest way is to compare the

latest time and if one replica exceeds a set tolerance then it is marked as “slow”. At

this point the faster team could checkpoint it’s state at the next heartbeat. Then the

single slow rank of team can be swapped out for another. Making a decision based

upon a single time interval is likely not a wise idea with the significant overhead of

swapping processes. Instead, more advanced statistical techniques may be employed

on the entire history of replica timings. For example, exponential smoothing is a

commonly used technique used on time series data where older data is considered

with less importance. If a process becomes temporarily slow but manages to recover

3.2. The teaMPI Library 58

then the old “slow” times will be outweighed by the recent improved performance.

Another approach could be to detect if a process frequently suffers from small slow-

downs but then recovers. Such minor slow-downs will not impact the runtime if

taken on their own but added together but overall could drastically reduce progress

for a team. Clearly, a range of models should be investigated and is a future research

topic.

When first testing the single heartbeat idea I discovered a large drawback in its

ability to detect a slow rank. Although many scientific codes are iteration based,

there is usually some synchronisation per iteration such as a neighbour communica-

tion step or a global collective. The frequency of the synchronisation points depend

on the parallelisation properties of the algorithm. Coarse-grained algorithms are

able to go longer before synchronising ranks. The consequences for the heartbeat

approach is that if one rank is slow, it will also hold back the other members of

the same team while they wait for that rank to complete the iteration. With a

single heartbeat, it is then impossible to know the offending slow rank, as the whole

team will report a slow heartbeat. Therefore I propose a more effective technique,

inserting two heartbeats into the application code. This time, care must be taken

to ensure the two heartbeats are in suitable locations. There must be no synchroni-

sation with other ranks between heartbeat pairs. Although this seems like a large

constraint at first, most applications aim to be as coarse-grained as possible. In

Section 3.3, I present a trivial application of this idea and then show how it can also

be introduced into a highly complex application such as ExaHyPE.

To switch between the single and dual heartbeat modes I use the sendtag pa-

rameter of the MPI Sendrecv function. A positive tag value starts a heartbeat and a

negative tag value ends it. Multiple heartbeats allow teaMPI to measure the times

for various sections of code can be introduced with unique tag values. This is a

flexible approach. A tag value of zero signals to the library that the single heartbeat

algorithm should be used. In the library the data is stored in a map data struc-

3.2. The teaMPI Library 59

Figure 3.3: An illustration of the heartbeat process with two teams for performance
consistency data. The first team is faster than the second. When team 1 triggers
the heartbeat for tag 2 of h1, the data is sent back to team 0 which had already
posted the receive. Green indicates a completed communication. Red indicates a
pending communication.

ture. A doubly-linked list (std::list) of heartbeat times and MPI Request objects

(for MPI message progression) are stored per replica, per tag value. I illustrate an

example with two teams in Figure 3.3, where team 0 is faster than team 1. Team

1 finally triggers the heartbeat operation h1 with tag 2. This means the data can

be sent back to team 0 where the receive had already been posted. Team 0 has

advanced further through the execution and has already triggered both heartbeats

for h2 with a non-blocking send. However, the data will not be picked up by team

1 until it has also reached that point and triggered the receives.

3.2.2 Ensuring Data Consistency

Algorithm 3.5 Compare consistency data between ranks for fault tolerance

1: procedure compareConsistency
2: compareProgress(Algorithm 3.4)
3: Hash the consistency data with std::hash

4: for each other team do
5: Isend hash data to rank in corresponding team
6: Post Irecv for hash data from rank in corresponding team

7: MPI Testsome to check and progress received hashes
8: if hashes are not equivalent then
9: Start the recovery process

3.2. The teaMPI Library 60

I now detail Algorithm 3.5 which ensures data consistency between replicas.

This is important for faults that do not cause a rank to stop (fail-stop) but instead

cause it to make incorrect computations. Memory faults are one cause for this. The

concept is similar to comparing the times among replicas. The only difference is that

the user must supply a data buffer via the *sendbuf parameter of MPI Sendrecv.

This could be the new solution of an iteration or any characteristic value. Data is

then hashed (using std::hash) compared among replicas. I neglect the theoretical

plausibility of hash collisions in this proof-of-concept. Tags can again be used to

discern among different buffer checks alike comparing the times for multiple code

sections among replicas. In fact the implementation is almost identical. The values

of h in Figure 3.3 now also contain the hashes in addition to the heartbeat times.

If a fault is detected then what happens next depends on how many teams are

used. For only two teams then there is no way to correct the error, as we do not

know which team is at fault. The best solution here is to roll-back both teams if

possible and recompute the data. If one team gets a different result from before then

it can be identified as faulty team. If three teams are used, a voting mechanism can

tell which team needs to be replaced. It is not usually possible to identify a single

rank of a team at fault as the calculation is for most codes contributed by other

ranks.

This approach is much more coarse-grained than existing approaches, which

check the consistency of all MPI data in every function call. However, I claim that

this is excessive, unnecessary and incurs too much overhead. As long as the solution

or calculation is consistent per iteration then this implies that all the MPI data in

between was also correct. The advantages of such an assumption far outweigh any

potential edge-case scenarios. I now discuss how these benefit the overhead of the

consistency scheme.

3.2. The teaMPI Library 61

Figure 3.4: An annotated overview of a teaMPI-enabled application with respect to
a common 2:1 fat tree network topology. The circles represent ranks, in the form
mapped / original rank. The squares represent switches at level Slevel, where S0
represents the root switch.

Overhead Of The Consistency Scheme

Importantly, the teams should be placed as far apart as possible within a cluster.

This is the motivation behind the mapping of ranks to team ranks, which by default

maps teams to contiguous portion of ranks. The ranks must also be continuously

distributed on the native hardware, but this cannot be controlled by teaMPI. If

the user wishes the teams to be even further apart, pinning of the ranks can be

performed easily by most MPI libraries and batch schedulers.

This logical topology provides two advantages: (i) increased resiliency against

faults and (ii) eliminates the extra strain on the network hardware created by repli-

cation. The resiliency is increased as it is rare for a fault to spread from a single

node, or a clustered set of nodes. Issues predominantly effect either a single node’s

hardware (e.g. DRAM failure) or hardware supplying a contained set of nodes (e.g.

power or network switch failure) [5, 17].

One of the main issues of replication other than the increased hardware demands

is that it is assumed that any replication will also have a negative impact on the

performance. However, I claim that this not true under a few assumptions.

3.2. The teaMPI Library 62

Table 3.2: Feature comparison of existing rank replication approaches including
teaMPI.

RedMPI echoMPI SDR-MPI teaMPI

Fixed replication 3 3 3 3

Partial replication 3 3

Platform independent (PMPI) 3 3 3

Error correction 3 3 3

Performance analysis 3

Work-sharing 3

Overhead (1–5) 3/4 5 2 1

For most common network topologies, the intra-team (original application) mes-

sages do not overlap. This holds certainly for any tree-based topologies, with a 2:1

fat-tree example given in Figure 3.4. The application is launched on 8 nodes/ranks,

and teaMPI creates 2 teams of 4 ranks. Team 0 occupies nodes 0 to 3 and team 1

occupies nodes 4 to 7. Therefore, the bandwidth-heavy application-based network

traffic is contained up to switches at level 1 (S1). Only heartbeat messages cross

the top-most switch S0 and overlap between the two teams. These are small, asyn-

chronous, non-urgent messages issued once per application iteration (infrequently).

