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Abstract

A large proportion of blood-borne viruses (BBV) are transmitted via inject-

ing drug use. Understanding patterns of risk and monitoring trends over time

in people who inject drugs (PWID) is therefore a crucial part of developing

public health policy.

Risks of infection with hepatitis C and B (HCV, HBV) and HIV in PWID

are investigated using serial cross-sectional surveillance data, in particular

via force of infection (FOI) models. Standard models are extended to in-

clude a wealth of covariate data. Individual variability is considered via bi-

variate shared frailty models and correlations between infections. Gamma,

inverse Gaussian and time-varying frailty models are fitted to investigate

how variability in risk evolves throughout injecting career. Finally, models

are extended to the trivariate case and different forms of component frailty

models are proposed.

Recent initiates were found to be at high risk of infection, in particu-

lar in London and the North West. Subsequently the FOI is broadly con-

stant, and similar across different regions. Frailty models indicate that there

is substantial individual variability in risk, although this declines over the

course of injecting career. Females have higher overall risks of HCV and

HBV, but are less heterogeneous than males. Including covariate data on

demographics and a number of risk factors only resulted in modest reduc-

tions in frailty variance. Correlations between HCV-HBV and HBV-HIV

associations were stronger than for HCV-HIV; trivariate models including

additional pairwise components for HCV-HBV and HBV-HIV provided an

improvement in model fit compared to a shared frailty model.

Many of the results in this thesis point towards greater variation in risk

at initiation, potentially due to the varied circumstances in which individuals

start injecting, followed by more comparable risks in those with established

injecting behaviour. The relative importance of injecting and sexual risk

may explain patterns of risk and correlation in the three infections.
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Chapter 1

Introduction

1.1 Blood-borne viruses and the burden of

disease

The World Health Organization (WHO) estimates that in 2015 around 71

million people were living with chronic hepatitis C virus (HCV) infection

worldwide, and 257 million people with chronic hepatitis B virus (HBV)

infection (World Health Organization, 2017). Hepatitis infection is a ma-

jor cause of chronic liver disease, with an estimated 720,000 deaths due

to hepatitis-related cirrhosis and 470,000 deaths from liver cancer (hepa-

tocellular carcinoma) in 2015 (World Health Organization, 2017). Human

immunodeficiency virus (HIV) remains a persistent problem, with 36.7 mil-

lion people worldwide estimated to be living with HIV in 2015 (UNAIDS,

2016). Nearly half (17 million) are on antiretroviral therapy, which reduces

the risk of developing acquired immunodeficiency syndrome (AIDS) and in-

fectiousness to others. Nevertheless, there were an estimated 2.1 million new

infections and 1.1 million AIDS-related deaths globally in 2015 (UNAIDS,

2016).

Blood-borne viruses (BBV) are a major world challenge, and ambitious

targets have been set by the WHO for reductions in incidence and preva-

lence of HCV, HBV and HIV and associated morbidity by 2030 (United

Nations, 2015; World Health Organization, 2016). Much of the epidemic is

focussed in Asian and African countries (The Polaris Observatory Collab-

orators, 2017, 2018), but remain persistent problems in Europe, the USA,

17



Australia and other higher-income countries, where they predominantly (but

not exclusively) affect specific high-risk groups.

People who inject drugs (PWID) are a major risk group in higher-income

countries. Injecting drug use is associated with various health and social

problems such as crime (Stewart et al., 2000; Reuter and Stevens, 2008),

drug-related overdoses and mortality (Bargagli et al., 2006; Hickman et al.,

2009), bacterial infection and infection from blood-borne viruses, in partic-

ular HCV (The Health Protection Agency, 2012b).

In England, 203,000 individuals were estimated to have antibodies to

HCV in 2005 (Harris et al., 2012b), with over 85% in those that currently

or had previously injected drugs (44% in current and 43% in ex-injectors).

Around 76% of those infected progress to chronic infection (Micallef et al.,

2006), many of whom will go on to develop serious complications of the liver.

A back-calculation approach by Sweeting et al. (2007) indicated that over

10,000 individuals would be living with cirrhosis by 2015, and the burden

of HCV-related liver disease is likely to increase further unless substantial

numbers can be successfully treated (Harris et al., 2014).

HBV prevalence in PWID is also moderately high in England, with

around 16% having past or current infection (The Health Protection Agency,

2012b). National exercises to estimate HBV prevalence have not been car-

ried out in England, but WHO-commissioned research estimated 441,000

individuals living with current HBV infection in 2015 (The Polaris Obser-

vatory Collaborators, 2018), indicating that injecting drug use is a smaller

component than it is for HCV. A substantial portion of positive tests for

acute HBV occur in Asian, black and other/mixed ethnic groups (compared

to white/white British), and of those with a known risk factor, injecting drug

use is 7.3% (although this may be under-reported) (Public Health England,

2017).

HIV prevalence in PWID is relatively low in England, at around 1.2%

(The Health Protection Agency, 2012b,a). There were estimated to be

101,200 people living with HIV in the UK in 2015 (Public Health England,

2016). Nearly half (47,000) were estimated to be among gay, bisexual and

other men who have sex with men, and only 2,500 PWID. However, HIV-

infected PWID have higher mortality and lower proportions of timely linkage

to care than other groups, and rapidly spreading outbreaks of HIV still occur
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in this population (Public Health England, 2016). HIV is therefore not an

insignificant concern in PWID.

In England, evidence suggests that the risk of HCV in PWID was reduced

throughout the early 1990s by successful harm reduction programmes (Hope

et al., 2001), but there is the suggestion that incidence began to increase

again from 2000 onwards (Sweeting et al., 2009b), with a similar pattern

for HIV (Hope et al., 2005, 2014). Many of those starting to inject drugs

in recent years will be too young to recall the beginning of the epidemic of

HIV and blood-borne viruses in the late 1980s and may therefore be less

aware of, or concerned with, the consequences of infection. Such a view

may be partly due to the dramatic improvement in HIV treatments since

the advent of combined antiretroviral therapy (WHO, 2012c), and there is

the worrying view that HCV infection may be seen as “inevitable” by many

PWID (Rhodes et al., 2004).

New treatments offer the potential to markedly reduce HCV prevalence,

both by reducing the number of people currently living with chronic in-

fection and reducing transmission, known as treatment as prevention. The

potential impact of treatment as prevention has been investigated in math-

ematical models and predicted to dramatically reduce prevalence over 10 to

15-year time-spans, even at modest treatment levels (Martin et al., 2013).

In contrast to high endemic levels of HCV in PWID, HBV appears to be

well-controlled through vaccination (Public Health England et al., 2014),

and HIV transmission is hindered by effective treatment and at a low en-

demic level. Nevertheless, these infections persist in the PWID population,

and show no signs of declining over time. Understanding the risks of blood-

borne infection in PWID and the crucial role that new treatments will play

in the eventual elimination of HCV will require a thorough understanding of

available surveillance data.

1.2 Epidemiology and biology

1.2.1 Hepatitis C virus (HCV)

HCV is most commonly transmitted through exposure to infectious blood,

which can occur through receipt of contaminated blood transfusions, blood
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products and organ transplants; injections given with contaminated syringes

and needle-stick injuries in health-care settings; injection drug use; and being

born to a hepatitis C-infected mother (WHO, 2012b). It is thought that

transmission via sexual contact is rare (Balogun et al., 2003), although there

is increasing concern that certain high-risk sexual practices are leading to

transmission in men who have sex with men, in particular those infected

with HIV (van de Laar et al., 2007). In the UK, most HCV infection occurs

via injecting drug use (De Angelis et al., 2009). Since the introduction of

screening for blood donations in 1991, very few infections occur due to blood

transfusions (McClelland, 2013) and a substantial proportion of infection in

those that have never injected drugs is likely to have been imported from

high-prevalence countries (Harris et al., 2012b).

Six known HCV genotypes exist (with various subtypes), although the

majority of positive tests in England are genotype 1 (47%) or 3 (44%) (Public

Health England, 2015). Outcomes are generally similar for the two types,

although genotype 1 infections respond somewhat differently to treatment

(European Association for the Study of the Liver, 2015), and for practical

purposes the infected population is often dichotomised into genotype 1 and

“non-1” types.

Following infection with HCV (and other blood-borne viruses), the virus

will begin to reproduce and shortly afterwards the body will produce anti-

bodies in response. The strength of the response is initially weak, but in-

creases over time in most individuals and plateaus at around 6 months (see

section 1.2.4). Around 76% of those infected will develop chronic infection

within around 6 months (Micallef et al., 2006) and will remain permanently

infected, and infectious, unless the virus is successfully cleared by treatment.

Chronic infection results in progressive damage to the liver, which in

some individuals will lead to scarring of the liver (cirrhosis). Cirrhosis has

two stages, defined as compensated, in which there is scarring but while main-

taining function; and decompensated cirrhosis, also known as end-stage liver

disease (ESLD), when liver function is compromised. Individuals with cir-

rhosis are also at risk of developing hepatocellular carcinoma (HCC) (Mauss

et al., 2018). Upon developing either of these diseases, mortality is ex-

tremely high, with annual rates of up to 20% and 60% for ESLD and HCC

respectively (Hutchinson et al., 2005). At this stage, the only option is liver
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transplantation, which is expensive, restricted by a limited supply of donors,

and not without risks (Thuluvath et al., 2007).

Interferon-based treatments became available around 20 years ago, but

have had limited success: durations are of 24-48 weeks, individuals experi-

ence unpleasant side-effects and success rates are low (Thomson et al., 2008).

In particular, as individuals age and develop progressive fibrosis of the liver

(the formation of excess fibrous tissue that precedes cirrhosis and severe dis-

ease) the probability of successfully clearing the virus decreases to as low

as 37% in those with genotype non-1 infection, and lower still in those with

genotype 1 (Thomson et al., 2008). This means that previous treatment

has had virtually no impact on HCV-related morbidity, with low uptake and

little possibility of disease prevention in those that need it most urgently

(Harris et al., 2014). New treatments became available from around 2014

with markedly improved efficacy and success rates in excess of 90% in all

groups, including those with cirrhosis (Afdhal et al., 2014; National Insti-

tute for Health and Care Excellence, 2015). It remains to be seen whether

clearance of the virus will result in long-term improvements in liver function

and life expectancy once substantial damage has already occurred, although

studies suggest that risk of further disease progression is greatly reduced

(Singal et al., 2010).

1.2.2 Hepatitis B virus (HBV)

HBV infection can be acquired through similar routes as HCV, but can also

be transmitted sexually and there are risks of vertical transmission from

mother to child. HBV infection carries a lower risk of severe disease, as a high

proportion will clear infection naturally (WHO, 2012a). Chronic infection

causes progressive disease of the liver and cirrhosis in much the same way as

HCV, eventually leading to ESLD and HCC in some individuals (El-Serag,

2012).

HBV has been a major problem in some parts of the world, with much of

the disease burden in children, who have a higher risk of developing chronic

infection and disease progression. Fortunately, substantial progress has been

made in preventing HBV infection through vaccination programmes (Shep-

ard et al., 2006). In the UK vaccination is only offered to specific risk groups,
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which include PWID. A high proportion of PWID in the UK are now vacci-

nated against infection (Hope et al., 2007).

1.2.3 Human immunodeficiency virus (HIV)

The first reported cases of HIV occurred in the 1980s and quickly spread,

rising to an estimated peak of 3.7 million new infections in 1997 (Fettig et al.,

2016). HIV can be transmitted sexually and through blood-to-blood con-

tact, although HIV is less infectious than HCV via blood (de Vos et al., 2012;

Baggaley et al., 2006). Infection causes a fall in CD4 cell count and corre-

sponding immunodeficiency, resulting in the potential to develop a number

of conditions that would be rare in the uninfected population. Such condi-

tions are classified as acquired immunodeficiency syndrome (AIDS), and are

generally associated with high mortality rates (The Antiretroviral Therapy

Cohort Collaboration, 2009).

In the UK, the HIV epidemic is focussed in particular risk groups, in-

cluding men who have sex with men, PWID, and those born in sub-Saharan

Africa (Public Health England, 2016). A large proportion of infected indi-

viduals are now on antiretroviral drugs, especially in industrialised countries

(WHO, 2012c), which greatly reduces infectiousness and the risk of AIDS.

Those on treatment are now estimated to have life expectancy comparable to

the general population (The Antiretroviral Therapy Cohort Collaboration,

2017).

1.2.4 Serological testing

Sero-epidemiology refers to the practice of testing for antibodies to deter-

mine current or past infection with a virus. Such tests are not always perfect:

the test may have imperfect sensitivity, whereby those with antibodies test

negative. The opposite of this is imperfect specificity, where those without

antibodies test positive (Altman and Bland, 1994). In general, test status is

determined by judging whether some continuous quantity is above a certain

threshold, which will be developed to balance sensitivity and specificity in

some way; the value selected for the threshold will depend on the expected

prevalence in the population of interest, and the potential consequences asso-

ciated with the two types of error, called false positives and false negatives.
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An alternative approach, rather than dichotomising infection status, is to

analyse the antibody levels directly in order to answer epidemiological ques-

tions (Bollaerts et al., 2012).

In addition to tests for antibodies, active infection may also be deter-

mined by directly testing for the presence and quantity of the virus in the

blood, usually via Polymerase Chain Reaction (PCR) testing for RNA, the

genetic material of the virus. Both antibody and RNA tests are available

for HCV, although the latter is only recently becoming more commonplace

in surveillance (Public Health England, 2018a).

Testing for HBV is more complicated, with three types of test. Hep-

atitis B surface antigen tests are used to detect the presence of the virus

in the blood; hepatitis B surface antibody tests indicate whether the per-

son is protected against HBV, either through past infection or vaccination;

and hepatitis B core antibody tests indicate current or past infection, but

cannot determine whether this confers protection against HBV. HIV testing

also consists of antibody and antigen tests, often using an enzyme-linked

immunosorbent assay (ELISA) to detect both HIV antibodies and antigens

in the blood. Viral load tests are an integral part of monitoring infected

patients in clinical practice once infection is confirmed.

For some infections, it is possible to assess whether an infection occurred

recently via the stage of the body’s response to the virus. For instance, in

the first few weeks, individuals may test positive for the presence of the virus

(RNA) but still be antibody negative, as the body has not yet mounted a

response. Further, the strength of antibody binding, known as avidity may

be used as a marker: this is weak shortly after infection occurs and increases

over time. However, the process is imperfect: for HCV there is considerable

uncertainty regarding the length of the so-called “window” period between

initial infection and the development of strongly binding antibodies (Klima-

shevskaya et al., 2007; Gaudy-Graffin et al., 2010). Sample sizes are also an

issue, as very large numbers are required to observe a sufficient number of

individuals with markers of recent infection. The period in which an individ-

ual is HCV RNA positive and antibody negative is thought to last for less

than 2 months; even with a rate of infection as high as 12 per 100 person

years this would imply only around 20 such individuals would be expected

to be observed in a sample of 1000 antibody negative individuals, and the
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confidence intervals for resulting calculations tend to be wide (Public Health

England, 2018a).

A number of approaches are used to determine recent HIV infection in

diagnosis data, including “de-tuned” tests that cannot detect antibodies in

samples that have previously been confirmed as antibody positive, propor-

tions of HIV-specific immunoglobulin directed against HIV antigens, and

avidity assays (Murphy and Parry, 2008; Rosenberg et al., 2016). An algo-

rithm to determine recent infection is routinely used in diagnostic testing

by Public Health England (Public Health England, 2016); as test-seeking

often follows an episode of exposure risk, this is more pertinent to testing

behaviour than answering epidemiological questions about incidence of in-

fection.

1.2.5 Opiate and injecting drug use

The use of opiates administered via injection into the blood, and in partic-

ular heroin, has been around since the beginning of the last century when it

was first marketed for medicinal use. It was still relatively uncommon in the

1960s but increased markedly in the 1980s, when the epidemic is reported

to have begun (De Angelis et al., 2004; BMA Board of Science, 2013, Chap-

ter 5). The population is difficult to enumerate, but there is evidence that

injecting drug use in England has fallen in the last decade to below 100,000

people injecting in the last year; however, a far larger number are previous

injectors still at risk, or otherwise still recovering from opiate dependency

(Hay et al., 2012).

The population considered here are people who currently inject drugs.

This population is somewhat difficult to define as the level of usage can

vary, with some people only ever occasionally injecting, and longer-term

users cycling between multiple periods of abstinence and relapse (Xia et al.,

2015). Further, although opiates are the most commonly injected drugs, the

group of people who inject drugs may include those injecting crack cocaine,

amphetamines and other drugs. These groups may have very different risk

patterns in terms of injecting frequency and risk behaviour. Nevertheless, the

bulk of injecting drug use is opiate-based, in particular heroin, the addictive

properties of which mean that most injectors will be dependent and injecting
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on a more or less regular basis. Typically, a “current” injector is taken to

mean someone that has injected in the last year, with those that have ceased

to inject for one year or more being classed as “ex-injectors” (De Angelis

et al., 2009).

Those beginning to inject drugs are often, unsurprisingly, in difficult per-

sonal circumstances; challenges in monitoring and treating this population

are often described as being due to “chaotic” lifestyles (Mravč́ık et al., 2013).

Typically the age at first use is in the early twenties (Kimber et al., 2010),

and the population is characterised by high rates of homelessness and im-

prisonment (Cullen et al., 2015). Nevertheless, detailed studies of PWID

indicate that a large proportion of this population is in contact with some

kind of treatment or harm reduction service (i.e., needle exchange) (Hick-

man et al., 2007), which is promising when considering whether survey data

obtained via these services are representative.

Infection with blood-borne viruses will occur due to sharing of needles,

syringes, or other injecting paraphernalia that has been contaminated with

infected blood. It has been widely reported that risk of infection is far

higher in those that have started injecting recently (Crofts et al., 1997; Sut-

ton et al., 2006, 2008). One reason for this is that new initiates are likely to

be assisted by someone more experienced and not have their own injecting

equipment. Under these circumstances, a significant proportion of initiates

may become infected very early on, potentially within a few weeks of ini-

tiation. Further, there may be a period of stabilisation before the initiate

begins to use needle and syringe exchange services. Once injecting behaviour

is established, PWID may actually be at relatively low risk of infection, pro-

vided their circumstances remain stable. However, intermittent episodes of

upheaval are likely, due to interruptions or changes in drug supply, changing

peer groups, periods of homelessness or imprisonment, or any other factor

that might cause a change in risk behaviour. Although the timings are not

clear, homelessness and imprisonment are strongly associated with the risk

of blood-borne infection (Cullen et al., 2015). Patterns of injecting use and

mixing may also have a seasonal component, although this would be difficult

to assess in practice and no evidence on this is available.

Harm reduction strategies have been in place in England for over two

decades (Hope et al., 2001), consisting of opiate substitution therapy and
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needle and syringe programmes. The former reduces drug dependence and

the frequency of injecting, and the latter aims to reduce unsafe injecting

practices. These measures have been shown to be effective in reducing risks

of HCV (Turner et al., 2011), although mathematical modelling suggests

that other interventions are required to achieve substantial reductions in

prevalence, such as HCV treatment (Vickerman et al., 2012).

1.3 Surveillance systems for monitoring blood-

borne viruses

1.3.1 Study designs

Approaches for investigating the incidence or prevalence of infection (or any

condition of interest) in a population fall under the three main observational

study designs: cohort, case-control and cross-sectional studies. Case-control

studies are useful for determining risk factors, but do not provide any infor-

mation on absolute prevalence or incidence of infection, and are not consid-

ered subsequently.

Cohort studies recruit a group of people and follow them up over time,

allowing direct observation of the rate at which individuals acquire infection

or other event of interest. For “hard” outcomes such as mortality, or condi-

tions that otherwise have a known onset date, this may be known precisely;

but incident infection may only be known to have occurred within some time

interval between repeated tests. Although this should be accounted for in

the analysis of such data, it is not a major concern provided the frequency of

testing relative to the typical exposure duration is sufficient. For example,

many PWID inject for 10 years or more before permanent cessation (Sweet-

ing et al., 2009a) and serological testing for blood-borne viruses every 6-12

months would provide sufficient information to understand broad patterns

of incidence throughout injecting career.

Although cohort studies have the advantage of being able to directly es-

timate incidence, they are time-consuming and costly to conduct. Further,

those agreeing to participate in such studies may not be typical of the pop-

ulation of interest. This may be particularly true of PWID, who are at risk
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of homelessness, imprisonment and other instabilities, and are commonly

described as being “hard to reach” by treatment or other services (Alliance -

CAHR, 2013). PWID who choose to regularly participate in research studies

for extended periods may therefore be somewhat different to the norm.

Cross-sectional studies sample from the population of interest and test

infection status, providing a snapshot of prevalence at a particular time

point. This type of study is often carried out as part of routine surveillance

by public health bodies. In many cases the samples are anonymised, and

may have little in the way of additional data; frequently, only the age of the

individual is considered. Such data are known as age-specific current status

data (Keiding, 1991). Alternatively, other information may be collected, ei-

ther based on patient records, or via a questionnaire. Such data will often

still be anonymous, which makes obtaining ethical approval for conducting

research easier. For example, legislation allows the anonymous testing of

residual sera without consent for specific public health purposes. As with

cohort studies, there are a number of potential issues to consider when mak-

ing inferences from such data, as they may be subject to various forms of

selection bias, whereby the population sampled is systematically different to

the target population.

1.3.2 Studies of people who inject drugs

A number of long-term cohort studies have been set up to study PWID.

The Amsterdam Cohort Study began in 1985, with the aim of investigating

risk factors for blood-borne and sexually transmitted infections, and effects

of interventions. Participants complete a standardised questionnaire every

4-6 months when visiting the Health Service of Amsterdam (van den Berg

et al., 2007). The Edinburgh Addiction Cohort studies patients sampled

from a large primary care facility with a history of injecting drug use, and

examines behaviour and outcomes through a combination of interview-based

questionnaire data and primary care records (Kimber et al., 2010). Again,

there is a strong interest in investigating risk patterns for infections, but also

on behavioural aspects of injecting drug use.

Public Health England (and its predecessors) has conducted monitor-

ing programmes in different risk groups under the umbrella of The Un-
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linked Anonymous Monitoring programme (UAM) (Kessel and Watts, 2001).

This includes monitoring leftover samples from those attending genitouri-

nary medicine (GUM) clinics, pregnant women (via residue samples from

newborn infants), and surveys of PWID attending drug treatment centres

or needle exchange services. The latter is an annual cross-sectional sero-

prevalence survey of PWID in England, Wales and Northern Ireland that

began in 1990, and is the principal data source used in this thesis (Public

Health England, 2014). Briefly, PWID attending treatment and needle ex-

change surveys are invited to participate in the study. Those that consent

complete a questionnaire on risk behaviour and demographics, and provide a

serological sample that is tested for HCV, HBV and HIV (see section 1.2.4).

Data from the study have been used to monitor prevalence of blood-borne

viruses and trends in risk behaviour, and investigate the epidemiology of

blood-borne viruses in PWID. The study provides information on prevalence

according to the duration of injecting and the correlation between different

infections (see section 1.4), which are key themes of this thesis. A more de-

tailed overview of the study and previous research applications is provided

in chapter 2.

The Needle Exchange Surveillance Initiative (NESI) in Scotland is an-

other PWID survey programme (Health Protection Scotland, 2017). Similar

to the UAM survey, the aim of NESI is to measure and monitor the preva-

lence of BBVs and injecting risk behaviours among PWID. The initiative

was funded by the Scottish Government as part of the Hepatitis C Action

Plan, which states that efforts to prevent HCV in Scotland must focus on

preventing transmission of the virus among PWID (NHS Scotland, 2005).

As with the UAM, the purpose of NESI is to provide information to evalu-

ate and better target interventions aimed at reducing the spread of infection

among this population group (Allen et al., 2010). At present, research using

NESI data is particularly focussed on monitoring incidence and the potential

impact of new HCV treatments on transmission (Palmateer et al., 2014).

Numerous analyses of cross-sectional data in PWID have been conducted.

Prior to NESI, a cross-sectional study of PWID in Glasgow was conducted

from 1990-1996, finding high HCV prevalence that increased with injecting

duration. Age, age started injecting and calendar time were considered,

although no force of infection analysis was conducted (Taylor et al., 2000).
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Del Fava et al. (2011b) examined cross-sectional data on HCV and HIV

infection in PWID in Italy and Spain, noting a strong correlation between

the prevalence of infections (odds ratios of 2.56 and 2.42 for Italy and Spain

respectively). They used various approaches to jointly model prevalence,

including the bivariate Dale model, generalised linear mixed models and

shared frailty models. Del Fava et al. (2011a) also examined aggregated

cross-sectional data in 20 regions in Italy, finding an association between

HCV and HIV prevalence and marked variation between regions. Over-

dispersion and other issues are discussed in more detail in the PhD thesis of

Del Fava (2012).

