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Abstract: Monitoring and discriminating co-epidemic diseases and pests at regional scales are of
practical importance in guiding differential treatment. A combination of vegetation and environmental
parameters could improve the accuracy for discriminating crop diseases and pests. Different
diseases and pests could cause similar stresses and symptoms during the same crop growth period,
so combining growth period information can be useful for discerning different changes in crop diseases
and pests. Additionally, problems associated with imbalanced data often have detrimental effects on
the performance of image classification. In this study, we developed an approach for discriminating
crop diseases and pests based on bi-temporal Landsat-8 satellite imagery integrating both crop growth
and environmental parameters. As a case study, the approach was applied to data during a period
of typical co-epidemic outbreak of winter wheat powdery mildew and aphids in the Shijiazhuang
area of Hebei Province, China. Firstly, bi-temporal remotely sensed features characterizing growth
indices and environmental factors were calculated based on two Landsat-8 images. The synthetic
minority oversampling technique (SMOTE) algorithm was used to resample the imbalanced training
data set before model construction. Then, a back propagation neural network (BPNN) based on
a new training data set balanced by the SMOTE approach (SMOTE-BPNN) was developed to
generate the regional wheat disease and pest distribution maps. The original training data set-based
BPNN and support vector machine (SVM) methods were used for comparison and testing of the
initial results. Our findings suggest that the proposed approach incorporating both growth and
environmental parameters of different crop periods could distinguish wheat powdery mildew and
aphids at the regional scale. The bi-temporal growth indices and environmental factors-based
SMOTE-BPNN, BPNN, and SVM models all had an overall accuracy high than 80%. Meanwhile,
the SMOTE-BPNN method had the highest G-means among the three methods. These results revealed
that the combination of bi-temporal crop growth and environmental parameters is essential for
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improving the accuracy of the crop disease and pest discriminating models. The combination of
SMOTE and BPNN could effectively improve the discrimination accuracy of the minor disease or pest.

Keywords: winter wheat; powdery mildew; aphid; discrimination; remote sensing

1. Introduction

Powdery mildew (Blumeria graminis), a crop disease, and aphids (Sitobion avenae), an insect
pest, are both destructive and occur almost each year in major winter wheat growing regions in
China [1,2]. These two threats can result in a serious loss of grain yield and quality, the annual average
occurrence area of powdery mildew was recorded to be as high as 10 million ha during 2000 to 2016,
annual aphid damage affects 13 million ha and causes of up to 40% wheat yield loss in China [3–7].
In practice, wheat powdery mildew and aphids tend to occur in fields unpredictably, making real-time
characterization, identification, and classification of different diseases and pests very necessary to
mitigate the problems associated with disease and pest monitoring and pesticide overuse [8].

Remote sensing technology is an important alternative of traditional manual scouting in crop
disease and pest monitoring. Some researchers demonstrated the feasibility of remote sensing
technology in detecting and differentiating crop diseases and pests according to hyperspectral analysis.
For instance, Feng et al. [9] suggested that the best two-band vegetation index ranges for powdery
mildew detection of different incidence levels were between 570–590 nm and 536–566 nm for the
ratio index, and 568–592 nm and 528–570 nm for the normalized difference index. Riedell et al. [10]
characterized leaf reflectance spectra of wheat damaged by Russian wheat aphids and greenbugs,
finding the chlorophyll concentrations of the plants damaged by the two aphids significantly influenced
the reflectance in the 625–635 nm and the 680–695 nm ranges. Huang et al. [11] found single
wavelengths around 400 nm, 500 nm, and 750 nm were highly relevant for wheat leaves diseased
with powdery mildew, single wavelengths around 540 nm and 750 nm were relevant to wheat yellow
rust, and single wavelength around 400 nm was relevant to wheat aphid infection. Based on these
findings, they developed four new spectral indices and successfully identified healthy leaves and leaves
infected with powdery mildew, yellow rust, and aphid using them. In addition, based on an advanced
hyperspectral analysis technique, continuous wavelet analysis, Shi et al. [4] determined the most
sensitive wavelet features (WFs) for the identification of yellow rust and powdery mildew in winter
wheat. Although these hyperspectral based studies gave more detailed information and demonstrated
the effectiveness of hyperspectral sensors in detecting and discriminating crop diseases and pests,
its high hardware and computational costs restrict its application over large areas [12,13]. Based on
the acceptable spatial and temporal resolutions, multispectral satellite technique becomes a feasible
method for crop diseases and pests monitoring [8,14,15]. For instance, based on Landsat-5 Thematic
Mapper (TM) data, Mirik et al. [16] successfully assessed the infection and progression of wheat streak
mosaic. Navrozidis et al. [17] demonstrated that field spectroscopy and wide area remote sensing (i.e.,
Landsat-8) can be used to create sufficiently accurate quantification models of crop disease severity.
Furthermore, relying on a relative spectral response function (RSR function) spectral simulation,
Yuan et al. [12] converted canopy hyperspectral signals to broadband reflectance corresponding to
seven high-resolution satellite sensors and channel settings, and simulated some classic vegetation
indices to discriminate three typical diseases and an insect pest of winter wheat, and their results
indicated the feasibility of high resolution multispectral satellite sensors for discriminating crop
diseases and pests. By developing a set of normalized bi-temporal vegetation indices using PlanetScope
image datasets at a 3-m spatial resolution, Shi et al. [8] mapped and evaluated the damage caused by
rice dwarf, rice blast, and glume blight at fine spatial scales. These results motivate us to attempt to
discriminate wheat powdery mildew and aphid using multispectral satellite imagery.
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For one thing, different diseases and pests could cause similar stresses and symptoms such as
discoloration, wilting, and rot. For another, in different growth periods, the occurrence and epidemic law
of different diseases and pests are different. Both of which may result in confusion for multiple damage
detection using a single-date satellite imagery. The information gathered on within-field variability in
growth conditions and diseases and pest infestations is important for precision crop diseases and pests
monitoring through multi-temporal remote sensing imagery [8,14,18]. Furthermore, the occurrence
and development of crop diseases and pests not only are related to crop growth conditions, but also
require appropriate environmental conditions such as temperature, humidity, etc. [19]. The monitoring
accuracy of crop diseases and pests could be improved by integrating environmental information [3,19].
The effectiveness of field environmental parameters such as land surface temperature (LST), soil water
content (SWC) and the tasseled cap transformation features (Greenness and Wetness) based on
remotely-sensed shortwave infrared and thermal infrared information of Landsat-8 imagery for crop
disease and pest monitoring have been demonstrated [3,19,20]. However, most existing models for
monitoring crop diseases and pests by remote sensing focus on detection and monitoring of crop
damages using corresponding single-date imagery; meanwhile, crop environmental characteristics
have not been considered [13,20–22]. Some other scholars only considered either temporal information
or crop environment in disease and pest monitoring instead of both factors, few studies combined
the information from these two aspects into disease and pest monitoring and differentiation [8,19].
Therefore, it is necessary to evaluate the feasibility of remotely sensed feature set integrating
multi-temporal crop growth indices and environmental factors in monitoring and discriminating crop
diseases and pests.

