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Abstract

It is well-known that traditional MCMC methods can fail to effectively

explore the state space for multimodal problems. Parallel tempering is a

well-established population approach for such target distributions involving

a collection of particles indexed by temperature. However this method can

suffer dramatically from the curse of dimensionality. This paper introduces

an improvement on parallel tempering called QuanTA. A comprehensive

theoretical analysis quantifying the improved efficiency and scalability of the

approach is given. Under weak regularity conditions, QuanTA gives accelerated

mixing through the temperature space. Empirical evidence of the effectiveness

of this new algorithm is illustrated on canonical examples.

Keywords: Parallel Tempering; Metropolis coupled MCMC; Accelerated
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1. Introduction

Consider the problem of stochastic simulation from a target distribution, π(x) on

a d-dimensional state space X where π(·) is known up to a scaling constant. The

gold standard methodology for this problem uses Markov chain Monte Carlo (MCMC).
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2 Nicholas G. Tawn and Gareth O. Roberts

However these methods often perform poorly in the context of multimodality.

Most MCMC algorithms use localised proposal mechanisms, tuned towards local

approximate optimality e.g., [31], [35]. Indeed many MCMC algorithms incorporate

local gradient information in the proposal mechanisms, typically attracting the chain

back towards the centre of the mode. This can exacerbate the difficulties of moving

between modes, [18].

Popular methods used to overcome these issues include simulated tempering, [19] and

the population-based version, parallel tempering, [10], [11]. These methods use state

space augmentation to allow Markov chains to explore target distributions proportional

to πβ(x) for β typically in the range (0, 1]. For simulated tempering this is done

by introducing an auxiliary inverse temperature variable, β, and running a (d + 1)-

dimensional Markov chain on X × ∆, where ∆ consists of a discrete collection of

possible inverse temperatures including 1. For the more practically applicable parallel

tempering approach, a Markov chain is run on a (|∆| × d)-dimensional state space,

X |∆|, where |∆| denotes the cardinality of the set ∆.

Within this paper we will concentrate on parallel tempering as it obviates the need

to approximate certain normalisation constants to work effectively. While parallel

tempering has been highly successful, for example see [21], [49], [5] etc, its efficiency

declines as a function of d, at least linearly and often much worse [1] and [48]. This is

caused by the need to set inter-inverse temperature spacings in ∆ extremely small to

make swaps between temperatures feasible.

This paper will introduce and analyse the QuanTA algorithm which facilitates

inter-temperature swaps by proposing moves which attempt to adjust within-mode

variation appropriately for the proposed new temperature. This leads to improved

temperature mixing, which in turn leads to vastly improved inter-modal mixing. Its

typical improvement is demonstrated in Figure 1 with a 5-mode target distribution.

The construction of QuanTA resonates with the non-centering MCMC methodology

described, for example in [26], [4], [14] and [27].

Supporting theory is developed to guide setup and analyse the utility of the novel

QuanTA scheme. There are two key theoretical results. The first, Theorem 1, estab-

lishes that there is an optimal temperature schedule setup for QuanTA; concluding

that in general the dimensionality scaling of the distance between consecutive inverse
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Figure 1: Trace plots of the target state chains for representative runs of the Parallel

Tempering (top) and QuanTA schemes (bottom).

temperature spacings should be O(d−1/2). Further to this it suggests that optimising

the expected squared jumping distance between any two consecutive temperature levels

induces a temperature swap move acceptance rate of 0.234; giving a useful metric for

a practitioner to optimally tune QuanTA. The second key theoretical contribution,

Theorem 2, of this paper shows that, under mild regularity conditions, the optimal

temperature spacings of QuanTA are more ambitiously spaced than for the standard

parallel tempering algorithm for cold (i.e. large) values of the inverse temperatures.

The significance of this result is that QuanTA can give accelerated mixing through

the cooler parts of the temperature schedule by allowing more ambitious temperature

spacings.

This paper is structured into 6 core sections. Sections 2 reviews the parallel temper-

ing algorithm and some of the relevant existing literature. Section 3 motivates the main

idea behind the novel QuanTA scheme, which is then presented in Section 4. QuanTA

utilises a population MCMC approach that requires a clustering scheme; discussion

for this is found in Section 5. Section 6 contains the core theoretical contributions

mentioned above. Simulation studies are detailed in Section 7 along with a discussion

of the computational complexity of QuanTA.
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2. The Parallel Tempering (PT) algorithm

There is an array of methodology available to overcome the issues of multimodality

using MCMC or closely related Sequential Monte Carlo (SMC) techniques, e.g. [46],

[10], [19], [22], [17], [24] [28], [37]. The majority of these methods use state space

augmentation approaches. Auxiliary distributions that allow a Markov chain to explore

the entirety of the state space are targeted and their mixing information is then passed

on to aid inter-modal mixing in the desired target. A convenient approach for the

augmentation methods is to use power-tempered target distributions i.e., the target

distribution at inverse temperature level, β, for β ∈ (0, 1] is defined as

πβ(x) ∝ [π(x)]
β

Such targets are the most common choice of auxiliary target when augmenting the

state space for use in the popular simulated tempering (ST) and parallel tempering

(PT) algorithms introduced in [19] and [10]. For each algorithm one needs to choose a

sequence of n + 1 “inverse temperatures”, ∆ = {β0, . . . , βn}, where 0 ≤ βn < βn−1 <

. . . < β1 < β0 = 1 with the specification that a Markov chain sampling from the target

distribution πβn(x) can mix well across the entire state space.

The PT algorithm runs a Markov chain on the augmented state space, X (n+1),

targeting an invariant distribution given by

πn(x0, x1, . . . , xn) ∝ πβ0(x0)πβ1(x1) . . . πβn(xn). (1)

From an initialisation point for the chain the PT algorithm alternates between two

types of Markovian move. Within temperature Markov chain moves that use standard

localised MCMC schemes to update each of the xi whilst preserving marginal invari-

ance. Temperature swap moves that propose to swap the chain locations between a pair

of adjacent temperature components. It is these swap moves that will allow mixing

information from the hot, rapidly-mixing temperature level to be passed to aid mixing

at the cold target state.

To perform the swap move a pair of temperatures is chosen uniformly from the set

of all adjacent pairs, call this pair xi and xi+1 at inverse temperatures βxi and βxi+1

respectively. The proposal is then

(x0, . . . , xi, xi+1, . . . , xn)→ (x0, . . . , xi+1, xi, . . . , xn) (2)
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To preserve detailed balance and therefore invariance to πn(·), the swap move is

accepted with probability

A = min

(
1,
πβxi+1

(xi)πβxi (xi+1)

πβxi (xi)πβxi+1
(xi+1)

)
. (3)

It is the combination of the suitably specified within temperature moves and tempera-

ture swap moves that ensures ergodicity of the Markov chain to the target distribution,

πn(·). Note that the within temperature moves certainly influence the performance of

the algorithm, [9]; however the focus of the work in this article will be on designing a

novel approach for the temperature swap move.

The novel work presented in this paper focuses on the setting where the d-dimensional

state space is given by Rd and the target, π(·), is the associated probability density

function. Thus, herein take X = Rd but note that natural generalisations to other

state spaces and settings are possible.

3. Modal rescaling transformation

3.1. A motivating transformation move

Consider a PT algorithm that has two components x1 and x2 running at the

neighbouring inverse temperature levels β and β
′
. Suppose that a temperature swap

move is proposed between the two chains at the two temperature levels. Due to the

dependence between the location in the state space and the temperature level, β and

β
′

need to be close to each other to avoid the move having negligible acceptance

probability. Intuitively, the problem is that the proposal from the hotter chain is likely

to be an “unrepresentative” location at the colder temperature and vice versa.

So there is clearly a significant dependence between the temperature value and the

location of the chain in the state space; thus explaining why temperature swap moves

between arbitrarily-largely spaced temperatures are generally rejected. This issue is

typically exacerbated when the dimensionality grows.

Consider for motivational purposes, a simple one-dimensional setting where the state

space is given by R and the target density is given by π(·). For notational convenience

letting j = i + 1, suppose that a temperature swap move has been proposed between

adjacent levels βi and βj with marginal component values xi and xj respectively.
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Suppose an oracle has provided a function, tij : R → R, that is bijective, with

tji(tij(x)) = x, and differentiable and preserves the cumulative distribution function,

CDF, between the two temperature levels such that

Fβj (tij(x)) = Fβi(x) (4)

where Fβ(·) denotes the CDF of πβ(·).

So suppose that rather than the standard temperature swap move proposal in (2),

the following is instead proposed:

(x0, . . . , xi, xj , . . . , xn)→ (x0, . . . , tji(xj), tij(xi), . . . , xn) (5)

To preserve detailed balance this is accepted with an acceptance ratio similar to

reversible-jump MCMC, [12], to account for the deterministic transformation:

min

(
1,
πβj (tij(xi))π

βi(tji(xj))

πβi(xi)πβj (xj)

∣∣∣∣∂tij(xi)∂x

∣∣∣∣ ∣∣∣∣∂tji(xj)∂x

∣∣∣∣) . (6)

By differentiating (4) wrt x and rearranging

πβj (tij(x))

πβi(x)

∣∣∣∣∂tij(x)

∂x

∣∣∣∣ = 1. (7)

Using the result in (7), and noting the cancellation of normalising constants in (6),

one can see that (6) evaluates to one and hence such a swap would always be ac-

cepted. Essentially, the transformation tij(·) has made the acceptance probability of a

temperature swap move independent of the locations of xi and xj in the state space.