1.3.3 Other surveillance systems and studies of blood-

borne virues

A number of studies have used opportunistic testing to estimate prevalence of

HCV and other blood-borne viruses; for instance, national HCV prevalence

in Australia was estimated using opportunistic testing of residual sera from

pathology laboratories (Amin et al., 2004) and patterns of HCV prevalence in

the UK assessed using antenatal screening data (Balogun et al., 2000). HCV

prevalence has also been examined in blood donors (The Health Protection

Agency, 2009), and those attending GUM clinics (Balogun et al., 2003) and

emergency departments (Orkin et al., 2015).

Other studies have used specific sampling frames to assess HCV preva-

lence, such as The National Health and Nutrition Examination Survey

(NHANES) in the USA (Denniston et al., 2014). The survey collects data on

the health of the non-institutionalized population using a multistage proba-

bility sampling design from approximately 5000 persons annually. By defini-

tion, those that are homeless or incarcerated are excluded from the study. A

cross-sectional study in France was used to estimate prevalence of HCV and

HBV. Again, a complex, stratified, multistage sampling design was required,

the sampling frame covered 80% of the population (beneficiaries of the na-

tional health insurance system) and response rates were low (11%) (Meffre

et al., 2010).

Monitoring HCV in the general population is problematic, due to major

difficulties in obtaining an unbiased sampling frame. In particular, PWID
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(current or ex) will tend to be under- or over-represented in surveys: they

may be less frequently observed in surveys of the general population due

to an increased likelihood to be homeless, in temporary accommodation or

incarcerated. Conversely they are more likely to use a variety of health

services; for example, around 10% of those in the UAM survey of PWID

report using a GUM clinic in the past year, and over one quarter using an

accident and emergency department. This means that opportunistic testing

will, in many cases, result in higher observed prevalence than that of the

general population. In England, only around one in 50 adults have ever

injected drugs, but the probability of HCV infection in those that have is

over 200 times higher than those that have not (De Angelis et al., 2009). Even

a small degree of under- or over-sampling of those that have ever injected

drugs will therefore have a major impact on observed prevalence.

In England, the lack of a valid sampling frame has led to the development

of a multi-parameter evidence synthesis (MPES) approach, which combines

multiple sources of data on risk group sizes and risk group-specific prevalence

studies (Sweeting et al., 2008; De Angelis et al., 2014). The appeal of this

approach is that specific biases can be accounted for, and the consistency

of evidence assessed. MPES estimates are the basis of official prevalence

figures for HCV and HIV in England. In Scotland, which has better link-

age between surveillance systems (for instance, between HCV diagnoses and

other sources), a more detailed analysis of diagnosed and undiagnosed preva-

lence was undertaken in an MPES framework (Prevost et al., 2015).

Further understanding of the HCV epidemic may be inferred from infor-

mation on the number of people developing severe HCV-related liver disease,

namely HCC and ESLD, or HCV-related mortality. Such data are available

from Hospital Episode Statistics (HES) data, and the ONS mortality data.

Severe liver-related disease is almost certain to result in hospital attendance

and is reliably recorded; however, the fact that it is HCV-related may not

be recorded, and the potential for under-reporting must be borne in mind

(Mann et al., 2009). Examining trends in disease endpoints provides infor-

mation on those with earlier disease stages: compensated cirrhosis is the

precursor to severe liver disease, and will roughly follow the same pattern,

one step removed. In fact, if rates of disease progression are known (or can be

assumed) then earlier disease stages, and the whole course of the historic epi-
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demic, can be reconstructed via the back-calculation approach (Brookmeyer

and Gail, 1988). This approach can be used to make short-term predictions,

and has been much used for HCV to estimate future disease burden and

potential impact of treatment (Sweeting et al., 2007; Deuffic-Burban et al.,

2012; Harris et al., 2014); and for HIV (Sweeting et al., 2005; Birrell et al.,

2013; Brizzi, 2018). However, the approach has limited scope for estimating

incidence and overall prevalence, due to a lack of information on recent inci-

dence of infection and the need for accurate population-level rates of disease

progression, which are difficult to determine (Sweeting et al., 2006).

1.4 Analysis of age-specific prevalence data

This thesis is primarily concerned with the analysis of age-specific prevalence

data obtained from cross-sectional seroprevalence surveys, also known as

current status data. With “age” interpreted more generally as time at risk,

such data provide information on the rate at which prevalence increases with

time at risk and hence the force of infection, the rate at which uninfected

individuals acquire infection. This process was first modelled by Muench

(1934) and described as a “catalytic model”. The basis of the model is given

by

S(a) = exp

[
−
∫ a

0

λ(u) du

]
,

where S(a) is the proportion of uninfected individuals and λ(a) the force of

infection at age a.

A variety of choices are available for defining the functional form of λ(a):

in its simplest case, this may be constant. Parametric models may be de-

fined based on subject-specific knowledge, incorporating known epidemio-

logical characteristics of the infection. For instance, the force of infection

may decrease, increase, or accelerate with age, suggesting the use of Weibull

or Gompertz distributions, which are widely used in epidemiology and hu-

man survival. Childhood diseases may rise to a peak and fall in adulthood:

Farrington (1990) proposed the use of an “exponentially damped” function

to capture such patterns.

Piecewise constant models specify constant hazards within a set of age

intervals, which may be defined according to known epidemiological charac-
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teristics such as infant, school age, adulthood, etc. (Farrington et al., 2001).

Alternatively, a large number of small intervals (such as for each year of age)

allows for arbitrary age patterns, although there may be insufficient data to

obtain precise estimates of the force of infection within each interval.

This has led to the development of different approaches for providing flex-

ible shapes with a comparatively small number of parameters, or providing

some smooth function. Keiding (1991) discussed the use of kernel smooth-

ing of the estimated incidence, and later the use of spline-based smoothing

(Keiding et al., 1996). A similar, local polynomial approach was employed

by Shkedy et al. (2013) to analyse datasets on rubella, mumps and hepatitis

A. Marschner (1996) used piecewise constant incidence models along with

a moving average as part of an expectation-maximisation (EM) algorithm.

Parametric models using fractional polynomials have also been considered

(Shkedy et al., 2006), as have penalised splines and generalised linear mixed

models (Nagelkerke et al., 1999; Namata et al., 2007).

Flexible, parsimonious approaches are particularly useful when the age-

specific pattern is of particular interest, may have an arbitrary shape, and

estimation is restricted by comparatively sparse data. Frequently of interest

in the study of infectious diseases are contact patterns, in terms of who infects

who (Farrington et al., 2001). Detailed examination of age-specific patterns

of infection may reveal features of interest: for instance, a secondary peak in

infections in parent-age adults may suggest transmission from their school-

age children. Such an interpretation was made by Shkedy et al. (2013) with

regard to data on mumps, although resting on assumptions about mixing

patterns.

1.4.1 Models for age and calendar time

A key difficulty with the analysis of cross-sectional data from a single time

point is that the effects of calendar time are completely confounded with

age, and time homogeneity must be assumed. For a great many infections

this is implausible due to improvements in hygiene and awareness, a fact

pointed out by a number of authors (Keiding, 1991; Nagelkerke et al., 1999),

but often not accounted for in practice. An alternative is to estimate the

time-specific force of infection under an assumption of age-homogeneity, as
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argued for by Schenzle et al. (1979) in their analysis of hepatitis A in different

European countries.

It is preferable to consider that the force of infection may vary by both

age and time. Ades and Nokes (1993) proposed an extension to the standard

model that may be used where data from multiple serological surveys at

different points in time are available, which is the case with the dataset used

in this thesis.

Ades and Nokes (1993) treated the effects of age and time as indepen-

dent (and combining additively or multiplicatively) and only considered more

complex functions in terms of testing for the presence of potential age-time

interactions in piecewise constant models to verify the adequacy of this as-

sumption. An alternative to the age-time formulation is to specify the model

in terms of cohorts (birth years, or year first injected for PWID) plus an age

or time dimension; a third effect would be confounded with the other two and

not identifiable. Nagelkerke et al. (1999) considered age and cohort effects,

which were introduced as covariates, rather than age and calendar time. In

any case, interactions between age and time (or cohort effect) can only be

estimated within the time frame of serial data collection; prior to this age

and time effects are confounded.

Age-time models bring (literally) another dimension to the problem of

estimating an underlying process for the force of infection from noisy data

with inherently low informational content. Unless age and time effects com-

bine multiplicatively (or additively), specification of two-dimensional para-

metric forms may be problematic. Smoothing in two dimensions is also not

straightforward. One approach of potential use is the highly flexible class of

generalised additive models and “thin plate” splines (Hastie and Tibshirani,

1986; Wood, 2003). Such models were used to estimate the underlying in-

cidence rate of HIV in UK men who have sex with men (Brizzi, 2018) and

could also be applied to current status data such as those used in this thesis.

1.4.2 Mortality and relative inclusion in sample

The effect of mortality in the analysis of current status data can largely be

ignored if the focus is on the average age-specific force of infection, or inves-

tigation is of an infectious agent that has no, or little, effect on mortality
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and mortality is low until advanced age (Farrington et al., 2001). However,

difficulties can arise if those infected are subject to a higher mortality rate,

and therefore less likely to be observed in the sample, for instance, in the

pre-treatment era of HIV. Differential mortality can be considered more gen-

erally in terms of the relative inclusion rate (RIR), which was considered in

the context of HIV-infected women in ante/neonatal surveys by Ades and

Medley (1994). Due to the sampling frame, the RIR is relevant here in

terms of the relative fertility of those with and without HIV infection. Not

all parameters are fully identifiable from the data; age-specific patterns were

identified (via serial cross-sectional surveys, as in Ades and Nokes (1993))

but overall incidence could only be estimated to within a constant of pro-

portionality. Alternatively, information on infection-specific mortality can

be obtained from external sources and used within the analysis, as in the

study by Keiding et al. (1989) on incidence of diabetes. Marschner (1997)

discussed the potential for identifying patterns of age- and time-specific force

of infection and RIR from cross-sectional data, concluding that an external

data source would be preferable, or exploration of the impact of different

values for the RIR in sensitivity analyses.

It is not clear whether PWID infected with blood-borne viruses would be

more or less likely to take part in surveys, and if so, whether there might be

relative differences in the RIR according to injecting duration. HCV, HBV

and HIV can all lead to early mortality, although generally at low levels for

HBV and HIV in the combined antiretroviral treatment era. Mortality due

to HCV is a potential issue, although disease progression at younger ages

is generally slow (Sweeting et al., 2006) and unlikely to have a substantial

impact on those injecting for less than 20 years, which form the majority of

the UAM sample. Nevertheless, this possibility must be borne in mind when

considering estimates of the force of infection in those injecting for longer

periods.

1.4.3 Contact matrices: who infects whom

The force of infection as described so far represents an average age-specific

rate. A key parameter of interest for planning public health interventions

such as vaccination is R0, the expected number of infections produced by
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the introduction of an “average” infected individual in a population of sus-

ceptible individuals (Farrington et al., 2001). If R0 is less than 1 (or can

be reduced to below 1 via vaccination), the infection will naturally die out

within the population, otherwise the infection will remain endemic.

Central to this question are patterns of infectious contact between indi-

viduals of different ages (or more generally, between groups). This is com-

monly defined in terms of a contact matrix specifying the rate of contact

between individuals of different age classes; again, these may reflect societal

structures of pre-school, school age, adult and so on. Unconstrained, the

contact matrix will generally have more parameters than the available de-

grees of freedom and require reductions in the number of parameters: for

instance, different within-group rates but the same rate of contact between

all groups of different ages. Different assumptions about the structure of

the contact matrix may lead to markedly different estimates of R0, with no

difference in model fit (Farrington et al., 2001).

An alternative to estimating rates of contact from the data under some

assumed structure is to use an external source of information on mixing

patterns and relative intensities. The POLYMOD project, for instance, was

a large-scale study on the frequency of day-to-day contacts between different

ages across several European countries, with the explicit aim of informing

mathematical modelling (Mossong et al., 2008).

In terms of PWID and the sharing of injecting equipment that results

in effective contact, mathematical transmission models have generally been

developed on the basis of homogeneous mixing or an assumed mixing pattern

(see, for instance, de Vos et al. (2012) and Fu et al. (2016)). Rolls et al. (2012)

based mixing patterns on empirical evidence from a social study of PWID,

although, as ever, this population is difficult to study and recall of injecting

partners is generally poor (Brewer and Garrett, 2001). These considerations

are therefore set aside in this thesis, and the analysis restricted to estimation

of the average force of infection, rather than the process of who infects whom.

Of note is that in addition to a better understanding of contact patterns in

PWID, further development of existing methods would likely be required,

which are generally specified for infections with a short infectious period

(Farrington et al., 2001), unlike the blood-borne viruses considered here.
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1.4.4 Individual heterogeneity

Individual heterogeneity can have an important effect when estimating the

force of infection. In particular, if some individuals are more likely to be

infected than others, then there will be an apparently higher force of infection

early on in the period of time at risk than later. This is because those

that are at increased risk of infection will, on average, experience the event

sooner, whereas the rate of infections will be lower at a later time where

those remaining tend to be at lower risk. In this way, heterogeneity has the

effect of decreasing the population hazard relative to the individual hazard

over time, i.e., a time gradient is introduced Aalen et al. (2008, p. 235).

Gamma distributions for the frailty are commonly used, although many other

functions are possible, notably those from the so-called power variance family

(Hougaard, 2000).

Heterogeneity in seroprevalence studies is often considered using multi-

variate data, in which information on frailty comes from the correlation that

occurs between infections that share the same transmission route (Farrington

et al., 2001, 2013). Various extensions to the shared frailty model have been

considered. Hens et al. (2009) describe the use of a correlated frailty model

for multivariate data, which allows for separate, but correlated frailties for

each infection. These models are somewhat limited in that such effects may

only be identified if a specific functional form is assigned to the force of

infection, in much the same way as shared frailty models in the univariate

case.

Frailty may also be allowed to vary by age (or more generally, exposure

time), as described in Farrington et al. (2013). In their example, they found

greater heterogeneity at younger ages, which diminished in adulthood. In the

context of injecting drug use, changes in heterogeneity may be conceivable

over the course of injecting career, with a high degree of heterogeneity in

risk of blood-borne infection early on, possibly dependent on the context in

which initiation occurred, but longer-term users having more homogeneous

risk levels.

The selection effect induced by individual heterogeneity means that the

hazard in survivors decreases over time, but another question is how hetero-

geneous these survivors are. This depends on the choice of frailty distribu-
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tion, which may result in an increasing or decreasing coefficient of variation

over time; in fact, the gamma frailty is the only distribution for which the

coefficient of variation is constant (Aalen et al., 2008, p. 234; Farrington

et al., 2012).

Note that it is not possible to distinguish between temporal and selection

effects (Farrington et al., 2012), i.e., whether increasing or decreasing het-

erogeneity with age is due to a particular underlying frailty distribution that

causes the change via selection, or genuine changes in the frailty distribution

over time. Farrington et al. (2012) recommend that subject-specific knowl-

edge or external data are used to guide the choice of frailty distribution, then

examine potential time variation given the chosen functional form.

1.5 Aims of the thesis

The preceding sections provide some background on blood-borne viruses,

epidemiology and sero-surveillance, and the population at risk. The aim of

this thesis is to apply methods for estimating incidence and prevalence from

current status data to surveillance data on PWID. These data present an op-

portunity to develop methods for the analysis of cross-sectional data, which

in turn may reveal new insights on the epidemiology of blood-borne viruses

in PWID. The focus of analyses is on HCV, which of the three infections

considered is the greatest public health concern in PWID. However, HBV

and HIV are also of interest, and form an integral part of investigation of

variability in risk.

The UAM study is a unique data source, with a long series of sequential

surveys and a wealth of covariate data not typically found in current status

data. This gives the potential to investigate models including risk factors and

their effect on the force of infection. The effects of gender, age (in addition

to injecting duration), sharing injecting equipment, frequency of injecting,

needle exchange use, imprisonment and sexual behaviour are considered.

Models are developed that estimate the overall effect of risk factors on the

force of infection, and also whether the effect of a covariate is modified

according to injecting duration or calendar time (an interaction effect). The

data are sampled at a number of different sites, so geographic differences

can be examined and in particular regional trends in prevalence and the

37



underlying force of infection.

Piecewise constant models are employed in order to maintain flexibility

in the baseline force of infection while estimating covariate effects and indi-

vidual variability, which are key points of interest. Parametric models and

smoothing approaches, which might more efficiently model the baseline force

of infection (especially when considering both age and time effects, such as

in Brizzi (2018)) are borne in mind but not used. It is shown later that

patterns of risk according to injecting duration (“age” in this context) are

relatively simple.

A key aim of this thesis is to understand individual variability in risk.

Shared frailty models that make use of bivariate infection data have typically

been used to estimate individual variability, most commonly using a gamma

frailty distribution. This thesis also examines the inverse Gaussian distri-

bution, which results in a different selection effect, and time-varying frailty

(Farrington et al., 2013), a relatively new development that has not been

applied to data on PWID before. Such approaches can help to understand

how variability in risk evolves throughout injecting career.

Bivariate frailty models are extended to include covariate information.

This is seldom considered in practical examples, as frailty models typically

use data aggregated by age and all individual variability is assumed to be

unmeasured. By including covariates, the frailty component is interpreted as

residual variability, which in theory should decrease (compared to a model

without covariates) as more information on risk is introduced. This the-

sis aims to examine this phenomenon and, more practically, whether the

marked variability in risk indicated by previous studies can be reduced us-

ing risk factor information. This would help to better target harm reduction

interventions to those at greatest risk.

The UAM data include infection status for HCV, HBV and HIV, and

bivariate models are considered for each infection pair. In this thesis trivari-

ate models are also investigated. Trivariate models extend the shared frailty

model to include different frailty components, which can be estimated from

the richer correlation structure of the three infections, although there are

restrictions on what can be identified. The information available to estimate

different aspects of frailty is considered, and different formulations proposed,

one of which has a similar form to the correlated frailty model.
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This thesis is organised as follows. In the second chapter the UAM study

is introduced, giving an overview of its history and purpose, available data,

limitations and previous analyses. The third chapter provides an overview

of statistical methods for analysing univariate cross-sectional data, covering

the basics of generalised linear models for binomial data, the force of infec-

tion model, and including covariates. The fourth chapter presents results of

fitting the univariate models described previously to the UAM data for HCV,

HBV and HIV, with a focus on HCV. The fifth chapter provides an overview

of multivariate models, in particular the bivariate shared frailty model, and

different frailty distributions are discussed, including measures of association

and time-varying frailties. Chapter six then presents results on measures of

association in the UAM data and fitting bivariate frailty models, including

models with covariates. In the seventh chapter component frailty models are

introduced, and different model forms are discussed. Trivariate models are

then fitted to the UAM data. The eighth chapter provides overall conclu-

sions on the work conducted in this thesis. R code and other background

information is included in the appendices.
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Chapter 2

The Unlinked Anonymous

Prevalence Monitoring

Programme

Public Health England (PHE, formerly the Health Protection Agency) has

conducted monitoring programmes in various risk groups for the last 20 years

or more under the umbrella of Unlinked Anonymous Monitoring (UAM)

surveys. This includes monitoring leftover samples from those attending

genitourinary medicine (GUM) clinics, pregnant women (via residue samples

from newborn infants), and surveys of people who inject drugs (PWID)

attending drug treatment centres or needle exchange services. The latter

survey on PWID is of principal interest in the following.

The aim of the UAM survey of PWID is to measure the changing preva-

lence of HIV, HBV and HCV, and monitor levels of risk and protective

behaviours among PWID. The data are used to assess and develop appro-

priate preventative and health education campaigns, evaluate the impact of

such interventions, and to assist in the provision of services for PWID in

the UK. Survey data have been collected annually since the programme was

established in 1990. PHE works in partnership with around 50 of 149 spe-

cialist drug agencies in England (data for Wales and Northern Ireland are

also collected, but not considered here). The drug action teams (DATs) that

are sampled from change from year to year: around 80 DATs have been sam-

pled at some point since the survey was established, and many have samples
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for every survey year.

Each year, the agencies are encouraged to ask all eligible clients to par-

ticipate in the survey, an eligible client being a current or former injecting

drug user who has not already participated in the survey in the current cal-

endar year. Each eligible client is asked to complete a short questionnaire,

which includes questions on patterns of drug use, including injecting dura-

tion, frequency in the last month and sharing of drug-taking paraphernalia,

treatment for drug addiction and participation in needle exchange services,

and their sexual behaviour. This information is used to assess the associa-

tion between risky activities (such as needle sharing) and the prevalence of

BBVs among PWID. Descriptions of the most relevant variables are given

subsequently. A copy of the 2015 questionnaire is shown in the appendices

(section 9.1).

Participants also provide a sample for serological testing: in the past,

oral fluid samples were used, but the survey moved over to dried blood spot

samples during 2009-2010. Identifying information is irreversibly unlinked

from all samples before testing, ensuring that both the sample and the ques-

tionnaire are completely anonymous. Samples are tested for the presence of

antibodies to HIV (signalling current infection), and antibodies to hepatitis

C and to the hepatitis B core antigen (which can indicate current or previous

infection).

All testing is conducted by the Virus Reference Department at Public

Health England Colindale, which has strict policies for quality assurance

and maintains all relevant accreditations (Public Health England, 2018c).

Dried blood spots are assigned a unique identifier and labelled upon receipt

and kept at 4◦C for short-term storage and prior to testing and −20◦C for

long-term storage. Samples must be of a sufficient specified size for testing

and are prepared according to the manufacturer specifications of the testing

equipment and Public Health England’s detailed protocols.
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2.1 Available data

2.1.1 Hepatitis C

Hepatitis C testing has been performed regularly on samples since 1998 using

the OraSure device, which has an estimated sensitivity of 91.7% (95% confi-

dence interval (CI): 87.5, 94.8) and specificity of 99.2% (95% CI: 97.8, 99.8)

(Judd et al., 2003). From 2009 to 2010, there was a gradual switch-over to

dried blood spots, which have near-perfect sensitivity and specificity. Both

tests were evaluated by the Public Health Laboratory Service (now Public

Health England) in those with known infection status, to determine optimal

thresholds for maximum sensitivity and specificity (Judd et al., 2003). A

smaller number of samples are available for the years 1992, 1994 and 1996.

These samples were taken using the Salivette device, which has sensitivity of

only 74.1% (95% CI: 68.2, 79.4) and 99.0% (95% CI: 97.4, 99.7) specificity. It

is necessary to account for varying sensitivity over time if HCV prevalence

prior to 2011 is to be estimated, as in Sweeting et al. (2009b). It is also

possible to adjust for the proportion of those infected that naturally clear

infection to obtain estimates of the prevalence of chronic HCV infection, for

example, as in De Angelis et al. (2009).

Since 2011, HCV positive samples have also been tested for avidity, a

measure of how strongly antibodies bind, and a potential marker for recent

infection (Klimashevskaya et al., 2007; Coppola et al., 2009; Gaudy-Graffin

et al., 2010). Samples with weak avidity (and subject to an RNA positive

test) are more likely to be recent infections; although the best value to use

as a cut-off, and the likely “window” period between seroconversion and

development of strong avidity is not well established.

2.1.2 Hepatitis B

Testing for hepatitis B via hepatitis B core antibody (anti-HBc, indicating

past or current infection) has been performed in all survey years. The tests

used had poor sensitivity prior to the introduction of dried blood spot testing

(which has near-100% sensitivity) with 76% sensitivity prior to 1998 and

75% up to 2009-2010; although specificity has always been above 99% (Judd

et al., 2007). Hepatitis B surface antigen tests are also conducted, although
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numbers are low. The UAM study is currently in the process of carrying

out hepatitis B surface antibody tests (see section 1.2.4) on a subset of

data, which could provide more insights into patterns of HBV infection and

validation of vaccination status (which is otherwise self-reported).

2.1.3 HIV

The UAM survey for PWID was originally conceived to monitor HIV and

therefore samples are available for all years (Noone et al., 1993; Hope et al.,

2014). The Salivette device was used until 1998, followed by the OraSure

device before dried blood spots were introduced around 2009-2010; for all

years the test has near-perfect sensitivity and specificity. HIV has been

studied extensively in terms of CD4 cell counts, RNA levels and treatment

with antiretroviral therapy in cohort studies, but only infection status is

available in the UAM data. Prevalence of HIV infection in PWID is low

compared to HCV and HBV, and follows somewhat different patterns with

markedly higher prevalence in London compared to all other regions (The

Health Protection Agency, 2012b).

