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ABSTRACT 39 

Cell therapy is an attractive strategy for enhancing post-stroke recovery. Different cell types 40 
and several treatment strategies have been successfully applied in animal models, but efficacy 41 
in stroke patients has not yet been confirmed. We hypothesize that the significant design 42 
differences between preclinical and clinical trials may account for this situation. Using a meta-43 
analysis approach and comparing preclinical with clinical trials, we reveal and discuss 44 
preliminary evidence for such design differences. While available datasets are not yet 45 
numerous enough to draw definitive conclusions, these findings may represent signposts on 46 
the route to efficacy by harmonizing preclinical and clinical study designs. 47 
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Abbreviations 48 

ART        adhesive removal test 49 
BBB        blood-brain barrier 50 
CI            confidence intervals 51 
FMS        Fugl-Meyer Scale 52 
mBI         modified Barthel Index 53 
MSC        mesenchymal stem/stromal cell 54 
MNC       mononuclear cell 55 
mNSS      modified neurological severity score  56 
mRS        modified Rankin Scale 57 
NIHSS     National Institutes of Health Stroke Scale 58 
NRCT      non-randomized controlled trial 59 
NSC         neural stem cell 60 
PRISMA  Preferred Reporting Items for Systematic Reviews and Meta-Analyses 61 
RCT         randomized controlled trial 62 
SMD        standardized mean differences 63 
T1DM      type 1 diabetes mellitus 64 
T2DM      type 2 diabetes mellitus 65 

66 
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Cell-based therapy has been proposed as a promising paradigm for ischemic stroke for almost 67 
two decades1. Different types of cells, particularly mesenchymal stem/stromal cells (MSCs), 68 
neural stem cells (NSCs) and mononuclear cells (MNCs), have been successfully tested in 69 
animal models. Several mechanisms, such as (limited) cell replacement, immunomodulation, 70 
as well as promotion of angiogenesis and neurogenesis, have been claimed be responsible for 71 
the observed improvements2-4.  72 

    Although a number of early-phase clinical studies investigating cell therapy for ischemic 73 
stroke have been conducted, convincing evidence of efficacy is still lacking5-8. Inadequate 74 
quality of preclinical tests has been previously considered as a major reason for unsuccessful 75 
translation of experimental stroke therapies into the clinic, but the quality of preclinical stroke 76 
studies is clearly improving9. However, significant design differences between preclinical and 77 
clinical trials may hinder translation.  Hence, it is essential to explore how well the currently 78 
described preclinical and clinical trial designs correspond to each other in order to devise 79 
innovative ways for advancing clinical translation of cell therapies in stroke.  80 

An objective way to approach such problems is to conduct a systematic meta-analysis. 81 
Therefore, we have adopted this approach to: 1) estimate the current cell therapy efficacies in 82 
both animal stroke models and stroke patients; 2) explore the sources of heterogeneity in 83 
preclinical and clinical studies; 3) investigate the hypothesis of poorly-corresponding 84 
preclinical and clinical trial designs; and 4) identify the potential gaps in clinical translation to 85 
be bridged in future approaches.  86 

Methodological approach 87 
   Studies on cell therapy for ischemic stroke published before April 3rd 2018 were identified 88 
from PubMed, Web of Science, and Scopus according to the Preferred Reporting Items for 89 
Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The detailed protocol is 90 
available on PROSPERO (CRD42018093214 and CRD42018096257) or in Supplemental 91 
Material. Briefly, preclinical studies describing cell transplantation in animal models of focal 92 
cerebral ischemia, and controlled clinical studies were gathered. We included the four most 93 
frequently examined outcome measures: 1) infarct size; 2) modified Neurological Severity 94 
Score (mNSS); 3) rotarod test; and 4) adhesive removal test (ART) performance. A quality 95 
score was also assigned10,11. In clinical studies, functional outcomes were measured by 96 
National Institutes of Health Stroke Scale (NIHSS), modified Barthel index (mBI), modified 97 
Rankin scale (mRS), and Fugl-Meyer scale (FMS). Standardized mean differences (SMD), 95% 98 
confidence intervals (95% CI) and statistical significances were examined using the inverse-99 
variance method12. For each outcome, the effect size was calculated using Hedges’ g and 100 
heterogeneity was calculated as I2. In view of the substantial heterogeneity in the included 101 
studies, a random effects model was applied to estimate the pooled effect size. Univariate meta-102 
regression was conducted on preclinical studies and subgroup analysis was conducted on 103 
clinical studies to explore the sources of heterogeneity. P<0.05 was considered as statistically 104 
significant and 0.05≦P<0.10 as a trend. Data were analyzed using Stata version 14.0 (Stata-105 
Corp). 106 
    A total of 3868 records from PubMed, 5041 records from Scopus, and 4073 records from 107 
Web of Science were identified. Ultimately, 355 preclinical studies with 10830 animals, and 108 
10 controlled clinical studies (phase I/II) with 460 patients were included (Fig 1). 109 