In practice, a CDF-preserving transformation tij(·) will not generally be available.

Consider a simplified setting when the target is now a d-dimensional Gaussian, i.e.

π ∼ N(µ,Σ), and so the tempered target at inverse temperature β is given by πβ ∼

N(µ,Σ/β). Defining a d-dimensional transformation by

tij(x, µ) =

(
βi
βj

)1/2

(x− µ) + µ, (8)

a simple calculation shows that in this setting such a transformation, which only

requires knowledge of the mode location, permits swap moves to always be accepted

independently of the dimensionality and magnitude of the inverse temperature spac-

ings.
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In a broad class of applications it is not unreasonable to make a Gaussian ap-

proximation to posterior modes, [36]. Indeed this is the motivation for the similar

transformation derived in [14] for use in a reversible-jump MCMC framework.

Beyond a single dimensional setting a quantile is typically non-unique since multiple

locations in the state space produce the same CDF evaluation. However, the trans-

formation in (8), motivated via Gaussianity, is bijective and can be seen as a way of

uniquely pairing two quantiles at different temperature levels allowing for “quantile

uniqueness” and therefore reversibility of the transformation. It is from this that

QuanTA gets its name.

3.2. Transformation-aided move in a PT framework

In a multimodal setting a single Gaussian approximation to the posterior will

be poor. However, it is often reasonable that the local modes may be individually

approximated as Gaussian. This paper explores the use of the transformation in (8)

applied to the local mode with the aim being to accelerate the mixing through the

temperature schedule of a PT algorithm.

Now that the transformations are localised to modes one needs careful specification

of the transformation function. Suppose that there is a collection of K mode points,

µ1, . . . , µK and a metric, m(x, y) for x, y ∈ Rd, that will be used to associate locations

in the state space with a mode. To this end define the mode allocating function

Z(x) = arg min
h∈{1,...,K}

[m(x, µh)] .

Then, with tij(·) from (8) define the sets

Aij =
{
x ∈ Rd : Z(tij(x, µZ(x))) = Z(x)

}
(9)

and define the transformation,

t(x, βi, βj) = tij(x, µZ(x)). (10)

Fundamentally, the set, Aij , is the subset of the βi-level marginal state space where

the transformation in (10) is reversible, i.e., one would remain associated with the same

mode point after the transformation. An illustrative example is given in Figure 2.

The aim is to use the transformation in a PT framework. So suppose that a

temperature swap move proposal is made between two marginal components xi and xj
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Figure 2: Plots of a simple bimodal Gaussian mixture distribution at two temperature levels

βi and βj . The metric, m(·, ·), that allocates locations to mode points is chosen to be the

Euclidean metric on R. The shaded regions represent Aij and Aji in the top and bottom plots

respectively.

at respective inverse temperatures βi and βj with βi > βj . The idea is that this swap

move now utilises (10) so that the proposed move takes the form

(x0, . . . , xi, xj , . . . , xn)→ (x0, . . . , t(xj , βj , βi), t(xi, βi, βj), . . . , xn) (11)

which to satisfy detailed balance is accepted with probability

min

(
1,
π(t(xi, βi, βj))

βjπ(t(xj , βj , βi))
βi

π(xi)βiπ(xj)βj
1{xi∈Aij}1{xj∈Aji}

)
. (12)

Proposition 1. Consider a Markov chain that is in stationarity with a target distribu-

tion given by (1) on a state space X = R(n+1)d. Let µ1, . . . , µK ∈ Rd. If a temperature

swap move of the form (11) is proposed where the transformation is given by (10) and

is accepted with probability given in (12) then the chain is invariant with respect to (1).

4. Quantile Tempering Algorithm (QuanTA)

The aim is is to utilise the transformation-aided temperature swap moves in a PT

algorithm. However, to perform the transformation one needs a collection of K centring
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points. Typically these are unknown a priori and must be estimated. There are three

obvious directions: prior optimisation search for modes and then fix these points for

the duration of the algorithm run; adaptively learn the mode points during the run of

the algorithm; or use a population Monte Carlo approach where centres are estimated

each time they are needed and using the most recent location of the Markov chain

(thus preserving the Markov property) and then used in a way that ensures that the

Markov chain remains reversible.

Fixing the centring points prior to the run of the algorithm can be highly non-

robust since it leaves no scope to adjust in situations when new regions of mass are

found during the run of the Markov chain. Also it requires careful and potentially

expensive pre-computation.

Using adaptive techniques that “learn” the best centring points are therefore prefer-

able. However, adaptive MCMC approaches where the proposal mechanism adapts

throughout the run of the algorithm, [32], [33], requires careful design to ensure

ergodicity. In contrast the population MCMC approach essentially allows the proposal

mechanism to adapt at every iteration without concerns about affecting the ergodicity,

albeit typically at a computational cost which can be somewhat mitigated by exploiting

computer parallelism.

The algorithm presented below utilises a population MCMC approach with N

“copies” of the PT approach to provide a large population of points in the state space

that can be used in an appropriate clustering procedure to obtain a collection of K

centring points; suggestions of which are given in Section 5.

4.1. The Procedure

QuanTA runs the equivalent of N parallel tempering algorithms procedures in

parallel with each single procedure using the same tempering schedule. With a tem-

perature schedule given by ∆ = {β0, . . . , βn}, the QuanTA approach can be seen as

running a single Markov Chain on the augmented state space, (Rd)n∗N . Denoting x =

(x(1,0), . . . , x(1,n), x(2,0), . . . , x(N,n)), the invariant target distribution for the Markov

chain induced by QuanTA is

πQ(x) ∝
N∏
i=1

πβ0

(
x(i,0)

)
πβ1

(
x(i,1)

)
. . . πβn

(
x(i,n)

)
.
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Initialisation: to initialise the QuanTA algorithm, one is required to choose: initial

starting values for the Markov chain components; a suitable temperature schedule

(see Theorem 1 in Section 6.2 for suggested optimality criteria for the temperature

schedule); the size of N and suitable parameters for the chosen clustering method that

will be used.

Running the chain: from the start point of the chain, QuanTA alternates between

two types of Markov chain moves.

Within temperature Markov chain moves that use standard localised MCMC

schemes for marginal updates of each of the x(i,j). Essentially, this is just Metropolis-

within-Gibbs MCMC and in this setting, with hugely exploitable marginal indepen-

dence, this process is highly parallelisable. Denote the πQ-invariant Markov transition

kernel that performs temperature marginal updates on all components from a current

point x as P1(x, dy).

Temperature swap moves that propose to swap the chain locations between a pair

of adjacent temperature components. This is where QuanTA differs from the standard

PT procedure and uses the new transformation aided temperature swap move detailed

in Section 3.2 in particular in (10). This follows a two phase population-MCMC update

procedure.

• Phase 1: Group marginal components into two collections,

C1 = {x(i,j) : i = 1, . . . , bN/2c and j = 0, . . . , n}

C2 = {x(i,j) : i = (bN/2c+ 1), . . . , N and j = 0, . . . , n}.

An appropriate clustering scheme (see Section 5) is performed on C1 providing

a set of K centres {c1, . . . , cK}. To enhance the effectiveness of the transforma-

tion it is suggested that these cluster centre points are used as initialisation

locations for a suitable local optimisation procedure to find K mode points

M1 = {µ1, . . . , µK} of π(·) (see Theorem 2 in Section 6.2).

For each i ∈ {(bN/2c + 1), . . . , N}, sample l ∼ Unif{0, 1, . . . , n − 1} and select

the corresponding pair of adjacent temperature marginals (x(i,l), x(i,l+1)) for a

temperature swap move proposal utilising the transformation from (10) (which is

centred on the associated point from M1). This move is accepted with probability

(12).
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• Phase 2: Repeat phase 1 but with the roles of C1 and C2 reversed.

Denote the πQ-invariant Markov transition kernel that implements this temperature

swap update procedure for all components using the above two-phase process by

P2(x, dy).

From the initialisation point x then the Markov chain output is created by applica-

tion of the following kernel compilation:

(P2 ◦ P k1 )T

where k is the user-chosen number of within temperature Markov chain updates be-

tween each swap move proposal and T is the user-chosen number of iterations of the

algorithm before stopping.

Remark 1. By Proposition 1 the transformation-aided temperature swap move estab-

lished in Section 3.2 leaves the Markov chain constructed by QuanTA πQ(·) invariant.

Provided appropriate within-temperature MCMC moves are utilised then QuanTA

establishes an irreducible and aperiodic πQ(·) invariant Markov chain as required, [42].

Remark 2. Although not made explicit in the notation above, the transformation

centring points, {µ1, . . . , µK}, are repeatedly estimated from subsets of the points in

the population of the N replicate PT schemes. As such their values are not fixed

and have flexibility to change and adapt accordingly with the population. This is a

major bonus of the population MCMC framework for a multimodal problem; allowing

powerful and robust adaptation when new regions of mass are discovered.

5. Estimating local mode locations

The QuanTA algorithm, presented in Section 4, requires online estimation of the

local mode points as centring location for the transformation. This section outlines a

practical scheme that is used in the canonical simulation studies.

With a typically unknown number of modes and a population of chains, a principled

approach would be to fit a Dirichlet Process mixture model, e.g. [23] and [16]. A

comprehensive Gibbs sampling approach for this can be computationally expensive,

but there are alternative cheaper but approximate methods that are left for exploration

in further work, [29].



