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Curvilinear structures can appear in many different areas and at a variety of scales.

They can be axons and dendrites in the brain, blood vessels in the fundus, streets,

rivers or fractures in buildings, and others. So, it is essential to study curvilinear

structures in many fields such as neuroscience, biology, and cartography regarding

image processing. Image processing is an important field for the help to aid in

biomedical imaging especially the diagnosing the disease. Image enhancement is the

early step of image analysis.

In this thesis, I focus on the research, development, implementation, and validation

of 2D and 3D curvilinear structure enhancement methods, recently established. The

proposed methods are based on phase congruency, mathematical morphology, and

tensor representation concepts.

First, I have introduced a 3D contrast independent phase congruency-based en-

hancement approach. The obtained results demonstrate the proposed approach is

robust against the contrast variations in 3D biomedical images.

Second, I have proposed a new mathematical morphology-based approach called

the bowler-hat transform. In this approach, I have combined the mathematical

morphology with a local tensor representation of curvilinear structures in images.

The bowler-hat transform is shown to give better results than comparison methods

on challenging data such as retinal/fundus images. The bowler-hat transform is
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shown to give better results than comparison methods on challenging data such as

retinal/fundus images. Especially the proposed method is quite successful while

enhancing of curvilinear structures at junctions.

Finally, I have extended the bowler-hat approach to the 3D version to prove the

applicability, reliability, and ability of it in 3D.
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Chapter 1

Introduction

Prologue

In this Chapter, I have introduced biomedical imaging and image enhancement

concepts followed by the thesis outline.

1.1 Introduction

In this thesis, I have investigated a wide range of biomedical image enhancement

approaches [4–11], especially the approaches focused on the curvilinear or curvilinear

structures enhancement. These approaches are designed to work with a wide range

of biomedical images and to be robust against the noise and varying intensity across

the image.

I have studied mainly, phase congruency [10, 12], mathematical morphology [13–15]

and tensor-based [16] approaches. In this thesis, first, I present an extension of

the phase congruency tensor approach proposed in [10], which explores the phase

congruency concept combined with the tensor representation of an image to en-

hance curvilinear structures in 3D biomedical images [17] in Chapter 4. Second, I

introduce a novel use of combined mathematical morphology structuring elements
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(a) (b) (c)

(d) (e) (f)

Figure 1.1: Biomedical imaging can help to observe curvilinear structures; (a) is a
collagen network (provided by Dr. Tim Hawkins, Durham University, UK), (b) is
a fungal network [1], (c) is a keratin network in skin cell (provided by Dr. Tim
Hawkins, Durham University, UK), (d) is a microtubules network in plant cell [2],
(e) is a vascular network (HRF dataset [3]), (f) is a neuronal network (image provided
by Dr. Chris Banna, UC Santa Barbara, USA).

for the enhancement of curvilinear structures in 2D biomedical imaging [18], par-

ticularly retinal imaging in Chapter 5. Third, I extend the proposed mathematical

morphology-based approach into [19] 3D see Chapter 6. Finally, I develop a novel

2D and 3D curvilinear structures enhancement method based on a combination of

mathematical morphology top-hat transforms with the tensor representation of an

image, see Chapter 7.

Before diving into details of the new proposed approaches, I present a review of the

state-of-the-art image enhancement methods in the Chapter 2.
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1.2 Biomedical Image Analysis

A wide range of biomedical imaging techniques are being used to image biomedical

curvilinear structures, including: optical microscopy [20], scanning probe micro-

scopy [21], electron microscopy [22], X-Ray [23], computed tomography [5], magnetic

resonance [24], ultrasonography [25], optical coherence tomography [26], etc., to

date (see Figure 1.1). These imaging technologies constantly improve the quality

of image data captured in terms of format, type, size, resolution, and quantity [27].

To handle such biomedical image data, fully or partly automate image processing,

analysis, quantification, and visualisation approaches are needed [28, 29].

In general, biomedical image analysis divides into few categories such as: image

registration [30] (see Figure 1.2), image enhancement [17] (see Figure 1.3), image

segmentation [31, 32], image classification [33], objects quantification, and objects

visualisation [34]. In this thesis, I focus on image enhancement, specially strength-

ening and enrichment of curvilinear structures in grayscale images (see Figure 1.3)

(a) Original (b) Rotated and scaled (c) Matched points

Figure 1.2: Registration of two binary images; (a) is original image and (b) is an
affine transform of (a). (c) illustrates matched feature points from (a) (red) and (b)
(green) used for the image registration.
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Figure 1.3: Curvilinear structure enhancement approaches can improve visu-
alisation, detection and quantification of curvilinear structures by: (a) de-
blurring/sharpening image (leaf veins network image from [10]), (b) histogram
equalisation (microtubules network image from [2]), (c) noise reduction (cytoskeletal
network in a skin cell image provided by Prof. Dr. Med. Rudolf Leube, Institute of
Molecular and Cellular Anatomy, RWTH Aachen University, Germany).

1.3 Image Enhancement

Any biomedical image data may suffered from a wide rang of imaging problems such

as high noise [35, 36], low contrast [37], high intensity variation [38], or overlapping

objects (when working with 2D image representation of 3D real structure, see Fig-

ure 1.4). In most of the cases, an image enhancement approach is often an early
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stage in the image analysis work-flow [39].

In general, image enhancement has been widely used in image processing to im-

prove the quality of an image and increase human observation [40]. It aims to aid

human interpretation and automated quantitative analyses of features/objects in the

image [39]. It can improve image quality by reducing noise, enhancing particular

features, and reducing intensity variations; see Figure 1.3.

In this thesis, I propose a set of novel image enhancement approaches for curvilinear

features enhancement in 2D and 3D images. These approaches are robust against

the loss of signals at curvilinear feature junctions, unwanted enhancement of non-

curvilinear features, and difficulty in dealing with the intrinsically multiscale nature

of curvilinear features in biological images.

(a) (b)

Figure 1.4: Overlapping curvilinear structures can be complicated and challenging
for curvilinear feature enhancement, especially when deciding which vessel belongs
to which branch. (a) is a 2D max projection of a 3D keratin network in a skin cell
provided by Dr. Tim Hawkins, Durham University. The red box indicates a region
with overlapping vessels, which is shown in greater detail in (b).
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1.4 Overview of Thesis and Research

Contributions

This thesis is divided as follows:

Chapter 2 : In this Chapter, I provide the background knowledge of the existing

methods related to the enhancement of curvilinear features in the literature.

I demonstrate what kind of challenges the current approaches faced so far in

2D and 3D. These methods are also used as comparator methods.

Chapter 4 : Here, I propose a 3D extension of the contrast independent phase

congruency-based approach to enhance 3D curvilinear structures based on

oriented phase congruency concept, called 3D Phase Congruency Tensor. I

illustrate that the proposed method is mostly insensitive to intensity variations

along the curvilinear structures and provides successful enhancement within

noisy regions.

Chapter 3 : In this Chapter, I introduce basic concepts behind mathematical

morphology, including morphological erosion, dilation, opening, closing, and

top-hat transform.

Chapter 5 : In this Chapter, I introduce the bowler-hat transform, a new approach

based on mathematical morphology for curvilinear structures enhancement.

The proposed method combines different mathematical morphology struc-

turing elements to detect natural features of curve-like structures. In this

Chapter, I propose an extension of the bowler-hat transform-based method to

3D. The proposed 3D approach combines two different 3D mathematical mor-

phology structuring elements. It is robust at curvilinear structures junctions

and able to cope with variations in thickness throughout complex curvilinear

networks.
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Chapter 7 : In this Chapter, I propose the Multiscale Top-Hat Tensor (MTHT)

approach, which combines multiscale morphological filtering with a local tensor

representation of curvilinear structures in 2D and 3D images. I then propose

MTHT equivalent representations of the commonly used curvilinear measures,

such as vesselness and neuriteness.

Chapter 8 : Finally, I summarise this thesis, highlighting the main contributions

to the image enhancement research field and suggest possible future work

for extending the use of mathematical morphology and tensor representation

concept to other image processing and analysis problems in the biological and

medical imaging domains.
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Chapter 2

Previous Research Work on

Curvilinear Feature Enhancement

Techniques

Prologue

This Chapter presents an overview of curvilinear feature enhancement concepts in

biomedical images.

2.1 Introduction

The enhancement, detection, and quantification of different types of structures/features

in 2D and 3D images is a very popular challenge in image processing applications in

astronomy [42], aerial and satellite imaging [43], material sciences [44], and biology

and medicine [30, 45–47].

A wide range of biomedical curvilinear structures, including vessels [48, 49], cancer

spicule [50], and cytoskeleton network [51] and may more, are enhanced, detected,

and then analysed using a stream of image processing approaches [9, 52–54]. In
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(a) (b)

(c)

(d)

Figure 2.1: Some of the challenges faced by state-of-the-art curvilinear structure
enhancement methods include: (a) high level of noise (cytoskeletal network in
a skin cell image provided by Prof. Dr. Med. Rudolf Leube, Institute of
Molecular and Cellular Anatomy, RWTH Aachen University, Germany), (b) uneven
background illumination (leaf veins network image from [10]), (c) introduction of
false curvilinear structures by the enhancement methods (e.g. Regularized Volume
Ratio approach [9]; vascular network image from [41]); red circles indicate the false
vessels and green square indicates the true vessel, (d) enhancement at junctions (e.g.
vesselness approach [4]; a vascular network image from DRIVE dataset [41]).

general, image processing researchers focus on the development of faster, more robust

and more reliable approaches for processing. All the up-to-date methods have their

advantages and disadvantages with the respect of their performance, complexity,

implementation, and computational performance [55].

This Chapter aims to provide a comprehensive review of existing curvilinear fea-

tures enhancement methods, starting from conventional Gaussian derivatives-based
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methods [4] and finishing with phase congruency-based methods [56].

2.1.1 Curvilinear Structures Enhancement Challenges

In general, any novel curvilinear structure enhancement approach must deal with the

following challenges we face in the biomedical images: inhomogeneous background,

high noise level, low contrast/intensity, junctions, and multiscale characteristic [4,

35, 57, 58] (see Figure 2.1).

2.2 Literature Review

In the following Section, I review existing image processing approaches for curvi-

linear structures enhancement in images. My aim is to highlight the weakness and

strengths of these approaches.

Figure 2.2: Curvilinear structures can be present in different sizes in the biomedical
images. An image is shown here, a vascular network from HRF dataset [3].

2.2.1 Multiscale Concept in Image Processing

Since curvilinear structures in biomedical images can also appear in different scales/sizes

(see Figure 2.2), a multiscale concept for curvilinear structures enhancement has

been extensively investigated in the literature [4, 5, 7, 57, 59].
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In order to enhance, detect and then quantify structures in images, at both low and

high spatial frequencies, images are processed at different scales either by altering

the image size or by altering the filter size [60] (e.g. using a concept in [61]).

There are many different fields definitions of the multiscale concepts, such as, time [47,

62], information complexity [63], signal frequency [64], smoothing degree [65], or

scale space [66, 67], among others.

(a) G

(b)
∂G

∂x
(c)

∂G

∂y

(d)
∂2G

∂x2
(e)

∂2G

∂x∂y
(f)

∂2G

∂y2

Figure 2.3: Two dimensional Gaussian kernels up to 2nd order derivatives. (a) a 2D
Gaussian kernel G, the first order Gaussian partial derivative in x (b) and y (c);
second order Gaussian partial derivatives in xx (d), xy (e), and yy (f).
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(a) σ = 0 (b) σ = 1 (c) σ = 2

(d) σ = 4 (e) σ = 8 (f) σ = 16

Figure 2.4: Gaussian scale space representation of the image (leaf veins network
image from [10]). The scale space is formed by convolving the original image (a) with
a Gaussian kernel of increasing standard deviation (ranging in σ = 0, 1, 2, 4, 8, 16).

Scale space

Curvilinear features can be observed in various sizes / scales in images [4]. The

essential idea is to insert the original image inside a group of progressively smoothed

images, in which fine-scale details are successively suppressed. This approach is

usually accomplished by the use of Gaussian filters, or their derivatives (see Fig-

ure 2.3), with multiple scales obtained by varying the standard deviation σ (see Fig-

ure 2.4). Such multiscale concept is used in a wide range of image enhancement

approaches, including wavelets decomposition [68], time-evolving snakes [69, 70],

increasing smoothing [71, 72], steerable filters [7].

For a given 3D image Iσ(~p) and given scale σ, the neighbourhood of a point ~p can

be estimated by its Taylor expansion;

Iσ(~p+ ∆~p) ≈ Iσ(~p) + ∆~pT∇Iσ(~p) + ∆~pTHσ(~p)∆~p, (2.1)

where Hσ(~p) is the Hessian matrix, a tensor of second order partial derivatives of I
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at point ~p and scale σ. ∆ is a gradient operator. In three dimensions, a spherical

neighbourhood met at the point ~p is outlined by Hσ(~p) over an ellipsoid whose

axes are along the eigenvectors vσ,i of the Hessian and the respective semi-lengths

are the magnitudes of the eigenvalues λσ,i. Therefore, the detection of curvilinear

structures can be performed by an analysis of the eigenvalues and eigenvectors. Two

of the most well-known ways in this area that have been called vesselness [4] and

neuriteness [8].

2D 3D

λ1 λ2 Structure λ1 λ2 λ3 Structure

L L Background L L L Background
L H- Bright curve L L H- Bright sheet
L H+ Dark curve L L H+ Dark sheet
H- H- Bright blob L H- H- Bright tubular
H+ H+ Dark blob L H+ H+ Dark tubular

H- H- H- Bright blob
H+ H+ H+ Dark blob

Table 2.1: 2D and 3D local image structure representation by the Hessian matrix-
based eigenvalues (L low, H+ high positive, H- high low).

2.2.2 Hessian-based Methods

In [4], Frangi et al. introduced a novel Hessian-based multiscale concept for 2D cur-

vilinear/3D tubular structure enhancement in images. They construct the Hessian

matrix using second-order Gaussian derivatives. The eigenvectors and eigenvalues

of the Hessian matrix then define the principal directions of local image features.

These can then be combined to form different measures of vesselness or blobness [73]

in biomedical images.
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2D Vesselness

The λ1,2 eigenvalues are defined by the elements of the Hessian matrix calculated

for a given image I;

H =

H11 H12

H12 H22

 =


∂2I

∂x2

∂2I

∂x∂y
∂2I

∂x∂y

∂2I

∂y2

 . (2.2)

Then eigenvalues can be calculated by the use of Hij and (i, j) ∈ [1, 2], such that;

λ1,2 =
1

2

(
H11 +H22 ±

√
(H11 −H22)2 + 4H2

12

)
. (2.3)

For curvilinear structures, i.e. elongated, smooth structures, I define the following

eigenvalue relationship;

λ2 � λ1, (2.4)

If the magnitude of both eigenvalues is small, i.e. the local image structure is likely

to be background. If one eigenvalue is small and the other large then the local image

structure is likely to be a curvilinear feature. Finally, if both eigenvalues are high,

then the local image structure is likely to be blob-like feature.

Initially, vesselness measurement, exploring relationships of the eigenvalues, was

proposed by Frangi and colleagues [4] as follows;

Vo =


0 if λ2 > 0,e−R

2
B

2β2


1− e

−
S2

2c2

 , otherwise
, (2.5)

where

RB = λ1/λ2, S =
√
λ2

1 + λ2
2, (2.6)

where generally β is fixed to 0.5 and c is equal to half of the maximum Frobenius
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norm (S). This approach, however, leads to a failure at the intersection of curvilinear

features as both eigenvalues have similarly large values leading to a vesselness

measure close to zero. Thus, curvilinear structures at junctions can be lost at the

segmentation stage and therefore curvilinear network connectivity may be lost [74].

An extension of this approach can be found in [75] where a multiscale filter is

combined with multiscale Hessian measurement to enhance the curvilinear features

and reduce noise.

3D Vesselness

Vesselness measure [4] can be defined for 3D images by using 3D Hessian matrix;

H =


H11 H12 H13

H21 H22 H23

H31 H32 H33

 =


∂2I

∂x2

∂2I

∂x∂y

∂2I

∂x∂z
∂2I

∂x∂y

∂2I

∂y2

∂2I

∂y∂z
∂2I

∂x∂z

∂2I

∂y∂z

∂2I

∂z2

 . (2.7)

3D vesselness measure is defined as;

V0 =


0, λ2, λ3 < 0(
e
−
R2
β

2β2

)(
1− e

−
R2
α

2α2

)(
1− e

−
S2

2c2

)
, otherwise

, (2.8)

where

S =
√
λ2

1 + λ2
2 + λ2

3, Rβ =
λ1√
λ2λ3

, Rα =
|λ2|
|λ3|

.