110 
Preclinical and clinical study qualities 111 

The median quality score of the preclinical studies was 5 out of 10 (interquartile range: 4-6) 112 
(Online Table 1). Randomization and blinded outcome assessment had been applied in 222 113 
(62.5%) and 203 (57.2%) of the 355 included studies, respectively. Only 23 (6.5%) studies 114 
reported allocation concealment and 10 (2.8%) studies provided a priori sample size 115 
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calculation. Animal models with comorbidities such as hypertension or diabetes were utilized 116 
in only 24 (6.8%) studies. 117 
    Nine out of the ten clinical trials had at least one source of bias according to the Cochrane 118 
Risk of Bias Tool13. Four studies were non-randomized controlled trials (NRCT), five studies 119 
did not report allocation concealment, and five studies featured a non-blinded outcome 120 
assessment. Only one trial was double-blinded. All studies reported complete outcome data, 121 
but only two provided details regarding power calculation.  122 

123 
Therapeutic effect differences in cell therapy   124 

125 
Robust efficacy of cell therapy in stroke animals 126 

Analysis of published data confirmed previous findings that cell therapy significantly 127 
improved both structural and functional outcomes in experimental stroke14-18. Although 128 
substantial inter-study heterogeneities (I2) were observed (65.7%-75.2%), the effect size was 129 
consistently large for each outcome measure (1.35 for infarct size reduction, 1.69 for mNSS, 130 
1.56 for rotarod test, and 1.56 for ART; P < 0.001, Fig 2).  131 

Funnel plotting suggested that there was a significant left-sided bias, meaning that studies 132 
with effect sizes smaller than mean values were under-reported (Fig 3). Egger’s regression test 133 
revealed a significant publication bias for each outcome (P<0.01). Nonetheless, after adjusting 134 
for publication bias by trim and fill, the mean effect sizes remained large (0.79 for infarct size, 135 
1.09 for mNSS, 1.00 for rotarod test and 1.07 for ART).  136 

137 
Potential reasons for therapeutic effect heterogeneity in preclinical studies 138 

The immunogenicity of injected cells accounted for 5.3%-16.0% of the observed 139 
heterogeneity in outcome (P<0.05). Based on the results of infarct size and ART, autologous 140 
cells had the largest effect, followed by allogeneic and xenogeneic cells; syngeneic cells did 141 
not display any significant efficacy in comparison with control treatment (Fig 4Ai, Ci, Di). 142 
    Freeze-thawing procedure accounted for up to 9.9% of the observed heterogeneity, e.g. in 143 
ART performance (P<0.01). Freshly-isolated cells were consistently associated with larger 144 
effects than frozen-thawed cells (Fig 4Aii, Bi, Dii). 145 

Cell type accounted for 7.6% of the observed heterogeneity in functional outcome (rotarod 146 
test) (P=0.0075). Treatment with NSCs showed the largest effect, followed by MSCs, MNCs, 147 
and other cells (Fig 4Ci). Cell origin, cell stemness and manipulation also contributed to the 148 
heterogeneity (Supplemental Fig 1B-E).  149 

Comorbidities also influenced outcome and explained 1.3%-5.8% of the observed 150 
heterogeneity (P<0.05). Cell treatment of comorbid animals consistently induced smaller 151 
effects than those obtained in healthy animals (Fig 4Aiii, Bii, Diii).  152 

The stroke model accounted for 2.3% of the observed heterogeneity in infarct size 153 
(P=0.0407). The intraluminal filament model was associated with the largest therapeutic effects 154 
(Fig 4Aiv). Moreover, an earlier assessment of infarct size (within one month) revealed larger 155 
effects as compared to a later assessment, suggesting that the therapeutic effect of injected cells 156 
may decline with time (Supplemental Fig 1A).  157 