There is often a situation in the field where one crop stress is dominant and other stresses
are mild but important. An imbalanced data set is formed if one class has a significantly different
number of samples from other classes for a field survey experiment. For an imbalanced data set,
more attention needs to be paid to the minority class that contains more valuable information [23].
However, when samples of the majority class in a training data set vastly outnumber those of the
minority class, traditional data mining algorithms tend to ignore the minority class because of the
pursuit of global accuracy [24,25]. The synthetic minority oversampling technique (SMOTE) proposed
by Chawla et al. [26] was a popular method through oversampling at the connection between the
current samples of the minority class to get synthetic samples of the minority class to balance the
proportions in classes. This method was widely used in combination with a variety of traditional
classification methods to solve the classification problem of imbalanced data [27,28].

Back propagation neural network (BPNN) is a popular classification method for its back
propagation-learning algorithm, which is a mentor-learning algorithm of gradient descent, or its
alteration [29]. BPNN is a multilayer mapping network that minimizes an error backward while
information is transmitted forward [30]. The BPNN method can implement any complex nonlinear
mapping function proven by mathematical theories and approximate any arbitrary nonlinear
function with satisfactory precision, which makes BPNN popular for predicting complex nonlinear
systems [31,32]. The BPNN method has some advantages such as simple architecture, easy model
construction and rapid calculation speed [33]. The BPNN method has been widely used for
classification [33–37]. These existing successful cases support the use of BPNN in this study for
the discrimination of wheat powdery mildew and aphid.

In this study, a coupled SMOTE-BPNN model integrating bi-temporal growth indices and
environmental factors has been developed, which can accurately discriminate different damages in
winter wheat. The simultaneous outbreak of wheat powdery mildew and wheat aphid was chosen
for the case study. Wheat powdery mildew and aphid occurred in the Shijiazhuang area of Hebei
Province, China, during the spring of 2014. Bi-temporal Landsat-8 imagery was used in this study.
Both wheat growth and environmental parameters were used in combination. The aims of this study
were: (1) to evaluate the performance of the coupled SMOTE-BPNN classification models for mapping
the damage from the disease and pest; and (2) to assess the impact of the feature set consisting of
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bi-temporal growth indices and environmental factors on the accuracy of the classification models
when it is considered as an input parameter.

2. Materials and Methods

2.1. Study Site

The study site was located in the Shijiazhuang area of Hebei Province, in the northern part of
the North China Plain (Figure 1). This region has a warm temperate humid or semi-humid climate,
with four distinctive seasons. The average annual temperature ranges from 12 to 13 ◦C, and the
annual precipitation ranges 400 to 800 mm [38]. The annual frost-free period ranges 175 to 220 days.
Winter wheat is usually planted in early October and harvested in the middle of June [39]. The major soil
type in this region is reported to be Haplic Luvisols [40]. Suitable temperature and abundant sunshine
make it suitable for crop growth. Winter wheat is a major local crop. The local climate and environmental
conditions provide a suitable developing environment for powdery mildew and aphid [19]. Due to its
single planting pattern, this region is an ideal location for remote sensing monitoring.
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2.2. Field Survey

A total of 137 field plots were surveyed to evaluate the damage severity caused by winter wheat
powdery mildew and aphid as ground truth data during 23 to 28 May 2014 of the grain filling period,
when symptoms of diseases and pests are most visually conspicuous. Five 1-m × 1-m quadrats were
selected at a 30-m × 30-m plot to match the spatial resolution of Landsat-8 satellite imagery. The center
latitude and longitude of each plot were recorded by a sub-meter precision handheld global positioning
system (GPS) receiver. Wheat growth conditions, height, and disease and pest occurrence severity were
recorded in the survey (Table A1). The sampling designs for wheat powdery mildew and aphid were
based on the Rules for the Investigation and Forecast of Wheat Powdery Mildew (NY/T 613-2002) and
the Rules for the Investigation and Forecast of Wheat Aphides (NY/T 612-2002). A visual discrimination
method was used to assess the infestation status and damage severity for each plot because wheat
powdery mildew and aphid occurred simultaneously in some of the plots. The plots were labeled
as healthy if they had not been infested or if the proportion of damaged leaves was less than 10%.
For a total of 137 plots, 46 plots were healthy, 80 plots were infected by powdery mildew, and 11 plots
were damaged by aphid. In this study, 91 plots were randomly selected for model training and the
remaining 46 plots were used for testing. Table 1 lists the overview of the field survey experiment.