Rβ ratio indicates tubular features. Rα ratio that λ2 ≈ λ3 and thus helps to

discriminate between plate-like and line-like structures. Lastly, S evaluates whether

the eigenvalues are large compared to noise. α, β and c are real positive parameters

that are user-defined. Several 2D and 3D image structure models have been used to

express the relationships between the eigenvalues [6], see Table 2.1.
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2D Neuriteness

As an alternative to vesselness measurement of Frangi, Meijering and colleagues [8]

introduce a neuriteness measurement to enhance low contrast and highly inhomogen-

eous curvilinear structures in biomedical images. Using a modified Hessian matrix,

with a tuning parameter, and a new combination of eigenvalues, neuriteness infers

putative curvilinear features in the image. A modified Hessian matrix, H ′, is defined

as follows;

H ′ =

H11 + αH22 (1− α)H12

(1− α)H12 H22 + αH11

 , (2.9)

where α is a tunable parameter, to calculate a measure of neuriteness such that,

N =


λmax

λmin

if λmax < 0

0 if λmax ≥ 0

, (2.10)

where

λmax = max(|λ1
′|, |λ2

′|), (2.11)

λmin = min(λmax), (2.12)

λ
′

1 = λ1 + αλ2, (2.13)

λ
′

2 = λ2 + αλ1, (2.14)

where λ
′
i are the normalized eigenvalues of H ′; λmax is the largest eigenvalue at each

pixel; and λmin the smallest value of all λmax [8]. In the neuriteness measurement,

background intensity discontinuities that are immune to first order derivatives are

suppressed by the use of second-order derivatives, since the first-order derivative

reacts wherever there is a discontinuity in intensity level.
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3D Neuriteness

Neuriteness measure was extended into 3D with use of 3D second-order modified

Hessian matrix [76];

H
′
=


H11 + α

2
H22 + α

2
H33 (1− α)H12 (1− α)H13

(1− α)H12 H22 + α
2
H11 + α

2
H33 (1− α)H23

(1− α)H13 (1− α)H23 H33 + α
2
H11 + α

2
H22

 , (2.15)

where α is a parameter whose optimal value will be chosen such that the equivalent

steerable filter in [77]. The 3D neuriteness measurement is defined as;

λmax = max(|λ1
′|, |λ2

′|, |λ3
′), (2.16)

λmin = min(λmax), (2.17)

λ
′

1 = λ1 + αλ2 + αλ3, (2.18)

λ
′

2 = λ2 + αλ1 + αλ3, (2.19)

λ
′

3 = λ3 + αλ1 + αλ2. (2.20)

A major failing for the neuriteness measure is that background noise signals are

enhanced as if they are curvilinear structures (see Figure 2.1c). In the original

paper [8] this is solved with a tracing stage; however, as an enhancer only, this can

cause serious problems for further analysis. The neuriteness measure also leads to a

failure at the intersection of vessels as both eigenvalues have similarly large values

leading to a neuriteness measure close to zero (see Figure 2.8). A further example

of their work is found in [78].

Regularized Volume Ratio

Recently, Jerman and colleagues [9] proposed a new Hessian-based curvilinear fea-

ture enhancement method, which is able to resolve the drawbacks found in most of

the previous Hessian-based methods, which are directly proportional to λ2 2D and
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3D or λ3 (3D only). These drawbacks are: 1. eigenvalues are non-uniform throughout

and an elongated or rounded structure that has uniform intensity; 2. eigenvalues

vary with image intensity; and 3. curvilinear structure enhancement is not uniform

across scales. Jerman et al. [9] attempt to solve this by modifying the vesselness to

indicate elongated structures, such as vessels, and regularising λ3 (where λ3 = λ2 in

2D) to ensure robustness to low magnitude changes, e.g. noise in regions of uniform

intensity. The 2D version of the method is defined as;

VP =


0 if λ2 ≤ 0 ∨ λρ ≤ 0

1 if λ2 ≥ λρ/2 > 0

λ2
2(λρ − λ2)

(
3

λ2+λρ

)3

otherwise

, (2.21)

where λρ is the regularised form of λ2, and is calculated;

λρ(s) =


λ2 if λ2 > τ max~p λ2(~p, s)

τ max~p λ2(~p, s) if 0 < λ2 ≤ τ max~p λ2(~p, s)

0 otherwise

, (2.22)

for scale s, where τ is a cut-off threshold between zero and one and for any pixel

~p = (x, y). A major issue of this method is the false vessel effect and noise sensitivity

(see Figure 2.1c). Throughout this thesis, I refer to this approach as the RVR.

2.2.3 Phase Congruency

A major issue with many image enhancement methods is that they depend on image

intensity and, therefore, fine, and usually lower intensity, vessels may be missed.

To address this issue a contrast-independent method, based on Phase Congruency

(PC), was introduced in [56]. A 2D phase congruency tensor-based approach for

curvilinear structures enhancement was proposed by [10] and then extended to 3D

by [17].
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Figure 2.5: First four Fourier series (green, pink, purple and orange) of a 1D square
wave signal (bold black) and the sum of them (bold blue).

Phase Congruency based Methods

In image processing, phase congruency is intensity- and contrast-independent fea-

ture metric that can be used for edge, corner and other feature detection. Phase

congruency relies on the feature phases in the frequency domain of the image

(Figure 2.5). Features such as edges and corners, many frequency components are in

phase regardless of the contrast between foreground and background in the intensity

domain.

2D Phase Congruency For the calculation of the local phase is needed a quad-

rature pair of filters which are polar separable filters. To obtain localised frequency

information, Gabor filters are the most popular option. Gabor filters were first

presented in [79], then used as a traditional choice of quadrature filters. These filters

provide the best simultaneous localization of spatial and frequency information.

Though, they have two main constraints. The maximum bandwidth of a Gabor

filter is limited to around one octave and Gabor filters are not optimal if one is

endeavouring broad spectral information with maximal spatial localization. Another

choice to the Gabor function is the log-Gabor function proposed by [80]. log-Gabor

filters can be created with arbitrary bandwidth and the bandwidth can be optimised

to produce a filter with minimal spatial extent. Since then, log-Gabor filters have

been chosen as a quadrature filters. So, let assume that I(~p) is a given image where
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(a) Even filter

(b) Odd filter

Figure 2.6: Even (a) and odd (b) symmetric filter transfer function used to calculate
the phase congruency.

~p = (x, y) is a specific pixel position, and a quadrature pair of even, F e
s,θ, and odd,

F o
s,θ (see Figure 2.6), filters at scale s and orientation θ. The response vector is a

given by its even and odd components es,θ(~p) and os,θ(~p);

[es,θ (~p) , os,θ (~p)] =
[
I (~p) ∗ F e

s,θ, I (~p) ∗ F o
s,θ

]
. (2.23)

The amplitude of the sth component is defined as;

As,θ (~p) =

√
es,θ (~p)2 + os,θ (~p)2, (2.24)

and the local phase is given by;
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ϕs,θ (~p) = atan

(
os,θ (~p)

es,θ (~p)

)
. (2.25)

The oriented log-Gabor filter in the frequency domain can be determined in polar

coordinates as the product of two components,

Ĝ(ω, θ) = e

−(log( ω
ω0 ))

2

2 log(σωω0 )


.e

(
− (θ−θ0)2

2σθ

)
, (2.26)

where ω0 is central radial frequency of filter and σω is the standard deviation

controlling the filter bandwidth in [80]. θ is the orientation of the filter and σθ

determines the angular spread.

Mathematically in 2D case, I define the phase congruency, PCs(~p), for a set of scale,

s, over several orientations, θ and at a specific pixel, ~p = (x, y), as;

PCs(~p) =
∑
θ

PCs,θ(~p), (2.27)

where PCs,θ(~p), the phase congruency for each orientation, is defined as;

PCθ(~p) =

∑
sWs(~p)bAs,θ(~p)∆ϕs,θ(~p)− tc∑

sAs,θ(~p) + ε
. (2.28)

Here As,θ(~p) is the amplitude of the image component at scale s, t is a noise reducing

threshold and ε a small factor to prevent division by zero. Here b.c is defined as;

bf(x)c =

f(x) f(x) >= 0

0 otherwise

. (2.29)

The phase deviation, ∆ϕs,θ(~p), quantifies the difference between the phase at scale

s, ϕs,θ(~p), and the mean phase over all scales, ϕ̄θ(~p), such that;
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∆ϕs,θ(~p) = |cos (ϕs,θ(~p)− ϕ̄θ(~p))− sin (ϕs,θ(~p)− ϕ̄θ(~p))| . (2.30)

Finally, W (~p) is a sigmoid weighting term penalising narrow frequency regions based

on γ and c, gain and cut-off, respectively, Amax(~p), which is the maximum response

over all scales and S, the total number of scales. Mathematically;

Ws(~p) =

(
1 + e

γ
(
c− 1

S

( ∑
s As(~p)

Amax(~p)+ε

)))
. (2.31)

Phase Congruency Tensor-based Methods

The Phase Congruency Tensor (PCT) is built upon PC principles, but the tensor

is decomposed [10]. For a given set of scales s and a given set of phase congruency

measures PCs(~p, θ) for each orientation θ, the proposed phase congruency tensor is;

TPCs(~p) =
∑
θ

PCs(~p, θ)(~nθ~n
T
θ ), (2.32)

where ~nθ is the normalised column vector for each orientation and α = 1/N − 1,

with N is the image dimensionality.

The eigenvalues of the tensor can then be used in the same way as the Hessian

matrix eigenvalues are used in Equations (2.5) and (2.10) to define PCT-neuriteness

and PCT-vesselness. An extension of this method into 3D has recently been shown

in [17] (for the detailed steps of the phase-based tensor see Figure 2.7).

A major drawback of the PC-based concept is the complexity of its parameter space.

Moreover, as with Hessian-based measures, the PCT-based measures also lead to a

failure at the intersection of curvilinear structures as both eigenvalues have similar,

large values leading to PCT-based vesselness and neuriteness measures close to zero

(see Figure 2.8).
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(a) Input (b) log-Gabor filter

(c) F o(odd) (d) F e (even)

(e) PC1 (f) PC2 (g) PC3

(h) PCTxx (i) PCTxy (j) PCTyy

(k) PCT-neuriteness

Figure 2.7: Step by step explanation of the Phase Congruency Tensor. A leaf vein
network image [10] is used as an input and is shown in (a). (b) a bank of log-Gabor
filters for 6 scales and 6 orientations, (c, d) odd and even filter responses for 3rd scale
and 3rd orientation, (e-g) phase congruency for first 3 scales, (h-j) phase congruency
tensor components, (k) phase congruency tensor-based neuriteness.
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 2.8: Lost of the curvilinear structure enhancement methods response at the
junction. (a) an input image. Results for: (b) PCT-neuriteness, (c) PCT-vesselness,
(d) vesselness, (e) neuriteness, (f) SCIRD-TS, (g) line detector, (h) CLAHE,
(i) Zana’s top-hat, (j) wavelet, (k) volume ratio, (l) RORPO. Since both eigenvalues
have similar values at the junction, it leads to any of the tensor-based methods
failure at the junctions.

2.2.4 Adaptive Histogram Equalisation-based Methods

Contrast Limited Adaptive Histogram Equalisation (CLAHE), proposed by [81],

is widely used for curvilinear structures enhancement. In this simple, histogram-

based method an image is first divided into small regions, each of which then

undergoes a histogram equalisation. To avoid over-enhancement of noise, a contrast

limiting procedure is applied between regions. Further development of this method

is demonstrated in [82] where CLAHE is combined with an anisotropic diffusion

filter to smooth the image and preserve vessel boundaries. A major drawback of

this method is noise sensitivity (see Figure 2.9).
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(a) level 5 AUC=0.82 (b) level 15 AUC=0.98 (c) level 25 AUC=0.99

(d) level 5 AUC=0.54 (e) level 15 AUC=0.94 (f) level 25 AUC=0.99

(g) level 5 AUC=0.84 (h) level 15 AUC=0.97 (i) level 25 AUC=0.99

Figure 2.9: Demonstration of the effect of different types and levels of noise on the
performance of curvilinear structures enhancement using CLAHE approach. (a to
c) demonstrate additive Gaussian noise, (d to f) show salt and pepper noise, (g to
i) illustrate speckle noise.

2.2.5 Wavelet Transform-based Enhancement Methods

Bankhead and colleagues [11] proposed the use of wavelets for curvilinear structure

enhancement and segmentation. They calculate anisotropic, undecimated wavelet

transform using the cubic B-spline mother wavelet, and employ the coefficients

to the threshold steps for enhancement, followed by vessel segmentation (see the

workflow in Figure 2.10 for detailed steps). Further improvement of this approach is

demonstrated in [83] where multi-orientation and multiscale features from the vessel

filtering and the wavelet transform stages are combined and then used for training
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 2.10: A wavelet transform-based curvilinear features enhancement approach
workflow: (a) An RGB input image (from the DRIVE database) is loaded. (b) A
green channel is selected for later processing. (c) A mask is produced by global
thresholding. (d) The wavelet transform is applied to (b). (e) Wavelet coefficients
are thresholded. (f) Small objects are removed and holes are filled in (e). (g)
Morphological thinning is applied to (f). (h) Distance transform is applied to (f) to
assist with estimating diameters and removing erroneously detected segments. (i)
Branches are removed from (g) and spline fitting applied to determine centrelines.
(j) Edges are detected perpendicular to the centrelines. (this Figure is adopted
from [11]).

the random forest classifier. A major drawback of this method is the complexity of

its parameter space. Since it is difficult to determine optimal parameters for each

type of data. Also, it is not capable to work with the different type of objects to be

enhanced.

2.2.6 Line Detector-based Enhancement Methods

Curvilinear feature enhancement has also been done using multiscale line detect-

ors [84]. The approach is carried out by changing the length of a primary line

detector with varying scales. The line response, identified by subtraction of average

value and the maximum value of each pixel, is computed at 12 different line direc-

tions. The main idea behind this method is that line detectors with smaller lengths
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Figure 2.11: A generalized line detector. (this Figure is adopted from [84]).

(a) (b)

Figure 2.12: (a) Line strength image obtained after the linear combination process
on retinal image, and (b) is the result at the some image patches showing merging
nearby curvilinear structures (this Figure is adopted from [84]).

will avoid the combination of the region of curvilinear structure pixels and therefore,

provide correct responses (see Figure 2.11). A major drawback of this method is

at junctions, where the method produces ‘false curvilinear structures’ by merging

nearby curvilinear structures (see Figure 2.12). Further improvement of this method

is demonstrated in [85] where a linear combination of all the line responses at varying

scales is proposed to produce the final enhancement and segmentation.
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Enhancement
Approach

Time [seconds]

DRIVE STARE HRF

Size/per-image [584× 565] [605× 700] [2336× 3504]

Vesselness 7.853 5.1 90.094

Zana’s top-hat 0.717 1.168 12.663

Neuriteness 1.043 1.423 72.296

PCT-vesselness 2.170 2.145 297.691

PCT-neuriteness 1.620 2.005 217.41

Line detector 1.784 1.28 16.323

SCIRD 8.513 5.009 136.407

RORPO 11.787 16.562 259.322

Table 2.2: An average computation time for the state-of-the-art curvilinear structure
enhancement approaches across the DRIVE, STARE and HRF datasets.

2.2.7 Mathematical Morphology-based Enhancement

Methods

Mathematical morphology has been used by many researchers to enhance and seg-

ment curvilinear structures [86–91]. Zana and Klein [86] proposed a novel method

which combines morphological transforms and cross-curvature evaluation for cur-

vilinear structure enhancement and segmentation. This method relies on the as-

sumption that vessels are linear, connected and have smooth variations of curvature

along the ridge of the curvilinear feature. First, a sum of mathematical morphology

top-hats is calculated using linear structuring elements with the single size (15-

pixels long for images used in [86]) at different orientations, and after enhancement

step, a curvature measure is calculated using a Laplacian of Gaussian, and finally,

both of them are combined to reduce noise and enhance curvilinear structures in

an image. Further improvement of this method is demonstrated in [75, 92, 93]. In

particular, in [92], an advanced morphological directional filter called path openings

is linked with data fusion based on fuzzy set theory. This approach has four steps;

First is preprocessing, where the image undergoes histogram equalisation, and then
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Gaussian filtering to improve the effectiveness of the second step (see Figure 2

in [92]). The second step involves feature extraction by detection of local minima

and edges in the image (see Figure 1; (b) and (c) in [92]). The third step preserves

connected vessels and suppresses noise by path opening (see Figure 1; (d) and (e)

in [92]), and the final step combines the features and possible paths into a fuzzy

classification problem - identifying pixels as likely vessels or likely background (see

Figure 3 in [92]).