2.1.4 Injecting behaviour

Participants are asked whether they injected in the last year and in the last

month, as well as frequency of recent behaviour. Many studies that have

used the UAM data have focussed on those that have injected within the

last month, this being seen as the best definition of “current” injectors, who

are a group of principal interest. Some participants have not injected for over

a year, who might viewed as a potentially unusual group of ex-injectors, as

those that have ceased to inject but are still in long-term treatment are likely

to have different characteristics to the general population of ex-injectors.

Despite this, the UAM data have been used to estimate HCV prevalence in

ex-injectors (Sweeting et al., 2008), albeit after careful adjustment for biases

that are likely to be present in so-called snapshot samples (Kaplan, 1997).

Participants are also asked about sharing needles and other parapher-

nalia, including whether they have ever received needles or syringes from

anyone, and the number of people they have passed on to, and received

needles from, in the last 28 days.
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Finally, participants are asked for the age at which they first started

injecting. Combined with their current age, this provides a key piece of

information on understanding the risk of infection: injecting duration. For

infection via injecting drug use this corresponds to time at risk. The typical

“career” of PWID will often involve multiple periods of stopping and start-

ing, rather than a single, uninterrupted period of injecting prior to cessation,

although the simplifying assumption of a continuous period of risk is usually

made.

2.1.5 Sexual behaviour and health

Participants are asked whether they have had sex in the last 12 months, with

how many male and female partners, and whether they have exchanged goods

or money for sex in the last year, or ever. They are also asked whether they

have attended various types of health services in the last year, in particular

GUM or STI clinics. The most recent questionnaire also includes questions

on accident and emergency attendance due to overdose.

Participants are also asked about previous HIV and HCV testing and

treatment for HCV, whether they have ever been in prison or a young of-

fenders institution (and whether injected drugs while in prison), and whether

they have ever been homeless. There is little information on timing and dura-

tion of periods of homelessness or imprisonment, although there is a question

on when last went to prison.

2.2 Previous UAM studies

Data collected from the UAM survey of PWID have been used in various

ways to estimate trends in the prevalence of blood-borne infections, be-

havioural characteristics and demographics of PWID in England and Wales.

One of the earliest studies examined prevalence of HIV and HBV in PWID

in 1990 and 1991, finding a prevalence of 1.2% and 1.8% respectively for

HIV and 33% and 31% for HBV, with high levels of reported sharing of

equipment and risky sexual behaviour (Noone et al., 1993).

A later analysis examined HCV prevalence in 1997 and 1998, a time when

the effectiveness of harm reduction measures for PWID was being assessed,
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and prevalence of BBVs was found to be lower than previously thought

(30% for HCV, 21% for HBV, and 0.9% for HIV) (Hope et al., 2001). The

association between HCV infection and HBV/HIV status was examined, and

found to have odds ratios of 2.3 (95% CI: 1.8, 2.8) and 1.5 (95% CI: 0.6, 3.5)

respectively after adjusting for injecting duration, age, sex, area and previous

testing for HIV.

Between 1991-2000 an increase in needle sharing was reported, which was

thought to be associated with a rise in HBV prevalence (HIV levels were too

low for comparison, and HCV testing only recently introduced (Hope et al.,

2002)). They speculated that needle sharing may have increased due to

changed perceptions of the severity of HIV infection following advances in

treatment, or the perception of no longer being at high risk of infection.

HIV trends between 1990-2003 were examined via the UAM and com-

munity surveys (Hope et al., 2005). Prevalence was found to have decreased

throughout the 1990s, then increased from 2000 onwards, with prevalence far

higher in London compared to other areas. They also used a force of infec-

tion model with piecewise constant time effects, and found higher incidence

between 1998-2002 compared to 1992-1997 in London, but not other areas,

and a far higher force of infection in the first year of injecting compared to

other years.

Age of starting injecting and subsequent cessation were investigated by

Sutton et al. (2005). A gamma distribution for age starting injecting was

used, and a piecewise linear function for rates of removal by age chosen

after a model selection exercise. They estimated that 50% of injectors start

between the ages of 18 to 25, with 15% starting after the age of 30. Annual

removal probabilities rose linearly up to a maximum of around 30% at age

30-35. The authors acknowledge potential under-representation of different

injecting career lengths and attempted to incorporate this in their model.

Sutton et al. (2006) jointly modelled the force of infection of HCV and

HBV between 1998-2003, investigating individual heterogeneity via a shared

frailty model with a gamma distribution. They considered trends over cal-

endar time, but eventually assumed a constant force of infection for each

virus, which was found to fit the data equally well. For injecting duration,

they selected a simple dichotomy of < 1 vs. ≥ 1 years, finding a three-fold

reduction in force of infection after the first year. This was assumed the
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same for both viruses, again based on goodness of fit of the model. They

found substantial individual heterogeneity and concluded that some PWID

are at significantly higher risk of blood-borne infections.

The impact of HBV vaccination has been considered, with levels of uptake

rising from 27% to 59% from 1998 to 2004 (Hope et al., 2007). However,

there was no corresponding decline in prevalence, and the force of infection

was estimated to have increased in 1999-2004 vs. 1993-1998 (Judd et al.,

2007).

Sweeting et al. (2009b) examined HCV prevalence over time while ad-

justing for injecting duration and other covariates. Polynomial functions

were fitted to the logit prevalence, including non-linear trends for time and

injecting duration of up to degree 4, as well as age and region. By doing so,

the underlying temporal trend was estimated while controlling for changing

demographics in the PWID population. Imperfect sensitivity and specificity,

including uncertainty in the estimates used (Judd et al., 2003), was incor-

porated in a Bayesian framework. Previous studies had acknowledged the

limitations of the assays, but the work by Sweeting et al. (2009b) was the

first to explicitly include this as part of the model. They found that after ac-

counting for imperfect testing, prevalence had decreased in the early 1990s,

but increased from the late 1990s until the mid 2000s.

More recent work using these data estimated HCV prevalence in recent

initiates (self-reported injecting duration of three years or less), with this

interpreted as a measure of incidence, which was found to be largely stable

between 2000-2008 (Hope et al., 2012).

Local level differences in HCV prevalence have also been examined (Har-

ris et al., 2012a). Across 152 Drug Action Team (DAT) areas, prevalence was

found to vary substantially, with estimates ranging from 14% to 82%. Spa-

tially correlated random effects models were employed (Besag et al., 1991)

in order to identify spatial patterns, and crucially, to derive prevalence es-

timates for non-sampled areas. The inclusion of area-level covariates, or

auxiliary variables in the spatial mapping terminology, further improved es-

timates in terms of out-of-sample prediction and reducing standard errors of

small samples.

Hope et al. (2014) modelled prevalence of HIV between 1992-2012 using

polynomial functions, similar to the analysis of Sweeting et al. (2009b). Inci-
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dence was also estimated via a joint model for HIV and HCV, using injecting

duration- and time-specific contributions to the force of infection. Both time

and injecting duration components were estimated via a random walk func-

tion in a Bayesian framework, and the effect of injecting duration was shared

by the two infections, based on the assumption that risk of either HIV or

HCV throughout injecting career is proportional. This approach increased

the power to estimate the individual effects, which are difficult to estimate

as rates of HIV are relatively low, but does not account for the possibility of

sexual transmission of HIV or other differing risk patterns between the two

infections. Hope et al. (2014) also constructed a timeline of government pol-

icy changes, broadly ascribing periods of increased risk to policies focussing

on drug-related crime, rather than treatment and harm reduction.

Markers of recent infection for HCV are currently being investigated, with

avidity-based measures and proportions of RNA-positive, antibody-negative

individuals being explored to determine patterns of incidence (Cullen et al.,

2015). With the advent of new HCV treatments and the potential for reduc-

ing incidence via treatment as prevention (Martin et al., 2015), there is great

interest in the potential for monitoring progress via such measures. However,

estimates suffer from substantial statistical uncertainty and the power to de-

tect reductions over time is low (Public Health England, 2018a). Therefore

force of infection models still have a crucial role to play in understanding

changes in the risk of infection over time.
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Chapter 3

Methods for the analysis of

cross-sectional serological

surveillance data

Cross-sectional data on infectious diseases typically consist of binary (0/1)

infection status and a set of covariates, the most important generally being

age, but potentially including other demographic or risk factor information.

The resulting data may be modelled via a generalised linear model (GLM) to

determine the relationship between the covariates and infection status. Data

consisting of age-specific infection status, or current status data, are usually

modelled in a particular way: by relating infection status to time at risk,

estimates of the age-specific rate of infection may be obtained in a framework

that is conceptually similar to survival analysis. In fact, such data are called

interval censored type 1 data in the survival analysis literature.

This chapter is organised as follows: the GLM specification for binary

responses is reviewed, and how such models are fitted to observed data by

maximising the log-likelihood. Assessment of model fit is then discussed,

along with differences between binary data and the aggregated binomial

form. The basics of survival analysis are then reviewed, and how this theory

is related to the analysis of current status data from cross-sectional surveil-

lance data. The basic model for age-specific data is then extended to allow

rates of infection to vary by both age and time, and the inclusion of other

covariates.
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3.1 Models for binary responses

Binary data consist of observations that can take only two possible states,

assigning “failure” as zero and “success” as 1 (generally the diseased state

or a positive test for infection). The interest lies in estimating the mean

probability of success, p, and how this varies according to different covariate

levels. This is achieved via a generalised linear model (GLM), which is spec-

ified by a random component, a systematic component, and a link function

(Nelder and Wedderburn, 1972). For binary (or binomial) data, the random

component is a set of independent observations with a Bernoulli (or bino-

mial) distribution and mean probability of success pi for observation i. The

systematic component relates a vector of parameters to the covariates,

ηi = β0 + β1x1i + ...+ βkxki,

where ηi is known as the linear predictor. Finally, the link function relates

the linear predictor to the mean of the random component, which in most

cases will constrain the values that the transformed linear predictor can take

to between zero and 1. The most widely used link function for binary data

is the logit function, which gives the logistic regression model

pi =
exp(ηi)

1 + exp(ηi)
. (3.1)

The logit is a symmetric, S-shaped function that is bounded by zero and

1. An alternative to this is the probit model, which uses the cumulative

distribution function (CDF) of the standard normal distribution, denoted

Φ:

pi = Φ(ηi). (3.2)

Finally, the complementary log-log (CLL) link gives the model

log(− log(1− pi)) = ηi. (3.3)

These links produce different relationships between the linear predictor and

the probability of success, which are displayed in Figure 3.1. If the link func-

tions are considered to be cumulative distribution functions, the probability
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density function of the logit link has heavier tails than the probit link and

the CLL link is negatively skewed.
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Figure 3.1: Link functions for binary data: linear predictor η and resulting
probability p.

Another possibility is the log link, which is not generally recommended

for binary data as a positive value in the linear predictor will result in p > 1

(Figure 3.1). Nevertheless, a log link might be used to model binary data

when the probabilities of success are low. More pertinently, a GLM with

a log link may be used for the analysis of age-specific current status data.

This is described in section 3.2.2.

Alternative link functions are of course possible. For instance, Aranda-

Ordaz (1981) describes a symmetric family of functions that include the

identity (linear) link and logistic as special cases; and an asymmetric family

that includes the logistic and CLL as special cases. The univariate prevalence

models considered in this thesis use only categorical variables, for which the

specification of the relationship between the linear predictor and the mean

probability may be of lesser importance: in univariable models fit is identical,

although covariate effects may combine in different ways in multivariable

models under different link functions. For multivariable models, some care is

required to distinguish between the need for an alternative link function and

the addition of interaction terms between covariates (Collett, 2002, p. 149).
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3.1.1 Model fitting

In the following it is assumed that a logistic regression model is to be fitted

to binomial data, although the concepts will still hold for binary data and

other link functions. The aim is to obtain the maximum likelihood estimates

(MLE) of the parameters, βj, in the model. Given data where yi is the

number of successes from ni observations in covariate group i, we maximise

the binomial log-likelihood:

n∑
i=1

[
log

(
ni
yi

)
+ yi log(pi) + (ni − yi) log(1− pi)

]
. (3.4)

As the term log
(
ni
yi

)
is constant, this does not need to be calculated in order to

maximise the log-likelihood, and the function can be simplified to the kernel

log-likelihood. However, maximising the kernel log-likelihood still requires

solving a system of nonlinear equations, so numerical optimisation methods

are required to find the set of parameter values that are maximum likelihood

estimates. The Newton-Raphson method is typically used for logistic regres-

sion, which uses first and second derivatives to obtain local approximations

of the function, and converges to the maximum over successive iterations.

3.1.2 Accounting for imperfect sensitivity and speci-

ficity

When modelling the infection status, or any other binary response that may

be imperfectly measured, there is the potential to under- or overestimate

the probability of infection p if the test used to determine infection status

does not always provide a correct classification. The imperfection of a test,

assessed by comparing results against a “gold standard”, is generally defined

in terms of the proportion of true positives with a positive test status, called

sensitivity and the proportion of true negatives with a negative test status,

called specificity (Altman and Bland, 1994) (see section 1.2.4). Imperfect

sensitivity (less than 100%) will therefore lead to underestimates of p, while

imperfect specificity will result in overestimates. Furthermore, if different

tests with varying sensitivity and specificity have been used in the sample,

and the usage of some tests is associated with a covariate of interest, esti-
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mation of the effect of this covariate can be biased due to the systematic

under- or overestimation of p at different covariate levels. For instance, if

test sensitivity improves over the survey period, p would be underestimated

in earlier survey years.

If the sensitivity and specificity of the test are known then the probability

of a positive test can be related to the true probability of infection. The

table below shows the relationship between infection status and test results

given imperfect sensitivity and specificity, where π is the true probability of

infection and Sens and Spec are the sensitivity and specificity:

True disease Test result

status Negative Positive

Negative (1− π)Spec (1− π)(1− Spec)
Positive π(1− Sens) πSens

Therefore the observed proportions of a positive test p and a negative

test 1− p are given by

p = πSens+ (1− π)(1− Spec)

1− p = (1− π)Spec+ π(1− Sens).
(3.5)

This relationship can then be incorporated into model fitting by substituting

p with π in the link function. The covariates are then estimated according

to the true probability of infection π. Provided that Sens and Spec are

known, the kernel likelihood derived from equation 3.4 can therefore be used

to estimate the parameters. Estimates from such a model will then estimate

the true probabilities of infection and give unbiased estimates of covariate

effects. The disadvantage is that the model can no longer be fitted using

standard GLM procedures in most packages and must be implemented using

bespoke code.

3.1.3 Model assessment

An adequately fitted model should predict the probability of success, or the

number of successes for each covariate combination, with a suitable level of
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accuracy. Model fit (or lack of) is easiest to interpret for binomial data, that

is aggregated successes and failures for each covariate combination. “Co-

variate combination” here is taken to mean whatever grouping is used for

the aggregated data. This might not correspond to the covariates that are

used in the model, and instead might be considered as unique data combina-

tions. For instance, data might be aggregated by age in years, but analysed

in terms of broader age groups. In any case, data in the following are as-

sumed to consist of yi successes from ni individuals for each observation. The

deviance provides an assessment of how well the model predicts the probabil-

ity of success, p, based on a comparison between the likelihood of the fitted

model and the likelihood of the saturated model, this being a model with

one parameter for each data point and fitting the data perfectly. Predicted

probabilities from the fitted model are given by

p̂i = g−1(β̂0 + β̂1x1i + ...+ β̂kxki), (3.6)

where β̂j is the maximum likelihood estimate of parameter j. The predicted

number of successes for data point i is then ŷi = nip̂i and the deviance is

defined as

D = 2
n∑
i=1

[
yi log

(
yi
ŷi

)
+ (ni − yi) log

(
ni − yi
ni − ŷi

)]
. (3.7)

See, for instance, Collett (2002, p. 65). Given a sufficient sample size and

non-sparsity in the aggregate data (see below), the deviance has an ap-

proximately χ2 distribution with n − k degrees of freedom under the null

hypothesis that the model is correct, n being the number of data points and

k the number of parameters (Collett, 2002, p. 69). This leads to the rule of

thumb that the deviance should be roughly equal to the degrees of freedom.

Aggregation of the data is required for the deviance to have any meaning-

ful interpretation. For binary data, the yi are all zero or 1, and the deviance

provides no information on the agreement between the observations and

those predicted by the fitted model. This is also the case where aggregated

data are so finely cross-classified that many of the cell counts are very small:

there should be few data points for which ni is 1 and most of reasonable size

(see, e.g., Collett (2002, p. 69)). The deviance should therefore be examined
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at an appropriate level of cross-classification, which may mean aggregating

groups that are relatively sparse, especially where there is cross-classification

with another variable that contains few observations in certain categories. In

fact, where data are purely binary, as is the case when continuous covariates

are analysed, tests for goodness of fit need to be based on a categorisation of

the data, such as the percentiles (often deciles) of the predicted probabilities

for the Hosmer-Lemeshow test (Lemeshow and Hosmer, 1982).

Where data are classified according to a single covariate, a lack of fit may

indicate that the relationship between the covariate and the outcome has

not been captured by the model (provided that the link function is correctly

specified). For instance, a linear relationship between the covariate and the

linear predictor may not be appropriate, or for grouped variables the classes

may be too broad or have inappropriate cut-points. Discrepancies between

the observed and predicted probabilities may be assessed for the individual

data points via deviance residuals, defined as

di = sign(yi − ŷi)
[
2yi log

(
yi
ŷi

)
+ 2(ni − yi) log

(
ni − yi
ni − ŷi

)]1/2

(3.8)

for data point i (Collett, 2002, p. 131). Plotting the residuals against the

values of the covariates can help to answer questions such as whether the

general relationship of a variable has been correctly specified, or whether

there are systematic deviations in the fitted probabilities.

For an adequately fitted model with sufficient observations and successes

for each i, the di can be standardised to have an approximate standard

normal distribution (Collett, 2002, p. 131). Histograms of deviance residuals

can be used to assess this, or the ordered values can be plotted against the

values of a standard normal distribution in a so-called quantile-quantile or

Q-Q plot: if the di have a standard normal distribution, the points will lie on

the line y = x. If plots of the residuals against covariate values do not reveal

any systematic differences, but the standardised deviance residuals are more

variable than would be expected under a standard normal distribution then

there is likely overdispersion.

Where data are classified according to multiple covariates, a lack of fit

may also be due to the presence of interactions between these variables.

This is also known as effect modification, where the effect of one variable
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changes according to the values of another variable. Of course, model fit can

always be improved on by adding interactions. For categorical covariates, the

model including all possible interactions is called the saturated model, that

is, there is a parameter for every observation, and the model fits perfectly.

However, it is generally not desirable to do this. Firstly, it is inefficient and

will result in imprecise parameter estimates. Secondly, because the model is

then not summarising or simplifying the data. Finally, it is often unlikely the

underlying data-generating process really includes high-level interactions,

with 2nd order usually being the limit of what is considered.

Whether the data include multiple covariates or a single covariate, it may

be that the specification of the relationships between the covariates and the

outcome, including interactions, is considered sufficient. Excess variability in

the observed values of the outcome would then be considered as overdisper-

sion. This simply means that prevalence varies more than would be expected

by sampling variability alone, given the structure of the linear predictor in

the model. For instance, a linear effect of age might appear broadly cor-

rect, but observed proportions with the outcome vary substantially between

individual years, which would be an obvious case of overdispersion. More

difficult to ascertain is whether the additional structure of interaction terms

is required, which may require subject-specific knowledge. However, plots of

residuals against covariates, stratified by levels of a second covariate, can still

be informative in identifying the need for interaction terms. Formal tests for

structure in residuals may be carried out, for instance whether there are se-

rial patterns in positive and negative residuals according to age or calendar

year. Such tests are referred to as runs tests, as they assess the observed vs.

expected number of runs of positive and negative values in the data under

the null hypothesis of randomness (Wald and Wolfowitz, 1940; Swed and

Eisenhart, 1943).

3.1.4 Estimates, confidence intervals and predictions

Having obtained a set of parameter values that maximise the log-likelihood,

the uncertainty of these estimates due to sampling variability is also of in-

terest: the less information there is (either in terms of small ni, or a small

number of successes/failures) then the less precise the estimates will be. An
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indication of the uncertainty in the estimate is given by the standard er-

ror, which can then be used to construct confidence intervals. The Hessian

matrix (2nd derivatives of the log-likelihood) may be calculated numerically

by the numerical optimisation routine, and the observed Fisher information

matrix is minus the Hessian matrix. The Hessian matrix is the degree of

curvature in the log-likelihood surface and therefore represents the amount

of information available to estimate the unknown parameters. Thinking of

maximum likelihood estimation as searching for the top of a hill, a sharp

peak indicates that the true value of a parameter is likely to be in a small

region of the parameter space, whereas gentle curvature indicates greater

uncertainty in the location of the MLE. Taking the inverse of the negative

Hessian matrix, calculated at the MLE, provides an estimate of the asymp-

totic covariance matrix, with diagonal elements estimates of the asymptotic

variances of the MLEs of the parameters. Hence under the assumption of

approximate normality 95% confidence intervals for a parameter β may be

obtained from the standard errors (SE) as CI95 = β̂ ± 1.96SE.

The predicted probability of success for a given covariate pattern is given

by equation 3.6, with p̂i obtained by taking the inverse of the link function

g. To obtain 95% confidence intervals for g(p̂i), the variance of the linear

predictor is given by

var(η̂i) =
k∑
j=0

x2
jivar(β̂j) +

k∑
h=0

∑
j 6=h

xhixjicov(β̂h, β̂j) (3.9)

(Collett, 2002, p. 131). The full asymptotic covariance matrix is also ob-

tained from the inverse of the Hessian matrix, but using the whole matrix

rather than just the diagonal elements. Denoting the standard error of the

linear predictor as SE(η̂i), 95% confidence intervals for the predicted prob-

ability of success are given by CI95 = g−1(η̂i ± 1.96SE(η̂i).

Plots may then be constructed that include observed and fitted prob-

abilities pi and p̂i and the confidence intervals of the fitted probabilities;

if the model fit is satisfactory, then around 95% of the observed probabil-

ities should lie within the 95% confidence intervals, hence this is a useful

diagnostic procedure.

Alternatively, predictions may be obtained for a certain set of parameter
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values that is not necessarily included in the dataset. Continuing with the

example of age, region and sex, predictions may be created with region and

sex at fixed levels so that changes in predicted probabilities according to age

alone may be assessed, which may be preferable to examining a number of

plots for each combination of region and sex. If there are no interactions, the

pattern will be similar across different levels of region and sex. However, if

interactions between age and the other variables are included in the model,

it must be borne in mind that the relationship is conditional on the specified

values of these covariates. A set of fixed values may be selected for the

largest or most representative group(s), or alternatively averaged over the

dataset.

If a model has been fitted accounting for imperfect sensitivity and speci-

ficity as in equation 3.5, then the predicted probabilities from equation 3.6

will be for true infection status, rather than observed test results. This may

be desirable, but plots of observed and predicted probabilities as described in

the above will no longer be interpretable, as the observed probabilities will be

systematically higher or lower according to the sensitivity and specificity of

the test. In this case, it is preferable to adjust the fitted probabilities for the

imperfect sensitivity and specificity according to equation 3.5 so that they

revert to fitted probabilities of a positive test result, rather than infection

status. This procedure may also be used to produce confidence intervals for

a positive test result using equations 3.6 and 3.9, then converting the lower

and upper bounds according to equation 3.5.

3.1.5 Model comparison

The methods outlined in sections 3.1.3 and 3.1.4 may be used to assess the

adequacy of model fit, either overall or in terms of systematic differences

according to covariate levels. However, it may be that there are multiple

candidate models with different sets of covariates or parameterisations (for

instance, inclusion of interactions) that are under consideration, from which

it is not clear whether a more complex model should be preferred. Differ-

ences in deviance may then be used to assess whether one model provides a

substantially better fit than another; for two nested models, where the more

complex model includes all of the parameters of the less complex one, the
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difference in deviance between two models has an approximately χ2 distri-

bution under the null hypothesis that the simpler model is correct (Collett,

2002, p. 73). An appropriate test statistic is constructed with degrees of free-

dom equal to the difference in the number of parameters between the two

models, and the p-value provided by the test gives an indication of whether

the more complex model should be preferred.