Table 1. Basic information for the disease survey experiment.

Type
Number of Field Survey Samples

Healthy Powdery Mildew Infected Aphid Damaged

Training 30 54 7
Testing 16 26 4

2.3. Image Selection and Preprocessing

Considering the potential pathological impact of disease and pest infestations, multi-temporal
remote sensing imagery could monitor and discriminate crop diseases and pests more accurately [14].
Therefore, according to wheat powdery mildew and aphid occurrence and development
characteristics [41–43], two Landsat 8 satellite scenes acquired on 15 and 22 May 2014 were selected in
this study. Due to the special location of the study area, which located the overlapping area of the two
images, the two scenes were with a time interval of less than 16 days. Both images covered the entire
study area without any cloud. A radiometric calibration and an atmospheric correction for the images
were performed using ENVI 5.3 software (Harris Geospatial Solutions, USA). In addition, a decision
tree method was applied to the extraction of the winter wheat planting area based on the different time
distribution characteristics of the main crops (mainly include wheat, corn and cotton) in the study
area [44–46]. An overall validation accuracy of 94% through field survey points were obtained, and the
result satisfied the accuracy requirement for subsequent analysis.

2.4. Extraction of Crop Growth Characteristics and Field Environmental Parameters

The occurrence of powdery mildew and aphid is not only determined by crop growth conditions,
but also strongly related to environmental factors (i.e., temperature and humidity). Therefore, in this
study, six spectral indices related to crop growth and two environmental factors were extracted and
calculated to investigate their sensitivity for the discrimination of winter wheat powdery mildew and
aphid. The six spectral indices include: difference vegetation index (DVI), perpendicular drought
index (PDI), structural independent pigment index (SIPI), shortwave infrared water stress index
(SIWSI), simple ratio index (SR), and triangular vegetation index (TVI). These indices are respectively
related to vegetation coverage, drought condition, senescence, canopy water content, photosynthetic
area and radiant absorption of chlorophyll. The formulas for these indices are provided in Table 2.
The two environmental factors are Greenness and land surface temperature (LST). As a tasseled
cap transformation feature, Greenness indicates overall crop growth, and it is also suitable for the
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characterization of field environmental factors [19]. The Greenness calculation formula [47] is shown
in Equation (1):

Greenness = g1 ∗ b1 + g2 ∗ b2 + g3 ∗ b3 + g4 ∗ b4 + g5 ∗ b5 + g6 ∗ b6, (1)

where gi and bi (i = 1, 2, . . . , 6) represent the corresponding coefficient and reflectance for each band
(Table 3).

LST reflects the intensity of crop respiration and transpiration, and it is also related to the occurrence
of crop diseases and pests. The single channel method and the TIRS-1 (tenth band of Landsat-8 imagery)
of the thermal infrared sensor was used to calculate LST as shown in Equation (2) [19]:

LST = (K2/ ln(K1/Lλ + 1)) + 1, (2)

where Lλ is the spectral radiation rate of the TIRS-1 band, (W/m2*sr*µm); K1 and K2 are conversion
constants obtained from the heading file of the images (K1 = 774.89, K2 = 1321.08).

Finally, a total of 16 remote sensing features (eight features for each period) of the two periods
were extracted.

Table 2. Summary of the remotely sensed features used for discrimination of powdery mildew and
aphid, with red band, green band, near infrared (NIR) band, and short wave infrared (SWIR) band
denoted as RR, RG, RNIR, and RSWIR, respectively.

Category Definition Formula or Description Sensitive to Reference

Crop growth
characteristics

Difference vegetation index,
DVI RNIR −RR

Vegetation
coverage [48]

Perpendicular drought
index, PDI

(
1/sqrt

(
M2 + 1

))
(RR + MRNIR) Drought condition [49]

Structural independent
pigment index, SIPI

(RNIR −RB)/(RNIR −RR) Senescence [50]

Shortwave infrared water
stress index, SIWSI

(RNIR −RSWIR)/(RNIR + RSWIR)
Canopy water

content [51]

Simple ratio index, SR RNIR/RR Photosynthetic area [52]
Triangular vegetation

index, TVI 60(RNIR −RG) − 100(RR −RG)
Radiant absorption

of chlorophyll [53]

Field
environmental

parameters

Greenness A tasseled cap transformation
feature

Overall crop
growth [47]

Land surface temperature,
LST

Calculated by the single channel
method based on the TIRS-1 band

of Landsat-8

Crop respiration
and transpiration [54,55]

Table 3. Tasseled cap transformation coefficients of Greenness for Landsat-8 at satellite reflectance.