The cell delivery route accounted for 8.1% of the observed heterogeneity in infarct size 158 
(P=0.0001). Intraventricular cell delivery achieved the largest effects on infarct size (Fig 4Av), 159 
but intracortical cell transplantation induced the greatest impact on mNSS performance, 160 
followed by intraventricular cell delivery (Fig 4Biii).  161 

A higher quality score tended to result in a smaller effect size (P=0.09) (Fig 4Biv). A higher 162 
impact factor of the published journal also tended to associate with a smaller effect size 163 
(P=0.0961) (Supplemental Fig 1F).    164 

165 
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Moderate cell therapy efficacy in patients166 
   Despite the small number of clinical trials, cell therapy induced a statistically significant 167 
beneficial effect in mBI (SMD=0.32, 95% CI: 0.03-0.61, P=0.032) as well as a trend in mRS 168 
(SMD=0.30, 95% CI: -0.03-0.64, P=0.078), but not in NIHSS (P=0.298) or FMS (P=0.112). 169 
The heterogeneity varied considerably with the various outcome measures (24.3%-85.0%) (Fig 170 
5).  171 

172 
Potential reasons for therapeutic effect heterogeneity in clinical trials173 
    We performed further subgroup analyses to clarify the effects of different clinical study 174 
design characteristics (Fig 6). MSCs showed a larger effect size than MNCs in mRS (0.20 vs. 175 
0.07; Fig 6Ai), mBI (0.94 vs. 0.13; Fig 6Bi), and FMS (1.77 vs. 0.35; Fig 6Di). 176 
Allogeneic/cryopreserved cells had been administered in only one study. Similar to the 177 
preclinical findings, studies using autologous/freshly-harvested cell therapy achieved better 178 
outcomes than those utilizing allogeneic/cryopreserved cells in mRS (0.37 vs. 0.17; Fig 6Aii, 179 
6Aiii), mBI (0.39 vs. 0.23; Fig 6Bii, 6Biii), and NIHSS (0.88 vs. -0.02; Fig 6Cii, 6Ciii). 180 
Furthermore, a trial using intracortical cell delivery reported better outcomes as compared to 181 
intravascular delivery in mRS (Fig 6Aiv) and NIHSS (Fig 6Civ). Randomized clinical studies 182 
revealed larger effect sizes than non-randomized ones in mRS (0.37 vs. 0.22; Fig 6Av) and 183 
NIHSS (0.78 vs. 0.08; Fig 6Cv), but smaller effect sizes in mBI (0.28 vs. 0.42; Fig 6Bv) and 184 
FMS (0.52 vs. 0.80; Fig 6Dv).  185 

186 
Preclinical and clinical study design differences: current situation and potential impact 187 

In contrast to the very positive results in animal models, therapeutic effects in clinical studies 188 
have been less impressive. It is noteworthy that current clinical studies on cell therapy for stroke 189 
are early stage clinical trials and are often underpowered to reveal all but the most prominent 190 
therapeutic effects. Nevertheless, remarkable design differences between preclinical and 191 
clinical studies were detected (Fig 7), which may affect clinical translation. Interestingly, we 192 
already identified cell immunogenicity, cryopreservation, cell type, comorbidity profiles and 193 
occlusion modality (i.e., the stroke model) as sources of effect size heterogeneity in preclinical 194 
studies. Basic preclinical study design characteristics are described in Online Table 2, and those 195 
of clinical studies are in Online Table 3.  196 

197 
Cell immunogenicity198 

The majority of the cells used in preclinical studies were allogeneic (47.9%) or xenogeneic 199 
(46.2%), but most of the clinical studies have utilized autologous cell transplants (70.9%) (Fig 200 
7A). In line with another analysis16, autologous cells have achieved better outcomes than their 201 
allogeneic counterparts in preclinical and clinical studies. Therefore, cell immunogenicity may 202 
not be a major reason for the current translational loss of efficacy. However, autologous cells 203 
were used in 25 preclinical studies, while allogeneic cells were used in only one clinical trial, 204 
and thus these results need to be interpreted with caution. Interestingly, syngeneic cells only 205 
demonstrated minor treatment effects. This contradictory result may be due to the small number 206 
of these studies and their high quality scores (median: 9 as compared to 5 for the entire data 207 
set).   208 