An alternative is to use model selection measures such as the Akaike

Information Criterion (Akaike, 1974). This, and other measures like it, gives

a score based on how well a model fits the data, but with a penalty for model

complexity. For nested models, the performance of the AIC is very similar

to deviance-based tests; however, the AIC may also be used to compare

non-nested models. The AIC is defined as:

AIC = −2 log(L(θ̂|y)) + 2k, (3.10)

which is based on the maximised log-likelihood of the estimated parameters,

log(L(θ̂|y)), plus a penalty term 2k, where k is the number of parameters in

the model. The measure is simple but underpinned by information theory,

being based on minimising the information lost when a given model is used to

represent the data compared to the true data-generating process. A variety of

alternative measures have been proposed, such as the Bayesian (or Schwartz)

Information Criterion (BIC), which applies a heavier penalty for complexity.

An overview of various approaches is given in Burnham and Anderson (2002),

who recommend the AIC as their measure of choice. In particular, the BIC

assumes that the correct model is included in the set of candidate models,

which is usually implausible, although the AIC may prefer overly complex

models when datasets are large (Kuha, 2004). In practice the choice may

come down to the consequences of selecting an overly-complex model (AIC)

compared to one that is overly-simple (BIC). Much of the model comparison

in chapter 4 concerns whether interactions between injecting duration and

time are necessary. In the context of then estimating HRs for risk factors,

and subsequent investigation of heterogeneity (chapter 6) a more flexible,

if potentially over-complex, parameterisation of the baseline FOI may be

preferable.

For the AIC (and similar measures) the absolute value has no meaning,
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but differences between scores indicate the relative merits of two or more

models, with lower scores being better. A rough rule of thumb is that dif-

ferences of 2 or less indicate little difference between models, differences of

4-7 indicate a likely difference, and more than 10 a substantial difference.

3.2 Analysis of current status data

In this section some basic theory of survival analysis is reviewed before ap-

plying this theory to current status data. Survival analysis is concerned with

time to event data, consisting of observation times until an event occurred,

or the time of censoring if the event did not occur before observation ended.

Data therefore consist of a time t and a binary event indicator. The aim is to

estimate the hazard rate, which is the instantaneous event rate in survivors

(those who have not yet experienced the event) over time, and differences in

the hazard rate according to covariates, which can be expressed as hazard

ratios (HR). The mathematical relationship between the hazard rate and

the proportion of survivors over time has a direct bearing on the analysis of

current status data, where time at risk is related to the binary outcome of

infection status. In the infectious disease literature the hazard rate is usu-

ally called the force of infection, and survivors called susceptibles (not yet

infected); these terms are exactly equivalent. Models that incorporate this

relationship for binary current status data may be of the form of a GLM as in

section 3.1 and may also incorporate changes over time and other covariates.

3.2.1 Basic theory of survival analysis

The hazard rate and survival function are central to survival theory, and are

derived as follows (see, e.g., Aalen et al. (2008, p. 6)). Let T denote sur-

vival time, and f(t) be its probability density. The cumulative distribution

function of T is then

F (t) = P (T ≤ t) =

∫ t

0

f(u) du.

60



Hence F (t) is the probability of failure by time t. The survival function is

defined as

S(t) = P (T > t) = 1− F (t) (3.11)

and is the probability of survival beyond time t. This is an unconditional

probability, whereas the hazard rate, λ(t), is related to the probability of

failure in an infinitesimally small time period between t and t+δt, conditional

on survival up to time t. This is defined as the limit:

λ(t) = lim
δt→0

P (t < T ≤ t+ δt|T > t)

δt
. (3.12)

From equation 3.12:

λ(t) = lim
δt→0

S(t)− S(t+ δt)

δtS(t)

= − 1

S(t)

dS(t)

dt

= − d

dt
log[S(t)],

which leads to the equation

S(t) = exp

[
−
∫ t

0

λ(u) du

]
. (3.13)

3.2.2 Application to serological surveillance data

The type of data commonly collected by routine surveillance tends to be

cross-sectional and does not include the time of the event, only the duration

of exposure and current status (hence interval censored). However, the same

theory from the survival analysis literature applies: the time-specific propor-

tion susceptible is related to the cumulative force of infection, provided the

infection confers life-long immunity and serological tests can reliably deter-

mine past infection. In many applications infection may occur from birth,

and hence the time at risk is the person’s age. Subsequently models are

described in terms of age, but the same concepts hold for any measure of

time since the individual became at risk.

Given data from a serological survey in which rt of nt individuals at age

t are infected, the force of infection λ(t) may be estimated by maximising
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the binomial log-likelihood as in equation 3.4, with S(t) corresponding to

the proportion of successes pi (considering susceptible a “success”); see, e.g.,

Farrington et al. (2001). In the simplest case of a constant force of infection

over time (λ(t) = λ), we have:

S(t) = exp

[
−
∫ t

0

λ du

]
= exp(−λt).

The relationship is that of a GLM for binomial data with a log link

log(S(t)) = −λt (3.14)

and models of this form can therefore be fitted using standard GLM routines

in many statistical software packages (although some will not allow a log link

with binomial data). Although a log link is not generally recommended for

binomial data, given that λ must be positive, the linear predictor will always

be negative, so S(t) cannot exceed 1 (and is equal to 1 at t = 0). Model

fitting routines may be adapted to allow for constraints, which can be used

to ensure that the force of infection takes only non-negative values. However,

this is often not necessary as the function may be parameterised such that the

force of infection is always positive (e.g., by exponentiating). Note that the

linear predictor in equation 3.14 does not include a constant, as this would

imply non-zero prevalence (proportion susceptible 6= 1) at birth. However,

the presence of a constant term would give an indication of imperfect test

sensitivity or specificity (Ades and Nokes, 1993), given the assumption of

constant force of infection.

Equation 3.14 may also be arranged in the form of the complementary

log-log (CLL) link function

log(− log(S(t))) = log(λ) + log(t). (3.15)

This parameterisation may be preferable if a log link is not permitted by

the software package to be used, but otherwise gives the same mathematical

relationship between the parameters and the data.

The model described in equation 3.14 may easily be extended to a piece-
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wise constant model, where the force of infection is constant within age

bands. With cut-points a0 (usually zero), a1, a2...ak, the duration of time

spent within age band i = 1, 2...k is defined as

Ai(t) =


0, if t ≤ ai−1;

t− ai−1, if t > ai−1 and t ≤ ai;

ai − ai−1, if t > ai.

For a set of age bands 1, 2...k with cut-points a0, a1, a2...ak and force of

infection λi in age band i, the survivor function is defined as:

S(t) = exp[−(λ1A1(t) + λ2A2(t) + ...+ λkAk(t))]. (3.16)

This also has the form of a GLM with log link, although unlike the constant

model, cannot be arranged to have a CLL link. Piecewise constant models

may be useful when risk periods are well-defined, such as pre-school, junior

school, secondary school and adulthood; or, if a suitably large number of

groups are used, the piecewise constant approach avoids making assump-

tions of a certain parametric shape. However, the choice of the number and

locations of cut-points may be somewhat arbitrary, and modelling the shape

of the hazard function may require a higher number of parameters than nec-

essary; in which case, a parametric function for λ(t) may be preferred. For

example, a simple choice is an exponential decline model, where risk declines

asymptotically towards zero. With λ0 the force of infection at t = 0 and ρ

the rate of decline:

λ(t) = λ0 exp(−ρt).

Substituting this into the formula for the proportion susceptible gives:

S(t) = exp

[
−
∫ t

0

λ0 exp(−ρu) du

]
= exp

[
λ0

ρ
(exp(−ρt)− 1)

]
.

This cannot be arranged in the form of a linear model, and hence it is not

possible to estimate using standard GLM routines. In this case, the likeli-

hood must be evaluated using non-linear optimisation methods as described
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in section 3.1.1. However, some other specific model forms may be fitted

within the GLM framework, such as the Weibull model, that allows for a

monotonically increasing or decreasing hazard over time and can be fitted

with a CLL link.

No matter what the functional form is used to characterise λ(t), predic-

tions for the proportion susceptible may be estimated as in section 3.1.3, and

the number of susceptibles substituted for the number of successes. Hence all

of the apparatus in section 3.1 is available for checking model fit, producing

predictions and obtaining confidence intervals.

3.2.3 Models for age and time

For many infectious diseases, changes in hygiene, sexual behaviour and other

risk factors over time are likely to result in changes in the force of infection. In

the presence of such temporal effects, older individuals will have experienced

a different force of infection in their earlier years to younger individuals, in

addition to any age-specific effects. When data are collected from a single

serological survey in the form of age-specific disease status the age-specific

risk and any temporal effects are completely confounded. However, when

multiple surveys are undertaken at different time points, it is possible to

estimate these components separately (Ades and Nokes, 1993). For age a

and survey time t, an age- and time-specific hazard λ(a, t) is defined and

S(a, t) = exp

[
−
∫ a

0

λ(u, t− a+ u) du

]
.

In the case of piecewise constant models, the force of infection may consist

of age components µi for age band i and time components φj for time band

j. With A1(a), A2(a)...Ak(a) as the durations of time spent in age band

1, 2...k, indexed by age a, as before, a similar function for calendar time,

indexed by t with cut-points t0, t1, t2...tm is defined as

Tj(a, t) =

0, if t− a > tj or t < tj−1;

min(t, tj)−max(t− a, tj−1) if t− a ≤ tj and t ≥ tj−1,
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this being the duration of time spent in time band j. In the framework

of Ades and Nokes (1993) the effects of age and time combine additively to

produce the force of infection as λ(a, t) = µi+φj for age band i corresponding

to age a and time band j for time t. The cumulative hazard is then related to

the survivor function according to the age- and time-specific contributions

of the two functions. For a set of age bands i = 1, 2...k and time bands

j = 1, 2...m,

S(a, t) = exp

[
−

(
k∑
i=1

µiAi(a) +
m∑
j=1

φjTj(a, t)

)]
. (3.17)

This model assumes that the time and age effects combine additively and are

independent, i.e., there is no interaction corresponding to a change in age-

specific force of infection over time. Such an assumption could be relaxed by

the incorporation of interaction terms, or equivalently, by specifying age-time

specific bandings. In either case, the model can be fitted using standard GLM

routines. Alternatively, a model with multiplicative age and time effects for

the force of infection would require λ(a, t) = µiφj, which can no longer be

fitted as a standard GLM. In general such models will require bespoke code.

To illustrate the information contained in age-specific current status col-

lected at different time points, a Lexis diagram is displayed in Figure 3.2.

Clearly, if observations were at a single time point (e.g., the year 2000) there

would be no information to differentiate between age and time effects.
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Figure 3.2: Lexis diagram of individual exposure by age and time. Circles
denote time of observation (between 1991 and 2008), solid are infected, hol-
low uninfected. Age bands with cut-points 0, 5, 15, 30 and 45, and time
bands with cut-points 1960, 1980 and 2000 are shown on the figure.

Using the age and time bands in Figure 3.2, an individual born at the

start of 1958 and observed at the end of 2006 would have the following

piecewise constant age-time contributions (in years):

Time
Age

0-5 5-15 15-

30

30-

45

45+ Total

Pre-1960 2 0 0 0 0 2

1960-1980 3 10 7 0 0 20

1980-2000 0 0 8 12 0 20

2000 onwards 0 0 0 3 4 7

Total 5 10 15 15 4 49

Using a parameter for each individual cell corresponds to an age and time-

specific force of infection, whereas using row and column totals would imply

independence. Note that there is only information available to estimate age
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and time interactions where data are available; for instance, in the example

above no individuals were of age 30-45 or 45+ prior to 1960, nor of age 45+

in 1960-1980; therefore the force of infection in these bandings would have to

be extrapolated from other time periods or age bands. Note that although

no information on the interaction is provided outside the range of the data,

there is however a restriction on the upper bound that the FOI can take,

as the FOI in the pre-survey period must be consistent with the observed

prevalence, which should not decrease with increasing exposure time.

Some thought is required as to whether the temporal effect or the rela-

tive effect of age is assumed constant outside the range of the data. In the

following, models are considered in terms of a time-specific FOI λ0(t) at a

baseline age a0 and a function for age-specific modifications to the baseline

hazard, which may be independent of time, or allow for interactions within

the survey period. Within this framework the age-specific FOI can be esti-

mated along with any changes in this pattern during the survey, and subject

to the assumption of constant age effects outside the survey period, historical

changes in the FOI can be considered. Therefore λ(a, t) = λ0(t) + D(a, t),

where D(a, t) is the time-specific additive difference in the FOI at age a vs.

age a0 (and D(a0, t) = 0), giving

S(a, t) = exp

[
−
∫ a

0

(λ0(t− a+ u) +D(u, t− a+ u)) du

]
, (3.18)

which may be fitted as a piecewise constant model using standard GLM

routines. The general form for multiplicative age- and time-specific differ-

ences in the FOI, with R(a, t) the ratio in the FOI at age a vs. age a0 (and

R(a0, t) = 1) is

S(a, t) = exp

[
−
∫ a

0

λ0(t− a+ u)R(u, t− a+ u) du

]
, (3.19)

the piecewise constant form of which cannot be fitted using standard GLM

packages.

The components of these models may be split further into main effects

for time and age and a separate age-time interaction. This would be math-

ematically equivalent to the models in equations 3.18 and 3.19 (any set of

estimates from one model can be transformed to another) but with a different
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interpretation of the parameters. More importantly, this specification allows

for the necessary constraint that there is no age-time interaction outside the

range of the data.

Careful consideration is needed as to whether age and time effects are

independent, and whether they combine additively or multiplicatively, as

decisions on the latter will produce different estimates for the independent

models. This can of course be assessed by comparing the model fit under

additive and multiplicative assumptions. However, models that include the

full set of estimable age-time interactions are saturated in a sense, as there

is a parameter for every combination of the age and time bands. Estimates

of the proportion susceptible will then be the same for both the additive and

multiplicative model, as will the FOI within the range of the survey.

Another consideration is that the multiplicative model, in which age-time

contributions are exponentiated to obtain the FOI, is constrained to have

a positive FOI, but the additive model is not. Additive models therefore

permit negative values for the FOI where prevalence decreases with time

at risk within an age or age-time banding. The likelihood of this occurring

increases with model complexity, as with a large number of age/time bands

or interactions it becomes more likely that observed prevalence is not strictly

increasing for all age-time combinations. Piecewise constant models for age

alone can be constrained so that the force of infection for each age band

i is non-negative; however, constraining the sum of age-time contribution

parameters in the framework of Ades and Nokes (1993) is not supported by

most statistical software packages or optimisation routines. It can of course

simply be taken that negative estimates of the FOI are equivalent to zero, but

this issue also affects model fit statistics. In particular, allowing violations

of monotonically increasing prevalence with time at risk in additive models

but not multiplicative ones could skew comparisons of the two model types

in favour of additive models.

3.2.4 Parametric models

Parametric forms for the force of infection can be useful in that they require

fewer parameters to model a particular shape compared to the step-wise

changes of a piecewise constant model, particularly if expert knowledge in-
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dicates that a particular pattern in the age- or time-specific FOI is likely.

Some choices of parametric function can provide a certain degree of flexibil-

ity in addition to easily interpretable quantities: the exponentially damped

line rises to a peak before tailing off to some constant level (Farrington,

1990). This is a likely pattern for childhood infections, and the parameter

values determine the size of the peak, how long this period of elevated risk

extends for, and the level of risk that remains in adulthood. A selection of

parametric shapes are shown in Table 3.1 and Figure 3.3.

Table 3.1: A selection of parametric hazard functions discussed in Farrington
(1990) and Ades and Nokes (1993).

Name Function Values in figure 3.3

Exponential exp(−a− bt) a = 0.8, b = 0.2
polynomial (1)

Exponential exp(−a− bt− ct2) a = 0.9, b = 0.1,
polynomial (2) c = 0.05

Exponentially (at− c) exp(−bt) + d, a = 0.5, b = 0.45,
damped line b ≥ 0 c = 0.025, d = 0.025

Gompertz function a exp[− exp(−b(t− c))] + d, a = 0.15, b = 0.5,
a, d > 0 c = 10, d = 0.01

Symmetric logistic a/[1 + exp(−b(t− c))] + d, a = 0.15, b = 0.5,
a, d > 0 c = 10, d = 0.01

These functions may be deemed epidemiologically plausible for certain

applications, but in the absence of such knowledge, or more complex pat-

terns of risk according to age or time, might be too restrictive to capture

the true shape of underlying hazard. Changes over time may be particu-

larly unpredictable: more than one peak may occur, or a peak, then decline,

followed by a later, steady rise, or any other shape. It will then become

increasingly difficult to find a smooth function that will fit the data well and

still have any sensible interpretation. Polynomial or fractional polynomial

models may provide a good fit to the data (Royston, 2000), but the inter-

pretation of parameters beyond a linear trend is difficult. There is also the

difficulty of specifying interactions between age and time; Ades and Nokes

(1993) assume independent parametric functions for age and time, but the
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data may indicate that they do not combine independently, and defining a

suitable parametric function in two dimensions may be challenging.
0
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Figure 3.3: A selection of parametric hazard functions discussed in Far-
rington (1990) and Ades and Nokes (1993). EP1 and EP2 : exponential
polynomials of order 1 and 2 (no constant), EDL: exponentially damped
line, Gomp: Gompertz, Sym log : symmetric logistic. The latter two may
rise or fall between two asymptotes.

An alternative is the use of spline functions, piecewise polynomial func-

tions (usually cubic) that can provide any level of flexibility, often including

a smoothing component to avoid over-complexity. Such models have been

applied to current status data, providing a smooth function for the hazard

or cumulative hazard (Namata et al., 2007; Nagelkerke et al., 1999). The

flexibility of these models is appealing, but again can be challenging in two

dimensions.

3.2.5 Covariates for force of infection models

Section 3.2.3 shows how the basic model for age-specific force of infection

may be extended to include changes over time, with the combination of age-

and calendar time-specific time at risk acting as a special type of covariate.

Additional covariates may also be included in the model to allow changes

in the FOI due to other factors. The effects may be assumed to modify
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the FOI multiplicatively at all ages and/or times, which would be described

as proportional hazards in survival analysis terminology. Alternatively, the

covariate may have an interaction with age, time, or both, such that the

effect of the covariate on the FOI can vary. Finally, if the covariate itself

changes over time, then the FOI may be modified according to the time-

varying nature of the covariate. An example of this would be the age of

vaccination or uptake of some other intervention or behaviour. In this case

the FOI can change between the pre- and post-intervention periods defined

by the time-varying covariate (TVC). A TVC may also act proportionally

at all times and ages, or have a varying effect.

For a covariate with proportional hazards, the FOI at age a, time t and

covariate level x is defined as

λ(a, t, x) = λ0(a, t) exp(βx), (3.20)

where λ0(a, t) is the force of infection at the baseline level of x, which should

be set to zero for the baseline FOI to have a sensible interpretation. This

will mean centering continuous variables by subtracting the desired baseline

value. For categorical variables standard practice is to treat the baseline as

zero and other groups via 0/1 indicator variables.

As with the age-time models in section 3.2.3, the multiplicative form of

the covariate model cannot be fitted in the GLM framework, but covariates

with additive effects can. In this case

λ(a, t, x) = λ0(a, t) + βx, (3.21)

again, with the baseline value of x being zero. Considering a model with

piecewise constant age-specific FOI and a covariate x with constant, additive

differences, yields an extension to the survivor function in equation 3.16

S(a, x) = exp[−(λ1A1(a) + λ2A2(a) + ...+ λkAk(a) + βxa)]. (3.22)

Therefore the addition of the covariate is achieved by including a variable

that multiplies the individual’s age, a by the covariate x in the GLM, rather

than simply including x in the list of variables for inclusion as one would for

a logistic regression model.
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Interactions between age and the covariate, or age-specific covariate ef-

fects, in which λ(a, x) = λ0(a) + β(a)x can also be included in a GLM form

by multiplying the covariate by the time spent in age band i rather than the

total time at risk. The survivor function for this model would therefore be

S(a) = exp[−((λ1+β(1)x)A1(a)+(λ2+β(2)x)A2(a)+...+(λk+β(k)x)Ak(a))].

(3.23)

Inclusion of covariates in age-time models follows readily from this within

the additive framework, and may be parameterised with fixed differences in

the FOI at all times and ages, or with interactions with age, time or both by

relating covariates to specific ages and times and the duration spent within

each band. The most general form of covariate model with FOI dependent

on age, time and covariate effect λ(a, t, x) is therefore

S(a, t, x) = exp

[
−
(∫ a

0

λ0(u, t− a+ u, x)du

)]
, (3.24)

with any simpler model obtained by specifying independent contributions

of age and time effects in the FOI, either multiplicatively or additively. As

noted in section 3.2.3, increasing complexity of the model can result in neg-

ative FOI estimates in additive models, and this will become increasingly

likely if complex interactions are considered.

Time-varying covariates (TVC) are a further extension of the above

framework in which the covariate itself changes over time. Current sta-

tus data are by definition collected at a single time point and would not

usually include detailed time-varying information in the way that a cohort

study might, where individuals are followed up over time. TVCs in current

status data are therefore likely to consist of dichotomous changes at a sin-

gle age/time point, rather than detailed histories. An age-specific FOI with

multiplicative effect of a covariate x which changes from 0 to 1 at time ax

can be expressed as

λ(a, ax) =

λ0(a), if a < ax;

λ0(a) exp(β), if a ≥ ax.
(3.25)

The additive model is defined similarly with the parameter β being added to
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the baseline hazard. Again, in a piecewise constant framework the model can

be fitted as a GLM by subdividing the age bands into pre- and post-TVC,

and similarly for age and time models.

3.2.6 Concluding remarks

This chapter has outlined the basic tools for fitting models to binary data,

assessing their adequacy and between-model comparisons. These tools may

be applied to current status data via generalised linear models (GLM) where

age and time effects for the force of infection are modelled as piecewise

constant and combine additively. Some parametric forms are also available

in the GLM framework (such as the Weibull model with complementary

log-log link) but are not considered further. There are a number of reasons

for preferring piecewise constant models here: firstly, parametric models

place restrictions on the assumed shape of the FOI, which would require a

priori knowledge to justify. Secondly, the effect of covariates or age-time

interactions become difficult to parameterise. Thirdly, the focus of later

chapters shifts to heterogeneity; estimates of the FOI are somewhat less

important, but functions for the baseline FOI must be sufficiently flexible so

that they do not distort estimates of the frailty parameters.

It must be borne in mind however that age-time interactions may result

in large numbers of model parameters and model instability where data are

sparse. Resulting standard errors should therefore be checked carefully, and

simpler models considered as required. Another option is Bayesian methods,

under which semi-informative priors could be placed on model parameters to

ensure baseline FOIs or age/time-specific HRs are within a plausible range.

For instance, baseline rates may be low but not effectively zero, HRs within

bounds of 0.1 to 10, and so on; see, for instance Greenland (2001). Of course,

where there is little information to estimate a parameter, results may then

be sensitive to the choice of prior.

GLMs for the force of infection can also include covariates in the piecewise

constant framework, again assuming additivity. Implementation in standard

statistical packages could be advantageous for exploring changes in risk ac-

cording to a number of possible factors, as the inclusion of a candidate

covariate in a model is generally quick to implement. In contrast, multi-
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plicative effects are not possible to parameterise in the form of a GLM, and

must therefore be fitted by maximising the likelihood using bespoke code.

This is not only simply a software limitation: the non-linear combination of

parameters means that a general-purpose specification is difficult to achieve.

Therefore the GLM framework may be used for exploratory purposes, guid-

ing the choice of which covariates to use and how to parameterise them,

before building a multiplicative model if required.
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Chapter 4

Blood-borne viruses in people

who inject drugs: trends and

risk patterns

In this chapter the methods described in chapter 3 for analysing cross-

sectional surveillance data are applied to data collected by the Unlinked

Anonymous Prevalence Monitoring Programme (UAM). These data include

current infection status, time at risk, and a large number of self-reported risk

factors. Careful analysis of the UAM data may help to gain insights into

patterns of risk behaviour, informing public health policy and preventative

interventions. This section also aims to identify key covariates for inclusion

in models of heterogeneity in subsequent chapters.

Prevalence of blood-borne viruses (BBV) according to injecting duration,

the time at risk (analogous to age), calendar time and reported risk factors

is examined via generalised linear models (GLM). Models are then fitted

that incorporate the relationship between prevalence and time at risk via

the force of infection (FOI), as in section 3.2, to understand how the FOI

changes according to injecting duration and calendar time. Finally, models

that incorporate changes in the FOI according to different covariates are

developed.
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4.1 Prevalence and risk patterns of blood-

borne viruses

Between 1990 and 2014, 43,002 participants were sampled with information

on injecting duration and a test result for HCV, HBV or HIV. Of those sam-

pled, 13,383 (31.1%) had participated in the survey before. 32,784 (76.2%)

participants were male. The median age of those taking part in the survey

was 30 (IQR: 25-36, range: 16-68) and the median age at first injecting was

20 (IQR: 17-25, range: 12-63). The median length of injecting duration was

8 years (IQR: 3-14, range: 1-53). The overall mean prevalence of infection

with HCV, HBV and HIV was 42.1%, 20.1% and 1.1% respectively. Ob-

served prevalence was relatively high in those injecting for one year for all

infections, rising from 17.2% for those injecting for 1 year or less to 47.7%

after 10 years for HCV. For HBV, prevalence in first-year injectors was 6.0%,

rising to 22.4% after 10 years; and for HIV prevalence in first-year injectors

was 0.5%, rising to 1.4% after 10 years. 10-year results are for average preva-

lence in those injecting 10-12 years. In the following, all participants were

assumed to have been injecting for at least 1 year, rounding the injecting

duration upwards where the current age is the same as age first injected.