Index Bands

Greenness
g1 Blue g2 Green g3 Red g4 NIR g5 SWIR-1 g6 SWIR-2

–0.2941 –0.243 –0.5424 0.7276 0.0713 –0.1608

2.5. Balance Training Data Using Synthetic Minority Oversample Technique (SMOTE) Algorithm

Before the construction of crop disease and pest discrimination models, the SMOTE algorithm
was firstly used to get synthetic samples of minority classes (both healthy and aphid damaged) to
balance the proportions in classes of the training data set in this study. SMOTE uses samples of the
minority class to control the generation and distribution of artificial samples to achieve the purpose of
balancing datasets [56,57]. It can achieve potentially better classification performance without loss of
data [26,58]. SMOTE assumes that a sample constructed between the nearby samples in the minority
class is still a sample of the class [56]. In order to avoid the over-fitting problem while expanding
the minority class region, SMOTE generates new instances by operating within the existing feature
space. New instance values are derived from interpolation rather than extrapolation, so they still
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carry relevance to the underlying data set [57]. For each minority class instance, SMOTE interpolates
values using a K-nearest neighbor technique and creates attribute values for new data instances [59].
Specifically, the basic principles of the SMOTE algorithm is as follows:

i. For each sample in the minority class xi, the K-nearest neighbors belonging to the same class
are searched.

ii. Randomly select one sample x̂i from the K-nearest neighbors.
iii. Construct one new artificial minority class sample xnew between the two samples using

Equation (3):
xnew = xi + rand[0, 1] × (x̂i − xi), (3)

where xnew is the new synthetic minority class sample. xi is the minority class samples, i = 1,
. . . , N, N is the amount of SMOTE determined based on the imbalanced proportion of samples.
rand[0, 1] is a random number between 0 and 1. x̂i is a random K-nearest neighbor sample of
the xi.

Figure 2 gives an example to further illustrate the basic principles of the SMOTE algorithm.
After SMOTE processing, the number of minority class will increase K times. If more artificial

minority class samples are needed, the above interpolation process is repeated to achieve a balance
in the new training samples and the new sample dataset is finally used for training the classifier.
These synthetic samples help to break the drawback of simple up-sampling. The increase of the original
dataset in this way can significantly improve the learning capacity of the classifier. SMOTE was used
to generate a new balanced training data set for the training of the crop disease and pest discrimination
models. Furthermore, the coefficient of determination (R2) was used as accuracy measurement of the
new balanced training data set estimation. If the value of R2 reaches over than 0.7, the new balanced
training data set is considered to be with good quality and suitable for the models construction.
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2.6. Wheat Powdery Mildew and Aphid Discriminate Using Back Propagation Neural Networks (BPNN)

The BPNN algorithm was implemented to discriminate wheat powdery mildew and aphid based
on the bi-temporal remote sensing feature set which includes both growth indices and environmental
factors. BPNN is a method designed to minimize the total error (or mean error) of the output computed
by the network [30]. Generally, a network is composed of an input layer, an output layer, and one
or more hidden layers between them [60]. Network training is a process of continual readjustment
between the weights and the threshold, in order to make the network error reduce to a preset minimum
or stop at a preset training step. Then, the forecasting samples are input to the trained network to obtain
the forecasting results. It is reported that the improvement of control performance of BPNN algorithm
was not proportional to the increased number of hidden layers, and the three-layer (with one single
hidden layer) BPNN was the best [61,62]. In addition, the number of hidden neurons in a three-layer
network was suggested to be 75% of the number input neurons [63]. Thus, the monolayer structure
was adopted for the hidden layer in this study and included twelve neurons. Logsig and purelin were
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adopted as the activation functions, respectively. One momentum adaptive training function traingdx
was utilized by the network training. Based on the classical back propagation algorithm, this algorithm
can automatically modulate learning rate and incidental momentum, avoiding local minimum and
greatly accelerating the convergence rate greatly [64]. The number of training epochs was used as
the stopping criterion in this study, and the allowed maximum epochs were taken as 2000 epochs.
Then, a coupled SMOTE-BPNN approach for crop disease and pest discrimination was proposed by
combining the new training data balanced by the SMOTE algorithm with the BPNN classification
method. All BPNN-related analyses were performed in MATLAB 2016a software.

2.7. Accuracy Assessment of Disease and Pest Discrimination

Overall accuracy (OA), user’s accuracy (UA), producer’s accuracy (PA), and kappa coefficient
(Table 4) [65] were calculated for the monitoring results based on field truthing. These accuracy
measures were used to evaluate the model’s performance in discriminating crop diseases and pests.
To compare and verify the performance of the SMOTE-BPNN models based on bi-temporal growth
indices and environmental factors (BTGE), the original training data set-based BPNN and support
vector machine (SVM) methods were also used to build discrimination models. To further compare
and verify the performance of the bi-temporal feature set-based SMOTE-BPNN discrimination models,
the three other feature sets-based models were also constructed using SMOTE-BPNN, BPNN and SVM
methods. These feature sets include bi-temporal growth indices (BTG), single-date growth indices and
environmental factors (SDGE), and single-date growth indices (SDG). Furthermore, the commonly
used parameters F-score and geometric mean (G-means) for imbalanced data sets had also been used to
evaluate the proposed models [66,67]. F-score is defined as the harmonic mean of precision and recall,
the F-score value increases proportionally to the increase of precision and recall, and a higher F-score
value indicates that the model performs better on the minority class samples balancing [66,68,69].
G-means indicates the balance between classification performances on the majority and minority
classes [69]. A poor performance in prediction of the minority class examples will lead to a low
G-means, even if the majority class examples are correctly classified per the model. G-means is quite
important to measure the avoidance of the overfitting to the majority class samples and the degree to
which the minority class samples is marginalized [66,69]. F-score was used to measure classification
performance of the SMOTE-BPNN approach on rare classes (include healthy and aphid), and G-means
was used to measure the classification performance of the whole data set in this study. Figure 3
summarizes the data analysis process.

Table 4. Summary of the accuracy measures for discrimination models.