And most recently, in [93], a multiscale morphological top-hats transform (see Chapter 3

(p. 31)) is combined with Gabor and a matched filter. A major issue with this

method is that it is quite sensitive to noise, this problem inherits from the mathem-

atical morphology and CLAHE.

A mathematical morphology-based path opening and closing operation to detect the

curvilinear structures in retinal images was introduced by [33]. Recently, a new path

operator called Ranking the Orientation Responses of Path Operators (RORPO) has

been proposed to distinguish curvilinear objects from blob-like and planar structures

in images [94, 95]. The main disadvantage of the RORPO approach is its high

computation cost when applied to large volume image datasets (see Table 2.2).

2.2.8 Other Approaches

Recently, deep learning approaches have shown great potential for curvilinear struc-

ture enhancement and segmentation [96–101]. In particular, a new regression archi-

tecture based on the filter banks learned by sparse convolutional coding is proposed

by [100]. The approach is based on a novel initialisation strategy, using carefully de-

signed hand-crafted filters (SCIRD-TS) which are modelling appearance properties

of curvilinear structures.
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Epilogue

Image enhancement aims to improve the visual quality of an image to aid human

qualitative analyses and automated quantitative analyses of features/objects in

the image. In this Chapter, I presented the state-of-the-art curvilinear feature

enhancement methods. All these methods have been used as comparator methods

and have been tested on the synthetic and real-world biomedical image data in the

following Chapters.
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Chapter 3

An Introduction to Mathematical

Morphology

Morphology is a term in biology that used to explain the structures in plants and

animals, also in imaging, it resembles in many aspects [102]. It is a branch of

image processing that allows detecting specific geometric structures in images. The

first time, it was proposed by Georges Matheron, and Jean Serra proposed to use

it to measure the distribution of particles in binary images [13]. Later on, it has

been used for the grayscale images for a great variety of problems such as; noise

suppression [103], edge detection [14], skeletonisation [104], granulometry [105], and

the watershed transform-based segmentation [106].

In this Chapter, I will introduce the mathematical morphology concept which behind

the image enhancement methods that I have studied in this thesis. First, I will

identify the two fundamental operations which are the dilation and erosion in a

binary image to increase the perceptibility, followed by opening and closing, which

are the combination of dilation and erosion. I will discuss the extension of these four

operators to grayscale before going on to explain the more complex method created

by mathematical morphology: the top-hat transform.
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(a) Horizontal line 0◦ (b) Vertical line 90◦ (c) Diagonal line 45◦

(d) Square (e) Cross

Figure 3.1: Different shape of structuring elements (a-e).

3.1 Mathematical Morphology in Binary Images

Let us assume that the binary image I(~p) is a set of points embedded into Z2 and the

structuring element (SE) that equivalent to the kernel used for convolution. The

structuring element should be smaller than the object of interest, binary, have a

shape that distinguishes features of interest in the image (see Figure 3.1). To give

an example, if we would like to enhance and then detect curvilinear structures in

an image, rotated line structuring element should be used. To choice of type and

size may impact on the transform either operations (Figure 3.2). Since the target

region is normally different from the background that is surrounding the region of

features, it is essential to choose the right structuring element.

Two basic mathematical morphology operations, dilation and erosion, are proposed

by [102]. Dilation expands or dilates features that equal to SE used. Mathematically,

binary dilation, ⊕, on an image I with SE b is defined as;

(I ⊕ b) =
{
~p ∈ Z2|(bs)~p ∩ I 6= ∅

}
, (3.1)

where bs is the symmetric of b, bs = {x| − x ∈ b}, and (bs)~p is a translation of bs by

vector ~p which is the all points in space. To understand the binary dilation visually,
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(a) Input image dilated by square and cross structuring element

(b) Dilated by square (c) Dilated by cross

Figure 3.2: Comparison of dilation results obtained by use of two different types of
structuring elements. (a) An input binary image. Dilation of the image with (b)
square structuring element and with (c) cross structuring element.

see Figure 3.3, where the feature in the binary image is dilated based on the square

shape of the SE.

On the contrary to the dilation, mathematical morphology erosion operation erodes

the image. Mathematically, binary erosion, 	, of an image I with SE b is defined

as;

(I 	 b) =
{
~p ∈ Z2|b~p ⊆ I

}
, (3.2)

where b~p is a translation of b by vector ~p. Figure 3.4 illustrates the erosion of a
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Figure 3.3: Dilation of a binary image with a square structuring element. ‘+’ sign
illustrates the pixels are added.
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Figure 3.4: Erosion of a binary image with a square structuring element. ‘-’ sign
illustrates the pixels are removed.

binary image. Note how the boundaries of the original object are eroded based on

the square shape of the SE.

More complex mathematical morphology operations, called opening and closing,

were proposed by [102]. An opening is an erosion followed by a dilation of an image

I with SE b defined as;

(I ◦ b) = ((I 	 b)⊕ b). (3.3)

Vice versa, closing is a dilation followed by erosion as;

(I • b) = ((I ⊕ b)	 b). (3.4)

Figure 3.7 shows an example of opening and closing of the same input image with a
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+

(a)

+

(b) (c) (d)

Figure 3.5: Dilation on a pixel-by-pixel basis where structuring elements cover non-
empty and empty pixels. Pixels are added (illustrated with ‘+’ sign) when there is a
non-empty pixel under the SE when centered on that pixel even when the majority
of pixels are empty (a-b). Pixels are left empty when there are no non-empty pixels
under the SE which, with this SE is mostly the border pixels (c-d).

square structuring element. The opening and closing are non-linear morphological

operations, where opening opens the objects/regions in an image (as in Figure 3.7a

and Figure 3.8) and closing closes objects/regions in an image (as in Figure 3.7b).

3.2 Mathematical Morphology in Grayscale

Images

3.2.1 Grayscale Dilation and Erosion

To extend from binary to grayscale mathematical morphology, grayscale structuring

element b contains a finite number of pixels to account for the embedding of the

image in R as opposed to Z as for the binary case. Grayscale dilation is defined as;

(I ⊕ b)(~p) = sup
~q∈R2

(I(~q) + b(~p− ~q)) , (3.5)

and, grayscale erosion as;

(I 	 b)(~p) = inf
~q∈R2

(I(~q)− b(~q − ~p)) , (3.6)
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-

(a)

-

(b) (c) (d)

Figure 3.6: Erosion on a pixel-by-pixel basis where structuring elements cover empty
and non-empty pixels. Pixels are removed (illustrated with ‘−’ sign) when there is
an empty pixel under the SE when centered on that pixel even when the majority
of pixels are non-empty (a-b). Pixels are kept when there are no empty pixels under
the SE which, with this SE is rare(c-d).

where sup~q is the supremum over all ~q, for image processing this is the equivalent

to the weighted maximum over the SE centered at ~q, and inf~q is the infimum over

all ~q, equivalent to the weighted minimum over the SE centered at ~q.

Figure 3.8 demonstrates grayscale dilation and erosion of a simple grayscale image.

Dilation expands the image while erosion decreases the feature of interest. Grayscale

opening and closing are demonstrated in Figure 3.8. Opening smooths the image

and removes narrow ridges. By the same manner, closing smooths the image by

filling valleys.

3.2.2 Grayscale Opening, Closing, and Top-Hat

Grayscale dilation and erosion are used to defined grayscale opening, closing and

top-hat operations as follows;

opening : (I ◦ b)(~p) = ((I 	 b)⊕ b)(~p), (3.7)

closing : (I • b)(~p) = ((I ⊕ b)	 b)(~p), (3.8)

top-hat : TH(I, b) = I(~p)− (I ◦ b)(~p), (3.9)

bottom-hat : BH(I, b) = I(~p)− (I • b)(~p). (3.10)



37

◦ = -
-
-
-
- -

- -

-
-
-

-
-
-

-

-

-
-

-
-
-
-
-
-

-

-
-
-

-
-
-
-
-

⊕ = +
+
+
+
++

+

+

+

+
+

+
+

+ ++
+
++

+
+
+

(a) Opening

• =
+
+
+
+
+
+
++

+

+

++

+

+
+

+
+
+

+

+
+

+

+

+
+
+

+
+
+
+

+

+

+

+
+
+
+
+
+
+

	 = -
-

-
-
-
-
- -

-

-

- -

-

-
-

-
-
-

-

-
- -

-
-
-

-
-
-
-

-

-

-

-
-
-
-
-
-
-

(b) Closing

Figure 3.7: Opening (a) and closing (b) of a binary image with a square SE. Note
that, ‘+’ sign illustrates the pixels are added and ‘-’ sign illustrates the pixels are
removed.

In general, grayscale opening (◦) preserves dark features and suppresses bright

features, where closing (•) preserves bright features and suppresses dark features

in an image. Grayscale top-hat enhances light features and bottom-hat enhances

dark features in an image. Examples of how these operations work can be seen

in Figure 3.8 and Figure 3.9.

3.3 Other Binary and Grayscale Operations

In this Chapter, my aim is to introduce mathematical morphology and the operations

used throughout this thesis. Morphological operations are not limited to those

operations I mentioned earlier: since many image analysis and processing, concepts

rely on extracting features of objects, describing shapes, and recognizing patterns,

many image processing methods can be described in the form of morphological

operations.

In this Section, I will present several fundamental morphological operations and
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⊕ =

(a) Dilation.

	 =

(b) Erosion.

◦ =

(c) Opening.

• =

(d) Closing.

Figure 3.8: Grayscale mathematical morphology operations applied to a simple
grayscale image. (a) Dilation, (b) erosion, (c) opening, and (d) closing.

where/how to use them, including boundary extraction, region filling, connected

components extraction, convex hull, thinning, thickening, skeletonisation, pruning,

and morphological edge operators. For an extensive summary of morphological

operations, see [108], Table 9.1.

The hit-or-miss transform (HMT) is an operation for pattern recognition and ana-

lysing of binary images by using morphological erosion with a pair of disjoint struc-

turing elements. HMT is a straightforward and powerful morphological tool and has

been in lots of image processing research. Bloomberg and Maragos [109] proposed a

generalization of HMT to process grayscale images that relied on grayscale erosion.
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(a) Retinal image (b) Cropped image

(c) Green channel (d) Top-hat result

Figure 3.9: Top-hat transform. (a) A retinal image from the DR HAGIS [107]
dataset. A top-hat transform with the disk shape SE radius 15 pixel result (d)
when applied to a grayscale version (c) of the cropped image (b).

Grey-level HMTs was applied angiogram processing by [110, 111]. A class of rank-

based template matching criteria by using grayscale HMT was proposed by [112]. A

modified version of morphological HMT for object detection was presented by [113].

Whilst Raducanu and Grana [114] propose a modified HMT based on level sets to

obtain a translation invariant recognition tool, with some robustness regarding small

deformations and variations in illumination.

Boundary extraction and edge detection can also be done using mathematical mor-

phology. Wood et al. [115] proposed a vessel segmentation algorithm using a mor-

phological filtering method to locate vessel segments. Mendonca and Campilho
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[116] offered a shape-based approach for the segmentation of the vascular network

in retinal images that comprises of ridge detection, morphological curvilinear-object

enhancement and, curvilinear-object reconstruction. Figueiredo and Leitao [117]

represented anon-smoothing method for estimating vessel contours in angiograms.

Under the assumptions of curvilinear features, edge detection was achieved by

adopting a morphological grayscale edge operator.

Eiho and Qian [118] proposed a method based on only morphological operators

(top-hat transform, erosion, etc.) for the detection of the coronary artery tree in

angiograms. First, the top-hat transform was used to enhance curvilinear structures,

then erosion operators were applied to remove the unwanted areas, leaving only

the coronary artery area. After that, the extracted curvilinear structures were

skeletonised by thinning. Eventually, the edges were extracted by applying the

watershed transformation on the binary image obtained from a dilation operation

on the binary skeleton already extracted.

Donizelli [119] combined mathematical morphology and region growing algorithms

to segment large vessels in angiography images. First, the top-hat transform was

applied to extract large vessels, then a binary region growing algorithm was used to

eliminate some remaining fine vessels and background noise artefacts. Afterwards,

regions smaller than a given threshold were removed leaving only the large vessels.

Others implemented two similar mathematical morphology-based approaches; region

splitting approach [120], and morphological-thresholding [121]. Fetita et al. [122]

proposed a method based on region-based morphology to extract airways from CT.

Another region-based method was proposed by Fraz et al. [123] where centrelines

were detected with a first-order Gaussian filter, and then vessels were reconstructed

by means of the top-hat transform. Roychowdhury et al. [124] presented an iterative

method that relies on region growing. The method obtains a first estimation by

performing a top hat transform of the inverted green channel and getting a rough

estimation of regions by thresholding it.
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Chapter 4

Contrast-Independent Curvilinear

Structure Enhancement in 3D

Biomedical Images

Prologue

A wide range of biomedical applications require detection, quantification and mod-

elling of curvilinear structures in 3D images. In this Chapter, I will propose a 3D

contrast-independent approach to enhance curvilinear structures based on the 3D

Phase Congruency Tensor concept proposed by [16]. The obtained results show that

the proposed method is insensitive to intensity variations along the 3D curve, and

provides successful enhancement within noisy regions. The quality of the 3D Phase

Congruency Tensor-based method is evaluated by comparing it with state-of-the-art

intensity-based approaches on both synthetic and real biomedical images.

Declaration: This Chapter is based on the following publication: Sazak, Ç. & Obara,

B. Contrast-independent curvilinear structure enhancement in 3D biomedical images

in IEEE International Symposium on Biomedical Imaging (2017), 1165–1168. This

Chapter is presented as published, although referencing and notation has been
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altered and cross-referencing added for consistency throughout this thesis. Some

stylistic changes have been made for consistency. The majority of the text is

verbatim; however, additions to the body of text are included where they are

appropriate.

4.1 Introduction

The explosive growth in size and complexity of biomedical imaging data and the need

for extracting quantitative information increasingly requires sophisticated bioim-

age analysis methods. As a common requirement of strong and durable image

enhancement, segmentation and analysing of curve-like features are essential in

bioimaging. Accordingly, a significant number of image processing solutions has been

propounded to enhance and extract 3D curve-like structures such as blood vessels [4,

49], airways in lung images [125], dendritic spines [126], neurons[76], microtubules

[127], and others as reviewed in [128]. Despite such a wide range of approaches,

the robust enhancement of 3D curvilinear structures remains challenging due to the

intensity variations along the 3D curve. To overcome this challenge, I propose a 3D

contrast-independent approach to enhance curvilinear structures based on the Phase

Congruency Tensor (PCT) concept [10]. Also, it will be shown that by replacing

the Hessian tensor with PCT, I may actively reduce the dependence on local image

contrast which has hampered other tensor-based methods. In particular, I show

how the PCT concept may be used to improve standard 3D curvilinear feature

measurement techniques, like vesselness and neuriteness. The Chapter is organized

as follows; In Section 4.2, I formulate the 3D PCT concept. Experimental results

for 3D synthetic and real biological images are presented in Section 4.4. Section 4.5

is dedicated to conclusions.
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4.1.1 3D Intensity-based Curvilinear Structure Enhancement

Using Tensors for Local Feature Representation

The tensor representation of the local image structure almost provides the most

information about how much the image structures change through and across the

dominant directions and, is generated by combining the outputs from polar separable

quadrature filters [16]. Assume that an image I(~p), that ~p is pixel representation of

the 3D spatial location. A suitable notation of the local structure of the surface in

the region of ~p is given by the tensor defined as follows;

T =
∑

Θ

‖qΘ‖(~nΘ~n
T
Θ), (4.1)

where qΘ is the output from an oriented quadrature filter applied to an image I(~p),

as defined in Equation (2.27) (p. 21) and Equation (2.32) (p. 22), and ~nΘ is the

column vector in the direction Θ. In the 3D case, an orientation Θ = (θ, φ) can be

specified by elevation θ and azimuth φ angles on a sphere of unit radius [129], and

~nΘ is the column vector;

~nΘ = ~nθ,φ = [sin(θ)cos(φ), sin(θ)sin(φ), cos(θ)]T . (4.2)

4.2 Method

Our 3D extension of a 2D Phase Congruency Tensor (PCT) concept introduced

by [10] is proposed here. The 3D PCT concept is then used to define 3D curvilinear

feature enhancement methods which are PCT-vesselness and PCT-neuriteness.
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Figure 4.1: Uniform distribution of N = 250 points on the unit sphere calculated
with an approach proposed by [130].