12 Nicholas G. Tawn and Gareth O. Roberts

For the examples with well-separated modes that were studied here it sufficed to use

a cheap and fast clustering scheme, [8]. To this end a K means approach was used, [13],

where although the theoretical computational complexity is NP-hard in full generality,

when in a setting with well-separated clusters the algorithm rapidly reaches a good

solution as the problem is much easier.

The clustering procedure provides a collection of cluster centres that can be directly

used as centring points for the transformation or as very useful initialisation points

for a local optimisation method. Indeed, Theorem 2 of Section 6 shows that QuanTA

can achieve accelerated mixing through the temperature levels when the centring point

is chosen as the mode point, particularly at colder temperatures when the Gaussian

approximation to the mode becomes increasingly accurate, e.g. [2] and [25].

5.1. A weighted K means clustering

Typically the K means algorithm assigns all points equal leverage in determining

cluster centres. A weighted K means approach incorporates weights that can alter the

leverages of points. In the tempering setting chains at the colder states, where the

modes are less disperse, should have more leverage in determining the centres.

Weighted K means is an almost identical procedure to the K means algorithm of [13]

but now incorporates the weights to give points leverage. For the setting of interest

each chain location will be allocated a weight, determined by their inverse temperature

value. So for a collection of ν chain locations x1, . . . , xν at inverse temperature levels

βx1
, . . . , βxν form their respective weights.

The weighted K means algorithm gives a pragmatic way of creating a plausible

particle allocation, Ŝ, in to K partitions. Denoting a partition S by S = {S1, . . . , SK},

where Sj ⊂ {x1, . . . , xν}, then the procedure aims to establish an allocation, Ŝ, such

that

Ŝ = argminS


M∑
i=1

ν∑
j=1

1{xj∈Si}βxj ||xj − µi||
2

 .

The weighted K means algorithm begins with an initial set of K centres {µ1, . . . , µK}.

It then proceeds by alternating between two updating steps until point allocations do

not change (signaling a minimum of or a pre-specified number of iterations is reached).

A point allocation step, where each point, x, is assigned to the set Sj where j =
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arg minj ||x−µj ||2. A centre point update step where for the new allocation the centring

points are each updated to be the weighted mean of their respective component steps,

i.e.

µi =

∑
j∈Si xjβxj∑
j∈Si βxj

.

The Weighted K means procedure, e.g. [15], [44], can be implemented using the R

package“FactoClass”, by [7] which uses a modified version of the K means algorithm

of [13].

6. Theoretical underpinnings of QuanTA in high dimensions

In both QuanTA and the PT algorithms, the acceptance of temperature swap

proposals allow the transfer of hot-state mixing information to be passed through to

the cold state. The ambitiousness of the spacings between the consecutive inverse

temperatures dictate the performance of the algorithm. Similarly to the problem

of tuning the RWM algorithm, [31], one seeks the optimal balance between over

and under-ambitious proposals. This issue becomes increasingly problematic with

an increase in dimensionality, hence careful scaling of the consecutive temperatures

spacings is needed to prevent degeneracy of acceptance rates.

The work in [1] sought an optimal scaling result for temperature spacings in a

PT algorithm. This section takes a similar approach to derive an equivalent result

for QuanTA. It will be shown in Theorem 1 that consecutive spacings inducing swap

rates of approximately 0.234 are optimal; thus giving guidance for practitioners to

tune towards an optimal setup. Complementary to this, Theorem 2 justifies the use

of QuanTA outside the Gaussian setting; showing that under mild conditions the

transformation move allows for larger spacings in the temperature schedule than the

PT algorithm does.

6.1. Optimal scaling of QuanTA- the setup and assumptions

As the dimensionality, d, of the target distribution tends to infinity, the problem

of selecting temperature spacings for QuanTA is investigated. Suppose a swap move

between two consecutive temperature levels, β and β′ = β + ε for some ε > 0 is

proposed. As in [1], the measure the efficiency of the inverse temperature spacing will
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be the expected squared jumping distance, ESJDβ , defined as

ESJDβ = Eπn
[
(γ − β)2

]
(13)

where γ = β + ε if the proposed swap is accepted and γ = β otherwise. Note the

assumption that the Markov chain has reached invariance and so the expectation is

taken with respect to the invariant distribution, πn(·).

The ESJDβ is a natural quantity to consider, [38], since maximising this would

appear to ensure that one is being sufficiently ambitious with spacings but not inducing

degenerate acceptance rates. However, it is worth noting that it is only truly justified

when there is an associated diffusion limit for the chain, [34].

The aim is to establish the limiting behaviour of the ESJDβ as d → ∞ and then

optimise this limiting form. To this end, for tractability, the form of the d-dimensional

target is restricted to distributions of the form:

π(x) ∝ fd(x) =

d∏
i=1

f(xi). (14)

and to achieve a non-degenerate acceptance rate as d→∞ the spacings are necessarily

scaled as O(d−1/2), i.e.

ε =
`

d1/2
. (15)

where ` a positive constant that one tunes to attain an optimal ESJDβ .

Furthermore, assume that the univariate marginal components, f(·), are C4 and

have a global maxima at µ, i.e.

f ′(µ) = 0 and f(µ) > f(z) ∀z 6= µ. (16)

The point, µ, is the centring point for the transformation aided temperature swap

move analysed in the forthcoming Theorem 1. Note that the result of Theorem 1 still

holds even if µ is chosen as an arbitrary point in the state space. However, the global

mode point, µ, is the canonical transformation centring point as will be seen in the

subsequent result in Theorem 2.

Furthermore, the marginal components f(·) are assumed to be of the form

f(x) = e−H(x) ∀x ∈ R (17)
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where the H(x) := − log(f(x)) is regularly varying, [3] i.e. there exists an α > 0 such

that for x > 0
H(tx)

H(t)
→ xα as |t| → ∞. (18)

This is a sufficient condition for Theorem 1 and ensures the moments and integrals

required for the proof are all well defined. Further assume that the fourth derivatives

of (log f)(·) are bounded, i.e. ∃M > 0 such that

|(log f)′′′′(z)| < M ∀z ∈ R. (19)

This condition is sufficient for proving Theorem 1 but not necessary. The proof still

works if the condition is weakened so that for some k ≥ 4 then the kth derivative of

the logged density is bounded.

Finally, for notational convenience, the following are defined, with the subscript β

indicating that the expectation is with respect to fβ(·):

V (β) =
1

β2

I(β) = Varβ [(log f)(x)]

R(β) = Eβ
[
(x− µ)2(log f)′′(x)− (x− µ)(log f)′(x)

]
.

Theorem 1 below deals with a single mode setting which is a very good approxima-

tion of a multimodal setting with homogeneous modal structure and where the mode

weights remain stable at consecutive temperatures, [48],[40]. Outside this setting other

methods are needed to stabilise the modal weights at different temperatures, [41], then

the QuanTA transformation-aided swap moves can be successfully utilised alongside

such an approach.

Since we assume only one transformation-centring point there is a simplified form

of the acceptance probability that no-longer requires the indicator functions. Denote

the acceptance probability of the QuanTA-style swap move by αβ(x, y) so

αβ(x, y) = min

(
1,
fβ
′

d (g(x, β, β
′
))fβd (g(y, β

′
, β))

fβ
′

d (y)fβd (x)

)
, (20)

then a simple calculation shows that the ESJDβ from (13), becomes

ESJDβ = ε2Eπn [αβ(x, y)] (21)

which will be maximised with respect to ` in the limit as d→∞.
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6.2. Scaling results and interpretation

Under the setting of Section 6.1 and with Φ(·) denoting the CDF of a standard

Gaussian, the following optimal scaling result is derived:

Theorem 1. (Optimal Scaling for the QuanTA Algorithm.) Consider QuanTA tar-

geting a distribution, π(·), satisfying (14). Assume that the marginal components, f(·),

satisfy (16), are regularly varying satisfying (17) and (18), and that log f(·) satisfies

(19). Assuming ε = `/d1/2 for some ` ∈ R+ then in the limit as d→∞, the ESJDβ,

given in (21) is maximised when ` is chosen to maximise

2`2Φ

−`
[

1
2V (β)− I(β) + 1

4βR(β)
]1/2

√
2

 , (22)

Furthermore, for the optimal ` the corresponding swap move acceptance rate induced

between two consecutive temperatures is given by 0.234 (3.s.f).

Proof. The details of the proof of Theorem 1 are deferred to the Appendix, Sec-

tion A. The strategy comprises 3 key stages which are: establishing a Taylor series

expansion of the logged swap move acceptance ratio (i.e. the log of (20)); establishing

limiting Gaussianity of this logged acceptance ratio; and finally, achieving a tractable

form of the limiting ESJDβ which is then optimised with respect to ` giving rise to

an associated optimal acceptance rate. �

Remark 3.

In the special case that the marginal targets are Gaussian, i.e. f(x) = φ(x;µ, σ2) then

the transformation swap move should permit arbitrarily ambitious spacings. This is

verified by observing that in this case[
1

2
V (β)− I(β) +

1

4β
R(β)

]
= 0

and so with respect to ` (22) becomes proportional to `2 which has no finite maximal

value; thus demonstrating consistency with what is know in the Gaussian case.