Name Formula References

User’s accuracy, UA UAi = pii/pi+ [70]
Producer’s accuracy, PA PAi = pii/p+i [70]

Overall accuracy, OA OA =
m∑

i=1
pii/p [70]

Kappa coefficient kappa = (OA− EA)/(1− EA), EA =
m∑

i=1

pi+
p

p+i
p [71]

Note: i is the wheat damage category in this study, i = 1, i = 2 and i = 3 mean healthy, powdery mildew infected
and aphid damaged, respectively. UAi, PAi, and OA mean the user’s accuracy of the category i, the producer’s
accuracy of the category i, and the overall accuracy of the classification models, respectively. pii, pi+, p+i, p mean the
correct classification number of the category i, the total number of the category i obtained from the field truth survey,
the total number of the category i obtained from the classification models, and the total number of all the three
categories, respectively. m is the number of the categories, which equals 3 in this study.
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Figure 3. Flowchart for constructing discrimination model for powdery mildew and aphid using
bi-temporal Landsat-8 imagery integrating growth indices and environmental factors at regional scales.

3. Results

3.1. Response of Remotely Sensed Features to Powdery Mildew and Aphids

The responses of the eight remotely sensed features during the two growth periods to changes
in powdery mildew and aphids are illustrated in Figure 4. The features were compared at different
damage levels using the mean and standard deviation of each normalized feature. The results reveal
that each index in the two stages exhibited a strong response to the damaged samples except LST on
May 15. The highest values for powdery mildew damaged samples and the lowest values for aphid
damaged samples are provided by all these features except for LST. Only LST on 22 May shows the
opposite characteristics to the other indices. Therefore, this indicates that both feature sets contained
useful information on the development of the infections, and integrating these parameters with disease
and pest discrimination would effectively improve the performance of the model.
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Figure 4. Means and standard deviations of the selected normalized growth indices and environmental
factors for both healthy and damaged (powdery mildew and aphids) plots on (a) 15 May and (b) 22 May.

3.2. Balanced Results of Training Data

For each training data with the 30 healthy plots, 54 powdery mildew infected plots, and seven
aphid damage plots, SMOTE was used to balance the samples. The results for the balanced training
data by SMOTE are listed in Table 5. After the data balance, the number of healthy plots increased to
81 and the number of aphid damaged plots increased to 45. The healthy and aphid damaged plots had
larger sample ratios of 45.0% and 25.0%, respectively. Although the distribution of the samples was
still uneven, the imbalance of training data had been significantly improved. Additionally, the quality
evaluation results of the new training data showed that the R2 value reached 0.76. Thus, the new training
data set was then used for the subsequent training of the disease and pest discriminating models.

Table 5. Distribution of original training samples and balanced training samples by the synthetic
minority oversample technique (SMOTE) method.

Stress
Original Training Samples Balanced Training Samples by SMOTE

Number Ratio Number Ratio

Healthy 30 33.0% 81 45.0%
Powdery mildew infected 54 59.3% 54 30.0%

Aphid damaged 7 7.7% 45 25.0%
Sum 91 100% 180 100%

3.3. Mapping Powdery Mildew and Aphid Damage

The models based on the BTGE were constructed using the SMOTE-BPNN, BPNN, and SVM
methods to assess the importance of these features for discriminating crop diseases and pests and
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mapping damage caused by powdery mildew and aphids. For comparison and testing of initial results
of the proposed approach, the three other feature sets including BTG, SDGE and SDG were also used
as the input variables of the three methods, respectively. The radar charts of OA and kappa coefficients
of four different feature sets-based SMOTE-BPNN, BPNN and SVM models are shown in Figure 5.
For four different remotely sensed feature sets, the results revealed that the three method models based
on two bi-temporal feature sets (BTGE and BTG) had the higher overall accuracy and kappa coefficient
than two single-date feature sets-based (SDGE and SDG) models. The BTGE-based SMOTE-BPNN
and SVM models respectively had the highest overall accuracies of 82.6%, and kappa coefficients of
0.677 except BTGE-based BPNN model (Tables A2–A4). Meanwhile, no matter the two bi-temporal
feature sets or two single-date feature sets, the three method models based on the feature sets (BTGE
and SDGE) containing environmental factors had the higher precisions. Furthermore, for the PA of the
three methods, all PA values of all three classes (i.e., healthy, powdery mildew infected, and aphid
damaged) obtained by the four feature sets-based SMOTE-BPNN models reached higher than 60%
(Table A2). Only part of the BPNN and SVM models had a PA of higher than 60% for the healthy class
(Tables A3 and A4). However, for the aphid damaged class, no models had a PA higher than 50%
among all BPNN or SVM models (Tables A3 and A4).
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Figure 5. Radar charts of (a) overall accuracy (OA%) and (b) kappa coefficients of four different feature
sets-based coupled models of synthetic minority oversample technique algorithm and back propagation
neural network method (SMOTE-BPNN), BPNN models and support vector machine (SVM) models.

For further comparison and evaluation of the classification performance of the SMOTE-BPNN,
BPNN, and SVM methods using the four different feature sets, Table 6 lists the G-means and F-score of
healthy and aphid samples of each model. The results revealed that the four SMOTE-BPNN models
had the higher G-means and F-score values than the corresponding models for the BPNN and SVM
methods except for the F-score of the healthy class for the BTGE-based BPNN model. The G-means
and F-score of the rare aphid damaged class of the BTGE-based SMOTE-BPNN model were the highest
among the four SMOTE-BPNN models. Only the F-score of the aphid damaged class for the SDG-based
SMOTE-BPNN model was lower than 60%. For the BPNN and SVM method, only the G-means and
F-score values of the BTGE-based models were higher than 60%. The above results demonstrated that
the SMOTE-BPNN approach had better performance for imbalanced data classification. Meanwhile,
the combination of growth indices and environmental factors could also result in a better performance
in crop disease and pest discrimination.
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Table 6. Comparison of geometric mean (G-means) and F-score of three classification methods using
four different feature sets.