Autologous cell therapy avoids adverse immunological side effects after transplantation, 209 
which is clinically relevant. The effect of systemic xenogeneic cell transplantations in 210 
preclinical experiments may theoretically be related to the immunosuppressive effects of 211 
apoptotic cells diminishing secondary inflammatory brain damage. This idea was proposed 212 
more than two decades ago19, but has never been truly investigated in a stroke paradigm. If this 213 
concept is true, its clinical impact would be substantial and clearly warrants future investigation.  214 

215 
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Cryopreservation 216 
In preclinical studies, 33.1% of stroke animals received freshly harvested cells, 10.3% 217 

received cryopreserved cells, while no clear details on cryopreservation were provided in the 218 
other studies. In clinical trials, freshly harvested cells were used in 70.9% of patients with 219 
cryopreserved cells being used in the remainder (Fig 7B). The exploitation of cryopreserved 220 
cells as off-the-shelf products allows cell delivery at acute time points. However, our results 221 
indicate that frozen-thawed cells were associated with significantly reduced efficacy when 222 
compared to their freshly-harvested counterparts in preclinical and clinical trials. 223 
Cryopreserved cells may indeed exhibit lower viability, compromise immunomodulatory 224 
effects, and induce more intense or immediate blood-mediated inflammatory reactions20-23, 225 
particularly in MNC populations23. Nonetheless, some recent studies have also described 226 
comparable therapeutic effects between cryopreserved and fresh cells24-26. The exact conditions 227 
compromising the efficacy of cryopreserved cells may be complex but should be clarified as 228 
soon as possible.  229 

230 
Cell type 231 
    MSCs were the most frequently investigated cells in preclinical studies (51.5% of stroke 232 
animals), followed by NSCs (21.8%), and MNCs (14.9%) (Fig 7C). Other cells such as 233 
endothelial progenitors, induced pluripotent or embryonic stem cells, had been administered in 234 
11.9% of stroke animals. In contrast, MNCs were much more frequently given to stroke 235 
patients (55.2%). Six out of ten included clinical studies used heterogeneous MNC populations, 236 
three administered MSCs, and one utilized CD34+ cells.  237 
   The optimal cell type for ischemic stroke treatment remains unclear. Our analysis pointed to 238 
a superior effect with MSCs as compared to MNCs in both preclinical and clinical trials. The 239 
predominant use of MNCs in the clinic is likely due to practical issues such as ease of isolation 240 
and availability without time-consuming and sensitive in vitro cultivation, as well as the 241 
excellent safety profile of MNCs, compensating for their potentially lower efficacy. However, 242 
one meta-analysis of bone marrow-derived MNCs17 showed an effect size larger than that 243 
achieved with either MSCs16 or NSCs18, perhaps due to the different data searching and 244 
inclusion criteria. Analysis of preclinical studies also revealed that the trial with the overall 245 
most significant improvement involved NSCs (Fig 4Ciii), but unfortunately no clinical study 246 
on NSC transplantation could be included here due to the lack of appropriate control groups7,27. 247 

248 
Recipient comorbidities249 

More than 90% of animals were healthy before stroke induction whereas many stroke 250 
patients suffered from comorbidities such as hypertension (38.3%), diabetes (25.2%), and heart 251 
disease (30.7%). Only 5.4% of the patients were reported as being healthy before the stroke 252 
event (Fig 7D). Comorbidities themselves may exert a detrimental impact on treatment 253 
efficacy28, as confirmed also in our study. Furthermore, stroke patients often take medications 254 
such as anti-diabetics to counter comorbidities, and these compounds may interact with injected 255 
cells29,30. In addition, stroke patients are usually prescribed anti-platelet drugs for secondary 256 
stroke prevention and undergo post-stroke rehabilitation. However, few preclinical studies 257 
have investigated these potential interactions, leaving a clear knowledge gap in translational 258 
stroke research that likely affects the results obtained in subsequent clinical trials.     259 

Mimicking the complex reality of clinical patient populations in preclinical studies is 260 
expensive and time-consuming. A potential solution might be to focus on patients with a 261 
particular, more specific risk profile and to mimic that experimentally. The disadvantage of 262 
this approach will be a slower patient recruitment as only a subgroup would receive treatment, 263 
but comparability will be higher. 264 