4.2.1 Orientation

In order to calculate the 3D PCT, a set of N oriented quadrature filters (see

Equation (2.27) (p. 21) and Equation (2.32) (p. 22)) are defined by a set of N

3D orientations;

{Θ} = {(θk, φk)}Nk=1. (4.3)

Such a set of 3D orientation is calculated using a concept of uniformly distributed

points on the unit sphere proposed by [130, 131] (see Figure 4.1). Each point (θk, φk)

on the sphere is generated by a ’spiral scheme’ as follows;

θk = arccos

(
hk = −1 +

2 (k − 1)

(N − 1)

)
, 1 ≤ k ≤ N, (4.4)
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φk =

(
φk−1 +

3.6√
N

1√
1− h2

k

)
(mod 2π) , (4.5)

2 ≤ k ≤ N − 1, φ1 = φN = 0.

where 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π.

4.2.2 3D Phase-based Detection

In terms of the local image phase approach that is contrast-independent curvilinear

enhancement has been investigated by [132]. The calculation of local phases needs

the use of quadrature pairs of filters to the image. Consequently, for a given image

I(~p) and a quadrature pair of even F e
s,Θ and odd F o

s,Θ filters at scale s and orientation

Θ, the response vector is given by its even and odd components es,Θ(~p) and os,Θ(~p);

[es,Θ (~p) , os,Θ (~p)] =
[
I (~p) ∗ F e

s,Θ, I (~p) ∗ F o
s,Θ

]
. (4.6)

The amplitude of the sth component is defined as;

As,Θ (~p) =

√
es,Θ (~p)2 + os,Θ (~p)2, (4.7)

and the local phase given by;

ϕs,Θ (~p) = atan

(
os,Θ (~p)

es,Θ (~p)

)
, (4.8)

To implement phase enhancement, several quadrature filters have been proposed,

especially the log-Gabor filter [133].

For our method, a 3D log-Gabor filter has been used. Log-Gabor has two compon-

ents, and they are obtained by multiplying the angular and radial components of

the Gaussian transfer function on the logarithmic frequency domain [133];
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L̂(ω,Θ) = e

− ln( ω
ω0 )

2

2 ln(σωω0 )
2


· e
(
− Θ2

2σ2
Θ

)
, (4.9)

where ω0 is the central radial frequency of the filter and σω is the standard deviation

controlling the filter bandwidth. Θ is the orientation of the filter and σΘ determines

the angular spread.

4.2.3 Phase Congruency

Phase congruency has been used to find a wide range of low-contrast features

including step edges, line and roof edges [134]. The phase congruency design assumes

that features are recognized at points where the Fourier components are maximally

in phase. In 3D, the phase congruency at several orientations is defined as [134];

PCs,Θ(~p) =
∑

Θ

(PCΘ(~p)) , (4.10)

and the phase congruency at each orientation Θ is defined as;

PCΘ(~p) =

∑
swΘ(~p) max(As,Θ(~p)∆Φs,Θ(~p)− t, 0)∑

sAs,Θ(~p) + ε
. (4.11)

As,Θ(~p) is the amplitude of the image component at the location ~p through the

use of a 3D log-Gabor filter with the scale s and orientation Θ. The t is a noise

threshold and ε a factor that ensures against the division of zero [132]. The weight

of frequency spread wΘ(~p) is defined as;

wΘ(~p) =
1

1 + e(µ(b−lΘ(~p)))
, (4.12)

which penalizes frequency distributions that are expressly narrow. The parameters

µ and b in this function are constants describing a gain factor and a cut-off value,
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respectively. A measure of filter response spread is defined as;

lΘ(~p) =
1

ℵ

(∑
sAs,Θ(~p)

Amax(~p) + ε

)
, (4.13)

where ℵ is a total number of scales. Finally, a phase deviation ∆Φs,Θ(~p) in Equation

4.11 is defined as;

∆Φs,Θ(~p) = es,Θ(~p)ϕ̄es,Θ(~p) + os,Θ(~p)ϕ̄os,Θ(~p)

− |es,Θ(~p)ϕ̄os,Θ(~p)− os,Θ(~p)ϕ̄es,Θ(~p)|, (4.14)

where ϕ̄
{e,o}
s,Θ (~p) =

∑
s {e, o}s,Θ(~p)/EΘ(~p), and

EΘ(~p) =

√√√√(∑
s

es,Θ(~p)

)2

+

(∑
s

os,Θ(~p)

)2

, (4.15)

where EΘ(~p) is the local energy and ϕs,Θ(~p) is the cosine of the deviation of the

phase while ϕ̄s,Θ(~p) is the overall mean phase angle. Phase congruency is explained

step by step in the Chapter 2: Section 2.2.3 (p. 19) and Figure 2.7.

4.2.4 3D PCT-Vesselness and -Neuriteness

3D piecewise curvilinear segments can be enhanced by analysing the relations between

eigenvalues and eigenvectors of the 3D Hessian. In a similar way, using Equations

4.16 and 4.18, our 3D PCT-based vesselness and 3D PCT-based neuriteness are

defined where the eigenvalues of 3D Hessian are substituted with those of the 3D

Phase Congruency Tensor T .



48

3D PCT-Vesselness

PCT-vesselness, as defined in [4], is computed as the ratio of the eigenvalues of Tσ(~p)

as;

Vσ =


0 λσ,2, λσ,3 < 0(

e

− R2
β

2β2

)(
1− e

− R2
α

2α2

)(
1− e

− S2

2c2

)
otherwise

,

(4.16)

where

S =
√
λ2
σ,1 + λ2

σ,2 + λ2
σ,3, Rβ =

|λσ,1|√
|λσ,2λσ,3|

, Rα =
|λσ,2|
|λσ,3|

,

where α, β and c are positive real user-defined parameters. The Rβ ratio calculates

blob-like features [4] and the Rα ratio helps to discriminate between plate-like and

line-like structures [59]. S is equal to half of the maximum Frobenius norm and

evaluates whether the eigenvalues are large compared to noise. Finally, multiscale

vesselness, for a given set of scales
∑

= {σi} and i = 1, 2, 3..., can be calculated

as [10];

V∑ = max
σ∈
∑ (Vσ) . (4.17)

3D PCT-Neuriteness

3D PCT-neuriteness, an equivalent of the Hessian matrix-based neuriteness proposed

by [8] for 2D and extended in [76] for 3D, is calculated based on eigenvalues of Tσ(~p)

as follows;



49

Nσ =


λσ,max
λσ,min

λσ,max < 0

0 λσ,max ≥ 0

, (4.18)

where

λσ,max = max(|λ′σ,1|, |λ
′

σ,2|, |λ
′

σ,3|),

λσ,min = min(λσ,max),

λ
′

σ,1 = λσ,1 + γλσ,2 + γλσ,3,

λ
′

σ,2 = γλσ,1 + λσ,2 + γλσ,3,

λ
′

σ,3 = γλσ,1 + γλσ,2 + λσ,3.

where λσ,min denotes the smallest value of λσ,max over all the pixels while λσ,max

largest one of eigenvalues λσ,i. Parameter γ is chosen by 1/3 as in [76].

4.3 Implementation

All codes were implemented and written in MATLAB 2015a on Windows 8.1 pro 64-

bit PC running an Intel Core i7-4790 CPU (3.60 GHz) with 16 GB RAM. The source

code is available in a GitHub repository https://github.com/CigdemSazak/phase-

congruency-tensor-3d.
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(a) (b) (c)

(d) (e)

Figure 4.2: Comparison between Hessian- and PCT-based approaches applied to a
synthetic image (a), vesselness (b), neuriteness (c), PCT-vesselness (d), and PCT-
neuriteness (e). 2D max projections of 3D images are shown. Green circles in the
(b) illustrate cross sections in the enhanced image by traditional vesselness filter. As
you notice that, it can not able to detect vessel junctions. Red circles demonstrate
the false vessels. However, proposed method are free from the all the problems.

(a) (b) (c)

Figure 4.3: 2D max projections of 3D images of microtubules network in plant
cell (a) and keratin network in skin cell (b) (provided by Dr. Tim Hawkins, Durham
University, UK), and neuronal network (c) (provided by Dr. Chris Banna, UC Santa
Barbara, USA). Regions of interest are highlighted in red.
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(a) Original images

(b) Neuriteness

(c) Vesselness

(d) PCT-neuriteness

(e) PCT-vesselness

Figure 4.4: Comparison between Hessian- and PCT-based approaches applied to
ROIs (a) from the Figure 4.3. Neuriteness (b), vesselness (c), PCT-neuriteness (d),
and PCT-vesselness (e). Notice that, traditional vesselness and neuriteness can
enhance the curvilinear structures, however PCT-based vesselness and neuriteness
can not only enhance the obvious structures, but they can also enhance the fine
structures.



52

(a)

(b) (c)

(d) (e)

Figure 4.5: Comparison between Hessian- and PCT-based approaches applied to
ROIs from Figure 4.3. Enhanced images are compared with the help of profile
analysing. Notice that traditional vesselness and neuriteness can not enhance the
fine curvilinear structures, while PCT-based vesselness and neuriteness can enhance
both large and fine structures. (a) Raw image, (b) vesselness, (c) neuriteness, (d)
PCT-vesselness, (e) PCT-neuriteness.

4.4 Results

PCT-based methods were compared with their corresponding intensity-based ver-

sions. The performance of the 3D PCT-based methods for curvilinear structure

detection was tested on a synthetic image (Figure 4.2), also real biological images

of keratins and neuronal networks (Figure 4.3 and Figure 4.4).

A synthetic image was designed to simulate branching structures in a noisy envir-

onment. Grid lines with a width of 10 pixels were generated on a bright, constant

background. To simulate a real-life scenario, Gaussian noise at 18 SNR was added to

the image. Figure 4.2 illustrate the comparison between 3D Hessian- and 3D PCT-
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based methods when applied to such a synthetic image. As you can notice that,

phase-based methods are capable of enhancing fine details compare the traditional

methods. Traditional vesselness and neuriteness have issues while enhancing the im-

ages. Vesselness cannot detect the cross sections in the biomedical images since both

eigenvalues close to zero. Neuriteness enhance the noise as a curvilinear structure

and create false curvilinear structures. However, the proposed method is capable

of enhancing all curvilinear structures including the fine curvilinear structures and

free from all the traditional methods suffers.

Finally, Figure 4.4 demonstrates the comparison results of 3D Hessian- and PCT-

based curvilinear structures enhancement methods tested on real biomedical images

of structures like microtubules, keratin and neurons (see Figure 4.3). Figure 4.5

demonstrates the ability of proposed methods with the regard of enhancement.

While state-of-the-art methods can not enhance the fine curvilinear structures,

proposed methods increase the visibility of curvilinear structures in terms of quant-

itatively and qualitatively.

4.5 Conclusion

Enhancement of the curvilinear structure is important for many biomedical applic-

ations. In this research, I have proposed the 3D Phase Congruency Tensor concept

used to define 3D contrast-independent curvilinear feature enhancement methods

such as PC-vesselness and PCT-neuriteness. Contrary to the 3D Hessian-based

intensity-dependent methods, results indicated for the PCT-based approaches show

a much higher degree of uniformity in the curvilinear feature enhancement perform-

ance. Finally, the 3D PCT concept can be adapted to methods for finding other non-

curvilinear structures such as junctions or ending points where high curvature values

exist along more than one principal directions. Compare to traditional methods like

vesselness and neuriteness, our approach is robust when enhancing low-intensity
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features in the biomedical images. However, phase congruency can be sensitive to

noise.

Epilogue

In this Chapter I have introduced a 3D contrast-independent approach to enhance

curvilinear structures based on the 3D Phase Congruency Tensor concept which

has shown to be a successful curvilinear structures enhancement approach when

compared to other intensity-based state-of-the-art approaches and tested on a variety

of synthetic and real images.
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Chapter 5

The Multiscale Bowler-Hat

Transform for Curvilinear Feature

Enhancement in Biomedical

Images

Prologue

In Chapter 3 (p. 31), I have provided an introduction to mathematical morphology

concept for binary and grayscale image processing.

In this Chapter, I will introduce a new mathematical morphology-based approach

for image enhancement, specifically the curvilinear features enhancement, called the

bowler-hat transform. The proposed method has been evaluated with both synthetic

and real biomedical image datasets and quantitatively and qualitatively compared

with several state-of-the-art curvilinear features enhancement methods.

Declaration: This Chapter is based on the following publication: Sazak, Ç., Nelson,

C. J. & Obara, B. The multiscale bowler-hat transform for blood vessel enhancement

in retinal images. Pattern Recognition 88, 739–750 (2019). This Chapter is presen-
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ted as published, although referencing and notation has been altered and cross-

referencing added for consistency throughout this thesis. Some stylistic changes

have been made for consistency. The majority of the text is verbatim; however,

additions to the body of text are included where they are appropriate.

5.1 Introduction

Many biomedical images contain curvilinear structures, such as blood vessels or cyto-

skeletal networks [73]. Automated extraction of these structures and their connected

network is often an essential step in quantitative image analysis and computer-aided

diagnostic pipelines. For example, automated retinal vessel extraction is used for

diagnosis, screening, and evaluation in a wide range of retinal diseases, including

diabetes and arteriosclerosis [135].

However, for a multitude of reasons, e.g. noisy image capture, sample/patient

variability, low contrast scenarios, etc., biomedical imaging modalities may suffer

from poor quality. As such, standard image segmentation methods are not able

to robustly detect curvilinear structures, and therefore some form of curvilinear

structure enhancement is required [73].

A wide range of curvilinear structure enhancement methods have been proposed

(see [135] and [73] for a recent review). These include Hessian [4, 58, 75], Phase

Congruency Tensor [10, 136], mathematical morphology [75, 86, 93], adaptive his-

togram equalisation [81] based approaches and many others [11, 84, 89, 91, 92,

137–139].

5.1.1 Contribution and Organisation

In this Chapter, I introduce an enhancement method for curvilinear structures

based on mathematical morphology concept, which exploits a key shape property of

curvilinear structures: the elongation. The proposed method, called the bowler-hat
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transform, has been qualitatively and quantitatively validated and compared with

state-of-the-art methods using a range of synthetic data and publicly available retinal

image datasets. The obtained results show that the proposed method achieves high-

quality, curvilinear structure enhancement in both synthetic examples and clinically

relevant retinal images. Retinal vessels can be considered as dark vessels on a

bright background or, when the image is simply inverted, as bright vessels on a dark

background. For the purposes of clarity in description and visualisation, I assume,

and our methods work for, bright vessels on a dark background; this is similar to

other methods [4]. The proposed method is suitable for a range of biomedical image

types without needing prior training or tuning.

The rest of this Chapter is organised as follows. Section 5.2 introduces and explains

the proposed bowler-hat transform, Section 5.3 presents validation experiments and

results on synthetic and real data. Finally, in Section 5.4, I discuss the results and

future work.

5.2 Method

In this Section, I introduce a novel, mathematical morphology-based method for

curvilinear structure enhancement in images: the bowler-hat transform. I highlight

the key concepts that allow this method to address the major drawbacks of existing,

state-of-the-art, methods.

5.2.1 Proposed Method

Figure 5.2 presents a flow diagram of the proposed method which combines the

outputs of morphological operations upon an image carried out with two different

banks of structuring elements: one bank of disk elements with varying radii, and

one bank of line elements with varying radii and rotation. The bowler-hat transform

name is influenced coming from the bank of disk elements (forming the bowl) and
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Figure 5.1: The bowler-hat transform name is inspired by the ‘bowler-hat’ shape
defined by the disk element (forming the bowl) and the set of line elements (forming
the brim).

the bank of line elements (forming the brim), see Figure 5.1.

For a given grayscale input image, I, it has been carried out a series of morphological

openings with a bank of disk-shaped structuring elements, bs of diameter s ∈ [1, smax]

pixels, where smax is the expected maximum curvilinear structure size and user-

defined parameter. This produces a stack of images, for all s, such that;

{Idisk} = {I ◦ bs : ∀s ∈ [1, smax]} . (5.1)

In each Idisk image, curvilinear structure segments wider than s remain and those

segments smaller than s are removed.

I also produce a similar stack of images using a bank of line-shaped structuring

elements, bs,θ; each line-shaped is of length s ∈ [1, smax], with a width of 1 pixel,

and orientation θ ∈ [0, 180), θsep is angle step.