The concept can easily be applied to other network topologies too. Provided that

the underlying MPI library is also of good quality, the extra processes should also

have no impact as all application communication is done via a per-team communi-

cator. Heartbeat messages sent in a dedicated communicator are tiny and therefore

non-critical.

In summary, the overhead of the effective consistency scheme here is equal to the

overhead of the heartbeat messages, essentially negligible. Variations on the fat tree

topology are used everywhere in HPC clusters, from local machines like Hamilton

at Durham University to Summit, the world’s largest supercomputer to date [56].

They have provably efficient communication for general purpose use [52].

3.3. Results 63

3.2.3 Summary Of Capabilities

With an understanding of the underlying library architecture, I summarise the ca-

pabilities based upon the number of teams and heartbeats per iteration:

1. Two teams with a single heartbeat can identify a slow team and provide

error detection.

2. Two teams with dual heartbeats can identify a slow rank and provide error

detection.

3. Three or more teams with a single heartbeat can identify a slow team and

provide error correction via check-pointing.

4. Three or more teams with dual heartbeats can identify a slow rank and

provide error correction via check-pointing.

In reality the most effective configuration is the second, as the overhead of a dual

heartbeat is negligible in comparison to the benefits. Although using three or more

ranks does support error correction, the multiplication of resource usage might not

justify its gain. It is highly likely that if a error is simply detected, then the applica-

tion will just be started on a different set of nodes, with the offending nodes replaced.

Check-pointing is an expensive operation in both time and resources. I summarise

the other capabilities in comparison to the previous approaches from Section 3.1 in

Table 3.2. teaMPI omits partial replication as it has been shown to offer limited use

for resiliency by James et al [23]. Instead, I offer a library that provides the highest

performance, while retaining advanced resiliency and consistency features; all with

minimal modification to existing application code.

3.3 Results

In this section I showcase the capabilities of the teaMPI library with experiments

based upon three increasingly complex applications:

3.3. Results 64

1. A classical “ping-pong” based acceptance test to investigate the basic band-

width and latency overhead of teaMPI.

2. A mini application (miniapp) designed to mimic the behaviour of conventional

scientific computing applications.

3. A complex ExaHyPE application to show how teaMPI may be used in a real-

world setting.

In all three cases, the only changes required were to link against teaMPI (no changes

at compile time) and to insert one or two heartbeats with the MPI Sendrecv com-

mand as described in Section 3.2. The number of teams is dictated by the TMPI TEAMS

environment variable, read when when the application calls MPI Init. The appli-

cations are then launched using the chosen MPI library’s command. If the usual

mpiexec command is used then the application is started using mpiexec -np x*t

where x is the ranks per team and t is the number of teams. For example, if an

application wishes to use three teams of ten ranks then the command would be

mpiexec -np 30.

The experiments were carried out on the Hamilton 7 cluster at Durham Univer-

sity. Each node consists of 2 x Intel Xeon E5-2659 v4 (Broadwell) 12 core, 2.2 GHz

processors. They also have 64 GB of TruDDR4 memory and are connected via an

Intel Omnipath 100Gb interconnect in a 2:1 non-blocking fat tree topology.

3.3.1 Ping Pong Test

The first experiment to carry out is a simple test to study how much performance

is lost by replicating ranks. Previous examples from the literature suggest that it

can have a large effect depending on the technique used. With a complete lack of

synchronisation among ranks in teaMPI, it is reasonable to expect that the overhead

will be negligible. The benchmark chosen is the same as the one used by [26, 29]

which measures the bandwidth and latency between ranks in a classic “ping pong”

3.3. Results 65

Algorithm 3.6 Ping Pong acceptance test

1: procedure PingPongTest
2: for t→ tmax do
3: Call MPI Sendrecv heartbeat
4: for nmin → nmax do
5: Start timer
6: for i→ imax do
7: if rank == 0 then
8: Send message of size n
9: Receive message of size n

10: else if rank == 1 then
11: Receive message of size n
12: Send message of size n

13: Stop timer
14: new bandwidth ← 2 · imax/timer
15: if new bandwidth > bandwidth[n] then
16: bandwidth[n] ← new bandwidth

experiment [35]. The benchmark exchanges increasingly large messages between two

ranks starting with only a message envelope as the payload (Algorithm 3.6). As the

message size increases, the runtime is dictated by the bandwidth rather than the

latency. If teaMPI has any effect on the message passing performance of a rank then

it will be shown by an increase in the runtime. Although it is clear that reduced

bandwidth will be noticed, a decrease in the latency will also be shown as 104

messages are sent back and forth in each trial. 25 trials are performed per message

size. The maximum bandwidth over all trials is taken. In this experiment only 2

ranks are required per team, where each team is placed on a separate node of the

cluster. This simulates the topology in Figure 3.4 where intra-team communication

does not overlap. The tmi fabric is used to ensure ranks do not communicate via

the specialised shared memory fabric.

The results in Figure 3.5a confirm no performance drop when splitting the orig-

inal communicator and introducing more teams. Furthermore, the results in Fig-

ure 3.5b reinforce the statement that the performance of individual nodes can vary

by a large amount. Take for example the experiment with two teams. The first team

records a 5% higher bandwidth than the baseline of pure MPI for 104 < m < 105,

3.3. Results 66

101 102 103 104 105 106

Message Size (Bytes)

107

108

109

1010

B
a
n
d
w

id
th

 (
B

y
te

s/
se

co
n
d
)

Baseline

Team 1 / 2

Team 2 / 2

Team 1 / 3

Team 2 / 3

Team 3 / 3

(a) Bandwidth per team

101 102 103 104 105 106

Message Size (Bytes)

10

5

0

5

10

%
 D

if
fe

re
n
ce

Fr
o
m

 B
a
se

lin
e
 B

a
n
d
w

id
th

Team 1 / 2

Team 2 / 2

Team 1 / 3

Team 2 / 3

Team 3 / 3

(b) Difference compared to baseline

Figure 3.5: A typical “ping-pong” stress test of the implementation where the band-
width between two ranks is measured with increasing message size.

where m is the message size in bytes. The second team however records 5% lower

bandwidth for the same message sizes. The main takeaway from this experiment

is that it is valid to claim that teaMPI is a near zero-overhead solution to MPI

rank replication, something the previous implementations are not able to. This is

through the vast reduction in synchronisation between replicas. I now move onto

assessing the capabilities of the heartbeat functionality.