265 
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Recipient sex and age266 
Cell therapy has been mainly provided to young (93.7%) male (85.1%) rodents (99.3%). In 267 

contrast, stroke patients were often middle-aged (40-60 years old, 54.8%) or elderly (>60 years 268 
old, 45.2%), consisting of both males and females, and were always enrolled in clinical trials 269 
without selection (Fig 7E-F). We did not find sex and age to significantly affect the efficacy of 270 
cell therapy in stroke animals. However, this kind of influence cannot be excluded simply due 271 
to the very limited number of studies assessing female and aged individuals. Indeed, gender-272 
related differences are a well-known and frequently discussed confounder for outcome in 273 
translational stroke research31. While simulating a clinically realistic sex distribution pattern in 274 
preclinical studies requires significant additional resources, neglecting sex differences 275 
introduces one more bias into experimental results 32. Moreover, there is experimental evidence 276 
that cell donor’s and recipient’s ages can influence cell treatment efficacy, particularly in 277 
commonly applied MNC populations33. 278 

279 
Cerebral vessel occlusion modalities 280 

The intraluminal filament stroke model was used in 80.5% of the studied animals. As shown 281 
above, the use of this model is associated with a larger effect size. It is also characterized by 282 
an extremely large infarct size limiting recovery processes, which is similar to the situation 283 
after large territorial infarction in humans. About 10-20% of ipsilateral corticospinal fibers do 284 
not cross in rodents, cats or monkeys, but it remains rather uncertain whether there are 285 
functionally relevant non-crossing corticospinal fibers in adult humans34. Hence, the large 286 
effect size in preclinical studies employing the filament model may be partly due to the rapid 287 
spontaneous stroke recovery mediated via activation and strengthening of the ipsilateral 288 
corticospinal pathway35, a process that can be further enhanced by cell therapy in rodents – but 289 
possibly not in humans.  290 

Moreover, 74.1% of the stroke modelling in preclinical studies was transient, which mimics 291 
the recanalization in patients achieved by thrombectomy36, thrombolysis, or that occurring 292 
spontaneously. However, only a limited number of patients experience prompt recanalization, 293 
thus the permanent occlusion models might better reflect the present-day clinical situation 294 
except for intra-arterial cell transplantation5,37,38. The current advances in recanalization 295 
approaches may lead to increasing numbers of patients receiving cell therapy immediately after 296 
recanalization in the future, warranting the use of a transient stroke model for preclinical 297 
evaluation regardless of the targeted time point of cell administration, and would allow cell 298 
transplantation in a more acute stage after stroke-onset in clinical trials.  299 

300 
Time window of cell transplantation301 

In the preclinical studies, cells were transplanted within 24h after stroke onset in 67.5%, and 302 
between 24h and 1 week in 28.2% of experiments. However, in clinical trials, cells were more 303 
often transplanted at later time points, i.e. one week or even one month after stroke-onset 304 
(67.3%). No study had transplanted cells within 24h post-stroke (Fig 7G). Cell delivery in acute 305 
phase post-stroke is considered to result primarily in neuroprotection via enhanced blood-brain 306 
barrier (BBB) integrity and modulation of post-ischemic immune responses, but it is 307 
challenging to administer cells so early in the clinic. Post-acute cell delivery potentially 308 
increases angiogenesis, neurogenesis, and axonal plasticity, offering a wider time window for 309 
cell therapies39.  310 

Although the time window was not found here to affect efficacy significantly, many 311 
preclinical studies claimed that earlier transplantation of cells could result in a better outcome40-312 
42, although no conclusive evidence has been reported16,43,44. Successful clinical stroke care 313 
involves several strictly timed therapeutic interventions, dramatically restricting the time 314 
available for complex cell treatments. For this reason in clinical trials, cells have usually been 315 
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transplanted in either the subacute or chronic post-stroke stages. A good example is the 316 
MASTERS trial that evaluated the MultiStem cell product8, which is one of the best 317 
characterized cell products in the field. The preclinical research on the MultiStem cell product 318 
revealed an excellent outcome (effect size=3.98 for infarct size and 3.00 for mNSS)45, but only 319 
modest results were observed in the clinical MASTERS trial8. It is noteworthy that the time 320 
window for patient inclusion was expanded from 36h to 48h due to logistical requirements 321 
beyond the investigators’ and sponsor’s control. Although the safety of cell transplantation was 322 
demonstrated in the final MASTERS clinical trial, no significant therapeutic effect was 323 
detected after intravenous cell infusion at 24-48h post-stroke. However, a post-hoc subgroup 324 
analysis revealed beneficial effects of cell transplantation at earlier time points (<36h), which 325 
is exactly the patient population assumed to benefit most according to the preclinical data. The 326 
currently ongoing MASTERS-2 trial will take this aspect into account. This supports our 327 
proposal that understanding the timing and mechanisms of improvement following cell therapy 328 
is essential for successful clinical translation.  329 