As a result, curvilinear structure segments that are longer than s and along the

direction defined by θ will remain, and those shorter than s or along the direction

defined by θ will be removed. For each line length s I produce a stack of images for

all orientations defined by θ ∈ [0, 180). Then, for each s, I calculate a single image,
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Input
Image,
θsep, smax

Disk Opening
(Figure 5.3)

s < smax?
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(Figure 5.4)

θ < 180?

maxθ
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{Iline − Idisk}
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maxs

Enhancement
Image

Stop

s = 1
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Figure 5.2: Flow chart of the bowler-hat transform showing how two banks of
images are created using disk SEs (left route; Figure 5.3) and line SEs (right
route; Figure 5.4) of different scales and, for the line elements, rotations. These
banks are then combined in a multiscale fashion (Figure 5.5) before forming a single
enhancement image.
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SE

Opening

(a) A SE smaller than
any features in the input
image

(b) A SE bigger than
some features but smal-
ler than others

(c) A SE bigger than all
features in the image

Figure 5.3: Example openings with disk SEs of various sizes. The set of all openings
with disks of differing size represents the left route in Figure 5.2. Reprinted with
permission from [140].

SE

Opening

Max.

(a) A SE longer than the width of some features in the image

SE

Opening

Max.

(b) A SE longer than the width of most features in the image. Note how
those features aligned with the SE are not attenuated during opening

Figure 5.4: Example openings with line SEs of various lengths and rotations. The set
of all openings with lines of differing length and rotation represents the left route
in Figure 5.2. In this extremely simple case the maximum (right hand column)
includes values at all features. Reprinted with permission from [140].
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Disk SE

Difference

(a) A SE
smaller than
any features
in the input
image

(b) A SE
bigger than
some features
but smaller
than others

(c) A SE big-
ger than all
features in the
image

Max.

(d) Element-
wise
maximum
over
differences
at all scales

Figure 5.5: Example differences between disk openings and maximum (over
orientation) line openings of various sizes. The set of all differences represents the
coming together of the two routes in Figure 5.2. Disk SEs are shown to give an idea
of scale. The maximum (far right) represents the enhanced image. Reprinted with
permission from [140].

Iline as a pixel-wise maximum of the stack such that;

{Iline} =
{

max
θ

({I ◦ bs,θ : ∀θ}) : ∀s ∈ [1, smax]
}
. (5.2)

These two stacks, {Idisk} and {Iline}, are then combined by taking the stack-wise

difference, the difference between the maximum opening with a line of length s

across all angles and an image formed of opening with a disk of size s, to form the

enhanced image. The final enhanced image is then formed from maximum difference

at each pixel across all stacks;

Ienhanced = max
s

(|Iline − Idisk|). (5.3)

Pixels in the background, i.e. dark regions, will have a low value due to the use

of openings; pixels in the foreground of blob-like structures will have a low value

as the differences will be minimal, i.e. similar values for disk-based and line-based

openings; and pixels in the foreground of curvilinear structures will have a high value,
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i.e. large differences between longer line-based openings and disk-based openings.

The combination of line and disk elements gives the proposed method a key ad-

vantage over the existing methods. Given an appropriate smax, i.e. larger than

any curvilinear structures in the image, a junction should appear bright like those

curvilinear structures joining that junction, something that many other curvilinear

structure enhancement methods fail to do. This is due to the ability to fit longer

line-based structuring elements within the junction area. As a result, the curvilinear

structure network stays connected when enhanced and segmented, especially at

junctions.

In Section 5.3, I demonstrate, qualitatively and quantitatively, the key advantages

of the bowler-hat transform over the existing, state-of-the-art curvilinear structure

enhancement methods.

5.2.2 Implementation and Computation Time

All codes were implemented and written in MATLAB 2016b [141] on Windows 8.1

Pro 64-bit PC running an Intel Core i7-4790 CPU (3.60 GHz) with 16 GB RAM. The

source code is available in a GitHub repository https://github.com/CigdemSazak

/bowler-hat-2d.

The average computation time for the proposed method is 3.8 seconds for DRIVE

image and 4.9 seconds for STARE image. Please make a note that the proposed

method has been implemented and tested in MATLAB, however, C++ implement-

ation could be much faster.

5.3 Results

In this Section, the proposed method is qualitatively and quantitatively validated

and compared with the existing state-of-the-art methods using synthetic and clin-
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ically relevant, retinal image datasets, with human-annotated ground truths, and

other biomedical images.

As with any image processing method, an understanding of how the parameters

involved affect the result is essential. In general, I have found the bowler-hat

transform to be robust, usually requiring 10–12 θ orientations for line structuring

element and the size of the disk/line structuring element d to be greater than the

thickest vessel structure in an image.

The following Sections are organised as follows: first, I visually and qualitatively

analyse the bowler-hat transform and compare with alternative methods in Sec-

tion 5.3.1, Section 5.3.3, Section 5.3.2. Second, I use real-world fundus images, with

human-created ground truths, to compare these methods in Section 5.3.4. I evaluate

these results in a quantitative and comparable manner using the Receiver Operating

Characteristic (ROC) curve and the Area Under the Curve (AUC) metric. All the

images were normalised after each enhancement approach such that the brightest

pixel in the whole image has a value of 1 and the darkest a value of 0.

5.3.1 Profile Analysis

The effect of the curvilinear structure enhancement methods on a simple curvilinear

structure is shown in Figure 5.6. This represents the simplest example of a vessel in

an image, like those found in retinal images. Figure 5.6 illustrates the normalised,

intensity profile for images enhanced with each of the methods. As the Figure 5.6

clearly shows, the enhancement methods tend to expand or shrink the curvilinear

structures. Moreover, while the Hessian-based methods have an enhanced signal at

the center of the vessel, i.e. a peak value of one at the vessels centre-line, their value

quickly drops off and decreases the perceived thickness of the vessel. The proposed

method has both these benefits: a maximal peak value at the vessel centre-line and

an enhanced response to the edges of the vessel. As a result, reliable vessel thickness

can be captured.
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Figure 5.6: Cross-sectional profiles of a synthetic vessel input image and the
input image enhanced with the state-of-the-art (see legend for colours) curvilinear
structure enhancement methods and the proposed bowler-hat curvilinear structure
enhancement method. All the images are normalised such that the brightest pixel in
the whole image has a value of 1 and the darkest a value of 0. Some of the methods
enhance the whole curvilinear structure but still create noise as like in CLAHE, some
of them extend the vessel structure like PCT-neuriteness or shrink as like vesselness.
However, the proposed method enhances the curvilinear structure as a foreground
data, and detect background as an unnecessary data.

5.3.2 Response to Uneven Background Illumination

Figure 5.7 presents the response of the proposed method to an uneven illumination

scenario. Key features such as junctions are preserved and appear unaffected by

even severe illumination problems. This ability to preserve junctions under uneven

illumination is important for many real applications of curvilinear structure enhance-

ment and the proposed method is able to do this, unlike the current state-of-the-art

methods.

5.3.3 Response to Vessels, Intersections, and Blobs

Figure 5.8 presents a qualitative comparison between the proposed method and

the state-of-the-art methods when applied to synthetic images and real images

with curvilinear, intersection-like, and blob-like structures. Key issues that occur

across the state-of-the-art methods include defects at junctions (purple arrows),
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 5.7: Comparison of the curvilinear structure enhancement methods’ abilities
to deal with uneven background illumination. (a) an input image, (b) vesselness,
(c) CLAHE, (d) Zana’s top-hat, (e) neuriteness, (f) PCT-vesselness, (g) PCT-
neuriteness, (h) wavelet, (i) line detector, (j) volume ratio, (k) SCIRD-TS, and (l) the
bowler-hat. Most of the methods have not affected by the background illumination
and enhance the curvilinear structures as the manner of perfect enhancer, however,
(b, d, f, g, i) are have blurs at the curvilinear structure edges, shrink the curvilinear
structures or create shades. For instance, (j, k) and (l) perfectly enhance the vessels.

noise enhancement, tip artefacts (orange arrows) and loss of signal (yellow arrows).

These issues are all absent from our proposed method. However, a shortcoming of

our approach is shown in Figure 5.8- row 4, which shows a curvilinear structure

with an attached ‘blob’ (green arrow), a perfect curvilinear structure enhancement

method would enhance all of the linear structure and none of the blob. While none

of the compared approaches act in this ideal manner, many of the methods show a

clear difference between the blob response and vessel response.

5.3.4 Real Data - Retinal Image Datasets

In this Section, I show the quality of the proposed method validated on three publicly

available retinal image datasets: the DRIVE, STARE, and HRF databases. These

datasets have been chosen because of their availability and their ground truth data. I

have used these ground truth segmentations to quantitatively compare the proposed

method with the other curvilinear structure enhancement methods.
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Figure 5.10: A comparison of the curvilinear structures enhancement results for a
sample image from the STARE dataset. The zoomed in regions of interest (red
boxes 2 and 3) show areas both near the optic disk, with thick vasculature, and
far from the disk, where curvilinear structures are much fine and more branching
in 1. The arrows point to key areas of interest, such as junctions, fine tips
and curvilinear structures not captured by all methods. (a) an input image,
(b) vesselness, (c) CLAHE, (d) Zana’s top-hat, (e) neuriteness, (f) PCT-vesselness,
(g) PCT-neuriteness, (h) wavelet, (i) line detector, (j) volume ratio, (k) SCIRD-TS,
and (l) the bowler-hat. (Notation for numeric labels: 1 - full image; 2 - 2nd regions
of interest; 3 - 3rd regions of interest.)
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Figure 5.11: A comparison of the curvilinear structures enhancement results for a
sample image from the DRIVE dataset. The zoomed in regions of interest (red
boxes 2 and 3) show areas both near the optic disk, with thick vasculature, and
far from the disk, where curvilinear structures are much fine and more branching
in 1. The arrows point to key areas of interest, such as junctions, fine tips
and curvilinear structures not captured by all methods. (a) an input image,
(b) vesselness, (c) CLAHE, (d) Zana’s top-hat, (e) neuriteness, (f) PCT-vesselness,
(g) PCT-neuriteness, (h) wavelet, (i) line detector, (j) volume ratio, (k) SCIRD-TS,
and (l) the bowler-hat. (Notation for numeric labels: 1 - full image; 2 - 2nd regions
of interest; 3 - 3rd regions of interest.)
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The Digital Retinal Images for Vessel Extraction (DRIVE) [41] dataset is a published

database of retinal images for research and educational purposes. The database

consists of twenty colour images that are JPEG compressed, as for many screening

programs. These images were selected randomly from a screening of 400 diabetic

subjects between the ages of 25 and 90. The ground truth provided with this dataset

consists of manual segmentation of the vasculature for each image. Ground truths

were prepared by trained observers, and ’true’ pixels are those for which observers

where > 70% certain.

The Structured Analysis of the REtina (STARE) dataset is another publicly avail-

able database [142] containing twenty colour images with human-determined vascu-

lature ground truth. I have compared all these images against the AH labelling.

The High-Resolution Fundus (HRF) image dataset [3] consists of 45 retinal images.

This dataset has three types of subjects include healthy, diabetic retinopathy, and

glaucoma.

Quantitative Validation - Enhancement

While a visual inspection can give some information regarding the effectiveness of

the curvilinear structure enhancement methods, a form of quantitative validation

is required. Therefore, as proposed in [143], I have used the Receiver Operating

Characteristic (ROC) curve and the Area Under the Curve (AUC) to compare the

curvilinear structure enhancement methods. To derive the ROC curve and then the

AUC value is calculated, each enhanced image is segmented at different thresholds

and compared with the corresponding ground truth segmentation (see Figure 5.12).

The AUC metric measures vessel segmentation accuracy directly but it also measures

the curvilinear structure enhancement accuracy indirectly by giving us an indication

of the enhancement contribution to the final segmentation result. Please note that,

before any quantitative evaluation, all the enhanced retinal images were masked



71

(a) (b) (c)

(d) (e)

Figure 5.12: Exemplary image from STARE dataset segmented with the different
threshold levels. (a) is an input image, (b) is the image enhanced by the bowler-hat
transform, (c-e) are segmented images with threshold levels: (c) 0.2, (d) 0.3, (e) and
0.4.

with the mask images provided with the retinal image datasets (see Figure 5.13).

Quantitative Validation - Segmentation

To quantitatively evaluate the robustness of the vessel segmentation methods, sens-

itivity (SN), specificity (SP), and accuracy (ACC) metrics are calculated for each

segmented image and its corresponding ground truth segmentation, as follows;

SN =
TP

TP + FN
, (5.4)

SP =
TN

TN + FP
, (5.5)

ACC =
TP + TN

TP + TN + FP + FN
, (5.6)

where TP is the true positive count, FP the false positive count, TN the true

negative and FN the false negative counts of the segmented pixels. I used these
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(a) Original (b) Green channel (c) Enhanced

(d) Mask (e) Enhanced and masked

Figure 5.13: All the enhanced retinal images are masked before any quantitative
validation. (a) is a retinal image from the HRF dataset, (b) demonstrates the green
channel of input image, (c) is the image enhanced by volume ratio, (d) is the mask
provided in the HRF dataset, and finally (e) is the enhanced image after masking.

Enhancement
Method

AUC (Std)

Year/Ref DRIVE STARE HRF(healthy) HRF(unhealthy)

Raw image - 0.416 (0.064) 0.490 (0.076) 0.530 (0.075) 0.541(0.073)

Vesselness 1998 [4] 0.888 (0.013) 0.898 (0.015) 0.913 (0.020) 0.904 (0.020)

CLAHE 1998 [81] 0.862 (0.068) 0.880 (0.087) 0.867 (0.025) 0.835 (0.023)

Zana’s top-hat 2001 [86] 0.933 (0.015) 0.956 (0.021) 0.943 (0.010) 0.91 (0.016)

Neuriteness 2004 [8] 0.909 (0.022) 0.927 (0.039) 0.896 (0.024) 0.879 (0.059)

PCT-vesselness 2012 [10] 0.890 (0.037) 0.899 (0.056) 0.888 (0.011) 0.837 (0.030)

PCT-neuriteness 2012 [10] 0.817 (0.021) 0.827 (0.065) 0.901 (0.029) 0.777 (0.022)

Wavelet 2012 [11] 0.921 (0.013) 0.935 (0.015) 0.829 (0.021) 0.740 (0.026)

Line detector 2013 [84] 0.926 (0.019) 0.954 (0.016) 0.858 (0.020) 0.734 (0.026)

Volume ratio 2016 [9] 0.936 (0.013) 0.956 (0.012) 0.927 (0.018) 0.823 (0.026)

SCIRD-TS 2016 [100] 0.925 (0.012) 0.946 (0.021) 0.956 (0.012) 0.692 (0.035)

Bowler-hat 2019 [18] 0.946 (0.032) 0.962 (0.034) 0.968 (0.015) 0.944 (0.016)

Table 5.1: Mean AUC values calculated as described in Section 5.3.4, for the images
across the DRIVE, STARE and HRF datasets enhanced by the bowler-hat and the
state-of-the-art methods. The best results for each dataset are in bold. Individual
ROC curves can be seen in Figure 5.14.
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(a) DRIVE
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(b) STARE
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(c) HRF

Raw image Vesselness CLAHE
Zana’s top-hat Neuriteness Wavelet

Figure 5.14: ROC curves calculated for sample images from the (a) DRIVE, (b)
STARE, and (c) HRF datasets enhanced by the proposed and the state-of-the-art
methods (see legend for colours). Corresponding mean AUC values can be found
in Table 5.1. (Note: Rest of the methods results can be seen Figure 5.15.)
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(a) DRIVE
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(b) STARE
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(c) HRF

Raw image PCT-vesselness PCT-neuriteness Line detector
Volume ratio SCIRD-TS Bowler-hat

Figure 5.15: ROC curves calculated for sample images from the (a) DRIVE, (b)
STARE, and (c) HRF datasets enhanced by the proposed and the state-of-the-art
methods (see legend for colours). Corresponding mean AUC values can be found
in Table 5.1.
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metrics in Table 5.2 and Table 5.3.

Healthy Subjects

Figure 5.9 shows the results of the proposed and state-of-the-art methods applied

to a sample image from the HRF dataset (results for DRIVE Figure 5.11 and

STARE Figure 5.10).

I can see that the proposed method is able to enhance finer structures as detected by

the human observer but not emphasised by many of the other methods (see arrows).

I can also see that, whilst the connectivity seems to be maintained (unlike in Fig-

ure 5.9b), ‘false vessels’ are not introduced (c.f. Figure 5.9e).

Finally, Figure 5.14, Figure 5.15 and Table 5.1 present ROC curves and mean AUC

values for the enhancement results of the proposed and state-of-the-art methods

applied to all images across the DRIVE, STARE and HRF datasets by using the

quantitative validation as described Section 5.3.4.