3.3.2 A Typical Scientific Computing Miniapp

Algorithm 3.7 Miniapp

1: procedure miniapp
2: for t = tmin → tmax do
3: MPI Barrier(MPI COMM WORLD)

4: First heartbeat: MPI Sendrecv(..., 1, ..., MPI COMM SELF)

5: for i = imin → imax do
6: sin(1.0/3.0)

7: Second heartbeat: MPI Sendrecv(..., -1, ..., MPI COMM SELF)

8: MPI Barrier(MPI COMM WORLD)

The next experiment demonstrates the capabilities of the teaMPI library with re-

gards to detecting slow teams or ranks. To do so a simple mini application (miniapp)

was designed that only performs arbitrary flops in “synchronised” iterations. The

simple algorithm is given in Algorithm 3.7. If only one heartbeat is used then the

3.3. Results 67

second MPI Sendrecv is omitted (although it is irrelevant which is removed). This

application is useful as it can operate with arbitrary numbers of ranks. It is an ex-

cellent proof-of-concept before moving onto real applications in Section 3.3.3. Since

it can be safely assumed that the overhead introduced by teaMPI is near-zero, this

experiment does not actually perform any communication but instead tests the via-

bility of using heartbeats to detect slow ranks or teams. However, many applications

do model this behaviour of iterations with communication followed by computation.

A rank could be slow for a whole range of reasons, such as system load, network

load or because it is about to fail. To simulate this the library includes functionality

for a benchmark studying the properties of slow ranks, as such behaviour usually

occurs non deterministically making it tricky to investigate organically. A signal

handler for SIGUSR1 is registered within the library, such that when raised the rank

will sleep for one second. The more often this signal is sent to a rank, the slower

the progress through the work assigned to it. Therefore it effectively simulates a

rank that is slow through more organic means. More sophisticated techniques exist

such as lowering the frequency of a CPU [74]. These often require administrator

privileges and the sleep command simulates effectively the same behaviour: a slow

down of progress. Ultimately, for this test it is not important how the difference in

heartbeat times is created.

The first thing I investigated was the use of one versus two heartbeats per iter-

ation (Figure 3.6). For this test the same rank is sent the one second sleep signal

every five seconds. This simulates where one rank is much slower than the rest,

and the aim is to detect this slow rank. The benchmark based on Algorithm 3.7

was used with 100 iterations, and the time taken to execute 5× 107 sin operations

per iteration was ≈ 0.4 seconds. Figure 3.6a shows the time between heartbeats for

when only a single heartbeat per iteration is inserted. Even though only rank 0 in

team 0 was sent the sleep signals, the library can only detect that both rank 0 and

rank 1 in team 0 were slower than their replicas in team 1. This is because rank 1

3.3. Results 68

0 20 40 60 80 100
Heartbeat

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

T
im

e
 b

e
tw

e
e
n
 h

e
a
rt

b
e
a
ts

 [
t]

 =
 s

Team 0 / Rank 0

Team 0 / Rank 1

Team 1 / Rank 0

Team 1 / Rank 1

(a) One heartbeat per iteration

0 20 40 60 80 100
Heartbeat

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

T
im

e
 b

e
tw

e
e
n
 h

e
a
rt

b
e
a
ts

 [
t]

 =
 s

Team 0 / Rank 0

Team 0 / Rank 1

Team 1 / Rank 0

Team 1 / Rank 1

(b) Two heartbeats per iteration

Figure 3.6: An experiment with the benchmark defined in Algorithm 3.7. A single
rank is chosen to be “slowed down” with one second sleep commands sent every
five seconds. The left is the difference in heartbeat times for a single heartbeat per
iteration, where only slow teams can be detected. The right is the difference in
heartbeat times for the two heartbeats per iteration. The slow down of rank 0 in
team 1 can then be detected individually.

must wait for rank 0 at the MPI Barrier at the end of the iteration. This barrier

simulates any kind of synchronisation such as neighbour communication. Therefore,

it only hits the heartbeat once rank 0 has caught up. Importantly, teaMPI is able

to detect the fault within this team. It took 1 second longer than the other team

to compute the same amount of work. In Figure 3.6b, two heartbeats are inserted:

one at the start of the work and another at the end as outlined in Algorithm 3.7.

This means that there are ranks synchronising between heartbeats. This is clearly

visible in the results where this time rank 0 in team 1 was sent the signal every

5 seconds. With two heartbeats teaMPI is able to single out the slow rank which

takes 1 second longer than its replica in team 0 to compute the same work. This is a

powerful feature, and the future direction of this approach is outlined in Chapter 4.

The second experiment using the miniapp is designed to simulate a wide variety

of potential misbehaviour by modifying two variables: to which rank the signal is

sent and the frequency of the signals.

1. Constant : select the same rank every time

2. Round robin: select each rank in turn

3.3. Results 69

0 20 40 60 80 100
Heartbeat

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

T
im

e
 b

e
tw

e
e
n
 h

e
a
rt

b
e
a
ts

 [
t]

 =
 s

Team 0 / Rank 0

Team 0 / Rank 1

Team 1 / Rank 0

Team 1 / Rank 1

(a) Selection: constant
Frequency: constant

0 20 40 60 80 100
Heartbeat

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

T
im

e
 b

e
tw

e
e
n
 h

e
a
rt

b
e
a
ts

 [
t]

 =
 s

Team 0 / Rank 0

Team 0 / Rank 1

Team 1 / Rank 0

Team 1 / Rank 1

(b) Selection: round-robin
Frequency: constant

0 20 40 60 80 100
Heartbeat

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

T
im

e
 b

e
tw

e
e
n
 h

e
a
rt

b
e
a
ts

 [
t]

 =
 s

Team 0 / Rank 0

Team 0 / Rank 1

Team 1 / Rank 0

Team 1 / Rank 1

(c) Selection: random
Frequency: constant

0 20 40 60 80 100
Heartbeat

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

T
im

e
 b

e
tw

e
e
n
 h

e
a
rt

b
e
a
ts

 [
t]

 =
 s

Team 0 / Rank 0

Team 0 / Rank 1

Team 1 / Rank 0

Team 1 / Rank 1

(d) Selection: constant
Frequency: decreasing

0 20 40 60 80 100
Heartbeat

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

T
im

e
 b

e
tw

e
e
n
 h

e
a
rt

b
e
a
ts

 [
t]

 =
 s

Team 0 / Rank 0

Team 0 / Rank 1

Team 1 / Rank 0

Team 1 / Rank 1

(e) Selection: round-robin
Frequency: decreasing

0 20 40 60 80 100
Heartbeat

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

T
im

e
 b

e
tw

e
e
n
 h

e
a
rt

b
e
a
ts

 [
t]

 =
 s

Team 0 / Rank 0

Team 0 / Rank 1

Team 1 / Rank 0

Team 1 / Rank 1

(f) Selection: random
Frequency: decreasing

0 20 40 60 80 100
Heartbeat

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

T
im

e
 b

e
tw

e
e
n
 h

e
a
rt

b
e
a
ts

 [
t]

 =
 s

Team 0 / Rank 0

Team 0 / Rank 1

Team 1 / Rank 0

Team 1 / Rank 1

(g) Selection: constant
Frequency: random

0 20 40 60 80 100
Heartbeat

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

T
im

e
 b

e
tw

e
e
n
 h

e
a
rt

b
e
a
ts

 [
t]

 =
 s

Team 0 / Rank 0

Team 0 / Rank 1

Team 1 / Rank 0

Team 1 / Rank 1

(h) Selection: round-robin
Frequency: random

0 20 40 60 80 100
Heartbeat

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

T
im

e
 b

e
tw

e
e
n
 h

e
a
rt

b
e
a
ts

 [
t]

 =
 s

Team 0 / Rank 0

Team 0 / Rank 1

Team 1 / Rank 0

Team 1 / Rank 1

(i) Selection: random
Frequency: random

Figure 3.7: A series of nine experiments using Algorithm 3.7. Ranks are sent a com-
mand to sleep for 1 second with a three different selection criteria and three different
frequency intervals. The “selection” and “frequency” parameters are described in
Section 3.3.2.