Remark 4. The optimality criterion given in (22) is very similar to that derived in [1]

and [34]. Indeed, both QuanTA and the PT algorithm require the same dimensionality



Accelerating Parallel Tempering: QuanTA 17

spacing scaling and both are optimised when a 0.234 acceptance rate is induced. How-

ever, there will be a difference in the behaviour of the optimal ˆ̀which is where QuanTA

can be shown to give accelerated mixing versus the PT approach, see Theorem 2 below.

Remark 5. Theorem 1 gives an explicit formula for derivation of the optimal ˆ̀ be-

tween consecutive temperatures but this is usually intractable in a real problem.

However, for a practitioner, the associated 0.234 optimal swap acceptance rate gives

useful setup guidelines. In fact, the theorem suggest a strategy for optimal setup

starting with a chain at the hottest level and tuning the spacing to successively colder

temperature levels based on the swap acceptance rate to attain consecutive swap rates

close to 0.234. Indeed, using a stochastic approximation algorithm, see [30], then [20]

took an adaptive MCMC approach, [33], to do this for the PT algorithm but their

framework also extends naturally to QuanTA.

6.2.1. Higher Order Scalings at Cold Temperatures For any univariate Gaussian dis-

tribution at inverse temperature level β, I(β) = 1/(2β2). It is shown in [1] that the

optimal choice for the scaling parameter takes the form

ˆ̀∝ I(β)−1/2 ∝ β (23)

resulting in a geometrically spaced temperature schedule.

Assuming appropriate smoothness for the marginal components , f(·), then for a

sufficiently cold temperature the local mode can be well approximated by a Gaussian,

[43]. So for sufficiently cold temperatures (i.e., large β) one expects I(β) ≈ 1/(2β2);

thus spacings become (approximately) O(β) (note that a rigorous derivation that

I(β) ≈ 1/(2β2) is contained in the proof of Theorem 2). Defining the “order of the

spacing with respect to the inverse temperature, β” as the value of ζ such that the

optimal spacing is O(βζ) then the standard PT algorithm is order 1 for sufficiently

cold temperatures.

In the Gaussian setting, QuanTA exhibits “infinitely” high order behaviour since

there is no restriction on the size of the temperature spacings with regards the value of

β. It is hoped that some of this higher order behaviour is inherited in a more general

target distribution setting when the modes can be considered to be sufficiently close

to Gaussian.
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It will be seen in Theorem 2 below that, under the setting of Theorem 1 but with a

single additional condition it is shown that QuanTA does exhibit higher order behaviour

than the PT algorithm at cold temperatures.

With f(·) as in Theorem 1 (but now without loss of generality the mode point is at

µ = 0) define the normalised density gβ(·) as

gβ(y) ∝ fβ
(
µ+

y√
−β(log f)′′(µ)

)
= fβ

(
y√

−β(log f)′′(0)

)
. (24)

The additional assumption required to prove the higher order behaviour of QuanTA

is that there exists γ > 0 such that as β →∞

|Vargβ
(
Y 2
)
− 2| = O

(
1

βγ

)
. (25)

This assumption essentially guarantees the convergence to Gaussianity about the mode

as β →∞. This assumption appears to be reasonable with studies of both a Gamma

and a student-t distributions demonstrating a value of γ = 1; details can be found in

[39].

Theorem 2. (Cold Temperature Scalings.) For marginal targets, f(·), satisfying the

conditions of Theorem 1 and (25), then for β sufficiently large[
1

2
V (β)− I(β) +

1

4β
R(β)

]
= O

(
1

βk

)
,

where

• k = min {2 + γ, 3} > 2 if f is symmetric about the mode point 0

• k = min
{

2 + γ, 5
2

}
> 2 otherwise.

This induces an optimising value ˆ̀ such that

ˆ̀= O
(
β
k
2

)
, (26)

showing that at the colder temperatures QuanTA permits higher order behaviour than

the standard PT scheme which has ˆ̀= O (β).

Proof. Since the optimal ` derived in Theorem 1 is given by

ˆ̀∝
[

1

2
V (β)− I(β) +

1

4β
R(β)

]−1/2
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the proof of Theorem 2 follows immediately if it can be shown that[
1

2
V (β)− I(β) +

1

4β
R(β)

]
= O

(
1

βk

)
. (27)

Indeed, two key Lemmata are derived in Section A.2 in the Appendix: Lemma 4

establishes that 1
2V (β) − I(β) = O

(
1
βk

)
and Lemma 5 establishes that 1

4βR(β) =

O
(

1
βk

)
. Thus the result in (27) holds and the proof is complete.

�

Remark 6. Theorem 2 studies the behaviour of the optimal spacings for large values

of β, where β is larger than 1. Even though the QuanTA and PT approaches use

temperatures in the range [0, 1], the result still proves insightful in many situations

that QuanTA can encounter.

This is due to the arbitrary nature of the “β = 1” temperature level which is a result

of the tempering being relative rather than absolute for the modes. Hence the modes

of the target distribution of interest may exhibit a within mode structure that makes

it appear that a modes has been cooled to an inverse-temperature much larger than 1.

As an example, take a Gamma(α, γ) distribution, where for some α > 0, γ > 0 and

x > 0

f(x) ∝ xα−1e−γx.

Then with slight abuse of notation, fβ
∗ ∼Gamma(αβ∗ − β∗ + 1, γβ∗). Suppose that

the target distribution of interest was given by π ∼ fβ
∗

and one raises π to a power

β < 1 then πβ ∼Gamma(αββ∗− ββ∗+ 1, γββ∗). Thus if β∗ is large and β < 1 is such

that ββ∗ remains large then one is in the setting of Theorem 2.

Furthermore, ongoing work is hoping to develop novel methodology for sampling

from multimodal distributions that utilises temperature levels with β > 1 where

necessarily β → ∞ as d → ∞. The results established here are directly applicable

to that work.

Remark 7. The result in Theorem 2 does not imply that QuanTA isn’t useful outside

the Gaussian or super cold settings. The QuanTA approach will be practically useful

in settings where the mode can be well approximated by a Gaussian and thus the

transformation in the transformation-aided swap move approximately preserves the

mode’s CDF. What Theorem 2 does show is that for a large class of distributions that
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exhibit appropriate smoothness, QuanTA is sensible, and is arguably the canonical

approach to take at the colder temperature levels, since it enables accelerated mixing

speed through the temperature schedule.

7. Examples of implementation

This section gives illustrative examples for the canonical setting of a Gaussian

mixture to illustrate the potential gains of QuanTA over the standard PT approach.

The QuanTA transformation move does not solve all the issues inherent in the

PT framework. This will be highlighted with the final example in this section. In

fact, [47] and [48] shows that for most “interesting” examples the mixing speed decays

exponentially slowly with dimension. Prototype approaches to navigating this problem

can be found in [39] and [41]. Also note that the examples all focus on the setting when

the target distribution is a Gaussian mixture; which is often a good approximation

to a range of multimodal distributions. Outside the setting of Gaussian modes the

transformation-aided swap move will not be as effective since the within-mode CDF

preservation transformation will only be an approximation to preservation of the CDF.

In each of the examples given, both the new QuanTA and standard (PT) parallel

schemes will be run for comparison of performance. In all examples:

1. Both the new QuanTA and PT versions were run 10 times to ensure replicability.

2. Both the PT and QuanTA algorithms were run so that 20,000 swap moves would

be attempted. For QuanTA this would be 20,000 swaps for each of the N

individual parallel tempering schemes in parallel of which there were N = 100 in

this example. Also all schemes had the same within to swap move ratio (3 : 1).

3. Both versions use the same set of (geometrically generated) temperature spacings;

chosen to be overly ambitious for the PT setup but demonstrably under-ambitious

for the new QuanTA scheme.

4. Also presented is the optimal temperature schedule for the PT setup generated

under the optimal acceptance rate of 0.234 for the PT algorithm suggested by

[1]. This demonstrates the extra complexity needed to produce a functioning

algorithm for the PT approach.
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5. For all runs, the within temperature level proposals were made with Gaussian

RWM moves tuned to an optimal 0.234 acceptance rate, [31].

7.1. One-dimensional example

Target distribution given by:

π(x) ∝
5∑
k=1

wkφ(x;µk, σ
2) (28)

where φ(·;µ, σ2) is the density function of a univariate Gaussian with mean µ and vari-

ance σ2. In this example, σ = 0.01, the mode centres are given by (µ1, µ2, µ3, µ4, µ5) =

(−200,−100, 0, 100, 200) and all modes are equally weighted with w1 = w2 = . . . = w5.

The temperature schedule for this example is given by a geometric schedule with

an ambitious 0.0002 common ratio for the spacings. Only 3 levels are used and so the

temperature schedule is given by ∆ = {1, 0.0002, 0.00022}, see Figure 3.

−200 −100 0 100 200

0
20

40

x

−200 −100 0 100 200

0.
0

0.
6

x

−200 −100 0 100 200

0.
6

0.
8

1.
0

x

Figure 3: The (non-normalised) tempered target distributions for (28) for inverse tempera-

tures ∆ = {1, 0.0002, 0.00022} respectively.

In all runs all the chains were started from a start location of -200. Figure 1, from

the introductory section, shows two representative trace plots of the target state chain
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for a run of the PT algorithm and a single scheme from QuanTA respectively. There

is a clear improvement in the inter-modal mixing for the QuanTA.

Table 1 gives the associated acceptance rates. Clearly the rate of transfer of mixing

information from the hot states to the cold state is significantly higher for QuanTA.