Figure 4.1 shows the prevalence of HCV, HBV and HIV according to

injecting duration in different survey periods. In all periods for HCV and

HBV and more recent periods for HIV, there is a relatively abrupt increase

in prevalence from 0 to 1 year of injecting duration, after which prevalence

increases more slowly. For HCV, prevalence generally decreased over time

from 1990 to 2000 and increased again recently (as noted by Sweeting et al.

(2009b)). After the first year of injecting, HCV prevalence according to

injecting duration has a pattern that is consistent with a constant FOI,

i.e., S(t) = exp(−ct). Conversely, HBV prevalence decreases over the survey

period, and appears less likely to have a constant force of infection, especially

in recent survey years: the flatter trajectory does not seem to suggest a

constant FOI. These observations point to temporal changes in the FOI and

potential interactions between time and injecting duration.

For HIV, patterns of prevalence are more irregular as there are far fewer

infections, although there are some visible patterns. In the earliest 1990-1994

survey period, prevalence was low in those with injecting durations of up to
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7-8 years but increased markedly for longer durations. These individuals

would have been at risk during the peak of the 1980s epidemic, before harm

reduction campaigns were introduced. This peak in infections is evident

in later survey years at longer injecting durations, with prevalence generally

remaining low in those that had not started injecting prior to 1990. However,

prevalence does decrease in this cohort over time, which could potentially

be due to a selection effect from higher mortality rates in those infected

early in the epidemic (see, e.g., Ades and Medley (1994)). Of note is that

prevalence at shorter injecting durations rises somewhat in the surveys from

2005 onwards, indicating an increased risk of infection in newer injectors (as

noted by Hope et al. (2014)).

4.1.1 Generalised linear models for HCV by age and

time

The relationship between injecting duration and calendar time and HCV

prevalence was modelled via a GLM with a logistic link, producing esti-

mated odds ratios (OR) for different covariate levels in comparison to a

baseline category. Injecting duration was categorised with cut-points of 1,

2, 3, 5, 7, 9, 12, 15, 20, 25, 30 and 35. As prevalence is expected to increase

continuously with exposure time, a relatively large number of groups are

required to accurately capture the relationship between injecting duration

and prevalence. The chosen cut-points result in approximately equal-sized

groups up to 15 years (ranging from 3262-5699) but numbers injecting for

longer durations fall rapidly beyond this. Fewer categories were used for

survey year, with a four-year group for the earliest survey years, 1990-1993,

then three-year groups subsequently: 1994-1996, 1997-1999 ... 2012-2014;

again, each group is of roughly equal size (4500-6359).

Table 4.1 shows resulting model coefficients for a GLM with logistic link

fitted to the HCV prevalence data, with main effects for injecting duration

(baseline 5-6 years) and survey period (baseline 2006-2008). The constant

term for log odds in the baseline category is -0.79 (95% CI -0.87, -0.70)

indicating HCV prevalence of around 31% in those injecting for 5-6 years in

survey years 2006-2008. As expected, the ORs show a monotonic increase

in prevalence with injecting duration. Risk in the first year of injecting is
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Figure 4.1: Prevalence of HCV, HBV and HIV by injecting duration in differ-
ent survey periods, point estimates and 95% binomial confidence intervals.
Injecting durations are grouped at longer durations to maintain adequate
size groups, and durations longer than 35 years are omitted for clarity.
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obviously high, with the OR vs. 5-6 years indicating only around half the

odds (0.44) of infection at 1 year. The effect for time is more interesting,

with higher prevalence in 1990-1993 vs. 2006-2008 (OR=1.57), followed by

a possible decline (OR=0.93 for 2000-2002); then a further rise in recent

years (OR=1.27 for 2012-2014). This pattern was noted by Sweeting et al.

(2009b), who found a similar pattern after adjusting for additional covariates

and the imperfect sensitivity of earlier tests. The true prevalence in early

survey years is likely to be higher than indicated by the ORs in Table 4.1

due to imperfect sensitivity.

Table 4.1: Model coefficients for injecting duration and survey period, main
effects model fitted to HCV data, exponentiated to give odds ratios (ORs)
(except constant).

OR 95% CI Z-val p-val

Injecting duration
1 0.44 0.39, 0.49 -15.39 <0.001
2 0.54 0.48, 0.61 -10.25 <0.001
3-4 0.74 0.67, 0.82 -6.10 <0.001
5-6 1 (ref)
7-8 1.28 1.16, 1.41 5.00 <0.001
9-11 1.66 1.52, 1.81 11.22 <0.001
12-14 2.10 1.92, 2.31 15.71 <0.001
15-19 2.89 2.64, 3.16 23.10 <0.001
20-24 4.22 3.79, 4.69 26.40 <0.001
25-29 5.72 4.94, 6.62 23.47 <0.001
30-34 6.76 5.47, 8.36 17.66 <0.001
35+ 9.74 6.83, 13.90 12.56 <0.001

Survey period
1990-1993 1.57 1.40, 1.77 7.56 <0.001
1994-1996 1.04 0.95, 1.14 0.89 0.376
1997-1999 0.99 0.91, 1.08 -0.20 0.845
2000-2002 0.93 0.86, 1.00 -1.86 0.063
2003-2005 1.18 1.09, 1.28 3.94 <0.001
2006-2008 1 (ref)
2009-2011 1.19 1.09, 1.29 4.01 <0.001
2012-2014 1.27 1.16, 1.38 5.49 <0.001

Constant -0.79 -0.87, -0.70 -18.21 <0.001
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The resulting deviance from the main effects model presented in Table

4.1 was 962 on 768 degrees of freedom, which indicates that the model fit

is not quite satisfactory; one would hope for the deviance to be roughly

equal to the degrees of freedom (section 3.1.3). Including interaction terms

for injecting duration category and survey period provides an indication of

whether the lack of fit is due to systematic changes in the relationship be-

tween prevalence and injecting duration according to survey period. The

interaction model gave a deviance of 730 on 692 degrees of freedom, which

is an acceptable fit. However, this model uses 117 parameters and only a

handful of interaction terms are significant, so it is rather inefficient. Figure

4.2 shows the observed data by year and injecting duration and the model

fit of the main effects and interaction models. In some places the interaction

model is clearly performing better, particularly between 1992-1998. How-

ever, the interaction model does not look as if it provides a better fit to

the data for later years. This is further borne out by plots of the residual

deviances, shown in Figure 4.3. There appear to be some patterns to the

residuals between 1990-1998, with something of a downward trend for 1992

for injecting duration between 1-18 years vs. a sharp upward trend in 1998.

A runs test indicated non-randomness of residuals across injecting duration

for the main effects model (p = 0.007), although not for the interaction model

(p = 0.260). In subsequent years both models have a fairly random scatter.

This is of note, as many key covariates are only available from 2000, so the

interaction may not be necessary for covariate models that only use more re-

cent data. Finally, Figure 4.4 shows histograms and quantile-quantile (QQ)

plots of the residuals from main effect and interaction models. Both have

an approximately normal distribution, but the main effects model has vari-

ance greater than 1 and both models exhibit divergence from the theoretical

distribution at the tails.

Re-fitting the models to data from 2000 onwards, the deviance for the

main effects model is 659 on 601 degrees of freedom and the interaction model

555 on 557 degrees of freedom; a moderately good fit for the main effects and

very good for the interaction model. However, both models still show some

visible patterns in the residuals, particularly for those injecting for less than

10 years in the year 2000, and some extreme outliers. Although the overall

fit is better for the interaction model, the most extreme outliers generally
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occur in both models. Figures 4.5, 4.6 and 4.7 show observed/predicted

HCV prevalence, deviance residuals by injecting duration and calendar time

and the distributions of residuals respectively under the main effects and

interaction model for data from 2000 onwards.
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Figure 4.2: Observed and predicted HCV prevalence by injecting duration and survey year; main effects of injecting duration
and calendar time, and interaction model. 95% binomial confidence intervals are displayed around the observed prevalence.
Note that testing for HCV was only conducted for a subset of participants in 1992, 1994 and 1996 prior to 1998.
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Figure 4.3: Deviance residuals by injecting duration and survey year from main effects and interaction models fitted to
HCV prevalence data. Reference lines are the 2.5/97.5th and 0.1/99.9th percentiles of the standard normal distribution.
Note that testing for HCV was only conducted for a subset of participants in 1992, 1994 and 1996 prior to 1998.
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Figure 4.4: Distributions of deviance residuals from main effects and interac-
tion models fitted to HCV prevalence data. Histograms with normal density
overlaid and quantile-quantile plots.
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Figure 4.5: Observed and predicted HCV prevalence from 2000 onwards by injecting duration and survey year; main effects
of injecting duration and calendar time, and interaction model. 95% binomial confidence intervals are displayed around the
observed prevalence.
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Figure 4.6: Deviance residuals by injecting duration and survey year from main effects and interaction models fitted to
HCV prevalence data from 2000 onwards. Reference lines are the 2.5/97.5th and 0.1/99.9th percentiles of the standard
normal distribution.
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Figure 4.7: Distributions of deviance residuals from main effects and interac-
tion models fitted to HCV prevalence data from 2000 onwards. Histograms
with normal density overlaid and quantile-quantile plots.

4.1.2 Age and time patterns for HBV infection

The age and time models from section 4.1.1 were fitted to the data on HBV

infection. The constant term (-2.44) indicated HBV prevalence of 8% in

those injecting for 5-6 years in survey years 2006-2008. The ORs for inject-

ing duration from the main effects model follow a broadly similar pattern to

HCV, but are more extreme for longer injecting durations, although the con-

stant (logit prevalence at baseline) is lower (Table 4.2. The temporal effect

is very different though, with a much greater risk in 1990-1993 compared

to 2006-2008 (OR=3.94) and subsequently decreasing; instead of the ORs

increasing again for more recent survey years, the ORs continue to decline

(0.63 in 2012-2014). Figure 4.8 shows observed and predicted prevalence

from the main effects and age/time interaction models.

The deviance of the main effects model was 1295 on 919 degrees of free-

dom, which is somewhat inadequate. The interaction model provided a sig-
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nificantly better overall fit than the main effects model (likelihood ratio test

χ2 = 182.4 on 77 degrees of freedom, p < 0.0001), but in terms of absolute

fit was also inadequate, with a deviance of 1113 on 842 degrees of freedom.

Note that the number of observations is larger for the HBV data, which has

been collected every year since the inception of the survey. Similarly to the

HCV data, much of the lack of fit occurs in data from earlier survey peri-

ods, with both models fitting particularly badly for 1990 and 1991, with a

downward trend in residuals according to injecting duration for 1990 and an

upward trend for 1991 (Figure 4.9). Runs tests of deviance residuals across

injecting duration indicated non-randomness in the years 1990 (p < 0.001),

1999 (p = 0.015) and 1999 (p = 0.025) for the main effects model. From

2000 onwards there was less evidence of non-randomness, with an overall

p-value of 0.076 for the main effects model. Figure 4.10 shows histograms

and quantile-quantile (QQ) plots of the residuals from main effect and inter-

action models. Both have an approximately normal distribution, although

there is an apparent spike in the distribution of residuals for the main effects

model that is not present in the interaction model. Further investigation

of the distribution showed no specific pattern in the binomial data (for in-

stance, small counts of 1 or 2) or covariates associated with the spike: the

distribution is simply somewhat lumpy.

Marked differences between one year and the next cannot be captured

by broad categories for temporal effects whether an interaction is included

or not. The only alternative would be to include individual year effects,

although it seems unlikely that underlying prevalence would change so

markedly in successive years; more likely, there are substantial differences

in the sampling frame and survey methodology in the earlier years of the

survey.

Restricting to 2000 onwards as before results in a deviance of 785 on 600

degrees of freedom for the main effects model and 710 on 556 degrees of

freedom for the interaction model; both models providing a somewhat inad-

equate fit to the data. Examination of the residuals reveals some patterns

in specific years of the survey and some extreme outliers, rather than sys-

tematic deviations that persist across different years. These outliers occur

both in the main effects and interaction models, and therefore correspond to

variability in prevalence within a particular time or injecting duration band.
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As the categories are already relatively small, it seems reasonable to consider

this excess variability as overdispersion rather than a failure to adequately

describe the structural part of the model. Such factors could of course be due

to changes in risk factors in those recruited in particular years, and therefore

could be captured if other risk information from the questionnaire data is

included in the model.

Table 4.2: Model coefficients for injecting duration and survey period, main
effects model fitted to HBV data, exponentiated to give odds ratios (ORs)
(except constant)

OR 95% CI Z-val p-val

Injecting duration
1 0.42 0.37, 0.49 -11.71 <0.001
2 0.63 0.55, 0.74 -6.01 <0.001
3-4 0.83 0.73, 0.94 -2.99 0.003
5-6 1 (ref)
7-8 1.33 1.18, 1.50 4.65 <0.001
9-11 1.85 1.66, 2.06 11.18 <0.001
12-14 2.64 2.37, 2.95 17.19 <0.001
15-19 3.99 3.59, 4.44 25.58 <0.001
20-24 5.62 5.00, 6.31 29.15 <0.001
25-29 8.36 7.27, 9.62 29.74 <0.001
30-34 13.31 11.03, 16.07 26.97 <0.001
35+ 19.62 14.78, 26.06 20.56 <0.001

Survey period
1990-1993 3.94 3.57, 4.35 27.14 <0.001
1994-1996 2.06 1.86, 2.27 14.27 <0.001
1997-1999 1.56 1.41, 1.73 8.53 <0.001
2000-2002 1.66 1.50, 1.84 9.79 <0.001
2003-2005 1.43 1.28, 1.59 6.55 <0.001
2006-2008 1 (ref)
2009-2011 0.69 0.61, 0.77 -6.21 <0.001
2012-2014 0.63 0.56, 0.70 -7.91 <0.001

Constant -2.44 -2.55, -2.32 -42.26 <0.001
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Figure 4.8: Observed and predicted HBV prevalence by injecting duration and survey year; main effects of injecting duration
and calendar time, and interaction model. 95% binomial confidence intervals are displayed around the observed prevalence.
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Figure 4.9: Deviance residuals by injecting duration and survey year from main effects and interaction models fitted to
HBV prevalence data. Reference lines are the 2.5/97.5th and 0.1/99.9th percentiles of the standard normal distribution.
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Figure 4.10: Distributions of deviance residuals from main effects and in-
teraction models fitted to HBV prevalence data. Histograms with normal
density overlaid and quantile-quantile plots.

4.1.3 Age and time patterns for HIV infection

Finally, GLMs for age and time were fitted to the HIV data. Prevalence is far

lower than the other two infections, so results were far less precise; further,

the categorisation used previously leads to over-fitting (data not shown).

Broader categories were therefore used, with survey period grouped into 5-

year intervals (1990-1994 etc.) and injecting duration as 1, 2-4, 5-9, 10-14,

15-19, 20-34 and 35+, with 2005-2009 and 5-9 as the baseline groups. Table

4.3 shows that the prevalence in the baseline category of 5-9 years injecting

in survey years 2005-2009 was around 0.7%. The odds of infection with HIV

at 0-1 and 2-4 years injecting were not significantly less than 5-9 years; and

the increase in odds with injecting duration was not quite monotonic, even

with the broader categories.

As with the other infections the OR for the earliest period, 1990-1994,

was highest at 1.21 (although the p-value was 0.139) followed by a decline in
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Table 4.3: Model coefficients for injecting duration and survey period, main
effects model fitted to HIV data, exponentiated to give odds ratios (ORs)
(except constant). Categories are broader than HCV/HBV due to sparse
data.

OR 95% CI Z-val p-val

Injecting duration
1 0.75 0.47, 1.21 -1.18 0.240
2-4 0.72 0.48, 1.08 -1.58 0.113
5-9 1 (ref)
10-14 2.62 1.95, 3.53 6.36 <0.001
15-19 4.20 3.10, 5.69 9.30 <0.001
20-34 3.95 2.91, 5.37 8.77 <0.001
35+ 4.61 1.97, 10.78 3.52 <0.001

Survey period
1990-1994 1.21 0.94, 1.57 1.48 0.139
1995-1999 0.62 0.47, 0.82 -3.40 0.001
2000-2004 0.72 0.55, 0.95 -2.32 0.020
2005-2009 1 (ref)
2010-2014 0.61 0.46, 0.81 -3.44 0.001

Constant -4.92 -5.20, -4.63 -34.06 <0.001
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prevalence before increasing again in 2005-2009; although the odds of HIV

were then lower for 2010-2014 vs. 2005-2009 (OR=0.61). The deviance of

the main effects model was 875 on 928 degrees of freedom, indicating that the

model may be over-fitting somewhat. Examination of the deviance residuals

(Figure 4.12) indicates that both the main effects and the interaction models

tend to have small, negative deviance residuals for most data points, with a

smaller number of extreme positive outliers. This is due to the sparsity of

the data; most HIV counts are zero and the model produced overestimates of

prevalence, but for non-zero counts the model produced marked underesti-

mates. Neither a main effects or interaction model can capture this (short of

specifying a parameter for every survey year/injecting duration combination

in the saturated model); therefore although the interaction model appar-

ently produces a better fit to the data (likelihood ratio test χ2 = 93.5 on

24 degrees of freedom, p < 0.0001) the extra parameters do not materially

improve the model.

Figures 4.11, 4.12 and 4.13 show observed and predicted prevalence by in-

jecting duration and time, deviance residuals and their distributions respec-

tively. Runs tests of deviance residuals across injecting duration strongly

indicated non-randomness, with p-values of less than 0.001 for both main

effects and interaction models. Clearly assumptions of asymptotic normality

do not apply due to the sparsity of the data, and there is little that can

be done about this, short of specifying a far simpler model; the information

provided in terms of differences in HIV prevalence according to injecting

duration and time is far lower than for HCV or HBV.
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Figure 4.11: Observed and predicted HIV prevalence by injecting duration and survey year; main effects of injecting duration
and calendar time, and interaction model. 95% binomial confidence intervals are displayed around the observed prevalence.
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Figure 4.12: Deviance residuals by injecting duration and survey year from main effects and interaction models fitted to
HIV prevalence data. Reference lines are the 2.5/97.5th and 0.1/99.9th percentiles of the standard normal distribution.
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Figure 4.13: Distributions of deviance residuals from main effects and in-
teraction models fitted to HIV prevalence data. Histograms with normal
density overlaid and quantile-quantile plots.

4.1.4 Generalised linear models with covariates

In this section the models for injecting duration and survey year in section

4.1.1 are extended to include additional covariates, based on the information

provided in the UAM questionnaire. Including data on participant charac-

teristics and injecting behaviour can provide insights into risk factors for

infection and may also help to account for overdispersion in prevalence ac-

cording to injecting duration and time, which was observed in sections 4.1.1

to 4.1.3. If survey participants vary in characteristics over time, which is

quite possible in the UAM data as the service providers sampled vary from

year to year, then accounting for these changes will reduce variation in the

temporal component of the model. This will then provide a better indication

of underlying trends in the overall risk of infection.

Available covariates include age, gender and government office region, the

latter consisting of East of England (EE), London, South East (SE), South
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West (SW), West Midlands (W Mids), North West (NW), Yorkshire and the

Humber, East Midlands (E Mids), North East (NE) and Wales. SE was taken

as the baseline category for region; London and NW had the largest sample

sizes but also had higher prevalence of HCV and HIV, with lower prevalence

in more rural regions, and SE somewhere in between. Including age as

a covariate requires some caution as it is highly correlated with injecting

duration, with age at first use generally being in early adulthood. Age was

therefore parameterised in terms of age first injected, which results in a model

mathematically equivalent to including current age (if injecting duration

and time effects are included), but provides parameter estimates that are

more easily interpreted. In order to continue model assessment in terms of

categorical variables, age at first use (AAFU) was categorised as < 18, 18-24

and 25+. 93% of participants reported AAFU as 30 or below, so there is

little scope for further investigation of differences at older ages.

In addition to the demographic variables above, information on risk be-

haviour was considered. These variables include ever received works, i.e.,

used drug equipment and paraphernalia, principally needles or syringes, from

another drug user; ever used a needle exchange and age first used; ever been

in prison and age first imprisoned; number of days injected in the last 28

days; and sexual activity/risk in the last year including number of male and

female partners and condom use (always, sometimes and never).

The variables used in the analysis were coded as follows. Ever received

works is binary. Use of needle exchange is categorised as used from the first

year of injecting, used at some point following first year of injecting, and

never. Imprisonment is categorised as never imprisoned, first been to prison

before started injecting, and first been to prison after started injecting. Days

injecting is categorised as injecting for 14 or more days of the last 28, or fewer.

Variables for sexual risk are defined as two or more partners vs. none or one,

incomplete condom use (sometimes/never vs. always), and men who have

sex with men (MSM), defined as one or more male partners for males.

Many of these variables are only available from the year 2000 onwards, as

the UAM questionnaire has evolved and expanded over time, and therefore

analyses are restricted to these years, leaving 25280 observations available

for analysis. There are also missing data for a number of responses. Table

4.4 shows the available data for each of the covariates, and overall. The
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amount of missing data is less than 5% for most of the variables, but over

20% are missing for number of partners and condom use, meaning that over

a quarter of the observations would be discarded in a complete case analysis.

Age, sex and region are complete for all observations.

Table 4.4: Available data for key covariates in the UAM data from 2000
onwards, percentage of complete data from 25280 observations.

Variable % complete
Ever received works 98.8%

Needle exchange 99.3%
Prison 97.5%

Number of partners 79.9%
Condom use 78.0%

MSM 96.9%

Complete cases 74.4%

Generalised linear models (GLM) with a logit link were then fitted to the

data from 2000 onwards with complete data for all of the variables above.

Of the three infections, 4 observations were missing HBV test results, so

these were excluded also to give 17116 observations with no missing data.

Variables were considered without interactions in a 3-stage approach: the un-

adjusted effect of each variable on prevalence; an intermediate stage where

injecting duration and survey period are adjusted for; and a full multivari-

able model including all covariates. The intermediate stage was performed

as a check to see if each covariate in isolation was confounded with inject-

ing duration and/or survey year, although these results are only discussed

where of special interest and the main focus is on the univariable and full

multivariable results in the following.

4.1.5 Risk factors for HCV infection

Results for HCV from are shown in tables 4.5 and 4.6. Odds ratios (OR) for

injecting duration and survey year do not change much between univariable

and multivariable (MV) analyses, although there is slight attenuation in the

injecting duration-specific ORs. There was a strong effect of region, with

East of England, SW, W Mids, E Mids, NE and Wales having lower odds
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of HCV compared to SE England; but higher risks in London (OR=1.34,

MV) and NW (OR=1.77, MV). Results were generally similar for univari-

able and multivariable analyses. Age at first use shows an increased risk

for <18 (OR=1.35) and a slight decrease for 25+ (OR=0.95) compared to

18-24 in univariable analyses; however, after adjusting for other covariates

the relationship is almost exactly reversed, with higher risk for 25+ and a

slight decrease for <18. The difference is largely due to adjusting for in-

jecting duration, as in the univariable analysis those that began injecting at

a later age will, on average, have shorter injecting durations. Females had

no difference in risk for univariable analysis but higher risk in multivariable

analyses; this is again due to adjusting for injecting duration, as females tend

to have shorter injecting duration (median 6 vs. 9 for males) but comparable

prevalence levels.

Ever receiving works from another PWID was associated with a higher

risk of HCV infection, with an OR of 1.73, which persisted after adjusting

for other variables. Needle exchange use showed some interesting univariable

results, with an increased risk of HCV (OR=1.65) for those beginning to use

a needle exchange after 1 year vs. starting in their first year of injecting,

but a decreased risk in those that had never used a needle exchange. In

the multivariable model, there was no difference in using a needle exchange

before or after one year of injecting. Some care is required in the interpreta-

tion of these results however, as 1st year injectors must by definition either

start using needle exchange in their first year or be classed in the survey

as “never”. The OR for never using a needle exchange is rather counterin-

tuitive; a possible explanation is that this group are less frequent injectors

or otherwise have lower levels of opiate dependence. However, the result

did not change in the multivariable analysis, which includes information of

frequency of injecting and other measures of the potential “riskiness” of the

individual. In fact, the number of days injecting in the last month showed

little association in multivariable analyses.