Unhealthy Subjects

Figure 5.16 presents a visual comparison of the enhancement methods applied

to sample images of subjects with diabetic retinopathy and with glaucoma from

the DRIVE, STARE and HRF datasets. As it can be noticed in Figure 5.16i, the

proposed method is sensitive to noisy regions. This issue can be addressed by the use

of a line-shaped morphological structuring element with a varying thickness. Even

so, the proposed method achieved the highest overall score on the HRF unhealthy

images as illustrated in Table 5.1.
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1

(a)
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Figure 5.16: The bowler-hat applied to the retinal images of unhealthy subjects
from (a) DRIVE, (b) STARE and (c) HRF datasets. (d, g, j) are the input images
with the region of interest. (e, h, j) illustrate the green channel of input image (f, i,
l) demonstrate the enhancement result of the curvilinear structure on the abnormal
area. Notice that, proposed method is able to enhance curvilinear structures even
fine structures. However, problematic areas are also enhanced too. (Notation for
numeric labels: 1 - full image; 2 - 2nd regions of interest; 3 - 3rd regions of interest.)

Enhancement with Global and Local Thresholding

Figure 5.17 demonstrates the vessel segmentation results obtained by the proposed

and the state-of-the-art curvilinear structures enhancement methods followed by the

same global and local thresholding approaches proposed in [144, 145] when applied

to the HRF dataset images. The quantitative comparison of the vessel segmentation
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ACC (Std)

Enhancement
Method

Global Local

Year/Ref HRF HRF

Vesselness 1998 [4] 0.936(0.006) 0.951(0.006)

CLAHE 1998 [81] 0.668(0.051) 0.859(0.009)

Zana’s top-hat 2001 [86] 0.925(0.016) 0.946(0.008)

Neuriteness 2004 [8] 0.948(0.005) 0.953(0.006)

PCT-vesselness 2012 [10] 0.892(0.015) 0.926(0.007)

PCT-neuriteness 2012 [10] 0.916(0.013) 0.900(0.008)

Wavelet 2012 [11] 0.672(0.037) 0.946(0.006)

Line detector 2013 [84] 0.902(0.008) 0.957(0.006)

Volume ratio 2016 [9] 0.936(0.012) 0.947(0.011)

SCIRD-TS 2015 [100] 0.947(0.008) 0.951(0.010)

Bowler-hat - 0.960(0.005) 0.961(0.005)

Table 5.2: Mean ACC values with the standard deviation for curvilinear structures
segmentation results obtained by the proposed and the state-of-the-art curvilinear
structures enhancement methods followed by the same global thresholding approach
proposed in [144] and local thresholding approach proposed in [145] when applied
to the HRF dataset images. The best results are in bold.

results obtained is presented in Table 5.2.

Comparison with Other Segmentation Methods

To highlight the effectiveness of the proposed curvilinear structure enhancement

method (combined with the local thresholding approach [145]) for a full vessel

segmentation, I compared the performance of our method with seventeen state-

of-the-art vessel segmentation methods reported in the literature [3, 11, 32, 41, 68,

84, 89, 116, 146–154] applied to DRIVE, STARE and HRF datasets.

Table 5.3 shows the reported results of the seventeen segmentation methods com-

pared with the proposed method. From Table 5.3, it can be seen that the proposed

bowler-hat transform outperforms several common or state-of-the-art methods from

the field. In cases where the proposed method does not outperform, but still
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Method
DRIVE STARE HRF

SN SP ACC SN SP ACC SN SP ACC
Staal et.al [41] - - 0.946 - - 0.951 - - -
Soares et.al [146] - - 0.946 - - 0.948 - - -
Lupascu et.al [147] 0.720 - 0.959 - - - - - -
You et.al [148] 0.741 0.975 0.943 0.726 0.975 0.949 - - -
Marin et.al [149] 0.706 0.980 0.945 0.694 0.981 0.952 - - -
Wang et.al [68] - - 0.946 - - 0.952 - - -
Mendonca et.al [116] 0.734 0.976 0.945 0.699 0.973 0.944 - - -
Palomera-Perez et.al [150] 0.660 0.961 0.922 0.779 0.940 0.924 - - -
Matinez-Perez et.al [151] 0.724 0.965 0.934 0.750 0.956 0.941 - - -
Al-Diri et.al [152] 0.728 0.955 - 0.752 0.968 - - - -
Fraz et.al [89] 0.715 0.976 0.943 0.731 0.968 0.944 - - -
Nguyen et.al [84] - - 0.940 - - 0.932 - - -
Bankhead et.al [11] 0.703 0.971 0.937 0.758 0.950 0.932 - - -
Orlando et.al [32] 0.785 0.967 - - - - - - -
Azzopardi et.al [153] 0.766 0.970 0.944 0.772 0.970 0.950 - - -
Odstrcilik et.al [3] 0.784 0.951 0.934 0.706 0.969 0.934 0.786 0.975 0.953
Zhang et.al [154] 0.774 0.972 0.947 0.779 0.975 0.955 0.797 0.971 0.955
Proposed method 0.718 0.981 0.959 0.730 0.979 0.962 0.831 0.981 0.963

Table 5.3: Performance of the state-of-the-art curvilinear structures segmentation
methods and the proposed method, including mean sensitivity (SN), specificity (SP),
accuracy (ACC), when applied to images in the DRIVE, STARE and HRF datasets.
The best results are shown in bold.

performs to a similar quality, it is worth keeping in mind that many of these

methods combine multiple stages, of which enhancement is just one, whereas our

approach is able to achieve such high-quality results with just an enhancement

process. The results on both datasets demonstrate that the sensitivity of the

proposed method is not in the top three respectively for DRIVE (SE = 0.616)

and STARE (SE = 0.730). However, the proposed method has the highest score

with the specificity (SP = 0.991) for DRIVE and (SP = 0.979) for STARE. Most

importantly, our method has the accuracy (ACC = 0.960) and (ACC = 0.962) for

DRIVE and STARE respectively; the highest compared to other vessel segmentation

methods. Finally, the proposed method has the highest score for HRF dataset, with

(SE = 0.831), (SP = 0.981) and (ACC = 0.963).
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(c) Salt and Pepper Noise

Raw image Vesselness CLAHE
Zana’s top-hat Neuriteness Wavelet

Figure 5.18: The bowler-hat transform is robust against additive Gaussian noise
but susceptible to speckle and salt&pepper. Mean AUC for the input image and the
image enhanced by bowler-hat and by the state-of-the-art methods with different
peak signal-to-noise ratios (PSNRs) for three different noise types: (a) additive
Gaussian noise, (b) multiplicative Gaussian noise, and (c) salt and pepper noise
(see legend for colours). (Note: Rest of the method results can be seen Figure 5.19).
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Figure 5.19: The bowler-hat transform is robust against additive Gaussian noise
but susceptible to speckle and salt&pepper. Mean AUC for the input image and the
image enhanced by bowler-hat and by the state-of-the-art methods with different
peak signal-to-noise ratios (PSNRs) for three different noise types: (a) additive
Gaussian noise, (b) multiplicative Gaussian noise, and (c) salt and pepper noise
(see legend for colours).
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5.3.5 Response to Noise

To test how the state-of-the-art enhancement methods and the proposed method

behave with a different level and type of noise, a noisy synthetic image that includes

a single curvilinear structure was used. I generated such noisy image by optimising

the noise generation parameters to achieve a target PSNR by using a genetic op-

timisation algorithm proposed in [155]. Then examine the enhancement methods

by increasing the noise level and then calculating the AUC values for each level of

noise and each comparator method. Figure 5.18 shows the effect of three different

noise types on the proposed and state-of-the-art methods. Given that the proposed

method has no built-in noise suppression, it is unsurprising that the effect of noise

on the enhanced image is in-line with the raw image. It is been noted that the

method is weakest in response to speckle noise (multiplicative Gaussian) and also

weak in response to salt and pepper noise. This follows from the noise-sensitivity in

morphological operations and should be taken into consideration when choosing an

enhancement method.

5.3.6 Other Biomedical Data

While I have demonstrated the proposed method on the enhancement of curvilinear

structures, the approach is applicable to a wide range of biomedical images of

different types of curvilinear structures, see Figure 5.20.

5.4 Conclusion and Discussion

An wide range of image processing methods have been proposed for curvilinear struc-

ture enhancement in biomedical images. Most of them, however, suffer from issues

with low-contrast signals, enhancement of noise or when dealing with junctions.
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(a) (b)

(c)

(d) (e)

Figure 5.20: Results of the curvilinear structure enhancement using the bowler-
hat on biological images of (a-b) cytoskeletal networks, (c) endoplasmic reticulum,
and (d-e) macro-scale networks. (a) provided by Prof. Dr. Med. Rudolf
Leube, RWTH Aachen University, Germany. (b) provided by Dr. Tim Hawkins,
Durham University, UK. (c-e) provided by Prof. M. Fricker, Oxford University, UK.
The proposed method can enhance the curvilinear structure in the wide range of
biomedical images. Notice that, the proposed method is able to enhance line-like
structures in the different type of biological images.

In this Chapter, I introduce an enhancement method for curvilinear structures based

on mathematical morphology, which exploits the elongated shape of curvilinear

structures. The proposed method, the bowler-hat transform, was qualitatively

and quantitatively validated and compared with the state-of-the-art methods using

a range of synthetic and real image datasets, including retinal image collections

(DRIVE, STARE and HRF). I showed the effectiveness of the bowler-hat transform,

and its superior performance on retinal imaging data, see Figure 5.14, Table 5.1,

and Table 5.2. Furthermore, experimental results on the unhealthy retinal images
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have shown that the curvilinear structures enhanced by our bowler hat transform

are continuous and complete in problematic regions as illustrated in Figure 5.16.

As with any image processing technique, our proposed method has limitations.

Basically, morphological operations are renowned for their large computational re-

quirements. Another limitation of the proposed method is displayed in Figure 5.8

row 4, which shows a curvilinear structure with an attached ‘blob’ (green arrow), a

perfect curvilinear structure enhancement method would enhance all of the linear

structure and none of the blob. Whilst none of the comparison methods act in this

ideal manner many of them show a clear difference between the blob response and

curvilinear structures response, our proposed method shows some difference, but

this difference impacts the signal of the curvilinear structure.

Moreover, as I note in Figure 5.9, the proposed method is sensitive to noise such as

susceptible to speckle and salt&pepper, as is the PCT-neuriteness method in Fig-

ure 5.9g. In the future, I will investigate introducing a line-shaped morphological

structuring element with varying thickness to address this issue. Nevertheless, our

implementation demonstrates an improved and easy to use curvilinear structure

enhancement alternative that can be used in a wide range of biomedical imaging

scenarios [156]. Whilst one would expect the lack of noise suppression to be a major

issue with regard to quantified measurements of curvilinear structure enhancement,

I find that the proposed method gives the best enhancement of all methods on the

DRIVE, STARE and HRF datasets (see Table 5.1 and Figure 5.14).

In this Chapter, I have demonstrated the ability of the proposed bowler-hat trans-

form to effectively enhance and segment curvilinear structures in the retinal images.

In addition, to illustrate the robustness of the proposed bowler-hat transform en-

hance, I have matched it with the seventeen state-of-the-art methods previously

tested on the DRIVE, STARE and HRF image datasets, see Table 5.3.
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Epilogue

In this Chapter, I have introduced a new bowler-hat transform approach, based

on mathematical morphology, for curvilinear features enhancement in biomedical

images. The proposed approach has been extensively validated and compared to

other several state-of-the-art curvilinear features enhancement methods using a

variety of synthetic and real biomedical images.

In the next Chapter, I will present a 3D extension of the bowler-hat transform.
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Chapter 6

The Multiscale Bowler-Hat

Transform for Curvilinear

Features Enhancement in 3D

Biomedical Images

Prologue

Enhancement and detection of 3D curvilinear structures in 3D biomedical images has

long been an open problem as most existing image processing methods fail in many

aspects, including a lack of uniform enhancement between curvilinear structures

of different radii and a lack of enhancement at the junctions. In this Chapter, I

propose a new method based on mathematical morphology to enhance 3D curvilinear

structures in biomedical images. Chapter 3 (p. 31) is also a key to understand

proposed method in this Chapter. This method is an extension of 2D bowler-hat

transform, explained in Chapter 5 (p. 55). The proposed method, 3D bowler-hat

transform, combines sphere and line structuring elements to enhance curvilinear

structures. The proposed method is validated on synthetic and real data, and
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compared with state-of-the-art methods. Our results show that the proposed method

achieves a high-quality curvilinear structures enhancement in both synthetic and

real biomedical images, and is able to cope with variations in curvilinear structures

thickness throughout vascular networks while remaining robust at junctions.

Declaration: This Chapter is based on the following publication: Sazak, Ç., Nelson,

C. J. & Obara, B. The multiscale bowler-hat transform for curvilinear structure

enhancement in 3D biomedical images in British Machine Vision Conference (2018).

This Chapter is presented as published, although referencing and notation has

been altered and cross-referencing added for consistency throughout this thesis.

Some stylistic changes have been made for consistency. The majority of the text

is verbatim; however, additions to the body of text are included where they are

appropriate.

6.1 Introduction

Automatic detection of curvilinear structures is one of the fundamental procedures

in many 3D biomedical image processing applications, where they are used to

understanding of important vascular networks, such as cytoskeletal networks, blood

vessels, airways, and other similar fibrous tissues. Reliable detection and then

accurate analysis of these vascular networks strongly relies on robust curvilinear

structures enhancement methods. Several such methods have been proposed and

investigated for various types of biomedical images such as: blood vessels [4, 49],

neurons [76], microtubules [127] and others [40, 157]. Nevertheless, most of the

curvilinear structures enhancement methods still suffer from unresolved problems

such as losing signals at the junctions or false vessel effects [17].

In this Chapter, I extended 2D curvilinear structures enhancement method, called

the 2D bowler-hat transform [17], to 3D. The proposed method is based on a 2D

image filtering method exploring a concept of mathematical morphology [18]. I qual-

itatively and quantitatively validate and compare the proposed 3D method with the
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state-of-the-art curvilinear features enhancement methods using a range of synthetic

and real biomedical images. Our results show that the proposed method produces a

high-quality curvilinear structure enhancement, especially at junctions in both syn-

thetic and real images. The method is suitable to be applied to a variety of biomed-

ical image types without requiring prior preparation or tuning. Finally, I made my

method available online, along with source code and all test functions. The source

code is available in a GitHub repository https://github.com/CigdemSazak/bowler-

hat-3d.

6.2 Method

In this Section, I introduce a 3D extension of a mathematical morphology-based 2D

method for curvilinear structure enhancement, called the bowler-hat transform [18].

While explaining the details of the proposed method, we point out the concepts

that allow us to address the major drawbacks of existing, state-of-the-art curvilinear

structures enhancement methods.

6.2.1 Mathematical Morphology

Mathematical morphology concept has been extensively used in image processing

and image analysis, see Chapter 3 (p. 31). A wide range of applications and a

background information see Chapter 2 (p. 8), and Chapter 5 (p. 55) for a use of the

concept to define our 2D bowler-hat transform [18].

6.2.2 Proposed Method

The proposed method is explained and summarized with a small example in 6.1.

The 3D bowler-hat transform combines two banks of different structuring elements:

a bank of spherical structuring elements with varying diameter and a bank of

orientated line structuring elements with varying length and directions.
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(a) Input Image

(b)

→ –max

( )
=

→ –max

( )
=

→
(c)
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( )
=

(d) Directions

max |{Isphere — max {Iline} | = Ienhanced

Figure 6.1: A step-by-step schematic explanation of how the proposed method works
on a simple image. Suppose that (a) is an input image. (c) illustrates openings
with ‘sphere’ structure elements. (d) demonstrates openings with ‘line’ elements of
different directions and same lengths as equivalent ‘sphere’ element diameters; the
pixel-wise maximum of these openings is taken. (b) This result is then subtracted
from the sphere openings.

First, I create a bank of morphological openings of a 3D input image I with spherical

structuring elements Sdsphere of diameter d ∈ [1, dmax], where dmax is expected max-

imum size of curvilinear structures in a given image I. After every morphological

opening of the image I, curvilinear structures smaller than d are eliminated and the

ones larger than d remain.