3.3. Results 70

3. Random: select rank at random

and the time between signals is one of:

1. Constant : always wait a fixed time between signals

2. Decreasing : start with a maximum interval between signals then reduce by a

fixed factor each time

3. Random: wait for a random time between signals

These test cases were chosen as some of the combinations can be envisaged

as real world scenarios. Others were included as no one really knows what the

runtime behaviour of future hardware will be. However, the teaMPI library is well

equipped to monitor any variations between ranks. For example constant selection

with a constant interval simulates a slow rank as it will always lag behind the

corresponding ranks in other teams. Constant selection and a decreasing interval

simulates a failing rank and eventually will be declared dead. Constant selection

with a random interval simulates a rank with sporadic performance, maybe being

impeded by another application or event. Finally, random selection with a random

interval can be seen as an exaggeration of a real HPC environment.

Figure 3.7 shows the results over the whole parameter space. In all cases teaMPI

is able to detect the slow-down of individual ranks. I am confident that in real

scenarios this statement holds.

3.3.3 A Real Application: LOH.1 Simulation

The next challenge for the implementation was how effective it would work with

a “real world” application (Figure 3.8). The chosen set-up is a seismic benchmark

simulation known as LOH.1 running on the ExaHyPE engine [73]. The runtime char-

acteristics of the code are highly complex, featuring dynamic asynchronous commu-

nication and computation patterns. Adding heartbeats to the code was still trivial.

3.3. Results 71

Figure 3.8: Cut through the solution of the LOH.1 benchmark running on the
ExaHyPE engine. A point source induces an earthquake just below the surface.
Waves propagate from this point but yield complicated patterns as the cubic domain
contains two layers of different material [73].

The start beat is still added after the communication phase of the previous timestep

and then the end beat is placed before any communication is waited upon.

Chapter 2 thoroughly details the ExaHyPE work-flow but for our replication

studies only a knowledge of the phases in Figure 3.9 is required. It begins with start-

up phase where the grid is constructed. Then, at the beginning of each timestep the

tasks for the timestep are spawned. Here the first heartbeat is placed. A barrier

occurs at the end of the timestep where the code waits for the tasks spawned to

complete. At the end of this barrier the second heartbeat is triggered. At no point

between these heartbeat points does a rank wait for another as the communication

barriers occur after the second heartbeat. A final clean-up phase mainly involves

deallocating memory. For a simpler presentation of Figure 3.9 the heartbeats are

shown aligned but was not the case for the real execution. I reiterate no synchro-

nisation occurs between heartbeats. The communication does not cause any delays

in this phase.

The same experimental setup was modified from the previous section to work

with the engine. This time 12 ranks per team were used, and the selection criteria

3.3. Results 72

Figure 3.9: A profile of the benchmark code when running for three timesteps on 29
balanced ranks. Example heartbeat locations are marked by the magenta dashed
line.

definitions slightly modified. In the initial testing of the experiment I sent the sleep

commands to different ranks to simulate a rank slowing down. However, in the

engine there is a significant load imbalance in this setup as this is something yet to

be tackled (see Chapter 3.4 for some remarks on this). If any other ranks than rank 1

(in any team) are selected to be “slowed-down” via the sleep command then teaMPI

will not notice. As rank 1 has the most work to do and the other ranks wait for its

results at every timestep after the second heartbeat. Therefore, unless the rank is

unrealistically slowed down (or killed) then the sleep command will be called after

the work is completed and the end-beat executed. This highlights one potential

issue with relying on heartbeats for detecting performance reductions. If such a

fault occurs outside of the heartbeats teaMPI cannot detect a slowdown. However,

the heartbeat paradigm is designed such that users can maximise the coverage to

minimise this risk. The implication is also that if teaMPI does not detect the

slowdown, then it is not effecting other ranks. With the proposal to balance tasks

among teams more effectively in Chapter 4, the imbalances can be reduced leading

3.3. Results 73

5 0 5 10 15 20 25 30
Heartbeat

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

T
im

e
 d

e
lt

a
 b

e
tw

e
e
n
 r

e
p
lic

a
s

[t
]

=
 s

(a) Selection: constant
Frequency: constant

5 0 5 10 15 20 25 30
Heartbeat

1.5

1.0

0.5

0.0

0.5

1.0

1.5

T
im

e
 d

e
lt

a
 b

e
tw

e
e
n
 r

e
p
lic

a
s

[t
]

=
 s

(b) Selection: round-robin
Frequency: constant

5 0 5 10 15 20 25 30
Heartbeat

1.5

1.0

0.5

0.0

0.5

1.0

1.5

T
im

e
 d

e
lt

a
 b

e
tw

e
e
n
 r

e
p
lic

a
s

[t
]

=
 s

(c) Selection: random
Frequency: constant

5 0 5 10 15 20 25 30
Heartbeat

0.5

0.0

0.5

1.0

1.5

2.0

2.5

T
im

e
 d

e
lt

a
 b

e
tw

e
e
n
 r

e
p
lic

a
s

[t
]

=
 s

(d) Selection: constant
Frequency: decreasing

5 0 5 10 15 20 25 30
Heartbeat

1.5

1.0

0.5

0.0

0.5

1.0

1.5

T
im

e
 d

e
lt

a
 b

e
tw

e
e
n
 r

e
p
lic

a
s

[t
]

=
 s

(e) Selection: round-robin
Frequency: decreasing

5 0 5 10 15 20 25 30
Heartbeat

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

T
im

e
 d

e
lt

a
 b

e
tw

e
e
n
 r

e
p
lic

a
s

[t
]

=
 s

(f) Selection: random
Frequency: decreasing

5 0 5 10 15 20 25 30
Heartbeat

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

T
im

e
 d

e
lt

a
 b

e
tw

e
e
n
 r

e
p
lic

a
s

[t
]

=
 s

(g) Selection: constant
Frequency: random

5 0 5 10 15 20 25 30
Heartbeat

1.5

1.0

0.5

0.0

0.5

1.0

1.5

T
im

e
 d

e
lt

a
 b

e
tw

e
e
n
 r

e
p
lic

a
s

[t
]

=
 s

(h) Selection: round-robin
Frequency: random

5 0 5 10 15 20 25 30
Heartbeat

1.5

1.0

0.5

0.0

0.5

1.0

1.5

T
im

e
 d

e
lt

a
 b

e
tw

e
e
n
 r

e
p
lic

a
s

[t
]

=
 s

(i) Selection: random
Frequency: random

Figure 3.10: The nine experiments from Figure 3.7 repeated with a seismic bench-
mark application running on the ExaHyPE engine. The “selection” and “frequency”
parameters are described in Section 3.3.2. The markers on the scatter plots repre-
sent the team rank. The difference in heartbeat times for the first and second replica
are plotted. If the first replica is detected to be slow then it is coloured red. If the
second replica is detected to be slow then it is coloured green.