Model Feature Set G-Means/% F-Score of Healthy Class/% F-Score of Aphid Class/%

SMOTE-BPNN

BTGE 78.1 75.9 75.0
BTG 77.7 76.5 75.0

SDGE 70.0 62.5 60.0
SDG 71.2 64.5 50.0

BPNN

BTGE 70.1 76.5 66.7
BTG 68.2 73.3 50.0

SDGE 61.3 61.5 57.1
SDG 50.9 64.5 33.3

SVM

BTGE 69.1 73.3 66.7
BTG 0.0 69.0 /

SDGE 42.2 41.7 28.6
SDG 52.4 43.5 40.0

Figure 6 shows the spatial distributions of healthy, powdery mildew infected and aphid damaged
wheat mapped using the SMOTE-BPNN, BPNN, and SVM models based on BTGE. In all three
models, wheat powdery mildew occurred extensively and covered the largest area, while wheat aphids
occurred only in isolated spots and accounted for the smallest area among the three classes. The spatial
distributions of powdery mildew and aphids based on the damage maps were generally consistent
with the field observation. About 59% of the plots were infected with powdery mildew and only 7% of
the plots were infested with aphids. The differences among the three methods can be observed on
the three maps. For instance, the similar distributions of the three classes were found between the
SMOTE-BPNN and SVM models based on BTGE. Compared with the other two models, the BPNN
model produced more aphid damaged areas in the eastern region of the study area and more healthy
wheat in the southwestern region of the study area. Furthermore, a quantitative area statistic for
the three classes based on SMOTE-BPNN, BPNN, and SVM models using BTGE is listed in Table 7.
The results revealed that, among the three method models, the SMOTE-BPNN model obtained the
highest aphid damaged wheat areas, the BPNN model obtained the highest powdery mildew infected
wheat areas, and the SVM model obtained the highest healthy wheat areas.
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Table 7. Area statistics for the different wheat damages based on the three methods using bi-temporal
growth indices and environmental factors.

Model
Damaged Area Ratio/%

Healthy Powdery Mildew Infected Aphid Damaged

SMOTE-BPNN 36.17 54.98 8.85
BPNN 28.52 64.48 7.00
SVM 37.23 58.11 4.66

4. Discussion

We found that classification using bi-temporal growth indices and environmental factors resulted
in the highest accuracies among the four different feature sets for discriminating healthy, powdery
mildew infected, and aphid damaged winter wheat through the three methods. Only the SMOTE-BPNN
model obtained acceptable results for all three classes (i.e., healthy, powdery mildew infected, and aphid
damaged) among the three SDG-based models. The BTGE-based SMOTE-BPNN method was also
found to produce the most accurate classification for the two minority classes (i.e., healthy and aphid
damaged). This suggests that our proposed SMOTE-BPNN method combing bi-temporal growth and
environmental parameters improved overall crop disease and pest discriminating accuracy.

Typically, the disease causes the changes of biophysical and biochemical parameters of plants,
such as pigments, water content and canopy structure as well as leaf color changes due to pustules
or lesions [72]. Meanwhile, pest damages can also cause a reduction in pigment concentrations
especially chlorophylls and leaf water content in the infested leaf and the destruction of infested leaf
tissues [6,73]. These changes can influence the tissue optical properties and alter the spectral response
characteristics [13,74,75]. The reduction of chlorophyll concentrations and water content in the leaf,
damaged by aphids piercing the leaf and sucking out leaf juice, results in a higher reflectance in the
visible and SWIR regions than the non-infested leaf [6]. The leaf tissue destructed by aphid infestation
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leads to a lower reflectance than the non-infested leaf in the NIR region [73]. The raw reflectance of
leaves diseased by powdery mildew has a significant increase in the visible spectral region and a
slight decrease in the NIR region over that of the healthy wheat leaves. Similar spectral characteristics
of powdery mildew and aphids were also observed in the present study (Figure 7). The chosen
indices (i.e., DVI, PDI, SIPI, SIWSI, SR and TVI) exhibit remarkable performance on monitoring and
discriminating powdery mildew and aphids. These indices enable transformation of raw spectra into
more meaningful metrics of the disease and pest damage. Furthermore, two environmental factors
LST and Greenness had also been used for discriminating wheat disease and pest in this study. Their
contributions for classification was evaluated. LST extracted from satellite imagery has been identified
as one of the sky parameters controlling the physical, chemical, and biological processes at the interface
between the earth and the atmosphere [76,77]. LST is also an effective means of partitioning latent
heat fluxes, which provides information on micro-environmental conditions such as crop respiration
and evapotranspiration [19,78]. Meanwhile, Greenness is responsive to the characteristic of healthy
green vegetation that has high absorption of chlorophyll in the visible region and high reflectance
of leaf tissue in the NIR region, so it reflects overall crop growth conditions and is suitable for the
characterization of field environment [19,79]. These two environmental parameters influence the
occurrence of crop diseases and pests. Our results revealed the relationship between the environmental
factors and the development of the crop conditions affected by the disease and pest (Figure 3) and
demonstrated the positive contributions of environmental factors for the discrimination of different
diseases and pests (Figure 5, Tables A2–A4).
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Compared with single-date feature sets, the newly proposed bi-temporal feature sets performed
better on discriminating and mapping healthy wheat, powdery mildew infected and aphid infested
wheat (Figure 5, Tables A2–A4). Factors such as phenological, cultivation, and crop conditions
may lead to responses of the same features which fluctuate following the disease and pest
infestations [80]. The occurrence and development characteristics of different diseases and pests
are different. The bi-temporal variations help to eliminate field anomalies other than the disease
and pest infestations [8]. For example, the bi-temporal features could characterize the pigments and
canopy morphology variations better, and indicated the relative importance of the combination of
multi-temporal features in discriminating crop disease and pest. Currently, the quick development of
precision agriculture requires finer field details and higher temporal resolutions. Due to the special
location of the study area, two scenes with a time interval of less than 16 days were successfully
acquired. Hence, the Landsat-8 imagery was successfully used for the discrimination of the wheat
disease and pest in this case study. Furthermore, although the dates of the image acquisition and field
survey were very hard to keep consistent due to the influence of the sensor revisit period and cloud
cover, the chosen investigation dates in this study were a critical period when the occurrence and
development potential of crop disease and pest remained consistent and stable [41–43,81]. Therefore,
the obtained samples could effectively reflect the occurrence and development of disease and pest,
and our good results demonstrated such effectiveness of the samples. On the other hand, although
some high spatial-temporal resolution satellite images (i.e., Worldview-2, PlanetScope, SPOT-6 and so
on) have been used to monitor and discriminate different crop diseases and pests, the corresponding
environmental characteristics cannot be obtained from these sensors due to the limitations of their
available bands [8,13,19]. Therefore, in the future, field investigation and satellite acquisition dates
should be as consistent as possible, and multi-source remote sensing data should be fused for crop
disease and pest discrimination.