Imprisonment was a significant risk factor, with ORs of 1.82 and 2.13

for having been to prison before or after started injecting in the multivari-

able analysis. The similarity of the ORs indicates that there may be little

difference in the timing of first prison sentence. Sexual behaviour variables

were difficult to interpret: there was no significant difference in the number
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of partners but, strangely, a protective effect for incomplete condom use.

Although sexual transmission is thought to be rare (Balogun et al., 2003),

more risky sexual behaviour might be thought to be correlated with more

risky injecting behaviour, rather than the reverse. Being a MSM was asso-

ciated with an increase in risk; although sexual transmission is uncommon

in general, the MSM population does have a higher risk of HCV infection

due to certain high-risk sexual practices and HIV co-infection (van de Laar

et al., 2007). Model fit for the multivariable model cannot be assessed in

the same way as section 4.1.1 as the deviance relies on a sufficient number of

binomial observations for each data point. The aggregated data for the anal-

ysis above consist of 14623 combinations of the explanatory variables with

87% consisting of a single observation, and are therefore practically binary.

The Hosmer-Lemeshow statistic based on deciles of the linear predictor gives

a p-value of 0.308, indicating no evidence of a lack of fit; however, the test

is quite sensitive to the chosen percentiles; with 15 equal-size groups the

p-value is 0.033.

Having added covariates to the main effects model for injecting duration

and survey period in section 4.1.1, the presence of interactions was assessed,

starting with the interaction between injecting duration and survey period

to determine whether the interaction observed in section 4.1.1 was still nec-

essary after accounting for other risk factors. The likelihood ratio (LR) test

gave a p-value of 0.055, although model selection scores indicated that the

model may be over-parameterised, with an AIC score of 19574.7 for the main

effects model vs. 19602.7 with the addition of interactions.

Interactions between the other covariates and injecting duration and sur-

vey year were also assessed. Such interactions could arise from a variety of

causes, such as changes in prevalence over time in a particular region, dif-

ferences in risk pattern according to injecting duration in males and females

due to different risk behaviours, and so on. For injecting duration, there

were significant interactions with age at first use and prison, and possibly

ever receiving works. For survey year, there were significant interactions

with region, gender, ever receiving works and use of needle exchange. To

summarise the key findings, first-year injectors that began injecting before

the age of 18 had an increased risk of infection (OR=2.04, 95%CI 1.19-3.50),

as well as first-year injectors that had been to prison before starting injecting
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Table 4.5: Univariable and multivariable results from logistic regression
model for HCV and reported risk factors. Odds ratios and 95% confidence
intervals

Variable Univariable Multivariable

Injecting duration 0-1 0.48 (0.41, 0.57) 0.50 (0.42, 0.59)
2 0.57 (0.48, 0.67) 0.60 (0.50, 0.71)

3-4 0.82 (0.71, 0.94) 0.82 (0.71, 0.95)
5-6 1 (ref) 1 (ref)
7-8 1.34 (1.16, 1.54) 1.29 (1.11, 1.49)

9-11 1.75 (1.54, 1.99) 1.60 (1.40, 1.83)
12-14 2.21 (1.93, 2.52) 1.93 (1.68, 2.23)
15-19 3.18 (2.79, 3.61) 2.67 (2.31, 3.07)
20-24 4.94 (4.24, 5.75) 4.16 (3.52, 4.91)
25-29 6.46 (5.22, 8.00) 5.47 (4.33, 6.89)
30-34 8.87 (6.46, 12.18) 7.62 (5.45, 10.65)

35+ 9.29 (5.57, 15.49) 8.02 (4.68, 13.74)

Survey period 2000-2002 0.81 (0.74, 0.89) 0.93 (0.84, 1.03)
2003-2005 1.15 (1.04, 1.26) 1.15 (1.03, 1.28)
2006-2008 1 (ref) 1 (ref)
2009-2011 1.29 (1.17, 1.42) 1.23 (1.10, 1.37)
2012-2014 1.55 (1.40, 1.71) 1.53 (1.37, 1.72)

Region East of England 0.54 (0.46, 0.64) 0.56 (0.47, 0.67)
London 1.47 (1.30, 1.65) 1.34 (1.17, 1.53)

South East 1 (ref) 1 (ref)
South West 0.51 (0.45, 0.57) 0.54 (0.47, 0.62)

West Midlands 0.45 (0.38, 0.52) 0.49 (0.41, 0.58)
North West 1.71 (1.52, 1.93) 1.77 (1.55, 2.02)

Yorkshire and H 1.40 (1.18, 1.66) 1.09 (0.91, 1.32)
East Midlands 0.76 (0.67, 0.87) 0.83 (0.72, 0.96)

North East 0.34 (0.30, 0.38) 0.48 (0.42, 0.56)
Wales 0.44 (0.37, 0.52) 0.43 (0.36, 0.51)

Age at first use <18 1.35 (1.25, 1.45) 0.93 (0.85, 1.02)
18-24 1 (ref) 1 (ref)

25+ 0.95 (0.88, 1.03) 1.29 (1.18, 1.41)

Gender Male 1 (ref) 1 (ref)
Female 1.00 (0.93, 1.07) 1.50 (1.38, 1.64)
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Table 4.6: Continued from 4.5: Logistic regression model results for HCV.

Variable Univariable Multivariable

Ever rec’d works No 1 (ref) 1 (ref)
Yes 1.73 (1.63, 1.84) 1.67 (1.56, 1.80)

Needle Started 1st year 1 (ref) 1 (ref)
exchange Started >1 yr 1.65 (1.55, 1.76) 1.00 (0.93, 1.08)

Never 0.61 (0.49, 0.77) 0.71 (0.56, 0.92)

Days injecting <14 days/mo 1 (ref) 1 (ref)
per month 14+ days/mo 0.88 (0.83, 0.94) 1.03 (0.96, 1.11)

Prison Never imprisoned 1 (ref) 1 (ref)
Prison before injecting 2.61 (2.40, 2.83) 1.82 (1.65, 2.01)

Prison after injecting 2.18 (2.01, 2.35) 2.13 (1.95, 2.34)

Number of 0 or 1 partner 1 (ref) 1 (ref)
partners 2+ partners 0.86 (0.80, 0.91) 0.96 (0.90, 1.04)

Condom use Always 1 (ref) 1 (ref)
Sometimes/never 0.78 (0.73, 0.84) 0.79 (0.73, 0.86)

MSM No 1 (ref) 1 (ref)
Yes 1.26 (1.03, 1.54) 1.25 (0.99, 1.57)

(OR=3.14, 95% CI 1.82-5.42). Estimates for interactions with other inject-

ing durations were generally non-significant and had no particular pattern

according to injecting duration.

The interaction between survey period and region is shown in Figure

4.14 by way of predicted probabilities of HCV infection. The general trend

in SE England is of increasing prevalence over time. Significant interactions

therefore occur for East England, which has less of a trend, and Wales, which

has a higher prevalence in 2000-2002 and increases sharply in 2012-2014

(OR=2.90, 95% CI 1.70-4.93). A number of other regions show significant

differences in individual years, with relatively higher prevalence in W Mids

in 2000-2002, Yorkshire and the Humber in 2003-2005, and NE in 2000-2002;

and lower prevalence in the NW in 2009-2011.

The interaction between gender and survey period showed a further in-

crease in risk of infection in females in 2012-2014 (OR=1.45, 95% CI 1.13-

1.87), but no difference in other periods. Ever receiving works was associated

with increased risk in 2003-2005 (OR=1.26, 95% CI 1.02-1.56) and 2012-2014
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Figure 4.14: Predicted HCV prevalence by region and survey period with
95% confidence intervals, multivariable logistic model adjusting for main
effects of all risk factors and region/survey period interaction. Predictions
are made at baseline levels of other risk factors; e.g., injecting duration 5-6
years.

(OR=1.36, 95% CI 1.08-1.71), with no difference in other periods. Finally,

never using a needle exchange was associated with increased risk in 2000-

2002 (OR=2.03, 95% CI 0.97-4.23), with no difference in other periods.

At the risk of over-complicating the model and its interpretation, there

were also significant interactions between a number of risk factors in addi-

tion to the interactions described above. A base model was specified with

main effects and the survey period/region interaction, which was by far the

strongest, and the addition of interactions for other variables compared to

this model via likelihood ratio tests. Interactions were identified between

region and age at first use (p=0.002), gender (p=0.001), needle exchange

(p=0.004) and prison (p=0.006); and possibly days injecting (p=0.066). All

p-values are for LR tests. p-values for all possible two-way interactions are

shown in Table 4.7.
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Table 4.7: Interactions between risk factors for HCV, likelihood ratio test
p-values for generalised linear model with main effects, region/survey year
interaction and interaction of interest. MSM/female interaction is not de-
fined.

region aafu female erec exch d14 pris part2 cond
aafu 0.002

female 0.001 0.597
erec 0.121 0.942 0.251
exch 0.004 0.889 0.249 0.045
d14 0.066 0.993 0.965 0.359 0.400
pris 0.006 0.838 0.064 0.215 0.101 0.825

part2 0.343 0.457 0.866 0.059 0.054 0.006 0.721
cond 0.524 0.005 0.936 0.100 0.636 0.582 0.536 0.914
msm 0.937 0.906 . 0.977 0.506 0.142 0.222 0.454 0.762

aafu: age at first use, erec: ever received works, exch: needle exchange use,
d14: injected 14 or more days in last month, pris: imprisonment, part2: two or
more sexual partners, cond: condom use, msm: men who have sex with men.

4.1.6 Risk factors for HBV infection

The models described in section 4.1.4 were fitted to the HBV data and are

reported more succinctly in the following. Covariate effects for the main

effects models for injecting duration, survey period and reported risk fac-

tors are displayed in tables 4.8 and 4.9. Region showed a similar pattern

to HCV with somewhat higher prevalence in London (OR=1.24, MV) and

higher in the NW (OR=1.98, MV). In general, the regional differences where

less extreme. Age at first use showed the same pattern as HCV in univari-

able and multivariable results, with higher risk for those starting age 25+

in multivariable analyses. Risk was slightly higher in females (OR=1.26)

and for those that had ever received works (OR=1.24). First use of needle

exchange after the first year of injecting was associated with a small in-

crease in risk compared to uptake in the first year (OR=1.12) and also never

used (OR=1.23) although the latter was not significant. Days injecting per

month and number of partners showed no effect. Ever being imprisoned was

associated with increased risk, but not as high as HCV, with ORs of 1.29

and 1.45 for imprisonment before and after started injecting respectively.

Imperfect condom use showed a slight protective effect compared to always
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using a condom; and MSM had an increase in risk, with an identical OR

to HCV (1.25). It is somewhat surprising that the sexual risk factors did

not play more of a role for HBV, which is much more easily transmitted via

the sexual route than HCV. The goodness of fit for the multivariable model

was unclear; the Hosmer-Lemeshow p-value was 0.071 for deciles of the pre-

dicted probabilities, but again sensitive to the number of groups used; with

15 equal-width groups of the predicted probabilities the p-value was 0.145.

However, neither indicate a severe lack of fit.

After adjusting for other risk factors, the LR test for an interaction be-

tween injecting duration and survey year gave a p-value of 0.061, with AIC

scores preferring the simpler model (13064.4 vs. 13093.0). There were no

significant interactions between injecting duration and other risk factors, but

a number of interactions with survey period, including region (p < 0.001),

gender (p < 0.001), needle exchange (p=0.040) and injecting 14 or more days

per month (p=0.011). Females had a relatively lower risk of HBV infection

in earlier survey periods, with ORs of 0.53 (95% CI 0.40-0.72) for 2000-2002

and 0.61 (95% CI 0.45-0.83) for 2003-2005 vs. 2006-2008; and those injecting

for 14 or more days per month had a higher risk in 2000-2002 (OR=1.55,

95% CI 1.19-2.02) and 2012-2014 (OR=1.40, 95% CI 1.02-1.91). Region and

time again showed the strongest interaction, and is summarised by way of

predicted HBV prevalence in Figure 4.15. SE England, the baseline group,

has a relatively stable trend but somewhat lower prevalence to other regions

in 2000-2002, therefore many regions have a significant interaction for this

period. NW England, East Midlands and West Midlands all have a decline

in prevalence of around two-thirds, and most areas show a general decline;

the trend for the NW appears particularly striking due to the high observed

prevalence in 2000-2002. Some temporal patterns are harder to interpret:

Yorkshire and the Humber for instance had very low prevalence in 2006-

2008 and a sharp increase subsequently.

Table 4.10 shows p-values for interactions between risk factors, adjusted

for all risk factors and the survey period/region interaction. Interactions

with region were again the strongest, with generally little effect for the in-

teraction between other variables. The strongest interaction was for gender

and region, which showed lower prevalence in females for almost all regions

vs. SE England, and markedly so for London (OR=0.54, p = 0.001), NW
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Table 4.8: Univariable and multivariable results from logistic regression
model for HBV and reported risk factors. Odds ratios and 95% confidence
intervals.

Variable Univariable Multivariable

Injecting duration 0-1 0.51 (0.39, 0.66) 0.48 (0.37, 0.64)
2 0.65 (0.49, 0.86) 0.63 (0.47, 0.84)

3-4 0.98 (0.79, 1.22) 0.94 (0.75, 1.17)
5-6 1 (ref) 1 (ref)
7-8 1.16 (0.93, 1.45) 1.17 (0.93, 1.46)

9-11 1.78 (1.47, 2.16) 1.81 (1.49, 2.21)
12-14 2.18 (1.80, 2.65) 2.37 (1.93, 2.90)
15-19 2.99 (2.49, 3.59) 3.26 (2.68, 3.97)
20-24 4.75 (3.91, 5.76) 5.26 (4.26, 6.50)
25-29 7.45 (5.93, 9.38) 9.39 (7.28, 12.11)
30-34 11.61 (8.69, 15.51) 15.33 (11.17, 21.05)

35+ 12.78 (8.30, 19.68) 15.81 (9.98, 25.05)

Survey period 2000-2002 1.37 (1.22, 1.55) 1.57 (1.38, 1.79)
2003-2005 1.36 (1.20, 1.54) 1.37 (1.19, 1.56)
2006-2008 1 (ref) 1 (ref)
2009-2011 0.86 (0.74, 0.99) 0.76 (0.65, 0.88)
2012-2014 0.94 (0.81, 1.08) 0.79 (0.67, 0.93)

Region East of England 0.97 (0.78, 1.20) 0.88 (0.70, 1.11)
London 1.80 (1.54, 2.09) 1.24 (1.05, 1.47)

South East 1 (ref) 1 (ref)
South West 0.85 (0.72, 1.00) 0.84 (0.70, 1.00)

West Midlands 0.38 (0.29, 0.49) 0.46 (0.34, 0.61)
North West 2.30 (1.98, 2.67) 1.98 (1.69, 2.33)

Yorkshire and H 0.70 (0.54, 0.91) 0.70 (0.53, 0.92)
East Midlands 0.72 (0.60, 0.88) 0.84 (0.68, 1.03)

North East 0.53 (0.44, 0.64) 0.81 (0.67, 0.99)
Wales 0.57 (0.45, 0.73) 0.60 (0.46, 0.78)

Age at first use <18 1.30 (1.19, 1.44) 0.84 (0.75, 0.94)
18-24 1 (ref) 1 (ref)

25+ 0.92 (0.83, 1.02) 1.46 (1.29, 1.64)

Gender Male 1 (ref) 1 (ref)
Female 0.88 (0.80, 0.96) 1.26 (1.13, 1.40)
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Table 4.9: Continued from 4.8: Logistic regression model results for HBV.

Variable Univariable Multivariable

Ever rec’d works No 1 (ref) 1 (ref)
Yes 1.52 (1.40, 1.65) 1.24 (1.13, 1.36)

Needle exchange Started 1st year 1 (ref) 1 (ref)
Started >1 yr 1.98 (1.82, 2.15) 1.12 (1.01, 1.23)

Never 1.19 (0.90, 1.58) 1.23 (0.90, 1.67)

Days injecting <14 days/mo 1 (ref) 1 (ref)
per month 14+ days/mo 0.94 (0.86, 1.02) 1.03 (0.94, 1.13)

Prison Never imprisoned 1 (ref) 1 (ref)
Prison before injecting 1.93 (1.72, 2.15) 1.29 (1.14, 1.46)

Prison after injecting 1.60 (1.44, 1.78) 1.45 (1.29, 1.64)

Number of 0 or 1 partner 1 (ref) 1 (ref)
partners 2+ partners 0.89 (0.81, 0.96) 1.07 (0.97, 1.17)

Condom use Always 1 (ref) 1 (ref)
Sometimes/never 0.70 (0.63, 0.76) 0.83 (0.75, 0.92)

MSM No 1 (ref) 1 (ref)
Yes 1.34 (1.04, 1.71) 1.25 (0.95, 1.64)

(OR=0.46, p < 0.001) and E Mids (OR=0.50, p = 0.008).

4.1.7 Risk factors for HIV infection

The models described in section 4.1.4 were fitted to the HIV data, but due

to the low prevalence, have less scope for investigating risk patterns. In-

jecting duration and survey year were grouped into broader categories as in

section 4.1.3. Model results for univariable and multivariable main effects

logistic models are shown in tables 4.11 and 4.12; all estimates presented

subsequently are for the multivariable model.

Interestingly, after adjusting for the covariates on demographics and risk

factors the ORs for injecting durations of 20-34 and 35+ years vs. 5-9 years

show no increase in prevalence (p-values 0.101 and 0.978 respectively). The

attenuation compared to the model in section 4.1.3 largely occurs when

region is adjusted for, with substantial variation in injecting duration by

region. London had the longest median injecting duration at 12 years, com-

pared to an overall median of 9 years and as low as 5 in the NE. These are
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Figure 4.15: Predicted HBV prevalence by region and survey period with
95% confidence intervals, multivariable logistic model adjusting for main
effects of all risk factors and region/survey period interaction. Predictions
are made at baseline levels of other risk factors; e.g., injecting duration 5-6
years.

the regions with the highest and lowest prevalences respectively, so it ap-

pears that the more extreme unadjusted differences in injecting duration are

due, in part, to confounding with region. The only regions with significantly

different HIV prevalence were London, which was far higher than SE Eng-

land (OR=5.31, 95% CI 3.03-9.32) and NE, which was far lower (OR=0.15,

95% CI 0.04-0.68). However, data are too sparse in most regions to estimate

differences with any confidence.

Those that began injecting below the age of 18 had an increased risk

(OR=1.85, 95% CI 1.25-2.73), in contrast to the results for HCV and HBV;

and ever receiving works was associated with higher risk (OR=1.88, 95%

CI 1.32-2.68). The only other significant effects were MSM, which was as-

sociated with a greatly increased risk of HIV infection (OR=4.91 95% CI

2.73-8.85) and condom use, with incomplete use (vs. always used) showing
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Table 4.10: Interactions between risk factors for HBV, likelihood ratio test
p-values for generalised linear model with main effects, region/survey year
interaction and interaction of interest. MSM/female interaction is not de-
fined.

region aafu female erec exch d14 pris part2 cond
aafu 0.005

female 0.000 0.649
erec 0.414 0.962 0.084
exch 0.130 0.470 0.298 0.059
d14 0.145 0.117 0.836 0.212 0.693
pris 0.032 0.096 0.250 0.750 0.024 0.740

part2 0.046 0.374 0.791 0.574 0.256 0.640 0.942
cond 0.037 0.976 0.734 0.348 0.882 0.761 0.014 0.818
msm 0.780 0.129 . 0.623 0.293 0.311 0.024 0.523 0.094

aafu: age at first use, erec: ever received works, exch: needle exchange use,
d14: injected 14 or more days in last month, pris: imprisonment, part2: two or
more sexual partners, cond: condom use, msm: men who have sex with men.

an unexpected and substantial protective effect (OR=0.27 95% 0.19-0.37),

as for HCV and HBV.

After adjusting for other risk factors, the interaction between injecting

duration and survey year was not significant, with a LR test p-value of 0.152.

There were no significant associations for injecting duration and survey year

with risk factor variables, with the lowest p-value being 0.208; Wald tests

were employed as many interactions resulted in zero cells and a differing

number of observations between models. There were just a few significant

interactions between risk factors, with the strongest being between gender

and prison (p=0.012); in males, the baseline group, ORs for being imprisoned

before/after starting injecting were below 1 at 0.62 (95% CI 0.39-0.98) and

0.50 (95% CI 0.31-0.80) respectively; the OR for female vs. males changed

to become protective (OR=0.43, 95% CI 0.21-0.85), but females that had

been to prison had a higher risk, with OR of 2.33 (95% CI 0.93-5.88) and

4.38 (95% CI 1.65-11.62) for imprisonment before or after starting inject-

ing respectively. This could potentially be explained by prostitution, which

would likely increase the risk of HIV infection and possibly imprisonment;

although the number of sexual partners had little influence, nor was there

an interaction with gender (p=0.114).
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Table 4.11: Univariable and multivariable results from logistic regression
model for HIV and reported risk factors. Odds ratios and 95% confidence
intervals.

Variable Univariable Multivariable

Injecting duration 0-1 1.11 (0.48, 2.55) 1.26 (0.53, 3.00)
2-4 1.30 (0.67, 2.53) 1.54 (0.78, 3.03)
5-9 1 (ref) 1 (ref)

10-14 2.48 (1.40, 4.39) 2.10 (1.17, 3.77)
15-19 4.15 (2.37, 7.30) 2.64 (1.46, 4.80)
20-34 4.43 (2.52, 7.79) 1.68 (0.90, 3.14)

35+ 5.14 (1.18, 22.49) 1.02 (0.22, 4.82)

Survey period 2000-2004 0.68 (0.47, 0.98) 0.53 (0.36, 0.78)
2005-2009 1 (ref) 1 (ref)
2010-2014 0.73 (0.49, 1.09) 0.97 (0.63, 1.48)

Region East of England 0.93 (0.38, 2.27) 1.18 (0.47, 2.93)
London 4.94 (2.89, 8.45) 5.31 (3.03, 9.32)

South East 1 (ref) 1 (ref)
South West 0.50 (0.23, 1.11) 0.60 (0.27, 1.33)

West Midlands 0.36 (0.10, 1.23) 0.43 (0.12, 1.50)
North West 0.92 (0.46, 1.82) 1.12 (0.55, 2.27)

Yorkshire and H 0.18 (0.02, 1.34) 0.19 (0.02, 1.45)
East Midlands 0.72 (0.32, 1.64) 0.83 (0.36, 1.92)

North East 0.11 (0.02, 0.46) 0.15 (0.04, 0.68)
Wales 0.67 (0.24, 1.83) 0.85 (0.31, 2.35)

Age at first use <18 1.96 (1.37, 2.79) 1.85 (1.25, 2.73)
18-24 1 (ref) 1 (ref)

25+ 1.00 (0.65, 1.53) 0.95 (0.60, 1.52)

Gender Male 1 (ref) 1 (ref)
Female 0.89 (0.62, 1.30) 0.91 (0.61, 1.36)
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Table 4.12: Continued from 4.11: Logistic regression model results for HIV.

Variable Univariable Multivariable

Ever rec’d works No 1 (ref) 1 (ref)
Yes 2.22 (1.59, 3.09) 1.88 (1.32, 2.68)

Needle exchange Started 1st year 1 (ref) 1 (ref)
Started >1 yr 1.89 (1.36, 2.62) 1.10 (0.76, 1.58)

Never 1.09 (0.34, 3.50) 0.80 (0.24, 2.64)

Days injecting <14 days/mo 1 (ref) 1 (ref)
per month 14+ days/mo 0.72 (0.53, 1.00) 0.94 (0.68, 1.31)

Prison Never imprisoned 1 (ref) 1 (ref)
Prison before injecting 1.10 (0.76, 1.61) 0.78 (0.52, 1.18)

Prison after injecting 0.65 (0.44, 0.96) 0.72 (0.47, 1.10)

Number of 0 or 1 partner 1 (ref) 1 (ref)
partners 2+ partners 1.19 (0.86, 1.63) 1.16 (0.82, 1.64)

Condom use Always 1 (ref) 1 (ref)
Sometimes/never 0.24 (0.18, 0.34) 0.27 (0.19, 0.37)

MSM No 1 (ref) 1 (ref)
Yes 5.39 (3.22, 9.01) 4.91 (2.73, 8.85)

4.1.8 Summary of risk factors

The results from generalised linear models for HCV, HBV and HIV indicate

that there were significant changes in prevalence according to survey period.