3.4. Outlook 74

to a much improved runtime. To ensure the slowdowns are noticeable by teaMPI, I

modify the selection definitions of the benchmark from Section 3.3.2 to be as follows:

1. Constant : select rank 1 in the first team every time

2. Round robin: select rank 1 but in from a different team in a round-robin

fashion each time.

3. Random: select rank 1 each time but the team is random.

Additionally, I found that the sleep command interfered with some of the clean-

up operations of the code, such as freeing memory. Therefore I only sent the sleep

commands within a 45 second window. Clearly, these changes would not be neces-

sary if I had access to more realistic testing methods.

teaMPI is still capable of detecting the various slow-downs of rank 1 (Fig-

ure 3.10). What is also noticeable is the increase in variance of the data. The

heartbeat times in between vary much more so than the simple benchmark in the

previous section. I attribute this to the profile of the code, which has complex

characteristics in comparison to the well defined benchmark.

This second experiment showcases the power of teaMPI. With two additional

lines of code even in a complex code base such as ExaHyPE, faults in either data

or performance can easily be detected and reported by the library. I am confident

that this approach can be easily integrated into most scientific codes and possibly

even more general applications. Moreover, the addition of the heartbeat messages

had no noticeable impact on the performance, validating this lightweight approach

to ensuring consistency.

3.4 Outlook

In this chapter I have presented a MPI rank replication scheme. It improves over

the numerous existing implementations. My teaMPI library is available as a C++

3.4. Outlook 75

library that intercepts MPI calls through the dedicated profiling interface. By loos-

ening temporal consistency constraints, replicas are able to operate completely asyn-

chronously from each other. This reduces the performance overhead of replication

to practically zero. I validate this claim through the classical “ping-pong” micro-

benchmark which showed that increasing the number of replicas has no impact on

the bandwidth or latency requirements. At application-specified intervals, called a

heartbeat, the replicas exchange data and performance consistency information in a

fully non-blocking fashion. This allows the teaMPI library to detect ranks that are

slow, failing or producing erroneous results. I presented these capabilities first on a

mini-application that simulates the runtime behaviour of many real applications in

scientific computing. I show that the integration of teaMPI into a complex code base

such as ExaHyPE is trivial, and teaMPI continues to have excellent performance

monitoring capabilities of applications with extremely dynamic runtime behaviour

properties.

The teaMPI library has several areas for further research. These were not in-

vestigated here owing to the scope of the thesis. First, for real fault tolerance the

teaMPI library should automatically swap out slow, failing or error producing ranks.

Swapping is a complex process that is not supported by many MPI implementations.

They exit at the first sign of a failing rank. However, techniques from research into

run-through stabilisation techniques show such capabilities are feasible with custom

MPI library support [7]. Second, to showcase the capabilities better, real world

failure scenarios should be simulated rather than the primitive “sleep” approach in

Section 3.3.2/3.3.3. This could be based on existing data provided by many HPC

institutions [67, 68]. A final area for future research is the automatic insertion of the

heartbeats into the application code. For example, the heartbeats could be inserted

between any two synchronising MPI calls. However, with the reduced temporal con-

sistency of teaMPI, an implementation would have to make sure that the heartbeats

were called by the “same” functions in all replicas.

3.4. Outlook 76

In summary, the teaMPI provides a valuable contribution to the existing area

of rank replication. If a näıve state machine approach is neglected in favour of the

fully asynchronous heartbeat based consistency method proposed in this chapter,

advanced fault tolerance techniques can be leveraged transparently to application

code with practically zero performance overhead.

In the final chapter of this thesis I bring together the two ideas proposed on

tasks and teams. Although powerful concepts in their own right I show they can be

combined to equalize work imbalances among individual ranks within a team.

Chapter 4

Conclusion and Synthesis of

Contributions

In this thesis I have presented two novel contributions based upon asynchronous al-

gorithms in high performance computing. The first, enclave tasking, uses a producer-

consumer idiom and task fusion to ensure high concurrency on dynamically adaptive

meshes. As the approach is naturally suited to an overlapping communication ap-

proach, it efficiently scales using a hybrid combination of MPI and TBB. It is

now used in the ExaHyPE project to use the powerful refinement features of the

codebase without suffering the severe overheads of the previous parallel-for based

implementation.

The second contribution is the teaMPI library, which creates asynchronous teams

from an applications MPI ranks. After a thorough review of existing approaches,

I identified a common weakness in that the strong consistency models used induce

extremely fine-grained synchronisation among replicas. Therefore by allowing the

application to decide when to ensure consistency, the overhead is drastically reduced

to practically zero. The exchange of both performance and consistency information

is implemented in a fully non-blocking fashion and allows the teaMPI library to

detect slow or failing ranks and memory corruption errors without the runtime

77

Chapter 4. Conclusion and Synthesis of Contributions 78

overhead.

One of the key challenges of the approach outlined in Chapter 2 is ensuring that

each rank has an equal amount of tasks to execute. If one has a larger portion of the

computational domain then other ranks with less work will have to wait and their

computational resources wasted. Optimal domain decompositions with dynamically

adaptive grids is a complex topic, as the work per rank may frequently change. This

means any decomposition is unlikely to remain valid for long.

I now provide an outlook into a future area of research that combines the two

contributions of this thesis into an idea called team-based diffusive load balancing.

The teaMPI library assumes that if replicas are consistent at every heartbeat

then they must have executed roughly similar instructions. The final state of all

replicas is identical. With TDLB, the consistency model is weakened further such

that the replicas no longer operate identically. However, the heartbeat’s still mark

points where the replicas can compare state.

I outline a use case for this with respect to ExaHyPE. Even if we assume that

each cell requires the same amount of time to process, which in the case of non-linear

problems is not true, the distribution of work is still non-trivial. If cells are refined

or coarsened throughout the simulation then the amount of work on that process

will change. This leads to the two challenges to tackle: firstly how to detect the load

imbalance detected and secondly how to resolve the imbalance. Existing approaches

to the first usually involve abstracting the work into a cost model, which in this case

could be the number of cells per rank [65]. In teaMPI we can do better and use the

real measurements provided by the heartbeat performance consistency features.

The more challenging, and still an active research area, is how to then rectify the

load imbalance? Two main approaches exist. The first requires the application to

send and receive cells between ranks as and when required by the load balancer [77].