As a result, a 3D image stack, for all d ∈ [1, dmax], is constructed as;

{Isphere} = {I ◦ Sdsphere}, ∀d ∈ [1, dmax]. (6.1)
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Then, another bank of morphological openings of the input image I is performed

with line structuring elements Sd,vline of lengths d, ∀d ∈ [1, dmax], and of directions

defined as follows;

v = (θk, φk), ∀k ∈ [1, N ]. (6.2)

Direction (θk, φk) is defined as a kth point from N uniformly distributed points on

the unit sphere, and more details can be found in [131]. After every morphological

opening of the image I with a line structuring element Sd,vline, curvilinear structures

smaller than d along direction v are eliminated but all curvilinear structures that

are longer than d along direction v remain. This step results in a 3D image stack

for all lengths d and all directions v;

{Iline} = {I ◦ Sd,vline},∀d ∈ [1, dmax], ∀k ∈ [1, N ]. (6.3)

Then, for each length d, a pixel-wise maximum across all directions v is calculated

resulting in a 3D image stack;

{Iline} = { max
k∈[1,N ]

|{I ◦ Sd,vline}|}, ∀r ∈ [1, dmax]. (6.4)

The enhanced image is then produced by taking maximum stack-wise difference at

each pixel;

Ienhanced = max
r∈[1,dmax]

|{Isphere − Iline}|. (6.5)

With the 3D bowler-hat transform, areas that are dark (background) in the original

image remain dark due to the use of openings; blob-like bright objects (undesired

foreground features) are suppressed as the sphere-based and line-based opening

gives similar values; and tube-like bright objects (desired foreground features) are

enhanced due to the large difference between sphere-based and longer line-based

openings. To assign an appropriate dmax, expected maximum curvilinear structures

size in the image, allows the identification of most of the curvilinear structures and
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junctions, something that many other curvilinear structure enhancement methods

fail to do. This is due to the ability to fit longer line-based structuring elements

within the junction area. In general, I have found the bowler-hat transform to be

robust with N=[32,64] orientations of the line structuring element. In Section 6.3 I

illustrate the key advantages of the proposed method over other curvilinear structure

enhancement methods.

6.3 Results and Discussions

In this Section, I qualitatively and quantitatively validate the robustness of the

proposed method using a range of synthetic and real biomedical image datasets. We

then compare the proposed method with the state-of-the-art curvilinear structure

enhancement methods such as Hessian-based vesselness [4], neuriteness [8] and

volume ratio [9], PCT-based vesselness and neuriteness [17], and recently published

RORPO [95].

6.3.1 Quantitative Validation

While a visual examination can give some subjective information regarding the

effectiveness of the curvilinear structure enhancement method, a form a quantitative

validation is also required. To compare the proposed method with the other state-of-

the-art algorithms, I have chosen to calculate the Receiver Operating Characteristic

(ROC) curve and the Area Under the Curve (AUC) and more details can be found

in [158].

6.3.2 Response to Noise

Figure 6.2 presents the performance comparison of the proposed method with the

state-of-the-art approaches under the influence of three different noises: additive

Gaussian, speckle and salt & pepper. Figure 6.3 demonstrates a sample of images in
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Figure 6.2: AUC values for the input image and the image enhanced by the
proposed method and the state-of-the-art methods with different peak signal-to-
noise ratios (PSNRs) for three different noise types: (a) additive Gaussian noise, (b)
multiplicative Gaussian (speckle) noise, and (c) salt and pepper noise (see legend
for colours). Sample images used here can be seen in Figure 6.3.
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Figure 6.3: Robustness of 3D bowler-hat transform-based curvilinear structures
enhancement approach against the noise. Rows 1-3: 3D sample images of line-
like structure with different types (additive Gaussian noise, multiplicative Gaussian
(speckle) noise, and salt and pepper noise) and levels (15, 20, 25) of noise. Rows
4-6: the input images enhanced by the 3D bowler-hat transform-based curvilinear
structures enhancement approach (BHT). All 3D images are illustrated as a 2D
maximum intensity projection.
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Figure 6.4: Cross-sectional profile of 2D max intensity projection of 3D synthetic
vessel image (black, dashed line), curvilinear structure enhanced by the proposed
method (black, solid line) and by the state-of-the-art methods (see legend for
colours). All images are normalised such that the brightest pixel in the whole
image has a value of 1 and the darkest a value of 0. Some of the methods shrink
the curvilinear structures like vesselness and create some shadows or blur around
the vessel corners like PCT-neuriteness, however, when you look at the proposed
method, it exactly follows the structure of the input images (since proposed method
overlap the raw image lines).

the different type of noise and with different level of noise. Evidently, the proposed

method has no built-in noise suppression; as expected that the effect of noise on the

enhanced image is in-line with the raw image. This inherits from the noise-sensitivity

in mathematical morphology and should be taken into consideration while choosing

an enhancement method. However, Figure 6.3 illustrates the sample images for

the different type of noise and different level on a line-like structure. These sample

images also demonstrate the data used in Figure 6.3.
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6.3.3 Profile Analysis

Figure 6.4 illustrates bowler-hat and state-of-the-art methods responses to a simple

curvilinear structure on a synthetic image. It is obvious that the value of the

enhanced image at the middle of the curvilinear structure reaches a peak value and

quickly drops off and decreases at the expected thickness of the curvilinear structure

by the Hessian-based methods. On the other hand, the PCT-based methods are

less responsive to the centreline of the curvilinear structure, while obtaining a high

response to the edges due to the contrast variations. The value of the enhanced image

does not significantly peak at the curvilinear structure centre, but their response

does not drop off quickly since it is free from the contrast variations. The proposed

method has both these benefits: a maximal peak value at the curvilinear structure

centre-line and an enhanced response to the edges of the curvilinear structure. As

a result, reliable curvilinear structure thicknesses can be captured.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.5: Comparison of the curvilinear features enhancement methods’ abilities
to deal with uneven background illumination. (a) An input image. (b) Bowler-hat
enhancement response. (c-h) state-of-the-art methods’ enhancement responses, re-
spectively: (c) vesselness, (d) neuriteness, (e) PCT-vesselness, (f) PCT-neuriteness,
(g) volume ratio, and (h) RORPO. The perfect enhancer method should detect only
curvilinear structure. However, most of the methods fails at the vessel junctions
like (c, d) and still enhance the blob-like structures as in (h, g).
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6.3.4 Response to Uneven Background Illumination

Figure 6.5 presents an intuitive comparison between the proposed method and other

state-of-the-art methods, regarding the response to the uneven background illumin-

ation. When compared with the other methods, the proposed method maintains

the high responses at the junctions and seems unaffected by uneven background

(a) Input image

1

2

3

(b) (c) (d) (e) (f) (g) (h) (i)

Figure 6.6: Comparison of curvilinear structure enhancement methods’ responses to
curvilinear structures, intersections/junctions, and blobs. A 3D synthetic image (a)
by 100x100x100 voxels is generated and three angles 2D max intensity projection is
used (b); respectively 1st row is X, the 2nd row is Y and the 3rd row is Z direction.
All curvilinear structures have nine pixels thickness and blob has a diameter of
21 pixels. (c) shows the bowler-hat and the state-of-the-art methods respectively,
(d) vesselness, (e) neuriteness, (f) PCT-vesselness, (g) PCT-neuriteness, (h) volume
ratio, and (i) RORPO. The arrows refer features of interest: blob-like structures
(yellow arrows), junctions (orange arrows), noise (green arrows).
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illuminations.

6.3.5 Response to Curvilinear Structures,

Intersections/Junctions, and Blobs

Figure 6.6 illustrates the comparison between the proposed method and state-of-

the-art methods. It is obvious that most of the state-of-the-art methods fail at the

junction like in Figure 6.6d and some of those create false curvilinear structures

effects as in Figure 6.6g or add noise the enhanced image Figure 6.6h. Compare to

others, our proposed method is free from all of these effects and artefacts, but it is

not good at suppressing the blob-like structures as like vesselness or neuriteness.

(a) 5 (b) 200 (c) 1000

(d) 5 (e) 200 (f) 1000

Figure 6.7: Visualisation of 3D synthetic curvilinear networks images generated with
the VascuSynth software [159]. The images (a-c) (167x167x167 voxels) are used to
quantitatively validate the proposed method and the state-of-the-art methods and
(d-f) are the results of the proposed method. The proposed method is able to
detect most of the branches and more detailed results are shown in Figure 6.8 and
in Table 6.1.
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6.3.6 Response to Vascular Network Complexity

Nine volumetric images and their corresponding ground truth images of 3D syn-

thetic vascular networks with an increasing complexity were generated using the

VascuSynth software [159], as shown in Figure 6.7. In addition, to make the image

more realistic, I add a small amount of the Gaussian noise of level σ2 = 10 and

apply a Gaussian smoothing kernel with a standard deviation of 1. I tested the

proposed methods as well as the aforementioned other approaches on these images.

The results are presented in Table 6.1. Figure 6.8 also demonstrates the ROC curve

all over the nine enhanced images. It appears that the proposed method clearly has

the highest AUC value (0.965) compare to the state-of-the-art methods. Overall,

the proposed method performance is better than state-of-the-art methods. However,

the average computation time for the proposed method for VascuSynth image is 328

seconds.

AUC

Nodes Vesselness Neuriteness PCT-ves. PCT-neu. Volume ratio Bowler-hat

5 0.999 0.923 0.840 0.897 0.999 0.999

10 0.996 0.883 0.820 0.873 0.998 0.999

50 0.976 0.830 0.794 0.851 0.981 0.994

100 0.951 0.778 0.778 0.827 0.957 0.982

200 0.930 0.755 0.770 0.799 0.936 0.966

400 0.910 0.746 0.749 0.788 0.917 0.950

600 0.902 0.743 0.742 0.777 0.909 0.941

800 0.885 0.719 0.724 0.756 0.893 0.926

1000 0.884 0.722 0.726 0.759 0.891 0.924

mean(std) 0.937(0.045) 0.788(0.073) 0.771(0.04) 0.814(0.05) 0.942(0.043) 0.965(0.03)

Table 6.1: AUC values for nine 3D images of vascular networks with increasing
network’s complexity (see Figure 6.7) enhanced with the proposed and the state-of-
the-art methods. The best results for each vascular network are in bold. ROC curve
of the all volumetric images can be seen in Figure 6.8.
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Figure 6.8: Mean ROC curve for all vascular networks images from Figure 6.7
calculated using the proposed and the state-of-the-art methods (see legend for
colours). Individual AUC values can be found in Table 6.1.

6.3.7 Real Data

An Olfactory Projection Fibers image dataset from DIADEM Challenge [160] is used

to demonstrate the robustness of the proposed method against the noise. In two

exemplary fibers images, Gaussian noise was introduced at the noise levels ranging

from σ = 10 to σ = 60, and salt and pepper noise at the different level of density

ρ = 10 to ρ = 60 see Figure 6.9. Such images were then enhanced with the proposed

method and the AUC values were calculated and presented in Figure 6.9. I also

tested the performance of the proposed method on the 3D real images. Here I

adopt three representative types of real images, namely microtubules network in a

plant cell, keratin network in a skin cell, and neuronal network. Correspondingly

I compare the output of the proposed method with five other approaches, and the

results are shown in Figure 6.10. It is clearly suggested that our method has the
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1

2

AUC:0.959 AUC:0.959 AUC:0.955 AUC:0.953 AUC:0.951 AUC:0.951

3

4

AUC:0.953

(a) level = 10

AUC:0.953

(b) level = 20

AUC:0.953

(c) level = 30

AUC:0.953

(d) level = 40

AUC:0.953

(e) level = 50

AUC:0.953

(f) level = 60

Figure 6.9: Application of the proposed method into the Olfactory Projection
Neuron dataset from the DIADEM Challenge. All of the images are 2D maximum
intensity projection. Rows 1 and 3 are input images that have been contaminated
by different levels (increasing left to right) and types of noise (1 - Gaussian additive
noise; 3 - salt and pepper noise). Rows 2 and 4 are enhancement results with the
proposed method and corresponding AUC values.

best performance in preserving junctions.

6.4 Conclusion

Hessian- or Phase Congruency Tensor-based image enhancement methods had been

commonly used to enhance curvilinear structures in 3D biomedical images using

measurements like vesselness, neuriteness and volume ratio.

This Chapter proposes a novel mathematical morphology-based method for cur-

vilinear structures enhancement in 3D biomedical images. The proposed method
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(a) ROIs

(b) (c)

(d) (e)

(f) (g)

Figure 6.10: Comparison of the proposed and the state-of-the-art methods on a set
of real biomedical images. (a) are regions of interest highlighted in red in Chapter 4
(p. 41) in Figure 4.3. Results: bowler-hat (b), neuriteness (c), vesselness (d), PCT-
neuriteness (e), PCT-vesselness (f) and volume ratio (g). Notice that, (b) enhances
curvilinear structures while ignoring the blob-like structures. Even if (e) enhance and
make the curvilinear structures more visible, it also enhance the blob-like structures.

is shown to have benefits over existing methods, including no loss of signal and

junctions and minimized artefacts at curvilinear structure ends. I show robustness

on both synthetic and real image datasets. In order to the robustness of the proposed

method, a fast noise-robust version of the line segment opening/closing based on the

rank-max opening maybe be considered [161].



102

Epilogue

In this Chapter, I have introduced a 3D extension of 2D bowler-hat transform-based

approach for curvilinear structure enhancement method in 3D biomedical images.

The proposed approach has been extensively validated and compared to a range of

state-of-the-art methods using a variety of synthetic and real biomedical images.

In the remaining Chapter, I am going to present another curvilinear features en-

hancement method called multiscale top-hat tensor.
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Chapter 7

Curvilinear Structure

Enhancement by Multiscale

Top-Hat Tensor in 2D/3D Images

Prologue

A wide range of biomedical applications require enhancement, detection, quanti-

fication and modelling of curvilinear structures in 2D and 3D images. Curvilinear

structure enhancement is a crucial step for further analysis, but many of the en-

hancement approaches still suffer from contrast variations and noise. This can be

addressed using a multiscale approach that produces a better quality enhancement

for low contrast and noisy images compared with a single-scale approach in a wide

range of biomedical images. In this Chapter I propose the Multiscale Top-Hat Tensor

(MTHT) approach, which combines multiscale morphological filtering with a local

tensor representation of curvilinear structures in 2D and 3D images. From this tensor

representation, I extract the eigenvalues and compute MTHT-based analogues to the

commonly used curvilinear measures, such as vesselness and neuriteness.

Declaration: Alharbi, S. S., Sazak, C., Nelson, C. J. & Obara, B. Curvilinear
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Structure Enhancement by Multiscale Top-Hat Tensor in 2D/3D Images in IEEE In-

ternational Conference on Bioinformatics and Biomedicine (BIBM) (Madrid, Spain,

Dec. 2018).

Çiğdem Sazak and Shuaa S. Alharbi contributed equally to this work. This Chapter

is presented as published in the International Conference on Bioinformatics and

Biomedicine, 2018 although referencing and notation has been altered and cross-

referencing added for consistency throughout this thesis. Some stylistic changes

have been made for consistency. The majority of the text is verbatim; however,

additions to the body of text are included where they are appropriate.

7.1 Introduction

The enhancement and detection of curvilinear structures are important and essential

tasks in biomedical image processing. There is a wide range of curvilinear structure

in biomedical imaging data, such as blood vessels, neurons, leaf veins, and fungal

networks. Curvilinear structure enhancement is an important step, especially where

the subjective quality of images of curvilinear structures is necessary for human

interpretation.

A wide range of curvilinear structure enhancement approaches has used mathemat-

ical morphology operations to enhance curvilinear structures in 2D and 3D images.

The top-hat transform [102] is a popular approach, which extracts bright features

from a dark background that match the shape and orientation of a specified struc-

turing element [15]. This approach has been used to extract curvilinear structures

in retinal [53] and fingerprint [36] images.

A local tensor representation [16] of an image measures how image structures change

across dominant directions, and the eigenvalues and eigenvectors of the tensor can

provide information that can be used to enhance, extract and analyse curvilinear

structures.
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In this Chapter, I combine these two approaches by representing curvilinear struc-

tures filtered by morphological operations in local tensor representation of the image.

I apply a multiscale top-hat with a line structuring element at different scales and

orientations. Then, I produce a stack of top-hat images and combine them into a

local tensor, find the eigenvalues to calculate vesselness and neuriteness to enhance

the curvilinear structure in the biomedical images. This approach works with 2D

and 3D images.

Compared with other existing approaches, the gathered results prove that our pro-

posed approach achieves high-quality curvilinear structure enhancement in the syn-

thetic examples and in a wide range of real 2D and 3D biomedical image types.

7.2 Method

In this Section, I introduce the proposed approach that consolidates the advantages

of mathematical morphology and local tensor representation to enhance curvilinear

structures in 2D/3D images.