Prevalence of all three blood-borne viruses increases with injecting duration,

which is taken to be the time at risk, as would be expected for infections with

long-lasting antibodies. Likelihood ratio tests indicated interactions between

injecting duration and survey period, although there was less evidence of in-

teractions in the data from 2000 onwards. In general, interaction terms were

estimated imprecisely and could be modelled more efficiently (for instance,

using parametric functions, smoothing, or within a Bayesian framework),

although the main aim here was to determine whether main effects models

were sufficient.

There were also important risk factors for infection, with region having

the strongest effect of any covariate. Prevalence of HCV is markedly higher

in London and the NW, HBV is very high in the NW, and there is far

higher HIV prevalence in London compared to all other regions. Trends in
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prevalence over the survey period also varied substantially by region. The

decrease in HBV prevalence over time is likely attributable to vaccination,

but varies across regions. Injecting epidemics were particularly severe in

the NW and London, and mixing with large migrant populations from high-

prevalence countries may have accelerated the spread of BBVs in these areas.

In this case, the subsequent effect of vaccination may be greater in these

areas, reducing both within- and between-group transmission.

Ever being imprisoned and ever receiving works were both associated

with around a two-fold increased risk of infection for HCV and HIV, and to

a lesser extent HBV. Some results are counter-intuitive: incomplete condom

use (compared to always using a condom) appeared to have a protective effect

for all infections, and never having used a needle exchange also appeared to

confer a lower risk. MSM were found to be at somewhat greater risk of

HCV and HBV infection, and markedly so for HIV. Starting injecting at

an older age (25+) was associated with an increased risk of HCV and HBV

infection, although those starting below the age of 18 were at higher risk of

HIV infection.

There is a possibility of bias in the results for condom use and number of

partners due to systematic missingness. Both are relatively sensitive ques-

tions, and prevalence of all BBVs is somewhat higher in those with missing

information. Techniques such as multiple imputation may be used to handle

missing data issues, and can reduce potential biases under the missing at

random assumption (Rubin, 1987). However, systematic differences in miss-

ing data that are not accounted for by relationships between the observed

covariates (missing not at random) are always a possibility, and there is no

guarantee of obtaining unbiased estimates (Sterne et al., 2009). Further,

sensitivity analyses were undertaken in which all missing responses were as-

sumed to have, or not have, the risk factor, with little change in estimated

odds ratios: the apparent protective effect of imperfect condom use persisted

for all infections, and results on numbers of partners were still inconclusive

for HCV and HBV.

Subsequently, condom use and number of partners are no longer consid-

ered, due to the unusual effect estimates and because answers are frequently

omitted from questionnaires, resulting in nearly a quarter of the post-2000

data being omitted. Main effects models for each of the infections were re-
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estimated with these variables excluded to ensure that multivariable results

from section 4.1.4 did not change markedly.

An important factor that has not been considered here is vaccination for

HBV. This is self-reported in the UAM data and could in theory be used for

analysis; however, interpretation is somewhat difficult as vaccination is often

provided regardless of infection status. Therefore although the decrease in

HBV prevalence over time is likely to be attributable to increased vaccination

coverage, the direct effect of HBV vaccination on prevalence cannot be tested

within this modelling framework.

4.2 Models for the force of infection

This chapter has so far investigated the relationship between injecting du-

ration and calendar time with prevalence of HCV, HBV and HIV, including

the effect of additional covariates and the various possible interactions that

may be considered. A large number of parameters are required to ade-

quately model the effect of injecting duration. This will hold generally for

age-specific current status data, in order for the piecewise constant bands

to adequately capture the relationship between exposure time and risk de-

scribed by equation 3.13. By incorporating this relationship in a model for

the force of infection (FOI), fewer parameters are needed, as only changes

to the infection rate according to time at risk need be parameterised. If the

FOI is constant, only one parameter is required.

In this section FOI models are fitted that allow for changes in the risk

of infection by injecting duration and calendar time. So far the imperfect

sensitivity of pre-dried blood spot tests for HCV and HBV has not been

accounted for, which would result in apparently lower prevalence in earlier

survey years. While this can be taken into consideration for effect estimates

of survey period, the effect of imperfect sensitivity may be more subtle on a

FOI model, potentially inducing an interaction between injecting duration

and survey period where there may be none. Therefore, models are fitted

that account for the sensitivity of tests used to recover the true prevalence

(given the assumed sensitivity), and therefore true FOI, by including the

relationship specified in equation 3.5 into the log-likelihood. This requires

that models are fitted using bespoke code, and are optimised using the BFGS
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method (Nocedal et al., 2006, p. 194) in the R routine optim.

Piecewise constant models for the force of infection (FOI) were fitted to

the HCV, HBV and HIV data, including effects for injecting duration and

calendar time as in section 3.2.3, where injecting duration is taken to be the

“age” or time at risk for people who inject drugs (PWID). Calendar time is

split into pre-1980, 1980-1985, 1985-1990, 1995-2000, 2000-2005, 2005-2010

and 2010 onwards; and injecting duration as ≤ 1, 1-3, 3-5, 5-10, 10-15, 15-25

and > 25 years. Injecting duration is assumed to be at least 1 year in all

participants. Four models are tested for the effects of injecting duration and

time for each infection: with and without interactions between injecting du-

ration and time, and additive (equation 3.18) versus multiplicative (equation

3.19) injecting duration and time effects. Interaction models are specified

via main effects for injecting duration and calendar time, with deviations

from the main effects estimated via time- and injecting duration-specific in-

teraction terms, as described in section 3.2.3. These interactions are only

estimable within the survey period, and the earliest period in the survey is

taken as the baseline, such that the relative injecting duration-specific risks

are assumed to be the same prior to and at the beginning of the survey.

Having assessed different model forms for age and time, covariates are

included in the model as described in section 3.2.5. The additive model

turns out to provide an adequate fit, and since full covariate data are only

available from 2000 onwards and sensitivity to HCV antibodies is good as

of 1998 and does not need to be accounted for, models can be fitted in the

GLM framework as specified in equation 3.22, without needing to resort

to bespoke code for maximising the likelihood. The GLM approach with

additive effects is therefore used to further explore and refine the relation-

ships between the covariates and infection status, with HCV being the main

outcome of interest.

4.2.1 Force of infection models for HCV by injecting

duration and time

The deviances for the different parameterisations of the FOI for HCV are

shown in Table 4.13. For all data, there was a large improvement in model

fit for the interaction models compared to main effects for injecting dura-
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tion and time only (multiplicative model 859.7 on 711 d.f. vs. 979.4 on 735

d.f.). There were smaller, but still substantial differences between additive

and multiplicative models, with the multiplicative model providing a better

fit without interactions, but the best fit from the additive model with in-

teractions. Differences in fit are expected for the main effects model, which

could provide a quite different fit to the data if injecting duration and time

effects are combined independently. However, the difference in fit appears

unexpected for the interaction models, as both additive and multiplicative

models contain a parameter for each injecting duration/survey period. The

difference is likely due to the constraint that the FOI is strictly positive in

the multiplicative model, but can be negative in the additive model, allow-

ing a better fit where observed prevalence does not increase monotonically

with time at risk. In addition, although no direct information is available

on interaction terms prior to the survey period, the constraint that the FOI

in the pre-survey period has constant hazard ratios/differences for injecting

duration over time could lead to a conflict with the observed prevalence in

the earliest survey period, leading to a difference in fit.

In the models fitted to data from 2000 onwards, the difference in de-

viances between the main effects and interaction models is less extreme

(multiplicative model 615.8 on 560 d.f. vs. 643.8 on 572 d.f.). This is

similar to the logistic model for HCV prevalence in section 4.1.1, which also

showed a smaller improvement with the addition of interaction terms for the

restricted data. The multiplicative model fits better for the main effects only

model, but the difference in deviances is only 4.4 for the interaction models.

Table 4.13: Deviances and degrees of freedom for force of infection models
for HCV according to injecting duration and time, additive vs. multiplica-
tive and main effects vs. interaction models. Results are presented for all
available data, and data from 2000 onwards. The degrees of freedom is the
number of unique data points (injecting duration/survey year combinations)
minus the number of parameters in the model.

All data 2000 onwards
Model Parameterisation Deviance d.f. Deviance d.f.
Main effects Additive 995.7 735 661.1 572
Main effects Multiplicative 979.4 735 643.8 572
Interaction Additive 836.3 711 620.2 560
Interaction Multiplicative 859.7 711 615.8 560
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Figure 4.16 shows predicted HCV prevalence from the models above fitted

to data from all years; the additive and multiplicative main effects models

give surprisingly similar predictions (given they might be expected to diverge

more than the interaction results) and the multiplicative main effects-only

model results are therefore omitted for clarity. All models performed poorly

at the beginning period of the survey data, years 1992 and 1994, and es-

pecially 1992. This is likely due to the constraints imposed on the FOI in

pre-survey years. There is little to distinguish between model predictions

in later survey years, and virtually no difference between the additive and

multiplicative interaction models. This supports the argument that the con-

straint of constant injecting duration hazard ratios/differences in pre-survey

years can influence model fit, despite there being no direct information to

estimate differences over time in the pre-survey period. All of the models

appear to provide a reasonable fit visually, except for some systematic diver-

gence in particular years. For instance, prevalence in 2005 for those injecting

for more than 12 years is systematically underestimated, but not for 2006.

This could point to a different composition in the UAM sample for certain

years.
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Figure 4.16: Predicted HCV prevalence by injecting duration and survey year from the force of infection models. Additive
vs. multiplicative and main effects vs. interaction models are shown, although the main effects multiplicative model is
omitted for clarity (see text).
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Table 4.14 shows the estimated FOI by injecting duration and survey

period from the multiplicative and additive interaction model. Both models

indicate a high FOI in the first year of injecting, which decreases by around

5-fold subsequently. The estimates are very similar within the survey pe-

riod, except that for some injecting durations/times the estimate from the

multiplicative model is practically zero, but slightly negative for the additive

model. This is because the multiplicative FOI is additive on the exponential

scale and constrained to be positive, whereas the additive model compo-

nents can combine to produce negative estimates if the injecting duration

and time-specific FOI does not increase monotonically. Outside the range

of the survey, there are slight differences in the estimated FOI due to the

constant injecting duration effects being either additive or multiplicative.

Table 4.14: Force of infection for HCV by injecting duration and time, mul-
tiplicative and additive interaction models.

Multiplicative
Year / injecting <1 1-3 3-5 5-10 10-15 15-25 >25
pre 1980 0.546 0.135 0.085 0.014 0.001 0.108 0.000
1980-1985 0.633 0.156 0.098 0.016 0.001 0.125 0.000
1985-1990 0.449 0.111 0.070 0.012 0.000 0.089 0.000
1990-1995 0.296 0.073 0.046 0.008 0.000 0.058 0.000
1995-2000 0.144 0.032 0.021 0.000 0.000 0.000 0.000
2000-2005 0.198 0.044 0.086 0.055 0.062 0.044 0.024
2005-2010 0.246 0.045 0.054 0.034 0.043 0.034 0.013
2010-2015 0.253 0.090 0.045 0.071 0.044 0.048 0.106
Additive
Year / injecting <1 1-3 3-5 5-10 10-15 15-25 >25
pre 1980 0.483 0.252 0.230 0.171 0.056 0.046 -0.043
1980-1985 0.477 0.246 0.224 0.165 0.051 0.041 -0.049
1985-1990 0.389 0.157 0.136 0.076 -0.038 -0.048 -0.137
1990-1995 0.309 0.077 0.056 -0.004 -0.118 -0.128 -0.217
1995-2000 0.145 0.031 0.020 -0.012 -0.017 -0.025 0.025
2000-2005 0.198 0.043 0.087 0.056 0.074 0.063 0.027
2005-2010 0.246 0.045 0.055 0.034 0.041 0.029 0.018
2010-2015 0.253 0.090 0.045 0.070 0.045 0.050 0.100

Table 4.15 shows the estimated FOI from models fitted to data from 2000

onwards. Data within the survey period, except for 2000-2005, show very

similar estimates to those from the complete data. However, estimates for
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the pre-survey period are very different: whereas the FOI was estimated to

be generally high at shorter injecting durations prior to the year 2000 and

highest in 1980-1985, estimates from the restricted dataset indicate little

difference in FOI for this group pre-2000. Conversely, the estimated FOI

in longer-term injectors (> 25 years) is estimated to be higher in the pre-

2000 period. The data from 2000 appear to be more generally consistent,

with fewer negative estimates of the FOI and less reliance on interactions to

capture the variability of the data. There are questions as to the reliability of

HCV data in earlier years (Vivian Hope, personal communication) so using

only more recent data might give more reliable estimates. However, it may

be that important changes in injecting-duration specific risks were occurring

in the 1990s, which are not captured without the earlier data.

Table 4.15: Force of infection for HCV by injecting duration and time, multi-
plicative and additive interaction models, fitted to data from 2000 onwards.

Multiplicative
Year / injecting <1 1-3 3-5 5-10 10-15 15-25 >25
pre 1980 0.057 0.015 0.026 0.014 0.019 0.017 0.034
1980-1985 0.200 0.053 0.091 0.050 0.067 0.058 0.120
1985-1990 0.177 0.047 0.081 0.044 0.059 0.051 0.106
1990-1995 0.171 0.045 0.078 0.043 0.057 0.049 0.102
1995-2000 0.130 0.035 0.059 0.032 0.044 0.038 0.078
2000-2005 0.192 0.051 0.087 0.048 0.064 0.055 0.115
2005-2010 0.245 0.049 0.051 0.035 0.046 0.032 0.000
2010-2015 0.253 0.091 0.043 0.071 0.044 0.049 0.108
Additive
Year / injecting <1 1-3 3-5 5-10 10-15 15-25 >25
pre 1980 0.113 -0.016 0.015 -0.016 -0.008 -0.017 0.063
1980-1985 0.192 0.063 0.093 0.062 0.071 0.062 0.142
1985-1990 0.176 0.047 0.078 0.047 0.056 0.047 0.127
1990-1995 0.188 0.059 0.089 0.058 0.067 0.058 0.138
1995-2000 0.151 0.022 0.053 0.022 0.031 0.022 0.102
2000-2005 0.182 0.053 0.084 0.053 0.062 0.053 0.133
2005-2010 0.243 0.050 0.055 0.033 0.044 0.034 -0.008
2010-2015 0.253 0.092 0.042 0.070 0.045 0.049 0.114
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4.2.2 Force of infection models for HBV by injecting

duration and time

The same models were then fitted to the HBV data, and deviances shown in

Table 4.16. The interaction model has substantially lower deviance for both

the full data and that restricted to 2000 onwards. None of the models fit

the data well for the full dataset, although the additive interaction model is

preferred in all comparisons and provides a reasonable fit to the data from

2000 onwards. As before however, the additive model will tend to overstate

the goodness of fit due to the allowance of negative FOI estimates.

Table 4.16: Deviances and degrees of freedom for force of infection models
for HBV according to injecting duration and time, additive vs. multiplica-
tive and main effects vs. interaction models. Results are presented for all
available data, and data from 2000 onwards.

All data 2000 onwards
Model Parameterisation Deviance d.f. Deviance d.f.
Main effects Additive 1247.4 881 697.2 572
Main effects Multiplicative 1324.6 881 793.6 572
Interaction Additive 1199.6 857 659.1 560
Interaction Multiplicative 1283.7 857 760.2 560

Figure 4.18 shows predicted HBV prevalence from the models above fitted

to data from all years. As with HCV, the predicted prevalences were similar

for the additive and multiplicative main effects models, so the latter is not

shown. The main effects model performs poorly in earlier survey years,

with a systematic underestimation of prevalence. Again, the additive and

multiplicative models produce similar predictions for all but the first few

survey years.
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Figure 4.17: Predicted HBV prevalence by injecting duration and survey year from the force of infection models. Additive
vs. multiplicative and main effects vs. interaction models are shown, although the main effects multiplicative model is
omitted for clarity (see text).
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Tables 4.17 and 4.18 show the force of infection from multiplicative and

additive interaction models for all data and data from 2000 onwards. The

two model forms produce very different patterns for the injecting-duration

specific risk in the pre-survey period, with relatively high risk in 1st year in-

jectors and those injecting for > 25 years in the multiplicative model. Both

models indicate a general decline in the FOI over calendar time, which is ex-

pected due to increasing levels of HBV vaccination in the PWID population.

However, the FOI did not decline to the same relative degree in 1st year in-

jectors compared to longer durations, whose risk approached zero from 2000

onwards. In contrast to the HCV data, there were smaller differences in the

prediction of pre-survey risk levels when the data were restricted to 2000

onwards.

Table 4.17: Force of infection for HBV by injecting duration and time, mul-
tiplicative and additive interaction models.
Multiplicative
Year / injecting <1 1-3 3-5 5-10 10-15 15-25 >25
pre 1980 0.531 0.160 0.068 0.099 0.018 0.000 0.309
1980-1985 0.303 0.092 0.039 0.056 0.010 0.000 0.176
1985-1990 0.192 0.058 0.024 0.036 0.006 0.000 0.111
1990-1995 0.104 0.031 0.013 0.019 0.003 0.000 0.061
1995-2000 0.082 0.025 0.010 0.015 0.003 0.000 0.047
2000-2005 0.083 0.025 0.011 0.015 0.003 0.000 0.048
2005-2010 0.049 0.009 0.000 0.000 0.000 0.000 0.000
2010-2015 0.042 0.000 0.000 0.000 0.000 0.000 0.000
Additive
Year / injecting <1 1-3 3-5 5-10 10-15 15-25 >25
pre 1980 0.177 0.119 0.089 0.104 0.102 0.080 0.135
1980-1985 0.153 0.094 0.065 0.079 0.078 0.056 0.110
1985-1990 0.139 0.080 0.051 0.065 0.064 0.042 0.096
1990-1995 0.095 0.037 0.007 0.021 0.020 -0.002 0.053
1995-2000 0.088 0.030 0.000 0.014 0.013 -0.009 0.046
2000-2005 0.097 0.039 0.009 0.024 0.022 0.001 0.055
2005-2010 0.052 0.014 -0.015 -0.016 -0.009 -0.026 -0.066
2010-2015 0.045 -0.004 -0.004 0.004 0.008 -0.004 -0.010

123



Table 4.18: Force of infection for HBV by injecting duration and time, multi-
plicative and additive interaction models, fitted to data from 2000 onwards.
Multiplicative
Year / injecting <1 1-3 3-5 5-10 10-15 15-25 >25
pre 1980 0.452 0.124 0.058 0.066 0.000 0.000 0.511
1980-1985 0.327 0.090 0.042 0.048 0.000 0.000 0.370
1985-1990 0.211 0.058 0.027 0.031 0.000 0.000 0.239
1990-1995 0.117 0.032 0.015 0.017 0.000 0.000 0.132
1995-2000 0.099 0.027 0.013 0.014 0.000 0.000 0.113
2000-2005 0.081 0.022 0.010 0.012 0.000 0.000 0.092
2005-2010 0.049 0.010 0.000 0.000 0.000 0.000 0.000
2010-2015 0.042 0.000 0.000 0.000 0.000 0.000 0.000
Additive
Year / injecting <1 1-3 3-5 5-10 10-15 15-25 >25
pre 1980 0.196 0.131 0.114 0.124 0.115 0.079 0.133
1980-1985 0.189 0.124 0.107 0.117 0.108 0.072 0.126
1985-1990 0.150 0.085 0.067 0.078 0.069 0.033 0.086
1990-1995 0.096 0.031 0.014 0.024 0.015 -0.021 0.033
1995-2000 0.095 0.030 0.012 0.023 0.013 -0.022 0.031
2000-2005 0.094 0.029 0.011 0.022 0.013 -0.023 0.031
2005-2010 0.051 0.012 -0.009 -0.012 -0.014 -0.023 -0.074
2010-2015 0.045 -0.004 -0.002 0.002 0.008 -0.005 -0.003
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4.2.3 Force of infection models for HIV by injecting

duration and time

Finally, the FOI models were fitted to the HIV data. Resulting deviances

are shown in Table 4.19. When fitting to the whole dataset, the additive

model with interactions provided the best fit, although the multiplicative

model with interactions provided a better fit to the data from the year 2000

onwards. However, all of the deviances are smaller than the degrees of free-

dom, indicating over-fitting. In fact, the additive main effects model could

not be fitted to the data, either in the R function optim or using standard

GLM software, despite numerous attempts to improve starting values and

relax tolerances.

Table 4.19: Deviances and degrees of freedom for force of infection models for
HIV according to injecting duration and time, additive vs. multiplicative and
main effects vs. interaction models. Results are presented for all available
data, and data from 2000 onwards. Model fitting failed for the additive main
effects model.

All data 2000 onwards
Model Parameterisation Deviance d.f. Deviance d.f.
Main effects Additive - 819 - 510
Main effects Multiplicative 796.6 819 482.0 510
Interaction Additive 758.6 795 465.4 486
Interaction Multiplicative 764.5 795 460.6 486

Figure 4.18 shows predicted HIV prevalence from the models above fit-

ted to data from all years. At the level of individual years and injecting

durations, the data are too sparse for the model to capture the observed

prevalence, except for very broad trends.
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Figure 4.18: Predicted HIV prevalence by injecting duration and survey year from the force of infection models. Additive
vs. multiplicative and main effects vs. interaction models are shown, although the main effects additive model is omitted
(see text).
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Tables 4.20 and 4.21 show the force of infection from multiplicative and

additive interaction models for all data and data from 2000 onwards. Es-

timates are far more sensitive to choice of parameterisation and the inclu-

sion/exclusion of pre-2000 data. Of note is that the multiplicative model

predicts a near-zero FOI in the pre-1980 period whereas the additive model

does not. The former is far more likely, with the first cases of HIV appearing

in the early 1980s, although the data are so sparse this may not be meaning-

ful. For all models, the highest risk was estimated to be in the first year and

extremely low subsequently, with the FOI in 1st year injectors increasing

somewhat in the last decade.

Table 4.20: Force of infection for HIV by injecting duration and time, mul-
tiplicative and additive interaction models.
Multiplicative
Year / inj. <1 1-3 3-5 5-10 10-15 15-25 >25
pre 1980 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
1980-1985 0.0142 0.0034 0.0049 0.0058 0.0046 0.0035 0.0001
1985-1990 0.0012 0.0003 0.0004 0.0005 0.0004 0.0003 0.0000
1990-1995 0.0018 0.0004 0.0006 0.0007 0.0006 0.0004 0.0000
1995-2000 0.0012 0.0003 0.0004 0.0005 0.0004 0.0003 0.0000
2000-2005 0.0049 0.0012 0.0017 0.0020 0.0016 0.0012 0.0000
2005-2010 0.0071 0.0007 0.0000 0.0000 0.0013 0.0009 0.0000
2010-2015 0.0120 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Additive
Year / inj. <1 1-3 3-5 5-10 10-15 15-25 >25
pre 1980 0.0092 0.0056 0.0068 0.0072 0.0070 0.0055 0.0051
1980-1985 0.0025 -0.0011 0.0001 0.0005 0.0003 -0.0012 -0.0016
1985-1990 0.0033 -0.0003 0.0009 0.0014 0.0011 -0.0004 -0.0007
1990-1995 0.0028 -0.0008 0.0003 0.0008 0.0005 -0.0009 -0.0013
1995-2000 0.0045 0.0009 0.0021 0.0026 0.0023 0.0008 0.0005
2000-2005 0.0053 0.0010 0.0010 -0.0010 0.0010 -0.0004 -0.0013
2005-2010 0.0047 0.0004 0.0006 0.0005 -0.0002 -0.0016 -0.0016
2010-2015 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

4.2.4 Force of infection models for HCV with covari-

ates

Model results for HCV in section 4.2.1 indicated that the multiplicative

model was not substantially better than the additive model when fitted to
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Table 4.21: Force of infection for HIV by injecting duration and time, multi-
plicative and additive interaction models, fitted to data from 2000 onwards.
Multiplicative
Year / inj. <1 1-3 3-5 5-10 10-15 15-25 >25
pre 1980 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
1980-1985 0.0108 0.0000 0.0038 0.0027 0.0058 0.0000 0.0014
1985-1990 0.0042 0.0000 0.0015 0.0011 0.0023 0.0000 0.0005
1990-1995 0.0046 0.0000 0.0016 0.0012 0.0025 0.0000 0.0006
1995-2000 0.0004 0.0000 0.0001 0.0001 0.0002 0.0000 0.0001
2000-2005 0.0062 0.0000 0.0022 0.0016 0.0033 0.0000 0.0008
2005-2010 0.0075 0.0003 0.0000 0.0000 0.0016 0.0000 0.0000
2010-2015 0.0120 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Additive
Year / inj. <1 1-3 3-5 5-10 10-15 15-25 >25
pre 1980 0.0086 0.0004 0.0037 0.0033 0.0043 0.0034 0.0011
1980-1985 0.0050 -0.0033 0.0001 -0.0004 0.0006 -0.0003 -0.0026
1985-1990 0.0072 -0.0011 0.0023 0.0018 0.0028 0.0019 -0.0004
1990-1995 0.0056 -0.0027 0.0007 0.0002 0.0012 0.0003 -0.0020
1995-2000 0.0074 -0.0009 0.0025 0.0020 0.0030 0.0021 -0.0002
2000-2005 0.0094 -0.0004 0.0017 -0.0010 0.0020 -0.0009 -0.0019
2005-2010 0.0086 -0.0010 0.0006 -0.0004 0.0001 -0.0022 -0.0031
2010-2015 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

the data from 2000 onwards, although goodness of fit is overstated somewhat

for the additive models, which allow negative FOI estimates. As full covari-

ate data are only available from 2000 onwards, the additive model appears

adequate for exploratory purposes, keeping in mind the limitations of this

model. However, it must be borne in mind that the effects of covariates are

also of course assumed to be additive, which does not necessarily follow from

the above. Further, the potential for a negative FOI for some combinations

of injecting duration, time and covariates becomes more likely as the com-

plexity of the model increases, further overstating the goodness of fit of the

additive model.