This approach requires the application to stop and redistribute the work which in-

vokes considerable overhead through synchronisation and data transfer costs. The

Chapter 4. Conclusion and Synthesis of Contributions 79

second approach allows ranks to steal “tasks” from each other and then send the

result back [44, 62–64]. If this happens too often they then do an actual redis-

tribution. However, the issue with both approaches is that data transfer is often

considered to be the bottleneck of exascale applications. TDLB is designed to be a

data-conservative load balancing scheme.

The core idea of TDLB is for replicas to host some cells redundantly, modelling

classical overlapping domain-decomposition. However, only a subset replicas will

maintain a valid state for a cell. If replicas host the same cells then in ExaHyPE

with the contributions from Chapter 2 they will spawn the same tasks into their

queues. In the experiments in Section 3.3.3 this means that each replica executes

the same STP tasks, an equal amount of work.

However, if the replicas grids do not completely overlap then only some of the

STP’s are spawned redundantly. With TDLB a heatmap could be embedded into

the computational grid. The value in the heatmap would dictate how likely a rank

is to provide the result for that cell. Some cells the replica will completely own, and

it can process the tasks as normal. Other cells will be owned by multiple replicas,

and each send around the result of those cells between each other. On receiving

the result of a STP, it can be compared using teaMPI’s data consistency features.

Throughout the simulation, the overlap will be reduced such that the redundancy

in the computation is eliminated.

To summarise, I have presented two novel contributions. In Chapter 2 I investi-

gate a lightweight, asynchronous distributed task system for Discontinuous Galerkin

applications. By prioritising critical tasks and efficiently balancing resource usage

it promises good scaling even for heavily dynamic adaptive grids up to hundreds of

cores. In Chapter 3 I introduce the teaMPI library that replicates MPI ranks to

form teams. These teams are able to operate with minimal communication overhead

using a novel heartbeat-based consistency scheme. Additional features include the

option to efficiently detect data or performance issues for individual ranks. Finally

Chapter 4. Conclusion and Synthesis of Contributions 80

I show that these two contributions can be brought together with future research

surrounding a team based diffusive load balancing scheme. With teams able to

share tasks, load can be balanced dynamically at runtime allowing for increasingly

complex applications to scale on the worlds largest machines.

Bibliography

[1] G. M. Amdahl. “Validity of the single processor approach to achieving large

scale computing capabilities”. In: Proceedings of the April 18-20, 1967, spring

joint computer conference. ACM. 1967, pp. 483–485.

[2] M. Bader et al. ExaHyPE—an Exascale Hyperbolic PDE solver Engine. 2017.

url: http://www.exahype.eu.

[3] A. Baggag et al. Parallelization of an object-oriented unstructured aeroacous-

tics solver. ICASE Report No. 99-11. 1999.

[4] K. J. Barker et al. “Entering the petaflop era: the architecture and perfor-

mance of Roadrunner”. In: International Conference for High Performance

Computing, Networking, Storage and Analysis. IEEE. 2008, pp. 1–11.

[5] E. Baseman et al. “Physics-Informed Machine Learning for DRAM Error Mod-

eling”. In: The 31st IEEE International Symposium on Defect and Fault Tol-

erance in VLSI and Nanotechnology Systems. 2018.

[6] M. Berger and P. Colella. “Local adaptive mesh refinement for shock hydro-

dynamics”. In: Journal of Computational Physics 82 (1989), pp. 64–84.

[7] W. Bland et al. “Post-failure recovery of MPI communication capability: De-

sign and rationale”. In: The International Journal of High Performance Com-

puting Applications 27.3 (2013), pp. 244–254.

[8] S. Böhm and C. Engelmann. “File I/O for MPI Applications in Redundant Ex-

ecution Scenarios”. In: Proceedings of the 20th Euromicro International Con-

81

http://www.exahype.eu

BIBLIOGRAPHY 82

ference on Parallel, Distributed, and network-based Processing. IEEE Com-

puter Society, 2012, pp. 112–119.

[9] M. Bougeret et al. “Using group replication for resilience on exascale systems”.

In: International Journal of High Performance Computing Applications 28.2

(2013), pp. 210–224.

[10] F. Cappello. “Fault Tolerance in Petascale/ Exascale Systems: Current Knowl-

edge, Challenges and Research Opportunities”. In: International Journal of

High Performance Computing Applications 23.3 (2009), pp. 212–226.

[11] S. Chakravorty, C. L. Mendes, and L. V. Kalé. “Proactive fault tolerance in

MPI applications via task migration”. In: Lecture Notes in Computer Science

4297 LNCS (2006), pp. 485–496.

[12] D. Charrier and T. Weinzierl. Stop talking to me—a communication-avoiding

ADER-DG realisation. (submitted). 2018. arXiv: 1801.08682 [cs.MS].

[13] D. E. Charrier, B. Hazelwood, and T. Weinzierl. Enclave Tasking for Dis-

continuous Galerkin Methods on Dynamically Adaptive Meshes. 2018. arXiv:

1806.07984 [cs.MS].

[14] D. E. Charrier and T. Weinzierl. “An experience report on (auto-) tuning

of mesh-based PDE solvers on shared memory systems”. In: International

Conference on Parallel Processing and Applied Mathematics. Springer. 2017,

pp. 3–13.

[15] Z. Chen et al. “Fault tolerant high performance computing by a coding ap-

proach”. In: Proceedings of the tenth ACM SIGPLAN symposium on Principles

and practice of parallel programming. ACM. 2005, pp. 213–223.

[16] G. Cobb et al. “MPIEcho: A framework for transparent MPI task replication”.

In: Dept. of Computer Science, University of Colorado at Boulder, Tech. Rep.

CU-CS-1082-11 (2011).

http://arxiv.org/abs/1801.08682
http://arxiv.org/abs/1806.07984

BIBLIOGRAPHY 83

[17] S. Di et al. “Exploring Properties and Correlations of Fatal Events in a Large-

Scale HPC System”. In: IEEE Transactions on Parallel and Distributed Sys-

tems (2018).

[18] J. Dongarra et al. “The international exascale software project roadmap”.

In: International Journal of High Performance Computing Applications 25.1

(2011), pp. 3–60.

[19] J. Dongarra et al. Applied mathematics research for exascale computing. Tech.

rep. Lawrence Livermore National Lab., 2014.

[20] A. Dubey et al. “A Survey of High Level Frameworks in Block-Structured

Adaptive Mesh Refinement Packages”. In: CoRR 74.12 (2016), pp. 3217–3227.

[21] M. Dumbser and M. Käser. “An arbitrary high-order discontinuous Galerkin

method for elastic waves on unstructured meshes - II. The three-dimensional

isotropic case”. In: Geophysical Journal International 167.1 (2006), pp. 319–

336.

[22] M. Dumbser et al. Efficient implementation of ADER discontinuous Galerkin

schemes for a scalable hyperbolic PDE engine. 2018. arXiv: 1808.03788 [math.NA].

[23] J. Elliott et al. “Combining partial redundancy and checkpointing for HPC”.

In: 32nd International Conference on Distributed Computing Systems. IEEE.

2012, pp. 615–626.