Swap location: 1 2

PT 0.06 0.07

QuanTA 0.99 0.99

Table 1: Comparison of the acceptance rates of swap moves for the PT algorithm and

QuanTA targeting the one dimensional distribution given in (28) and setup with the ambitious

inverse temperature schedule given by ∆ = {1, 0.0002, 0.00022}.

Figure 4 compares the running modal weight approximation for the mode centred

on 200 when using the standard PT and QuanTA schemes respectively. This used the

cold state chains from 10 individual runs of the PT algorithm and 10 single schemes

selected randomly from 10 separate runs of the QuanTA algorithm.

Denoting the estimator of the kth mode’s weight by ŵk and the respective cold state

chain’s ith value as Xi,

ŵk =
1

N −B + 1

N∑
i=B

1{ck<Xi≤Ck}. (29)

where ck and Ck are the chosen upper and lower boundary points for allocation to the

kth mode; and B is the length of the burn-in removed.

Figure 4 shows the QuanTA approach has a vastly improved rate of convergence;

with the PT runs still exhibiting bias from the chain initialisation locations.

An interesting comparison between the approaches is to observe how many extra

temperature levels would be required to make the PT scheme work optimally (i.e. with

consecutive 0.234 swap acceptance rates). This gives a clearer idea of the reduction in

number of intermediate levels that can be achieved using the QuanTA.

With the same hottest state level of β = 0.00022, a geometrical inverse temperature

schedule was tuned to give a swap rate of approximately 0.234 was achieved between

consecutive levels for the PT algorithm in this example. In fact a 0.04 geometric ratio

suggested optimality for the PT scheme. Hence, to reach the stated hottest level needs
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Figure 4: For the target given in (28), the running weight approximations for the mode

centred on 200 with target weight w5 = 0.2 for 10 separate runs of the PT and QuanTA

schemes respectively. Left: the PT runs showing slow and variable estimates for w5. Right:

the new QuanTA scheme showing fast, unbiased convergence to the true value for w5

7 temperatures, as opposed to the 3 that were evidently unambitious for QuanTA.

7.2. Twenty-dimensional example

The target distribution is a 20-dimensional tri-modal Gaussian:

π(x) ∝
3∑
k=1

wk

 20∏
j=1

φ(xj ;µk, σ
2)

 . (30)

In this example, σ = 0.01, the marginal mode centres are given by (µ1, µ2, µ3) =

(−20, 0, 20) and all modes are equally weighted with w1 = w2 = w3.The temperature

schedule for this example is derived from a geometric schedule with an ambitious 0.002

common ratio for the spacings. Only 4 levels are used and so the temperature schedule

is given by {1, 0.002, 0.0022, 0.0023}.

In all runs all the chains were started from a start location of (−20, . . . ,−20).

Figure 5 shows two representative trace plots of the target state chain for a run of

the PT algorithm and QuanTA respectively. There is a clear improvement in the
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Figure 5: Trace plots of the first component of the twenty dimensional cold state chains

for representative runs of the PT (top) and new QuanTA (bottom) schemes. Note the fast

inter-modal mixing of the new QuanTA scheme, allowing rapid exploration of the target

distribution. In contrast the PT scheme never escapes the initialising mode.

inter-modal mixing for the new QuanTA scheme. There is a stark contrast between

the two algorithmic performances. The run using the standard PT scheme entirely fails

to improve the mixing of the cold chain. In contrast the QuanTA scheme establishes

a chain that is very effective at escaping the initialising mode and then mixes rapidly

throughout the state space between the three modes.

The consecutive swap acceptance rates between the four levels are given in Table 2.

Clearly there is no transfer of mixing information from the hot states to the cold state

for the PT algorithm but there is excellent mixing in the QuanTA.

Swap location: 1 2 3

PT 0 0 0

QuanTA 0.99 0.99 0.99

Table 2: Comparison of the acceptance rates of swap moves for the PT algorithm and

QuanTA targeting the Twenty dimensional distribution given in (30) and setup with the

ambitious inverse temperature schedule given by {1, 0.002, 0.0022, 0.0023}.
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The temperature schedule choice that induces a 0.234 swap acceptance rate between

consecutive temperature levels for this example using the PT algorithm indicates a

geometric schedule with a 0.58 common ratio. This is in stark contrast to the 0.002

ratio that is evidently underambitious for QuanTA. Indeed, to reach the allocated hot

state of β = 0.0023 then the PT algorithm would need 36 temperature levels in contrast

to the 4 that sufficed for QuanTA.

7.3. Five-dimensional non-canonical example

Leaving the canonical symmetric mode setting, the following example has a five

dimensional Gaussian mixture target with even weight to the modes but with different

covariance scaling within each mode. The target distribution is given by:

π(x) ∝
3∑
k=1

wk

 5∏
j=1

φ(xj ;µk, σ
2
k)

 . (31)

In this example, (σ1, σ2, σ3) = (0.02, 0.01, 0.015), the marginal mode centres are given

by (µ1, µ2, µ3) = (−20, 0, 20) and all modes are equally weighted with w1 = w2 = w3.

Although at first glimpse this does not sound like a significantly harder problem,

or even far from the canonical setting, the differing modal scalings make this a much

more complex example. This is due to the lack of preservation of modal weight through

power-based tempering, [48]. Indeed, [41] and [40] present a novel modification to the

auxiliary tempered targets that remain compatible with the QuanTA scheme.

The temperature schedule for this example cannot be a simple geometric schedule

as in the previous example due to the scaling indifference between the modes. By using

an ambitious geometric schedule, the clustering was very unstable early on and this

often led to an inability to establish mode centres for the run. Instead, a mixture of

geometric schedules was used with an ambitious spacing for the coldest levels and then

a less ambitious spacing for the hotter levels. For the four coldest states an ambitious

geometric schedule with 0.08 common ratio was used. A further 8 hotter levels were

added using a conservative geometric schedule with ratio 0.4. Hence the schedule was

given by:

∆ = {1, 0.08, 0.082, 0.083, 0.49, 0.410, . . . , 0.415, 0.416}. (32)

For the QuanTA scheme, the transformation moves were used for swap moves between
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the coldest 7 levels and standard swap moves were used otherwise.

Figure 6 shows two representative trace plots of the target state chain for a run of

the PT and QuanTA algorithms respectively. There is a clear improvement in the inter-

modal mixing for the QuanTA scheme; albeit far less stark than that in the canonical

one-dimensional and twenty-dimensional examples already shown. The run using the

standard PT scheme fails to explore the state space. The QuanTA scheme establishes

a chain that is able to explore the state space but does appear to have a bit of trouble

during burn-in; mixing is good therein.
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Figure 6: Trace plots of the first component of the five dimensional cold state chains for

representative runs of the PT and QuanTA schemes respectively. Note the difference in inter-

modal mixing between the QuanTA scheme and the PT scheme which struggles to escape the

initialisation mode.

The consecutive swap acceptance rates between the 12 levels are given in Table 2.

Clearly there is very poor mixing through the 4 coldest states for the PT algorithm.

In contrast the QuanTA scheme has solid swap acceptance rates through the coldest

levels but, unlike the previous examples, they are not all close to 1.

This example is both positive (showing the improved mixing using the QuanTA

scheme on a hard example) but also serves as a warning for the degeneracy of both the
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Swap location: 1 2 3 4 5 6

PT 0.001 0.0161 0.0138 0.469 0.317 0.348

QuanTA 0.446 0.970 0.997 0.999 0.999 0.999

Swap location: 7 8 9 10 11 -

PT 0.328 0.334 0.359 0.324 0.327 -

QuanTA 0.285 0.285 0.285 0.285 0.302 -

Table 3: Comparison of the acceptance rates of swap moves for the PT and new

QuanTA algorithm targeting the five dimensional distribution given in (31) and setup with

the ambitious inverse temperature schedule given in (32). Note that for QuanTA, the

reparametrised swap move was only used for swaps in the coldest 7 levels.

PT and new QuanTA schemes when using power-based tempering on a target outside

of the canonical symmetric mode setting.

7.4. The computational cost of QuanTA

It is important to analyse the computational cost of QuanTA. To be an effective

algorithm the inferential gains of QuanTA per iteration should not be outweighed by

the increase in run-time.

The analysis uses the runs of the one and twenty-dimensional examples, given above,

using both the QuanTA and PT approaches. The algorithms were setup the same as

in the ambitious versions of the spacing schedules in each case.

The key idea is to first establish the total run-time, denoted R, in each case.

Typically one looks to compare the time-standardised Effective Sample Size (ESS).

In this case it is natural to take the acceptance rate as a direct proxy for the effective

sample size. This is due to the fact that the target distributions have symmetric modes

with equal weights. Hence the acceptance rate between consecutive temperature levels

dictates the performance of the algorithm; in particular the quality of inter-modal

mixing.

To this end, taking the first level temperature swap acceptance rate, denoted A, the

runs are compared using run-time standardised acceptance rates i.e. A/R.

Note that in both dimensional cases, the output from QuanTA is 100 times larger

due to the use of 100 schemes running in parallel. Hence, for a standardised comparison
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the time was divided by 100. Therefore, in what follows in this section, when the run-

time, R, of the QuanTA approach is referred to, this means the full run-time divided

by 100. The fairness of this is discussed below.

Algorithm PT QuanTA

Run-time (sec) 5.60 8.01

Swap Rate 0.06 0.99

A/R 0.01 0.12

Table 4: Complexity comparisons between QuanTA and PT for the one-dimensional example.