330 
Delivery route 331 
    Intravenous cell delivery had been performed in 51.6% of the preclinical studies, and was 332 
also predominantly chosen in clinical trials (74.9%). While intravenous cell delivery is a 333 
straightforward approach in both preclinical and clinical arenas, the optimal cell delivery route 334 
remains unclear and is likely related to the cell type used. Vu et al.16 reported better mNSS 335 
performance after intracortical MSC delivery as compared to intra-arterial and intravenous 336 
delivery, whereas Lee et al.14 found no significant effect of cell delivery route on outcome. 337 
Both preclinical and clinical data revealed better outcome of intracortical cell delivery 338 
compared to intravascular delivery. However, the utility of intracortical delivery is limited 339 
clinically due to its invasiveness46. Proof-of-concept studies may be required to assess whether 340 
the advantage of intracortical delivery outweighs the safety concerns. Indeed, the recent phase 341 
2b study (NCT02448641) of SB623 (transiently transfected MSCs overexpressing Notch-1) 342 
showed safety, but failed to show efficacy in chronic stroke patients, in contrast to the 343 
preliminary signs of efficacy from the preceding animal study47 and phase 1/2b clinical trial48. 344 
Another sham controlled trial, the recently-started PISCES 3 trial (NCT03629275) is utilizing 345 
intracranial transplantation as well, but with a different cell product, cell dose and primary 346 
outcome measures; its results are keenly anticipated. The preclinical analysis also revealed 347 
superior effects of intraventricular over intracortical cell delivery. The intraventricular route is 348 
also slightly easier to perform than intracortical administration while still bypassing the BBB, 349 
and thus may be a promising option for the future. However, the potential risk of adverse effects 350 
such as hydrocephalus must be considered. No significant difference in therapeutic effect was 351 
found between studies using intra-arterial and intravenous delivery routes, but improper intra-352 
arterial cell administration can trigger complications20, 49, 50. 353 

354 
Methodological limitations 355 

We included studies using different cell types, administration modes, etc., which increased 356 
the sample size for data analysis, particularly for clinical studies, and also enabled us to explore 357 
the sources of heterogeneity. As expected, substantial inter-study heterogeneity was observed. 358 
We addressed this in several ways: first, the heterogeneous outcome measures were 359 
standardized; second, a random-effects model was used, assuming that the treatment effect can 360 
vary across studies because of differences in study characteristics rather than by chance51; third, 361 
meta-regressions or subgroup analyses were performed to identify the sources of 362 
heterogeneity52,53. However, unexplained heterogeneity from sources that were not considered 363 
in our analysis may remain. It is noteworthy that heterogeneity cannot be avoided, and 364 
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considerable heterogeneity was also observed in previous studies using more strict inclusion 365 
criteria16-18.  366 

Moreover, the number of included clinical studies is still small. In some cases, there was 367 
only one study (e.g. allogeneic/cryopreserved) available for subgroup analysis. Thus, the 368 
validity of these results remains uncertain, and more clinical results are needed. 369 