[24] C. Engelmann, H. H. Ong, and S. L. Scott. “The case for modular redundancy

in large-scale high performance computing systems”. In: Proceedings of the 8th

IASTED international conference on parallel and distributed computing and

networks 1 (2009), pp. 189–194.

[25] C. Engelmann. “Scaling to a million cores and beyond: Using light-weight

simulation to understand the challenges ahead on the road to exascale”. In:

Future Generation Computer Systems 30 (2014), pp. 59–65.

http://arxiv.org/abs/1808.03788

BIBLIOGRAPHY 84

[26] C. Engelmann and S. Böhm. “Redundant execution of HPC applications with

MR-MPI”. In: Proceedings of the 10th IASTED International Conference on

Parallel and Distributed Computing and Networks (PDCN). 2011, pp. 15–17.

[27] G. E. Fagg et al. “Process fault tolerance: Semantics, design and applications

for high performance computing”. In: The International Journal of High Per-

formance Computing Applications 19.4 (2005), pp. 465–477.

[28] K. Ferreira et al. “Evaluating the viability of process replication reliability for

exascale systems”. In: 2011 International Conference for High Performance

Computing, Networking, Storage and Analysis (SC) (2011), pp. 1–12.

[29] K. Ferreira et al. rMPI: Increasing Fault Resiliency in a Message-Passing

Environment. Tech. rep. Sandia National Laboratories, 2011.

[30] D. Fiala et al. “Detection and Correction of Silent Data Corruption for Large-

Scale High-Performance Computing”. In: Proceedings of the 25th IEEE/ACM

International Conference on High Performance Computing, Networking, Stor-

age and Analysis. ACM, Nov. 2012, 78:1–78:12.

[31] A. Gainaru, F. Cappello, and W. Kramer. “Taming of the shrew: Modeling

the normal and faulty behaviour of large-scale HPC systems”. In: 26th Inter-

national Parallel & Distributed Processing Symposium. IEEE. 2012, pp. 1168–

1179.

[32] A. Gainaru et al. “Fault prediction under the microscope: A closer look into

hpc systems”. In: High Performance Computing, Networking, Storage and

Analysis (SC), 2012 International Conference for. IEEE. 2012, pp. 1–11.

[33] A. Gainaru et al. “Failure prediction for HPC systems and applications: Cur-

rent situation and open issues”. In: The International Journal of High Perfor-

mance Computing Applications 27.3 (2013), pp. 273–282.

[34] T. Gamblin. wrap (a PMPI wrapper generator). https://github.com/LLNL/wrap.

2010.

BIBLIOGRAPHY 85

[35] W. Gropp and E. Lusk. “Reproducible measurements of MPI performance

characteristics”. In: European Parallel Virtual Machine/Message Passing In-

terface User’s Group Meeting. Springer. 1999, pp. 11–18.

[36] J. L. Gustafson. “Reevaluating Amdahl’s law”. In: Communications of the

ACM 31.5 (1988), pp. 532–533.

[37] G. Hager and G. Wellein. Introduction to High Performance Computing for

Scientists and Engineers. 1st. Boca Raton, FL, USA: CRC Press, Inc., 2010.

[38] B. Hazelwood. teaMPI: a team based PMPI wrapper for MPI resiliency. 2018.

url: http://www.peano-framework.org/hpcsoftware/teampi.

[39] T. Hoefler and A. Lumsdaine. “Message progression in parallel computing -

to thread or not to thread?” In: IEEE International Conference on Cluster

Computing. 2008, pp. 213–222.

[40] M. Hutchinson et al. “Efficiency of High Order Spectral Element Methods

on Petascale Architectures”. In: High Performance Computing. Ed. by J. M.

Kunkel, P. Balaji, and J. Dongarra. Cham: Springer International Publishing,

2016, pp. 449–466.

[41] A. Ilic, F. Pratas, and L. Sousa. “Cache-aware Roofline model: Upgrading the

loft”. In: IEEE Computer Architecture Letters 13.1 (2014), pp. 21–24.

[42] Intel. Product Change Notification 116378 - 00. url: http://qdms.intel.

com/dm/i.aspx/9C54A9A7-BF37-4496-B268-BD2746EA54D3/PCN116378-

00.pdf.

[43] Intel. Intel Threading Building Blocks Design Patterns. 2010. url: https:

//software.intel.com/sites/default/files/m/4/8/1/e/e/33963-

Design_Patterns.pdf.

http://www.peano-framework.org/hpcsoftware/teampi
http://qdms.intel.com/dm/i.aspx/9C54A9A7-BF37-4496-B268-BD2746EA54D3/PCN116378-00.pdf
http://qdms.intel.com/dm/i.aspx/9C54A9A7-BF37-4496-B268-BD2746EA54D3/PCN116378-00.pdf
http://qdms.intel.com/dm/i.aspx/9C54A9A7-BF37-4496-B268-BD2746EA54D3/PCN116378-00.pdf
https://software.intel.com/sites/default/files/m/4/8/1/e/e/33963-Design_Patterns.pdf
https://software.intel.com/sites/default/files/m/4/8/1/e/e/33963-Design_Patterns.pdf
https://software.intel.com/sites/default/files/m/4/8/1/e/e/33963-Design_Patterns.pdf

BIBLIOGRAPHY 86

[44] L. V. Kale and G. Zheng. “Charm++ and AMPI: Adaptive Runtime Strate-

gies via Migratable Objects”. In: Advanced Computational Infrastructures for

Parallel and Distributed Applications. Ed. by M. Parashar. Wiley-Interscience,

2009, pp. 265–282.

[45] G. Karypis and V. Kumar. “A fast and high quality multilevel scheme for

partitioning irregular graphs”. In: SIAM Journal on scientific Computing 20.1

(1998), pp. 359–392.

[46] T. Kolda. What Kind of Science Is Computational Science? A Rebuttal. 2014.

url: https://sinews.siam.org/Details-Page/what-kind-of-science-

is-computational-science-a-rebuttal.

[47] D. Komatitsch et al. “High-order finite-element seismic wave propagation mod-

eling with MPI on a large GPU cluster”. In: Journal of Computational Physics

229 (2010), pp. 7692–7714.

[48] K. Kormann and M. Kronbichler. “Parallel finite element operator applica-

tion: Graph partitioning and coloring”. In: 7th International Conference on

E-Science. IEEE. 2011, pp. 332–339.

[49] M. Kronbichler and K. Kormann. Fast matrix-free evaluation of discontinuous

Galerkin finite element operators. 2017. arXiv: 1711.03590 [cs.MS].

[50] M. Kronbichler et al. “Fast Matrix-Free Discontinuous Galerkin Kernels on

Modern Computer Architectures”. In: High Performance Computing. Springer

International Publishing, 2017, pp. 237–255.

[51] A. Lefray, T. Ropars, and A. Schiper. “Replication for send-deterministic MPI

HPC applications”. In: Proceedings of the 3rd Workshop on Fault-tolerance for

HPC at extreme scale. ACM. 2013, pp. 33–40.