Algorithm PT QuanTA

Run-time (sec) 8.00 12.79

Swap Rate 0.00 0.99

A/R 0.00 0.08

Table 5: Complexity comparisons between QuanTA and PT for the twenty-dimensional

example.

In both cases the QuanTA approach has a longer run-time to generate the same

amount of output; as would be expected due to the added cost of clustering. Indeed,

it takes approximately 1.5 times longer to generate the “same amount of output”.

However, the temperature swap move acceptance rates are 16.5 and ∞ times better

respectively when using the QuanTA approach. Using the acceptance rate as a proxy

for effective sample size then the quantity A/R is the fundamental value for comparison.

In both cases the QuanTA approach shows a significant improvement over the PT

approach.

There are issues with the fairness of this comparison:

• By standardising the run-time of QuanTA by the number of parallel schemes is

not fully fair since it is sharing out the clustering expense between schemes.

• The spacings are too ambitious for the PT approach meaning that the acceptance

rates are very low. For a complete analysis one should run the PT algorithm on

its optimal temperature schedule and then use the time-standardised effective
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sample size from each of the optimised algorithms.

The empirical computational studies are favourable to the QuanTA approach. This

is for a couple of examples that are canonical for QuanTA. Outside of this canonical

setting the improvements from running QuanTA will be less obvious.

8. Conclusion and further work

The prototype QuanTA approach utilises a non-centred transformation approach to

accelerate the transfer of mixing information from the rapidly mixing “hot” state to

aid the inter-modal mixing in the target “cold” state. Examples show that this novel

algorithm has the potential to dramatically improve the inferential gains; particularly

in settings where the modes are similar to a Gaussian in structure.

The accompanying theoretical results that are given in Section 6 show that in a

generic non-Gaussian setting the QuanTA approach can still exhibit accelerated mixing

through the temperature schedule. Although the inverse temperature spacings are

generally still O(d−1/2) there is a higher order behaviour exhibitted in the mixing for

large (i.e. cold) values of the inverse temperature β. This suggests that the QuanTA

approach will be powerful for accelerating the mixing through the colder levels of the

temperature schedule for a typical smooth target.

It is clear that there are interesting questions to be addressed and further work

needed before QuanTA can be considered practical in a real data problem. In terms

of optimising the computational expense, it has been shown that parallelisation of the

PT algorithm can give significant practical gains, [45]; by design QuanTA is also highly

parallelisible. The procedure described in Section 4.1 has huge scope to be parallelised.

This requires care since communication costs and synchronisation between parallel

collections of the PT schemes could negate the effectiveness of the parallelisation.

A criticism of the current clustering method used is that it requires prior specification

of the number of modes, K which is likely to be unknown and would need online-

estimation as part of the clustering process.

An interesting question is whether using extra cold levels (with β > 1) along with

the weighted clustering would help to aid the stability of the clustering procedure once

invariance is reached for the population. Indeed, the mixing at these auxiliary extra
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cold levels should be very fast due to the QuanTA exhibiting higher order behaviour

in these modes. The other interesting question is regarding the robustness of the

method outside of Gaussian modes e.g., in heavier tailed modes, when the Gaussian

approximation to the mode can be poor. Consider the setting of a univariate Laplace

distribution and observe that the QuanTA style transformation never agrees with the

true CDF preserving transformation. It would be interesting to search, both empirically

and theoretically, for settings where QuanTA fails to outperform the standard PT swap

move. Some initial ideas and details of this further work can be found in [39].

Appendix A. Proofs

This section gives the proof details of the results in Section 6.2. Firstly, some key

notation is introduced that will be useful throughout this section.

Definition 1. Denote:

• B = log

(
fβ
′

d (t(x,β,β
′
))fβd (t(y,β

′
,β))

fβ
′

d (y)fβd (x)

)
;

• h(x) := log (f(x));

• k(x) := (x− µ)h′(x);

• and r(x) := (x− µ)2h′′(x).

Then define

M(β) = Eβ(h(z)) (33)

S(β) = Eβ(k(z)) (34)

R(β) = Eβ(r(z)− k(z)), (35)

where all expectations are with respect to the distribution fβ(x)
Zβ

where Zβ =
∫
fβ(z)dz.

Proposition 2. Under the notation and assumptions of Theorem 1 and definition 1

then it can be shown that

I(β) := M ′(β) = Varβ(h(x)). (36)

and

S(β) = − 1

β
, (37)
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which trivially gives that

V (β) := S′(β) =
1

β2
. (38)

Proof. The proof of (36) is routine and can be found in [1]. The derivation of (37)

is less obvious using integration by parts:

S(β) =

∫
(x− µ)(log f)′(x)

fβ(x)

Zβ
dx

=

∫
(x− µ)f ′(x)

fβ−1(x)

Zβ
dx

=

[
(x− µ)

β

fβ(x)

Zβ

]∞
−∞
−
∫

1

β

fβ(x)

Zβ
dx

= −
∫

1

β

fβ(x)

Zβ
dx

�

A.1. Proof of Theorem 1

This section derives 3 key results that are specific to deriving the result in Theorem 1.

Lemma 1 will establish a Taylor expanded form of the log acceptance ratio of a

temperature swap move that will prove to be asymptotically useful. Lemma 2 will

then establish the limiting Gaussianity of this logged acceptance ratio and finally,

Lemma 3 completes the proof of Theorem 1 by establishing the optimal spacings and

associated optimal acceptance rates required.

Lemma 1. (QuanTA Log-Acceptance Ratio.) Under the notation and assumptions of

Theorem 1 and definition 1,

B = ε

[
d∑
i=1

h(xi)− h(yi) +
1

2
(k(yi)− k(xi))

]

+
ε2

8β

[
d∑
i=1

r(xi)− k(xi) + r(yi)− k(yi)

]
+ (Tx + Ty). (39)

where both Tx → 0 and Ty → 0 in probability as d→∞.

Proof. By taking logarithms it is immediate that

B =

d∑
i=1

[β′h(t(xi, β, β
′
))− βh(xi)] +

d∑
i=1

[βh(t(yi, β
′
, β))− β′h(yi)]

=: Hβ′

β (x) +Hβ
β′(y). (40)
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With the aim being to derive the asymptotic behaviour of the log acceptance ratio

then the next step is to use Taylor expansions (in ε) to appropriate order so that the

asymptotic behaviour of B can be understood.

For notational convenience, the following will be used:

• Making h(t(x, β, β
′
)) explicitly dependent on ε

αx(ε) := h(t(x, β, β
′
)) = log

[
f

((
β

β + ε

)1/2

(x− µ) + µ

)]
.

• Denote

dx(ε) :=

(
β

β + ε

)1/2

(x− µ) + µ.

By Taylor series expansion in ε, for fixed x, with Taylor remainder correction term

denoted by ξx such that 0 < ξx < ε:

h(g(x, β, β
′
)) = αx(ε) = αx(0) + εα′x(0) +

ε2

2
α′′x(0) +

ε3

6
α′′′x (ξx), (41)

where

α′x(ε) = − (x− µ)

2

β1/2

(β + ε)3/2
(log f)′(dx(ε)), (42)

α′′x(ε) =
(x− µ)2

4

β

(β + ε)3
(log f)′′(dx(ε)) (43)

+
3(x− µ)

4

β1/2

(β + ε)5/2
(log f)′(dx(ε)),

α′′′x (ε) = − (x− µ)3

8

β3/2

(β + ε)9/2
(log f)′′′(dx(ε)) (44)

−9(x− µ)2

8

β

(β + ε)4
(log f)′′(dx(ε))

−15(x− µ)

8

β1/2

(β + ε)7/2
(log f)′(dx(ε)).

As a preview to the later stages of this proof, the terms up to second order in ε

dictate the asymptotic distribution of B. However, to show that the higher order

terms “disappear” in the limit as ε → 0 then a careful analysis is required. Thus the

next step is to establish that, under the assumptions made above, the higher order

terms converge to zero in probability.

To this end, a careful analysis of α′′′x (·) is undertaken. Firstly, it will be shown that

|Eβ [α′′′x (ξx)]| is bounded; then application of Markov’s inequality will establish that
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the higher order terms converge to zero in probability as d→∞. Define

ηε :=

[(
β

β + ε

) 1
2

− 1

]

so that

dx(ε)− x =

[(
β

β + ε

) 1
2

− 1

]
(x− µ) := ηε(x− µ),

which has the property that ηε → 0 as d→∞ and |ηε| ≤ 1.