370 
Conclusions and outlook 371 
   Although the considerable heterogeneity in preclinical data and the so-far small number of 372 
available clinical datasets make it difficult to draw any definitive conclusions, we identified 373 
substantial design differences between preclinical and clinical trials, which may contribute to 374 
the modest efficacy of cell therapy in stroke patients and have important implications for future 375 
translational projects.  376 
    We propose several suggestions for preclinical studies which may prevent translational 377 
failure. First, in confirmatory preclinical studies, there should be greater similarity to patient 378 
populations likely to be treated in clinical trials. For example, use of aged male and female 379 
animals with comorbidities such as hypertension and diabetes would better reflect the clinical 380 
reality. Second, drug-cell interactions require further investigation. Third, permanent, instead 381 
of transient, stroke models might represent a more clinically relevant strategy when evaluating 382 
the efficacy of cell therapies54,55, particularly when targeting patient populations that cannot 383 
benefit from recanalization. Fourth, wider therapeutic time windows would benefit more 384 
patients. Hence, it would be beneficial to conduct more experimental studies testing cell 385 
transplantation in the subacute and chronic stroke stages. Fifth, it would be advantageous to 386 
devise a battery of sensory-motor function tests sensitive at detecting long-term impairment 387 
and conducive to repeated testing without developing compensatory strategies56. Last but not 388 
least, the therapeutic mechanisms of cell therapy still need to be clarified. 389 
   Several recommendations for clinical studies also emerge from our meta-analysis. First, 390 
freshly-harvested, autologous cells are recommended for future clinical trials to ensure 391 
maximal effects, if logistical challenges can be overcome. Second, studies of cell 392 
transplantation with more acute time windows (within 24h or 1 week) after stroke should be 393 
conducted, as these better resemble the situation in successful preclinical studies. Third, due to 394 
the extensive heterogeneity of the stroke patients, it will be crucial to identify the optimal 395 
recipients that are most likely to benefit from cell treatments, and to devise biomarkers that 396 
pinpoint such patients57. Last, multi-centered, randomized, double blinded clinical trials with 397 
larger sample sizes are urgently needed to evaluate the effect of cell therapy in stroke patients. 398 
   Finally, an illustration of comparability between preclinical and clinical studies by a 399 
similarity check list might help when translating a specific cell product from bench to clinic: 400 
1) same time window (acute, subacute or chronic); 2) same delivery route; 3) same cell dose 401 
(number of cells per kg/body surface area); 4) same cell immunogenicity; 5) same preparation 402 
procedure before transplantation (e.g. fresh vs. cryopreservation); 6) same target infarcts (e.g., 403 
hemispherical infarcts of middle cerebral artery territory only, with or without reperfusion); 7) 404 
matched sex profile; 8) matched age; 9) same comorbidity; 10) same concomitant treatment.  405 
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Figure Legends 576 
577 

Figure 1. PRISMA flowchart.  578 

Figure 2. Effect sizes of (A) infarct size reduction, (B) mNSS, (C) rotarod test performance, 579 
and (D) ART performance in preclinical studies.  580 

Figure 3. Funnel plot of (A) infarct size reduction, (B) mNSS, (C) rotarod test performance, 581 
and (D) ART performance in preclinical studies. 582 

Figure 4. Study characteristics that significantly accounted for effect size heterogeneity in 583 
different outcome measures. (A) infarct size reduction: (i) cell immunogenicity; (ii) cell 584 
cryopreservation; (iii) use of animals with comorbidity; (iv) stroke model; (v) delivery time 585 
relative to stroke-onset. (B) mNSS: (i) cell cryopreservation; (ii) use of animals with 586 
comorbidity; (iii) delivery route; (iv) quality score of studies. (C) rotarod test: (i) cell 587 
immunogenicity; (ii) cell type. (D) ART: (i) cell immunogenicity; (ii) cell cryopreservation; 588 
(iii) use of animals with comorbidity. The dotted line indicates the pooled effect size of all 589 
studies. 590 

Figure 5. Effect sizes of different outcome measures (mRS, mBI, NIHSS, and FMS) in 591 
clinical studies. Y: yes, N: no, Auto: autologous, Allo: allogeneic, Cryo: cryopreservation, N 592 
(T/C): number of patients (treated/control) 593 

Figure 6. Subgroup analysis of mRS (A), mBI (B), NIHSS (C) and FMS (D) in clinical 594 
studies. (A-D): (i) cell type; (ii) cell immunogenicity; (iii) cell cryopreservation; (iv) delivery 595 
route; (v) randomization. The dotted line indicates the pooled effect size of all studies. 596 

Figure 7. Study design discrepancies between preclinical and clinical studies: (A) 597 
immunogenicity of transplanted cells; (B) cell cryopreservation; (C) cell type; (D) 598 
comorbidities of stroke individuals; (E) age of stroke individuals; (F) sex profile; (G) time of 599 
cell transplantation.600 
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