[52] C. E. Leiserson. “Fat-trees: universal networks for hardware-efficient super-

computing”. In: IEEE transactions on Computers 100.10 (1985), pp. 892–901.

https://sinews.siam.org/Details-Page/what-kind-of-science-is-computational-science-a-rebuttal
https://sinews.siam.org/Details-Page/what-kind-of-science-is-computational-science-a-rebuttal
http://arxiv.org/abs/1711.03590

BIBLIOGRAPHY 87

[53] R. J. LeVeque. Finite-Volume Methods for Hyperbolic Problems. Cambridge

University Press, 2002.

[54] G. E. Moore. “Cramming more components onto integrated circuits,” in: Elec-

tronics (1965).

[55] MPI Forum. MPI: A Message Passing Interface Standard Version 3.1. 2015.

url: https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf.

[56] Oak Ridge National Laboratory. Genomics Code Exceeds Exaops On Summit

Supercomputer. 2018. url: https://www.olcf.ornl.gov/2018/06/08/

genomics-code-exceeds-exaops-on-summit-supercomputer/.

[57] A. Pop and A. Cohen. “A stream-computing extension to OpenMP”. In: Pro-

ceedings of the 6th International Conference on High Performance and Em-

bedded Architectures and Compilers. ACM. 2011, pp. 5–14.

[58] J. Reinders. Intel Threading Building Blocks. First. O’Reilly & Associates,

Inc., 2007.

[59] R. Riesen, K. Ferreira, and J. Stearley. “See applications run and throughput

jump: The case for redundant computing in HPC”. In: Proceedings of the

International Conference on Dependable Systems and Networks (2010), pp. 29–

34.

[60] T. Ropars et al. “Efficient Process Replication for MPI Applications: Sharing

Work Between Replicas”. In: Parallel and Distributed Processing Symposium.

IEEE. 2015, pp. 645–654.

[61] B. Rountree et al. “Parallelizing heavyweight debugging tools with MPIEcho”.

In: Parallel Computing 39.3 (2013), pp. 156–166.

[62] P. Samfass. Towards Reactive Task-Based Work Stealing in Distributed Mem-

ory in sam(oa)2. TU Darmstadt: Technical University of Munich, Sept. 2017.

[63] P. Samfass. Parallel Adaptive Mesh Refinement in Sam(oa)2 - Load Balancing

vs. Work Stealing. Tokio: Waseda University, Mar. 2018.

https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
https://www.olcf.ornl.gov/2018/06/08/genomics-code-exceeds-exaops-on-summit-supercomputer/
https://www.olcf.ornl.gov/2018/06/08/genomics-code-exceeds-exaops-on-summit-supercomputer/

BIBLIOGRAPHY 88

[64] P. Samfass, J. Klinkenberg, and M. Bader. “Hybrid MPI+OpenMP reactive

work stealing in distributed memory in the PDE framework sam(oa)2”. In:

IEE International Conference on Cluster Computing. Accepted. 2018.

[65] M. Schaller et al. “SWIFT: Using task-based parallelism, fully asynchronous

communication, and graph partition-based domain decomposition for strong

scaling on more than 100,000 cores”. In: Proceedings of the Platform for Ad-

vanced Scientific Computing Conference. ACM. 2016, p. 2.

[66] M. Schreiber, T. Weinzierl, and H. J. Bungartz. “Cluster Optimization and

Parallelization of Simulations with Dynamically Adaptive Grids”. In: Euro-

Par 2013 Parallel Processing. Vol. 8097. Lecture Notes in Computer Science.

Springer, 2013, pp. 484–496.

[67] B. Schroeder and G. A. Gibson. “Understanding failures in petascale comput-

ers”. In: Journal of Physics: Conference Series 78 (2007), p. 012022.

[68] B. Schroeder and G. a. Gibson. “A Large-Scale Study of Failures in High-

Performance Computing Systems”. In: IEEE Transactions on Dependable and

Secure Computing 7.4 (2010), pp. 337–350.

[69] M. Schulz and B. R. De Supinski. “A flexible and dynamic infrastructure for

MPI tool interoperability”. In: International Conference on Parallel Process-

ing. IEEE. 2006, pp. 193–202.

[70] M. Schulz and B. R. De Supinski. “PNMPI tools: A whole lot greater than the

sum of their parts”. In: Proceedings of the ACM/IEEE conference on Super-

computing. ACM. 2007, p. 30.

[71] H. Sundar and O. Ghattas. “A Nested Partitioning Algorithm for Adaptive

Meshes on Heterogeneous Clusters”. In: Proceedings of the 29th ACM on In-

ternational Conference on Supercomputing. ICS ’15. ACM, 2015, pp. 319–328.

BIBLIOGRAPHY 89

[72] M. Tavelli et al. A simple diffuse interface approach on adaptive Cartesian

grids for the linear elastic wave equations with complex topography. 2018.

arXiv: 1804.09491 [math.NA].

[73] The SPICE Code Validation. Problem WP2 LOH1. 2006. url: http://www.

sismowine.org/model/WP2_LOH1.pdf.

[74] J. Treibig, G. Hager, and G. Wellein. “LIKWID: A Lightweight Performance-

Oriented Tool Suite for x86 Multicore Environments”. In: Proceedings of the

39th International Conference on Parallel Processing Workshops. IEEE Com-

puter Society, 2010, pp. 207–216.

[75] C. Uphoff et al. “Extreme Scale Multi-physics Simulations of the Tsunami-

genic 2004 Sumatra Megathrust Earthquake”. In: Proceedings of the Interna-

tional Conference for High Performance Computing, Networking, Storage and

Analysis. ACM, 2017.

[76] C. Wang et al. “Proactive process-level live migration in HPC environments”.

In: Proceedings of the ACM/IEEE conference on Supercomputing. IEEE Press.

2008, p. 43.

[77] T. Weinzierl. The Peano software - parallel, automaton-based, dynamically

adaptive grid traversals. 2018. arXiv: 1506.04496v5 [cs.MS].

[78] S. Williams, A. Waterman, and D. Patterson. “Roofline: an insightful visual

performance model for multicore architectures”. In: Communications of the

ACM 52.4 (2009), pp. 65–76.

[79] M. Wittmann et al. Asynchronous MPI for the Masses. 2013. arXiv: 1302.

4280 [cs.DC].

[80] Z. Zheng and Z. Lan. “Reliability-Aware Scalability Models for High Perfor-

mance Computing”. In: IEEE International Conference on Cluster Computing

and Workshops (2009), pp. 1–9.

http://arxiv.org/abs/1804.09491
http://www.sismowine.org/model/WP2_LOH1.pdf
http://www.sismowine.org/model/WP2_LOH1.pdf
http://arxiv.org/abs/1506.04496v5
http://arxiv.org/abs/1302.4280
http://arxiv.org/abs/1302.4280

BIBLIOGRAPHY 90

[81] Z. Zheng et al. “A practical failure prediction with location and lead time

for blue gene/p”. In: International Conference on Dependable Systems and

Networks Workshops. IEEE. 2010, pp. 15–22.