Then, with Taylor remainder correction terms denoted ξε1, ξ
ε
2, ξ

ε
3 such that 0 < |ξεk −

x| < |dx(ε)− x|

(log f)′(dx(ε)) = (log f)′(x) + ηε(x− µ)(log f)′′(x) (45)

+
ηε

2(x− µ)2

2
(log f)′′′(x)

+
ηε

3(x− µ)3

6
(log f)′′′′(ξε1),

(log f)′′(dx(ε)) = (log f)′′(x) + ηε(x− µ)(log f)′′′(x) (46)

+
ηε

2(x− µ)2

2
(log f)′′′′(ξε2),

(log f)′′′(dx(ε)) = (log f)′′′(x) + ηε(x− µ)(log f)′′′′(ξε3). (47)

Recall the assumptions (18) and (19). Substituting (45), (46) and (47) into (44);

evaluating the expectation with respect to X ∼ fβ and for convenience denoting |x−µ|
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by S then ∃ C ∈ R+

|Eβ [α′′′x (ξx)]| ≤ Eβ [|α′′′x (ξx)|]

≤ Eβ

[
S3

8
β−3|(log f)′′′(d(ξx))|

+
9S2

8
β−3|(log f)′′(d(ξx))|+ 15S

8
β−3|(log f)′(d(ξx))|

]

≤ Eβ

[
S3

8
β−3

(
|(log f)′′′(x)|+ S|(log f)′′′′(ξξx3 )|

)
+

9S2

8
β−3

(
|(log f)′′(x)|+ S|(log f)′′′(x)|

+
|x|2

2
|(log f)′′′′(ξξx2 )|

)
+

15S

8
β−3

(
|(log f)′(x)|

+S|(log f)′′(x)|+ S2

2
|(log f)′′′(x)|

+
S3

6
|(log f)′′′′(ξξx1 )|

)]
≤ C (48)

where the first three inequalities are from the direct application of the triangle inequal-

ity (with the second also using the boundedness of ηε); whereas the final inequality

arises from both the finiteness of expectations of the terms involving derivatives of

order three or below (this is due to the regularly varying tails of log(f(·))) and the

assumption that |(log f)′′′′(·)| < M .

Using (41), with substitution of terms from (42), (43) and (44), Hβ′

β (x) can be

expressed as

Hβ′

β (x) =

d∑
i=1

(β + ε) [αxi(ε)− βαxi(0)]

= ε

d∑
i=1

[
αxi(0) + βα′xi(0)

]
+ ε2

d∑
i=1

[
β

2
α′′xi(0) + α′xi(0)

]

+ε3
d∑
i=1

[
1

2
α′′xi(0) +

β

6
α′′′xi(ξxi)

]
+ ε4

d∑
i=1

1

6
α′′′xi(ξxi). (49)
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By (48) and using the iid nature of the x′is and using Markov’s inequality then ∀δ > 0

δP

(∣∣∣∣∣ε3
d∑
i=1

[
1

2
α′′xi(0) +

β

6
α′′′xi(ξxi)

]∣∣∣∣∣ > δ

)

< E

(∣∣∣∣∣ `3d3/2

d∑
i=1

[
1

2
α′′xi(0) +

β

6
α′′′xi(ξxi)

]∣∣∣∣∣
)

≤ `3

d1/2

[
1

2
E
(
|α′′xi(0)|

)
+
β

6
C

]
→ 0 as d→∞.

Thus,

ε3
d∑
i=1

[
1

2
α′′xi(0) +

β

6
α′′′xi(ξxi)

]
→ 0 in probability as d→∞.

By identical methodology, as d→∞

ε4
d∑
i=1

1

6
α′′′xi(ξxi)→ 0 in probability.

Consequently,

Hβ′

β (x) = ε

[
d∑
i=1

h(xi)−
1

2
(xi − µ)h′(xi)

]

+
ε2

8β

[
d∑
i=1

(xi − µ)2h′′(xi)− (xi − µ)h′(xi)

]
+ Tx (50)

where

Tx = ε3
d∑
i=1

[
1

2
α′′xi(0) +

β

6
α′′′xi(ξxi)

]
+ ε4

d∑
i=1

1

6
α′′′xi(ξxi)

with Tx → 0 in probability as d→∞.

Now denoting h(t(y, β
′
, β)) as

αy(ε) := h(t(y, β
′
, β)) = log

[
f

((
β + ε

β

)1/2

(y − µ) + µ

)]
,

the Taylor series expansion in ε, for a fixed y, with Taylor truncation term denoted by

ξy such that 0 < ξy < ε is given by

h(t(y, β
′
, β)) = αy(ε) = αy(0) + εα′y(0) +

ε2

2
α′′y(0) +

ε3

6
αy(ξy). (51)

By identical methodology to the above calculation in (48) for αx(·), it can be shown

that ∃ Cy ∈ R+ such that ∣∣Eβ [α′′′y (ξy)]
∣∣ ≤ Cy. (52)
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Hence, using exactly the same methodology as for the xi’s above, then

Hβ
β′(y) = −ε

[
d∑
i=1

h(yi)−
1

2
(yi − µ)h′(yi)

]

+
ε2

8β

[
d∑
i=1

(yi − µ)2h′′(yi)− (yi − µ)h′(yi)

]
+ Ty. (53)

where Ty → 0 in probability as d→∞.

Using the notation from Definition 1 the desired form of B in Lemma 1 is reached.

�

Lemma 2. (Asymptotic Gaussianity of the Log-Acceptance Ratio for QuanTA.) Un-

der the notation and assumptions of Theorem 1 and Definition 1, B is asymptotically

Gaussian of the form B∼̇N(−σ
2

2 , σ2) where

σ2 = 2`2
[

1

2
V (β)− I(β) +

1

4β
R(β)

]
.

Proof. Recall the form of B from Lemma 1, then making the dimensionality depen-

dence explicit, write B = W (d) + (Tx + Ty) where

W (d) := ε

[
d∑
i=1

h(xi)− h(yi) +
1

2
(k(yj)− k(xj))

]

+
ε2

8β

[
d∑
i=1

r(xi)− k(xi) + r(yi)− k(yi)

]

and (Tx + Ty) → 0 in probability as d → ∞. Hence, if it can be shown that

W (d) converges in distribution to a Gaussian of the form N(−c, 2c) then by Slutsky’s

Theorem one can conclude that B converges in distribution to the same Gaussian as

the W .

To this end, the asymptotic Gaussianity of W (d) is established. First note that due

to the iid nature of the xi’s and yi’s respectively then by the standard Central Limit

Theorem, e.g. [6], for a sum of iid variables, then asymptotic Gaussianity is immediate

where

W (d)⇒ N
(
µW , σ

2
W

)
as d→∞ (54)

where

µW = lim
d→∞

E[W (d)] and σ2
W = lim

d→∞
Var[W (d)].
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To this end the terms E[W (d)] and Var[W (d)] are computed.

E[W (d)] := ε

[
d∑
i=1

M(β)−M(β + ε)− 1

2
(S(β)− S(β + ε))

]

+
ε2

8β

[
d∑
i=1

R(β) +R(β + ε)

]

= ε

[
d∑
i=1

−εM ′(β) +
ε

2
S′(β)

]
+
ε2

8β

[
d∑
i=1

2R(β)

]
+O(d−1/2)

→ `2
[

1

2
V (β)− I(β) +

1

4β
R(β)

]
as d→∞

where the final line utilises the results in Proposition 2. Similarly,

Var(W (d))→ 2`2Varβ

(
h(x)− 1

2
k(x)

)
as d→∞.

Hence by Slutsky’s Theorem then B is asymptotically Gaussian such that

B ∼̇ N

(
`2
[

1

2
V (β)− I(β) +

1

4β
R(β)

]
, 2`2Varβ

(
h(x)− 1

2
k(x)

))
. (55)

However, this does not obviously have the form required with B∼̇N(−σ
2

2 , σ2) for some

σ2. This form is verified with the following Proposition 3 and this then completes the

proof of Lemma 2.

Proposition 3. Under the notation and assumptions of Theorem 1 and Definition 1

then

`2
[

1

2
V (β)− I(β) +

1

4β
R(β)

]
= −`2Varβ

(
h(x)− 1

2
k(x)

)
. (56)

Proof. From (55) then denote

µ = `2
[

1

2
V (β)− I(β) +

1

4β
R(β)

]
(57)

and

σ2 = 2`2Varβ

(
h(x)− 1

2
k(x)

)
.

Then by using the standard properties of variance it is routine to show that

−σ
2

2
= `2

[
−I(β)− 1

4
Varβ(k(x)) + V (β)

]
. (58)

Consequently, equating the terms on the RHS of (57) and (58) shows that if the

following can be shown to hold then the required identity in (56) is validated:

1

4β
R(β) = −1

4
varβ(k(x)) +

1

2
V (β). (59)
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The LHS and RHS of (59) will be considered separately. The following integration

by parts are well defined due to the assumption that − log(f(·)) has regularly varying

tails. Starting with the RHS and recalling that from (37) Eβ(k(x)) = −1/β:

−1

4
varβ(k(x)) +

1

2
V (β) = −1

4

[
Eβ(k(x)2)− Eβ(k(x))2

]
+

1

2β2

= −1

4
Eβ(k(x)2) +

3

4β2
.

Then, noting that (log f)′(x)fβ(x) = f ′(x)fβ−1(x), and using integration by parts (by

first integrating f ′(x)fβ−1(x)):

Eβ(k(x)2) =

∫
(x− µ)2[(log f)′(x)]2

fβ(x)

Zβ
dx

=

[
(x− µ)2

β
(log f)′(x)

fβ(x)

Zβ

]∞
−∞

− 1

β

∫ [
(x− µ)2(log f)′′(x) + 2(x− µ)(log f)′(x)

] fβ(x)

Zβ
dx

= 0− 1

β
Eβ(r(x))− 2

β
Eβ(k(x)) = − 1

β
Eβ(r(x)) +

2

β2
. (60)

Collating the above in (59) and (60) then

−1

4
varβ(k(x)) +

1

2
V (β) =

1

4β
Eβ(r(x)) +

1

4β2
=

1

4β
R(β), (61)

where the final equality simply comes from the definition of R(β) from(35). �

�

Lemma 3. (Optimisation of the ESJDβ .) Under the notation and assumptions of

Theorem 1 and Definition 1 then the ESJDβ, is maximised when ` is chosen to

maximise

2`2Φ

−`
[

1
2V (β)− I(β) + 1

4βR(β)
]1/2

√
2

 ,

Furthermore, for the optimal ` the corresponding swap move acceptance rate induced

between two consecutive temperatures is given by 0.234 (3.s.f).