7.2.1 Proposed Method Framework

Since curvilinear structures can appear at different scales and directions in images, a

top-hat transform using multiscale and multi-directional structuring elements should

be applied to detect them.

The image is processed by using line structuring elements of different sizes (scale)

and directions (orientations) and is then represented as a tensor, the Multiscale

Top-Hat Tensor (MTHT), which intrinsically contains information on scale and

orientation. Then, through the use of its eigenvalues and eigenvectors, vesselness

and neuriteness are calculated to enhance curvilinear structures. The details of the

proposed approach are given below.
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Multiscale Top-Hat Transform

For a given 2D/3D grayscale image I(p), where p donates the pixel position, a stack

of 2D/3D line structuring elements Bσi,uj , for m different scales σi and n different

orientations uj, is defined.

In 2D, the uj orientation of line structuring element is defined as follows;

uj = [cos(θj), sin(θj)]
T , (7.1)

where θj ∈ [0; 180).

In 3D, as proposed in [17, 129], a point distribution on the sphere of unit radius is

used to define the orientation uj of the 3D line structuring element as follows;

uj = [sin(θj)cos(φj), sin(θj)sin(φj), cos(θj)]
T , (7.2)

where θj ∈ [0; 180] and φj ∈ [0; 360).

Then, I produced a top-hat image using a line structuring element defined by scale

σi and orientation uj as follows;

TH(p)σi,uj = I(p)− (I ◦Bσi,uj)(p). (7.3)

Tensor Representation

In general, the tensor representation of an image can provide information about

how much the image differs along and across the dominant orientations within a

particular region [16].

In our case, the local tensor T (p)σi representation of an image I(p) is generated by

combining the bank of top-hat images from Equation 7.3 as follows;

T (p)σi =
n∑
j=1

‖TH(p)σi,uj‖(ujuTj ). (7.4)
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MTHT-Vesselness

As described in Chapter 2, piecewise curvilinear segments can be detected by ana-

lysing the relations between eigenvalues and eigenvectors of the locally calculated

Hessian [4].

In a similar way [10], the vesselness of the proposed approach is defined where the

eigenvalues of the Hessian matrix are substituted with those of the MTHT. Finally,

multiscale vesselness, for a given set of m scales can be calculated as follows;

V = max
i

(Vσi) . (7.5)

MTHT-Neuriteness

When combining the neuriteness with our approach, it is necessary to modify the

neuriteness measurement introduced by [8] for 2D and 3D images respectively.

In [8], they normalised eigenvalues correspondingly to the smaller absolute eigen-

value which is a negative value. Whereas, in our approach, I used a morphological

line structuring element instead of the second order derivative of the Gaussian

function used by [8], so the smaller absolute eigenvalue will be equal to 0. The

modified neuriteness Equation is;

Nσi =


λ

λmax
if λ > 0

0 if λ = 0

, (7.6)

where λ is the larger in the magnitude of the two eigenvalues λ1 and λ2 for 2D

images or the larger in the magnitude of the three eigenvalues λ1, λ2 and λ3 for 3D

images. λmax denotes the largest λ over all pixels in the image. Similar to vesselness,

a multiscale neuriteness can be calculated as;

N = max
i

(Nσi) . (7.7)
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7.3 Results

In this Section, I present quantitative and qualitative validations for the proposed

approach against both synthetic and real-world 2D and 3D imaging data. I then

compare the results with state-of-the-art approaches. In order to validate the

approach quantitatively in 2D and 3D images, I calculate the Receiver Operating

Characteristic (ROC) curve and the Area Under the Curve (AUC), further details

can be found in [143].

7.3.1 Application to 2D Retinal Images

Although a visual inspection can provide some information regarding the effective-

ness of the curvilinear structure enhancement approaches, a more rigorous form of

quantitative validation is required. As in [9], I chose to use the Receiver Operat-

ing Characteristic (ROC) curve and the Area Under the Curve (AUC) metrics to

compare the curvilinear structure enhancement approaches. I derive the ROC curve

and then calculate the AUC value. Each enhanced image is segmented at different

threshold levels and compared with the corresponding ground truth segmentation of

curvilinear structures in the image. I measure the quality of the approach by using

publicly available retinal image datasets: DRIVE [162], STARE [142] and HRF [3].

These datasets have been chosen because of their availability and their ground truth

data. I have used these ground truth segmentations to quantitatively compare the

proposed approach with the other curvilinear structure enhancement approaches.

In particular, I evaluate our approach, alongside the vesselness [4], Zana’s top-

hat [15], neuriteness [8] and RORPO [94] approaches, calculating the Receiver

Operating Characteristic (ROC) curve and the mean of Area Under the Curve

(AUC) between the enhanced images and the ground truth. The results are displayed

accordingly in Figure 7.1, Figure 7.2 and Table 7.1. A higher AUC value indicates
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(c) HRF (healthy)

Raw image Vesselness Zana’s top-hat Neuriteness

RORPO MTHT-vesselness MTHT-neuriteness

Figure 7.2: Mean ROC curves are calculated for all the 2D retinal images in: (a)
DRIVE, (b) STARE, and (c) HRF datasets enhanced using the state-of-the-art
approaches alongside the proposed MTHT-vesselness and MTHT-neuriteness (see
legend for colours). Correspondingly, the mean AUC values for all datasets can be
found in Table 7.1.
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Enhancement
Approach

AUC (StDev)

DRIVE STARE HRF (healthy) HRF (unhealthy)

Raw image 0.416 (0.064) 0.490 (0.076) 0.530 (0.075) 0.541 (0.073)

Vesselness 0.888 (0.243) 0.898 (0.215) 0.913 (0.020) 0.904 (0.020)

Zana’s top-hat 0.933 (0.015) 0.956 (0.021) 0.943 (0.010) 0.910 (0.016)

Neuriteness 0.909 (0.022) 0.927 (0.039) 0.896 (0.024) 0.879 (0.059)

RORPO 0.867 (0.016) 0.902 (0.020) 0.869 (0.014) 0.854 (0.015)

MTHT-vesselness 0.923 (0.017) 0.955 (0.024) 0.959 (0.012) 0.934 (0.015)

MTHT-neuriteness 0.931 (0.016) 0.958 (0.019) 0.959 (0.010) 0.935 (0.018)

Table 7.1: Mean AUC values for the state-of-the-art approaches, and proposed
MTHT-vesselness and MTHT-neuriteness across the DRIVE, STARE and HRF
datasets. A selection of results are shown in Figure 7.1 and the mean ROC curves
can be seen in Figure 7.2. The best results for each dataset are in bold.

a better enhancement of curvilinear structures, with a value of 1 indicating that the

enhanced image is identical to the ground truth image.

Our experimental results clearly show that our proposed approach works better than

the state-of-the-art approaches for the STARE dataset. Furthermore, the proposed

approach achieved a high score overall on the HRF healthy and unhealthy images,

as illustrated in Table 7.1.

The average computation time for the proposed method is 13.7 seconds for DRIVE

image and 16.4 seconds for STARE image. Please make a note that the proposed

method has been implemented and tested in Matlab, however, C++ implementation

could be much faster.

7.3.2 3D Vascular Network Complexity

In order to validate our approach in 3D, I used synthetic vascular networks produced

by the free software package called VascuSynth [163]. The tree generation is

performed by iteratively growing a vascular structure based on an oxygen demand

map. Each generated image is associated with its ground truth. In this experiment,

I generated 9 volumetric images with increasing complexity and their corresponding
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AUC

Nodes Vesselness [4] Neuriteness [8] RORPO [95] MTHT-vesselness MTHT-neuriteness

5 0.999 0.923 0.999 1.000 0.992

10 0.996 0.883 0.997 1.000 0.998

50 0.976 0.830 0.965 0.999 0.982

100 0.951 0.778 0.930 0.999 0.988

200 0.930 0.755 0.900 0.998 0.981

400 0.910 0.746 0.879 0.996 0.975

600 0.902 0.743 0.869 0.993 0.970

800 0.885 0.719 0.855 0.987 0.959

1000 0.884 0.722 0.852 0.983 0.956

mean (StDev) 0.937 (0.045) 0.788 (0.073) 0.916 (0.058) 0.995 (0.006) 0.978 (0.014)

Table 7.2: AUC values for 9 3D curvilinear network images with increasing network’s
complexity (see Figure 7.3) enhanced with the state-of-the-art approaches alongside
the proposed MTHT-vesselness and MTHT-neuriteness. The best results for each
dataset are in bold.

ground truth. In addition, in order to make the image more realistic, I added a

small amount of Gaussian noise of level σ2 = 10 and applied a Gaussian smoothing

kernel with a standard deviation of 1. The results, in terms of AUC, are presented

in Table 7.2 and a sample of the results are shown in Figure 7.3. I also demonstrate

the mean ROC curve over the 9 enhanced images, as shown in Figure 7.4. Our

proposed approach is compared with vesselness [4], neuriteness [8] and with the

latest 3D enhancement approach [95]. Our proposed approach clearly has the highest

mean AUC value (0.995) with a standard deviation equal to (0.006) for the proposed

MTHT-vesselness. On the other hand, I obtained an AUC value (0.978) with a

standard deviation equal to (0.014) for the proposed MTHT-neuriteness compared

to the state-of-art approaches.
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(a) (b) (c)

Figure 7.3: A selection of 3D synthetic vascular network images generated with
the VascuSynth software. Each image has a resolution of (167x167x167 voxels) and
have different nodes to increase the complexity of structure. (a) original images with
different number of nodes (5, 200 and 1000) respectively. (b-c) are the enhanced
images from the proposed MTHT-vesselness and MTHT-neuriteness respectively.

7.3.3 2D and 3D Qualitative Validation

Additionally, as displayed in Figure 7.5 and Figure 7.6, I have demonstrated the

robustness of the proposed approach when applied to a wide range of 2D and 3D real-

world images. It is clear that our approach has the best performance compared with

the state-of-the-art approaches. In particular, our proposed approach can handle

complex curvilinear networks as shown in Figure 7.6(1)f and (2)f.
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Figure 7.4: Mean ROC curve for all 3D curvilinear network images enhanced
using the state-of-the-art approaches alongside the proposed MTHT-vesselness and
MTHT-neuriteness (see legend for colours). Correspondingly, the mean AUC values
can be found in Table 7.2.

7.4 Implementation

The software was implemented and written in MATLAB 2017a on Windows 8.1 pro

64-bit PC running an Intel Core i7-4790 CPU (3.60 GHz) with 16 GB RAM. The

software is made available at: https://github.com/ShuaaAlharbi/MTHT.

7.5 Conclusion

The enhancement of curvilinear structures is important for many image processing

applications. In this research, I have proposed a novel approach that combines the

advantages of a morphological multiscale top-hat transform and a local tensor to

enhance the curvilinear structures in a wide range of 2D and 3D biological and

medical images.

The proposed MTHT approach is evaluated qualitatively and quantitatively using
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different 2D and 3D images. The experimental results show that the approach is

comparable with the Hessian-based vesselness and neuriteness approaches, as well

with the Zana’s top-hat and RORPO approach. In general, the MTHT proposed

approach showed better enhancement results compared with the state-of-art ap-

proaches. Although the proposed approach achieves good enhancement results in

all tested biomedical images, there is room for improvement. In particular, the top-

hat transform using different structuring elements for an improved enhancement of

the image background, as well as better handling of junctions should be explored

further.

Epilogue

The proposed approach is validated on synthetic and real data, and is also compared

to the state-of-the-art approaches. The results show that the proposed approach

achieves high-quality curvilinear structure enhancement in synthetic examples and

in a wide range of 2D and 3D images. This approach is shown to be able to cope

with variations in contrast and noise.
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Chapter 8

Contributions and Conclusions

On the one hand, philosophy is to

keep us thinking about things that

we may come to know, and on the

other hand to keep us modestly

aware of how much that seems like

knowledge isn’t knowledge.

— Bertrand Russell

In this thesis, firstly, I reviewed the image enhancement methods in the literature

to provide a general idea of what people search and achieve so far. Later in the

following part, I explain the basic ideas behind mathematical morphology before pass

on to discuss image enhancement and introducing a recently developed approach for

curvilinear structure enhancement based on mathematical morphology. Most of the

parts after the morphology part are related to mathematical morphology.

In this thesis, I detailed the extension of phase-based tensor method to enhance
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curvilinear structures in the frequency domain in 3D images. I have introduced

new techniques for the enhancement of images and the detection and measurement

of objects in biomedical images. These methods have been built upon the ideas

and concepts of mathematical morphology and tensor representation. To overcome

one of the more challenging problems regarding the enhancement the curvilinear

structures, contrast dependency, I have introduced 3D phase congruency tensor. I

have combined the power of the phase congruency, free from the contrast changes in

the image, with the tensor representation that increases the number of orientation. I

have applied this method to real data in 3D cases, and the results have been proved

that the enhancement method is promising.

On the basis of the character of curvilinear structures in images, I have introduced

a new curvilinear structure enhancement method, the bowler-hat transform 2D and

3D (Chapter 5 (p. 55) and Chapter 6 (p. 86)), validating the results on synthetic

data, comparing to existing methods and showing the enhancement capacity of this

approach on real-world data. Bowler-hat transforms are simple and effective to

enhance curvilinear structures in biomedical images. I have shown that the bowler-

hat transforms are powerful enhancement approaches that better in most cases than

comparator methods in synthetic and real scenarios.

Finally, I have carried out my studies into one combined method which multiscale

top-hat tensor again in 2D and 3D images (Chapter 7 (p. 103)). Here, I have applied

the different type of real word examples either 2D or 3D to enhance curvilinear

structures.

This thesis constitutes a series of contributions to the research area of image pro-

cessing and analysis, especially within the field of mathematical morphology. Phase

congruency and tensor representation. These new approaches have been shown to

work well on noisy and complicated real-world data, such as medical and biological

images and, despite the popular direction towards deep learning, like these will likely

have a significant role to play in biomedical image processing for following several

years to come.
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8.1 Contributions to the Field

This thesis includes a series of contributions to the field of image processing and

analysis, particularly mathematical morphology.

Firstly, in Chapter 2 (p. 8), I reviewed the image enhancement methods in the

literature to provide a general idea of what people search and achieve so far. This

Chapter is also prepared to demonstrate which method is suitable for which reason.

So, researchers can use as a reference guide for their research before diving into

the field. All curvilinear features enhancement approaches introduced here, are also

used as comparator methods in the following Chapters.

Then, I detailed the extension of phase congruency tensor-based method to enhance

curvilinear structures in 3D images. This method proposes an intensity-independent

solution to any intensity variation problem that traditional curvilinear structures

enhancement methods suffer from.

Then, in the following Chapter 3 (p. 31), I explain the basic ideas behind math-

ematical morphology before pass on to discuss image enhancement and introdu-

cing a recently developed approach for curvilinear structure enhancement based on

mathematical morphology. This Chapter is supported by the simple binary image

to explain how the mathematical morphology works and its operations’. All the

Chapters after the morphology Chapter are related to mathematical morphology

operations.

In Chapter 5 (p. 55), a 2D image enhancement method, called bowler-hat trans-

form, has been introduced. The bowler-hat transform has been validated against

comparator methods using both synthetic and real image data (retinal).

In Chapter 6 (p. 86), I proposed an extension of the bowler-hat transform into 3D.

The 3D bowler-hat transform is validated quantitatively and qualitatively in both

synthetic and real-world medical images.

Finally, I introduce another image enhancement method based on mathematical
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morphology concept combined with the tensor representation of an image in 2D and

3D, see Chapter 7 (p. 103).

8.2 Future Work

As a future work, it would be more interesting to asses the behaviour of the proposed

methods in this thesis in datasets where other nearby structures are present, like in

many biomedical images.

Also, the 3D PCT concept may be extended, instead of the 3D Hessian matrix-

based approach, into 3D anisotropic diffusion schemes [136] and into 3D live-wire

tracing concepts [8]. Moreover, the 2D and 3D bowler-hat transform concept may be

extended into blob-like structures enhancement variants. Finally, a more extensive

validation of the 2D and 3D bowler-hat transform-based concepts with a much wider

range of biomedical imaging datasets would be beneficial.

MTHT transform, proposed in Chapter 7 (p. 103), achieves good enhancement

results in all tested biomedical images, however, there is still a room for improve-

ment. In particular, the MTHT methods are quite sensitive to noise. The potential

improvement may involve an introduction of a noise suppression, (i.e. Gaussian

kernel) which could help to reduce the noise in the enhanced image. On the

other hand, a combination of different structuring elements, as done in the top-hat

transform, may improved the enhancement as well as better handling of junctions.
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