The feasibility of each type of remotely sensed feature sets in describing different crop
damages was assessed using different feature combinations balanced by SMOTE as input variables
in BPNN (SMOTE-BPNN). For disease and pest discrimination, the positive contributions of
environmental information and the importance of the two temporal images were confirmed in
this research by developing models using the four different feature sets (BTGE, BTG, SDGE, and SDG)
(Figure 5). Based on the bi-temporal growth indices and environmental factors, all three methods
(i.e., SMOTE-BPNN, BPNN and SVM) had similar overall accuracy values and the classification
accuracies for the healthy plots were all acceptable for the three methods based on this feature set.
However, the classification accuracy for the aphid damaged plots using SMOTE-BPNN increased by
25.0% compared with the accuracy using the other two methods. Meanwhile, the G-means of the
SMOTE-BPNN model based on the feature set was 8.0% and 9.0% higher than that for BPNN and
SVM, respectively (Table 6). The results proved that the bi-temporal growth indices and environmental
factors-based SMOTE-BPNN were an effective approach for automatic discrimination among healthy
wheat, powdery mildew infected wheat and aphid damaged wheat. This approach performed well
in the classification of the small or rare classes. Additionally, although the imbalance of the training
data had been improved by the SMOTE algorithm, it was not optimal (Table 5). The disadvantage of
SMOTE reported is that, since the separation between majority and minority class clusters is not often
clear, noisy samples may be generated, resulting in a new sample set that may not be the best one [82].
Some modifications of SMOTE have been proposed [83,84]. Therefore, more suitable methods for
imbalanced data should be further studied for application to the discrimination of imbalanced crop
diseases and pests.

Overall, the proposed SMOTE-BPNN model integrating bi-temporal growth indices and
environmental factors performed better in discriminating damages in winter wheat based on Landsat-8
satellite imagery, with a good accuracy of 82.6%. In this study, our goals were to improve the accuracy
of the discrimination models through the integration of multi-source and multi-temporal remotely
sensed data, thus providing a detailed spatial distribution of crop diseases and pests to meet the current
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needs of precision agriculture. Meanwhile, the combination of the SMOTE resample algorithm and
the BPNN classification method made the classification of imbalanced data more accurate. However,
limited by the spatial-temporal resolution of Landsat-8 images, although typical areas of diseases
or pests infestation were firstly chosen and a diagonal five point sampling method based on the
combination scheme of random sampling and representative sampling was then used to characterize
the damage severity of each sample plot, it is still very difficult to eliminate the influence of the mixed
pixel problem. In addition, our research was based solely on remote sensing data. In future research,
multi-source information such as climate data and geographic data that are able to eliminate the
classification uncertainty should also be incorporated. Some satellite data with finer spatial-temporal
resolution should also be used in crop pest and disease monitoring and discrimination by fusing
medium resolution satellite data containing environmental information. Additionally, more advanced
methods that are more sensitive to imbalanced data can be tested to further improve the stability and
reliability on crop disease and pest discrimination.

5. Conclusions

This study developed a BTGE-based SMOTE-BPNN approach using Landsat-8 imagery to
discriminate powdery mildew and aphids in winter wheat. Compared with the traditional SDG-based
method, the overall accuracy of the proposed approach (82.6%) had increased by 10.9%. A combination
of bi-temporal growth and environmental parameters could accurately characterize the regional
spatial distribution of crop diseases and pests and thus can provide technical support for field disease
prevention and management. Furthermore, the combination of SMOTE and BPNN improved the
classification accuracy for the three wheat classes (i.e., healthy, powdery mildew infected, and aphid
damaged). Future studies should explore the fusion of multi-source remote sensing data such
as Landsat-8 and Worldview-2 and the incorporation of physiological parameters to improve the
performance and robustness of the crop disease and pest discrimination techniques.
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Appendix A. Supporting Information

Table A1. Summary of the field survey indicators.