Proof. Letting φ(m,σ2) denote the density function of a Gaussian with mean m and

variance σ2 and suppose that G ∼ N(−σ
2

2 , σ
2) then a routine calculation (which can

be found in e.g. [31]) shows that

E(1 ∧ eG) = 2Φ
(
−σ

2

)
. (62)
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Using the result in (62) and Lemma 2, then in the limit as d→∞

lim
d→∞

(d ESJDβ) = 2`2Φ

−`
[

1
2V (β)− I(β) + 1

4βR(β)
]1/2

√
2

 . (63)

Substituting

u = `

[
1

2
V (β)− I(β) +

1

4β
R(β)

]1/2

,

and then maximising with respect to u attains an optimising value u∗ that doesn’t

depend on [
1

2
V (β)− I(β) +

1

4β
R(β)

]
.

Recalling the form of the ESJDβ from (21) , then it is clear that the associated

acceptance rate, denoted (ACCβ), induced by choosing the any value of u is

ACCβ = Eπn [αβ(x, y)]

which, as established above, in the limit as d→∞ is asymptotically given by

ACCβ = 2Φ

(
− u√

2

)
Now it can be shown numerically that for the optimising value u∗ induces

ACCβ = 0.234 (3.s.f).

�

A.2. Proof of Theorem 2

Note that in Theorem 2, the conditions on f(·) are inherited from the conditions on

f(·) from Theorem 1. This includes the bounded fourth derivatives of log(f) and the

existence of eighth moments i.e. Eβ
[
X8
]
, which is due to the assumption of regularly

varying tails. These will be assumed for the following lemmata.

Lemma 4. Under the notation and assumptions of Theorems 1 and 2 and Definition 1

then
1

2
V (β)− I(β) = O

(
β−k

)
where in general k = min {2 + γ, 5/2} but if h′′′(0) = 0 then k = min {2 + γ, 3}.
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Proof. It has already been established that V (β) = 1/β2 for all distributions. Also,

for a Gaussian density, f(·), I(β) = 1/(2β2). Since gβ(·) approaches the density of

a standard Gaussian, φ(·), as β → ∞, then one expects that I(β) would approach

1/(2β2) too. Hence, a rigorous analysis of this convergence needs to be established.

Note that

I(β) = Varβ [h(X)]

=

∫
(h(x)− Eβ [h(X)])

2 f
β(x)

Z(β)
dx

=

∫ (
h

(
y√

β(−h′′(0))

)
− Egβ

[
h

(
y√

β(−h′′(0))

)])2

gβ(y)dy (64)

using the change of variable, X = Y√
β(−h′′(0))

. By Taylor expansion of h about the

mode point, 0, up to fourth order then

h

(
y√

β(−h′′(0))

)
= h(0)− y2

2β

+
y3h′′′(0)

6 (β(−h′′(0)))
3/2

+
y4h′′′′(ξ1(y))

24 (β(−h′′(0)))
2 (65)

where ξ1(·) is the truncation term for the Taylor expansion such that 0 < |ξ1(y)| <∣∣∣∣ y√
β(−h′′(0))

∣∣∣∣ for all y. Using the Taylor expansion form of h and the assumption of

bounded fourth derivatives∣∣∣∣∣Egβ
[
h

(
Y√

β(−h′′(0))

)
− h(0) +

Y 2

2β
− Y 3h′′′(0)

6 (β(−h′′(0)))
3/2

]∣∣∣∣∣
≤ Egβ

[∣∣∣∣∣ Y 4h′′′′(ξ1(Y ))

24 (β(−h′′(0)))
2

∣∣∣∣∣
]
≤ M

24 (β(−h′′(0)))
2Egβ

[
Y 4
]

= O
(

1

β2

)

where Egβ
[
Y 4
]
< ∞ due to the assumption on the existence of moments up to the

eighth moment. Thus,

Egβ

[
h

(
Y√

β(−h′′(0))

)]
= h(0)−

Egβ
[
Y 2
]

2β
+

Egβ
[
Y 3
]
h′′′(0)

6 (β(−h′′(0)))
3/2

+
Egβ

[
Y 4h′′′′(ξ1(Y ))

]
24 (β(−h′′(0)))

2 ,

and substituting this into (64), along with the Taylor expansion of h to the fourth
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order given in (65), gives

I(β) =

∫ (
h(0)− y2

2β
+

y3h′′′(0)

6 (β(−h′′(0)))
3/2

+
y4h′′′′(ξ1(y))

24 (β(−h′′(0)))
2

−

[
h(0) +

Egβ
[
Y 2
]
h′′(0)

2β(−h′′(0))
+

Egβ
[
Y 3
]
h′′′(0)

6 (β(−h′′(0)))
3/2

+
Egβ

[
Y 4h′′′′(ξ1(Y ))

]
24 (β(−h′′(0)))

2

])2

gβ(y)dy

=
1

4β2

∫ (
y2 − Egβ

[
Y 2
])2

gβ(y)dy

+
2h′′′(0)

24β5/2(−h′′(0))3/2

∫ (
y2 − Egβ

[
Y 2
]) (

y3 − Egβ
[
Y 3
])
gβ(y)dy

+O
(

1

β3

)
,

which is finite and well defined due to assumptions 2 and 3. Consequently, in general

I(β) =
1

4β2
Vargβ

(
Y 2
)

+O
(

1

β5/2

)
,

but in the case that h′′′(0) = 0, which indeed holds in the case that f is symmetric

about the mode point, then

I(β) =
1

2β2
Vargβ

(
Y 2
)

+O
(

1

β3

)
and so under the key assumption given in (25), then

I(β) =
1

2β2
+O

(
1

βk

)
(66)

where in general k = min {2 + γ, 5/2} but if h′′′(0) = 0 then k = min {2 + γ, 3}, and

so 1
2V (β)− I(β) = O

(
1
βk

)
.

�

Lemma 5. Under the notation and assumptions of Theorems 1 and 2 and Definition 1

then

1

4β
R(β) = O

(
β−k

)
where in general k = 5/2 but if h′′′(0) = 0 then k = 3.
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Proof. Recall that

1

4β
R(β) =

1

4β
Eβ
[
X2h′′(X)−Xh′(X)

]
=

1

4β
Egβ

[(
Y√

β(−h′′(0))

)2

h′′

(
Y√

β(−h′′(0))

)

− Y√
β(−h′′(0))

h′

(
Y√

β(−h′′(0))

)]
. (67)

Using Taylor expansion about the mode at 0 then

h′

(
y√

β(−h′′(0))

)
= h′(0) +

y√
β(−h′′(0))

h′′(0) +
y2

2β(−h′′(0))
h′′′(0)

+
y3

6β3/2(−h′′(0))3/2
h′′′′(ξ2(y)), (68)

where ξ2(·) is the truncation term for the Taylor expansion such that 0 < |ξ2(y)| <∣∣∣∣ y√
β(−h′′(0))

∣∣∣∣ for all y. Also,

h′′

(
y√

β(−h′′(0))

)
= h′′(0) +

y√
β(−h′′(0))

h′′′(0)

+
y2

2β3/2(−h′′(0))3/2
h′′′′(ξ3(y)) (69)

where ξ3(·) is the truncation term for the Taylor expansion such that 0 < |ξ3(y)| <∣∣∣∣ y√
β(−h′′(0))

∣∣∣∣ for all y. Hence,

y2

2β(−h′′(0))
h′′

(
y√

β(−h′′(0))

)
− y√

β(−h′′(0))
h′

(
y√

β(−h′′(0))

)

=
y3

2 (β(−h′′(0)))
3/2

h′′′(0) +
y4

(β(−h′′(0)))
2

[
1

2
h′′′′(ξ3(y))− 1

6
h′′′′(ξ2(y))

]
.

Substituting this in to the 1
4βR(β) term in (67)

1

4β
R(β) =

1

4β
Egβ

[
Y 3

2 (β(−h′′(0)))
3/2

h′′′(0)

+
Y 4

(β(−h′′(0)))
2

[
1

2
h′′′′(ξ3(Y ))− 1

6
h′′′′(ξ2(Y ))

] ]

=
h′′′(0)

8β5/2(−h′′(0))3/2
Egβ

[
Y 3
]

+
1

4β3(−h′′(0))2
Egβ

[
Y 4

[
1

2
h′′′′(ξ3(Y ))− 1

6
h′′′′(ξ2(Y ))

]]
,
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where

Egβ
[
Y 4

[
1

2
h′′′′(ξ3(Y ))− 1

6
h′′′′(ξ2(Y ))

]]
<∞

due to the assumptions of boundedness of the fourth derivatives of log f(X) and the

existence of moments. Hence, in general

1

4β
R(β) = O

(
1

β5/2

)
but in the case that h′′′(·) = 0, which is the case when f(·) is symmetric about the

mode point 0, then
1

4β
R(β) = O

(
1

β3

)
.

Consequently,
1

4β
R(β) = O

(
1

βk

)
(70)

where in general k = 5/2 but in the case that h′′′(0) = 0 then k = 3. �
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