Type Field Survey Indicators

Growth conditions Population density 1O Plant height Growth period

Powdery mildew 2O Damage percentage Disease severity Disease index, DI
Aphid 3O Aphid amount Aphid density Aphid severity

Note: Based on the combination scheme of random sampling and representative sampling, each sample plot of
30-m × 30-m was designed to match the spatial resolution of Landsat-8 satellite imagery. At each plot, five 1-m ×
1-m quadrats were selected to survey damage severity through diagonal sampling:

1. Population density is the total number of plants in one 1-m × 1-m quadrat.
2. In each quadrat, 20 individual plants were random selected for damage percentage inspection. In disease

inspection, according to the National Rules for the Investigation and Forecasting of Crop Diseases (NY/T
613-2002), each leaf of the selected plants were grouped into one of 10 disease severities: 0 (amount of infection:
0%), 1 (1–10%), 2 (11–20%), 3 (21–30%), 4 (31–40%), 5 (41–50%), 6 (51–60%), 7 (61–70%), 8 (71–80%), and 9
(81–100%). Of them, 0% represents no infection and 100% represents the greatest amount of infection. Then,
the disease index (DI) was calculated using following formula:

DI =
∑

x f
n
∑

f
× 100, (4)

where x is the value of incidence level, f is the total number of leaves for each degree of disease severity, and n
is the value of highest disease severity gradient. The DIs of five quadrats within a plot were then averaged to
represent the disease severity of the plot:

3. In each quadrat, 10 individual plants were random selected for amount inspection. In pest inspection,
the aphid densities were then estimated by using following formula: aphid density = total aphid amount/10
plants. The average aphid density of five quadrats was used to represent the aphid density of the plot.
According to the Rules for the Investigation and Forecast of Wheat Aphides (NY/T 612-2002), the six aphid
damage severities were assessed.

Table A2. Confusion matrices and classification accuracies produced by different feature sets with the
SMOTE-BPNN method.

Validation Field Truth

Features Healthy Powdery Mildew Aphid Sum UA OA Kappa

BTGE

Healthy 11 2 0 13 84.6%

82.6% 0.677
Powdery mildew 4 24 1 29 82.8%

Aphid 1 0 3 4 75.0%
Sum 16 26 4 46
PA 68.8% 92.3% 75.0%

BTG

Healthy 13 5 0 18 72.2%

78.3% 0.613
Powdery mildew 3 20 1 24 83.3%

Aphid 0 1 3 4 75.0%
Sum 16 26 4 46
PA 81.3% 76.9% 75.0%

SDGE

Healthy 10 5 1 16 62.5%

69.6% 0.469
Powdery mildew 5 19 0 24 79.2%

Aphid 1 2 3 6 50.0%
Sum 16 26 4 46
PA 62.5% 73.1% 75.0%

SDG

Healthy 10 4 1 15 66.7%

71.7% 0.520
Powdery mildew 3 20 0 23 87.0%

Aphid 3 2 3 8 37.5%
Sum 16 26 4 46
PA 62.5% 76.9% 75.0%
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Table A3. Confusion matrices and classification accuracies produced by different feature sets with the
BPNN method.

Validation Field Truth

Features Healthy Powdery Mildew Aphid Sum UA OA Kappa

BTGE

Healthy 13 4 1 18 72.2%

80.4% 0.638
Powdery mildew 3 22 1 26 84.6%

Aphid 0 0 2 2 100.0%
Sum 16 26 4 46
PA 81.3% 84.6% 50.0%

BTG

Healthy 11 2 1 14 78.6%

80.4% 0.639
Powdery mildew 3 24 1 28 85.7%

Aphid 2 0 2 4 50.0%
Sum 16 26 4 46
PA 68.8% 92.3% 50.0%

SDGE

Healthy 8 2 0 10 80.0%

73.9% 0.492
Powdery mildew 7 24 2 33 72.7%

Aphid 1 0 2 3 66.7%
Sum 16 26 4 46
PA 50.0% 92.3% 50.0%

SDG

Healthy 10 4 1 15 66.7%

71.7% 0.463
Powdery mildew 5 22 2 29 75.9%

Aphid 1 0 1 2 50.0%
Sum 16 26 4 46
PA 62.5% 84.6% 25.0%

Table A4. Confusion matrices and classification accuracies produced by different feature sets with the
SVM method.

Validation Field Truth

Features Healthy Powdery Mildew Aphid Sum UA OA Kappa

BTGE

Healthy 11 1 2 14 78.6%

82.6% 0.667
Powdery mildew 5 25 0 30 83.3%

Aphid 0 0 2 2 100.0%
Sum 16 26 4 46
PA 68.8% 96.2% 50.0%

BTG

Healthy 10 1 2 13 76.9%

76.1% 0.518
Powdery mildew 6 25 2 33 75.8%

Aphid 0 0 0 0 /
Sum 16 26 4 46
PA 62.5% 96.2% 0.0%

SDGE

Healthy 5 1 2 8 62.5%

67.4% 0.353
Powdery mildew 9 25 1 35 71.4%

Aphid 2 0 1 3 33.3%
Sum 16 26 4 46
PA 31.3% 96.2% 25.0%

SDG

Healthy 5 2 0 7 71.4%

67.4% 0.385
Powdery mildew 7 24 2 33 72.7%

Aphid 4 0 2 6 33.3%
Sum 16 26 4 46
PA 31.3% 92.3% 50.0%
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