In section 4.1.5, it was seen that there were marked differences in preva-

lence according to region, which also varied over time. Regional effects were

therefore investigated in a FOI model with additive effects, considering the

main effects for injecting duration, time period and region, plus potential

interactions between the three factors. As the most important difference in
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risk according to injecting duration appeared to be the excess risk in 1st

year injectors, simplified forms of interactions for 1st year vs. longer inject-

ing durations were considered. All possible combinations were fitted, and

the relative merits of different models compared via AIC scores.

The model with the lowest AIC score included interactions between re-

gion and time, a simplified interaction between region and 1st year vs. longer

injecting duration, but did not require an interaction between injecting du-

ration and time. It is worth noting that this model still includes a substan-

tial number of interaction terms, and being based on AIC scores, may be

over-complex (compared to model selection under the heavier penalty for

complexity applied by the BIC).

Estimates of the FOI according to region and time period, for 1st year

vs. 3-5 years injecting duration are shown in Figure 4.19. There is no

interaction between injecting duration and time, hence the pattern of results

for 1st year vs. 3-5 years injecting is identical. However, the relative effect

of 1st year vs. longer injecting durations can vary by region, and there are

marked differences: a particularly striking feature is that the well-known

high-risk regions of NW and London have very high FOIs in the first year,

but comparable FOIs to other regions subsequently. In fact, the majority of

regional variation appears to be in 1st year risk.

Other covariates investigated in section 4.1.5 were examined within the

GLM framework for FOI models, with all models including the regional

effects and interactions specified above. Ever receiving works was associated

with a 0.017 (95% CI 0.014, 0.019) increase in FOI, with little difference

between injecting duration and survey period if interactions are considered.

Use of needle exchange, which is entered as a time-varying covariate that

divides pre- and post-needle exchange exposure, was predicted to change the

FOI by -0.013 (95% CI -0.017, -0.008). The reduction showed no significant

difference according to injecting duration, but needle exchange use appeared

to be less efficacious (actually conferring an increase in risk) in earlier time

periods and only becoming effective from the year 2000 onwards.
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Figure 4.19: Regional difference in the force of infection for HCV, by time
and 1st year vs. 3-5 years injecting.
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4.2.5 Concluding remarks

This chapter has included a thorough investigation of patterns in BBV preva-

lence according to injecting duration, survey period and the key covariates

available for analysis. Most of the questionnaire data on risk are only avail-

able from 2000 onwards, restricting the data available for analysis. In some

cases this may simplify modelling, with interactions between injecting dura-

tion and time appearing to be less vital. It is not clear whether the earlier

data may contain important information on changes in risk over time. How-

ever, if the main interest lies in current risk differences according to injecting

duration and changes over recent times, this may not be particularly impor-

tant.

Current status data may be modelled via standard generalised linear

models for binomial data, such as logistic regression, or models that estimate

the force of infection. The underlying data and information contained therein

are of course the same, but with parameters related to the data in a different

way. Nevertheless, the FOI may be of more direct interest in determining risk

patterns: in the regional example in section 4.2.4, a striking regional pattern

in 1st year injectors vs. longer injecting durations was revealed that may be

less obvious from fitting logistic regression models. Similarly, by considering

the effect of needle exchange as a time-varying covariate, its usage was shown

to provide a general protective effect, but only in more recent years. Again,

such patterns might be revealed by careful modelling in logistic regression

models, but are harder to uncover. FOI models also model the relationship

between time at risk and infection status more naturally, requiring fewer

parameters in general; although as there is less information available from

risk differences, they also tend to be estimated less precisely.

The downside of FOI models is that only the additive form of the model

can be fitted within the GLM framework, whereas epidemiological applica-

tions tend to consider risk factors as multiplicative. This makes sense in

general: if the overall risk of infection has changed over some time period,

person A, who makes twice as many contacts with infectious individuals as

person B, would naturally be expected to still have double the risk of infec-

tion, rather than a fixed additive difference. Of course, all of the outcomes

considered here are infectious diseases, so it is difficult to predict in what way
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time at risk and calendar time will combine due to transmission dynamics.

Nevertheless, the GLM form appears to be a suitable tool for exploratory

analysis of additional covariates for FOI models, similar to the suggestion of

Ades and Nokes (1993) in their paper on age and time effects.

GLMs for the FOI use an unusual link for binary data, and are therefore

not permitted in all statistical packages: models can be fitted in Stata using

the glm command, although the R function glm will not allow such models

to be fitted. An alternative here would be to use the complementary log-

log link, which allows certain parametric forms for the FOI, such as the

Weibull model. This may be appropriate given epidemiological knowledge

of the general pattern of the FOI, but does of course impose certain shapes.

In particular, the Weibull model implies an exponential change in the FOI,

which if declining, will tend exponentially towards zero. Given the non-zero

FOI at all injecting durations, this would not fully capture the relationships

seen here.

In the next two chapters FOI models including individual frailties are

considered, which are outside the scope of standard GLMs. In these analyses,

multiplicative effects for calendar time and other covariates are assumed,

and the effect of covariates on the FOI further examined on the basis of the

findings presented in this chapter.
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Chapter 5

Individual heterogeneity and

models for multivariate data

Collecting samples from individuals in the population of interest can be

expensive and time-consuming, but the serological testing itself is often rela-

tively cheap and straightforward (moreover, given that one serological test is

undertaken, additional testing is relatively easy). In such circumstances the

same serological sample can be used to test for multiple infections (usually of

a similar nature, such as childhood diseases) resulting in current status data

for more than one infection. This can prove very useful from an epidemio-

logical point of view, broadening the potential for analytical exploration.

The models considered in chapters 3 and 4 are based on the assump-

tion that all individuals have the same risk of infection, given their age (or

time exposed), calendar time and other covariate information. However, it

is likely that individuals will differ according to some unmeasurable factor,

particularly in the absence of covariate data, which in the context of infec-

tious diseases is often given to be their propensity to make effective contacts,

or otherwise have varying levels of exposure, susceptibility, or opportunity

for infection. Such individual heterogeneity, or frailty, is of particular im-

portance in the estimation and interpretation of the age-specific force of

infection. In statistical models, frailty is expressed via a specified distribu-

tion and identified via the correlation that occurs in multivariate data when

infections share a common route of transmission. Therefore multivariate

data are central to the estimation of individual heterogeneity.
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5.1 Frailty distributions

In a frailty model, the force of infection acting on an individual is the product

of a basic rate λ(t) and an individual-specific quantity Z (see, for example,

Aalen et al. (2008, p. 234)):

λ(t|Z) = Zλ(t).

Given Z, the probability of remaining susceptible up to time t is given by

S(t|Z) = exp(−ZA(t)),

where

A(t) =

∫ t

0

λ(u) du.

The function for the population proportion susceptible is found by integrat-

ing over the distribution of Z

S(t) = E[exp(−ZA(t))]. (5.1)

The Laplace transform of Z is defined by

L(c) = E(exp(−cZ)), (5.2)

and therefore

S(t) = L(A(t)). (5.3)

The population force of infection, λp(t), may then be found by differentiating

− log(S(t)):

λp(t) = λ(t)
−L′(A(t))

L(A(t))
.

5.1.1 The gamma distribution for frailty

One of the simplest choices for the frailty distribution is the gamma distri-

bution, for which the Laplace transform is easily derived. The probability
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density of the gamma distribution is given as

f(x; k, θ) =
θk

Γ(k)
xk−1 exp(−θx), (5.4)

where θ is a rate parameter and k a shape parameter. In order for the

average FOI to be equal to the baseline FOI λ(t), it is sensible to define the

distribution with mean equal to 1, i.e., θ = k. The frailty variance is thus

given by δ = 1
θ
. Figure 5.1 shows various shapes that may be obtained under

different values of δ. With low values (δ < 0.1) the frailty, Z, is narrowly

distributed around 1; as δ increases this distribution spreads out, and with

δ > 5 the bulk of the distribution of Z tends towards zero, but with a long

tail stretching to higher values.
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Figure 5.1: Density of gamma distributions with mean 1 and variance
δ=0.05, 0.2, 1 and 5.

The Laplace transform of the gamma distribution is obtained in a similar
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way to its moment generating function:

L(c) =

∫ ∞
0

exp(−cx)
θk

Γ(k)
xk−1 exp(−θx) dx

=
θk

Γ(k)

∫ ∞
0

xk−1 exp(−x(c+ θ)) dx

=
θk

Γ(k)

Γ(k)

(c+ θ)k

∫ ∞
0

(c+ θ)k

Γ(k)
xk−1 exp(−x(c+ θ)) dx

=
θk

(c+ θ)k
.

By the addition of terms to the numerator and denominator, an integral of

another gamma distribution with rate parameter c+ θ over the range [0,∞]

is obtained, which is equal to 1. For gamma distributions with mean equal

to 1 this can be written as:

L(c) =
(

1 +
c

θ

)−θ
. (5.5)

Combining equations 5.3 and 5.5 yields the population survivor function

S(t) =

(
1 +

A(t)

θ

)−θ
(5.6)

and the population hazard rate

λp(t) =
λ(t)

1 + A(t)
θ

. (5.7)

See, for instance Aalen et al. (2008, p. 236)). In some statistical analyses,

ignoring sources of unexplained variation will not necessarily bias estimates

(although standard errors may be underestimated), but when trying to esti-

mate time-specific forces of infection the presence of individual heterogeneity,

or frailty, can distort results. Those at higher risk will tend to experience the

event in question earlier than others, while those that remain, who have a

lower average frailty, will experience the event at a lower rate. This has the

effect of pushing down the population force of infection over time, whereas

the risk for each individual may actually be stable or increasing (see Aalen

et al. (2008, Chapter 6)).
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The difference between individual and population hazard is more than

a philosophical point. Planning of public health interventions may depend

on whether there is a genuine high risk of infection at the beginning of the

time at risk compared to an apparent high initial risk due to heterogeneity.

In the context of people who inject drugs, this might mean a shift in focus

from quickly finding those that have recently initiated injecting to engage

them in preventative measures, compared to increased targeting of high-risk

individuals in a heterogeneous population.

Equation 5.7 shows the effect of frailty on the population hazard. When

the frailty variance (δ = 1
θ
) is zero there is no difference between λp(t) and

λ(t). However, as δ increases the denominator becomes greater than 1 and

increases over time, decreasing the population hazard compared to that of the

individual over time. Figure 5.2 shows the age-specific proportion susceptible

under a constant FOI at different percentiles of the gamma distribution,

under different frailty variances. When the frailty variance δ is high, a large

proportion of the population have almost no risk of infection, whereas a

fairly small group have a high risk and the proportion susceptible within

this group declines rapidly with age.

The gamma distribution is often used for its mathematical convenience,

but also has some nice properties. It can be explicitly differentiated any

number of times (Aalen et al., 2008, p. 236) and heterogeneity remains con-

stant in survivors; i.e., conditional on not having yet experienced the event,

individual heterogeneity remains the same over time. This is an important

feature and makes the gamma distribution the reference distribution against

which other frailty distributions are compared, as other choices will result in

increasing or decreasing heterogeneity in the remaining survivors over time.

5.1.2 The inverse Gaussian distribution

The inverse Gaussian distribution can also make for a useful choice of frailty

distribution. Its probability density function is given as

f(x;µ, θ) =

√
θ

2πx3
exp

[
−x θ

2µ2
− θ

2x
+
θ

µ

]
; (5.8)
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Figure 5.2: The age-specific proportion susceptible in a population with
hazard=0.02 at the 10th, 25th, 75th and 90th percentile (pctl) points of
different gamma frailties. Results are shown with no heterogeneity; and
frailty variance δ=0.2, 1 and 5.

and has mean µ and variance µ3

θ
. The Laplace transform is derived as follows:

L(c) =

∫ ∞
0

exp(−cx)

√
θ

2πx3
exp

[
−x θ

2µ2
− θ

2x
+
θ

µ

]
dx

=

∫ ∞
0

√
θ

2πx3
exp

[
−cx− x θ

2µ2
− θ

2x
+
θ

µ

]
dx

= exp(−Φ)

∫ ∞
0

√
θ

2πx3
exp

[
−x θ

2µ2
c

− θ

2x
+

θ

µc

]
dx,

where µ2
c = θµ2

θ+2cµ2
and Φ =

θ
√
θ+2cµ2√
θµ

− θ
µ
. The integral now takes the form

of another inverse Gaussian pdf and is equal to 1. As interest is in frailty

distributions with mean 1, the formula can be simplified to

L(c) = exp

[
θ

(
1−

√
1 +

2c

θ

)]
; (5.9)

138



and therefore the population survivor function is

S(t) = exp

[
θ

(
1−

√
1 +

2A(t)

θ

)]
. (5.10)

The frailty variance is defined as δ = 1
θ
. Figure 5.3 shows the pdf of the

inverse Gaussian distribution under various values of δ. For small values of

δ there is little difference in shape between the inverse Gaussian and the

gamma distribution, but as shown in figure 5.1, as δ approaches 1 the mode

of the gamma distribution is pushed towards zero, and for δ ≥ 1 there is

no point of inflection. The inverse Gaussian however is “bell-shaped” (if

potentially very skewed) for all values of δ. In a practical sense, this would

mean the difference between a population whose low-risk individuals had

risk approaching zero (gamma distribution) compared to a population that

may include very low-risk individuals but those with risk approaching zero

were more rare (inverse Gaussian).

An important distinction between the two distributions is that under the

inverse Gaussian distribution the heterogeneity of survivors declines over

time; i.e., they become more homogeneous. If this appears to be the case,

and it is believed that this declining heterogeneity is due to a selection effect

(rather than changes in the heterogeneity in risk behaviour over time), then

the inverse Gaussian distribution may be appropriate.

5.1.3 Frailty distribution families

The power variance function (PVF) family of distributions suggested by

Hougaard (2000) provides a number of interesting possibilities for frailty

distributions. PVF distributions are defined as those having the Laplace

transform

L(c; ρ, ν,m) = exp

[
−ρ
(

1−
(

ν

ν + c

)m)]
. (5.11)

A number of distributions are special cases of the PVF family. If ρ → ∞
and m → 0 in such a way than ρm → η then the Laplace transform ap-

proaches that of the gamma distribution with scale parameter ν and shape

parameter η (Aalen et al., 2008, p. 238). The inverse Gaussian distribution

also belongs to the PVF family (m = −1
2
, ρ < 0). Another example is the
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Figure 5.3: Density of inverse Gaussian distributions with mean 1 and vari-
ance δ=0.05, 0.2, 1 and 5.

compound Poisson distribution. This includes a probability atom at zero,

corresponding to a group with zero frailty, or a nonsusceptible group. This

might arise in the context of people who inject drugs if some people never

share needles or equipment, or otherwise are somehow never at risk of in-

fection. The distribution is the sum of independent gamma variables, and

hence corresponds to a cumulative damage model, whereby repeated “in-

sults” increase an individual’s susceptibility. This is somewhat implausible

in this context, as the risk of infection is unlikely to be cumulative, although

Farrington et al. (2012) describe an alternative family (the Addams family!)

from which other discrete frailty distributions can be derived, which might

be appropriate for the number of sexual partners in the modelling of sexually

transmitted disease. In the context of injecting drug use, this might be the

size of social group in which needle sharing might arise. The possibility of

a zero-risk group is potentially interesting, but limited in that the relative

frailty variance must be non-decreasing (Farrington et al., 2012).
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Frailty distributions may be characterised by their relative frailty vari-

ance (RFV), the heterogeneity in survivors at time t, defined by Farrington

et al. (2012) as:

RFV (t) = var(Ut|T > t) =
var(U |T > t)

E(U |T > t)2
, (5.12)

where U is a non-negative random variable corresponding to individual

frailty, and Ut = U
E(U |T>t) is the relative frailty, conditional on surviving

to time t. The gamma distribution is the only choice resulting in a constant

RFV, whereas the inverse Gaussian (and many others) result in a decreasing

RFV. The RFV is discussed further in section 5.2.3.

5.1.4 Time-varying frailty

In addition to the selection effect induced by particular frailty distributions,

heterogeneity in risk may genuinely be decreasing (or increasing) over time.

Farrington et al. (2013) describe a selection of time-varying frailty models

with one or two components. The single component model is:

Z(t) = 1 + (Z − 1)h(t), (5.13)

where Z is a time invariant frailty of unit mean (for instance, a gamma

distribution) and 0 ≤ h(t) ≤ 1 is a deterministic function, such as h(t) =

exp(−ρt), which results in an exponential decay. This model was adapted

slightly such that instead of heterogeneity declining to zero, a two-parameter

function is used such that frailty declines toward an asymptote:

h(t) =
exp(−ρt) + exp(q)

1 + exp(q)
. (5.14)

Thus ρ controls the rate of decline of the relative frailty variance, and the

asymptote towards which it declines is given by exp(q)
1+exp(q)

, the exponents being

required to ensure the function is bounded within [0, 1] and q taking any real

value (q → −∞ yields a zero asymptote and q → ∞ no decline in relative

frailty variance).
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The survivor function with such a time-varying frailty distribution is

S(t|Z) = exp

[
−
∫ t

0

λ(u)

(
1 + (Z − 1)

(
exp(−ρu) + exp(q)

1 + exp(q)

))
du

]
.

(5.15)

Integrating over the frailty distribution to obtain the unconditional survivor

function is not as straightforward as for the gamma and inverse Gaussian

distributions. To proceed, the function is split into a “baseline” part of the

expression and a “frailty” part,

S(t|Z) = exp

[
−
∫ t

0

λ(u)

(
1− exp(−ρu)

1 + exp(q)
− exp(q)

1 + exp(q)

)
du

]
exp

[
−
∫ t

0

Zλ(u)

(
exp(−ρu)

1 + exp(q)
+

exp(q)

1 + exp(q)

)
du

]
, (5.16)

with the marginal form of the latter being obtained by its Laplace transform

in the usual way. For a piecewise constant FOI the derivation is as follows,

using a slight change in notation to chapter 3. With k time bands and

cutpoints c0 = 0, c1, c2...ck =∞, the FOI is given by

λ(t) =



λ1, if t ≤ c1;

λ2, if t > c1 and t ≤ c2;

...

λk, if t > ck−1,

and the cumulative hazard A(t) as

A(t) =

∫ t

0

λ(u) du =
k∑
i=1

λi max(0,min(t− ci−1, ci − ci−1)).

Defining the time spent in band i as ti = max(0,min(t− ci−1, ci− ci−1)) and

vi = ci−1 + ti, the terms in equation 5.16 requiring evaluation are

∫ t

0

λ(u) du =
k∑
i=1

λiti,
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∫ t

0

λ(u) exp(−ρu) du =
k∑
i=1

−λi exp(−ρu)

ρ

∣∣∣vi
ci−1

=
k∑
i=1

λi(exp(−ρci−1)− exp(−ρvi))
ρ

and the Laplace transform for the frailty part of equation 5.16, with Z having

a gamma distribution with mean 1 and variance 1
θ

L(c) =
(

1 +
c

θ

)−θ
.

Inserting these expressions into equation 5.16 yields the unconditional sur-

vivor function

S(t) =

exp

[ k∑
i=1

−λiti
(

1− exp(q)

1 + exp(q)

)
− λi

(
exp(−ρvi)− exp(−ρci−1)

ρ(1 + exp(q))

)]
[
1 +

k∑
i=1

λi(exp(−ρci−1)− exp(−ρvi))
ρθ(1 + exp(q))

+
λiti exp(q)

θ(1 + exp(q))

]−θ
. (5.17)

More complex structures are of course possible. For instance, frailty may be

considered to change from one level to another throughout the at-risk period,

with a frailty distribution representing variability in rates of infection during

childhood and a separate frailty distribution for adulthood. Farrington et al.

(2013) proposed a model with two gamma components, Z1 and Z2, with

Z(t) = (1 + (Z1 − 1)h(t))Z2. (5.18)

Obtaining the unconditional survivor function for the two component model

requires integration over the distributions of Z1 and Z2, and so is not as

straightforward as the Laplace transforms considered so far.

The 2-component model could conceivably be applied to people who in-

ject drugs, with a component for new initiates (“childhood”) and for ex-

perienced users. The difficulty here is the comparatively short initiation

period. A more general issue with the model is that the two components

are independent, whereas high or low risk is likely to persist to some extent
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in experienced users. The model could potentially be extended to allow for

correlations between the components, although this is not pursued further

and the single component model in equation 5.13 used to capture the likely

decline in heterogeneity over time.

A general disadvantage of this time-varying frailty model is that the

frailty has limited support, with a minimum value of 1 − h(t) for equation

5.13. This implies a lower bound on the force of infection in the popula-

tion, which may not be epidemiologically plausible if some individuals are

at very low risk in comparison to the rest of the population. For people

who inject drugs the existence of a low-risk group may be unlikely, given the

high prevalence of blood-borne viruses and monotonic increase with time at

risk. Another criticism of the distribution in equation 5.13 is that the frailty

variance declines at a constant rate towards an asymptotic value, which may

be slightly restrictive. However, in practice there is unlikely to be sufficient

information to estimate such changes over time.

An alternative to the model form in 5.18 is to use functions for h(t) based

on powers, which do not suffer from the same issues of limited support, but

are difficult to work with algebraically (Enki et al., 2014).

5.1.5 Piecewise constant frailties

An alternative to time-varying frailties based on deterministic functions of

the form considered in section 5.1.4 is the piecewise gamma frailty proposed

by Paik et al. (1994). Their definition is for a nested structure in which

Zi = Z + εi (5.19)

in age band i, where Z has a gamma distribution for the overall frailty of

an individual and εi have independent gamma distributions corresponding

to age-specific fluctuations in band i; and the mean of the two distributions

sums to 1 (µ1 + µ2 = 1). This form is particularly easy to work with in

conjunction with piecewise constant hazards: if the age bands of the baseline

FOI and frailties coincide, the population survivor function is given by

S(t) = exp

[
−µ1

γ
log(1 + γA(t))−

k∑
i=1

µ2

γi
log(1 + γiλiti)

]
, (5.20)
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where µ1 and µ2 are the means of the overall and the component frailties

respectively, γ and γi their scale parameters, A(t) the usual cumulative haz-

ard, λi the baseline hazard in age band i and ti the exposure time in age

band i. Rather than multiplying components raised to the power of µ1
γ

and
µ2
γi

, as defined in Paik et al. (1994), the expression above sums log terms

then exponentiates, which may be more numerically stable as the number of

piecewise constant terms grows.

The interpretation of the Paik model is a little unusual, potentially lim-

iting its practical application. Under the hierarchical structure individuals

have an overall frailty and an age-specific frailty. These age-specific com-

ponents are independent, so individuals may be high risk in one age band

and low risk in another; the component part of the individual frailty is “re-

set” in each age band, therefore there is no inter-age band selection effect

in survivors. These properties may or may not be desirable, but it seems

intuitively more likely that some correlation between frailties would persist

within individuals over time. In particular, this structure may not be viewed

as a piecewise alternative to equation 5.13 or 5.18, in which individuals have

a persistent but declining frailty or transition between two values. Farrington

et al. (2012) propose a multiplicative alternative that allows compounding of

frailties; this would allow dependence to be incorporated by allowing frailty

components to persist across age bands, with the multiplicative relationship

preserving the unit mean of the overall frailty distribution.

5.2 Multivariate models

With univariate data, the only information available to estimate the parame-

ters of a given frailty distribution is via distortion in the population survivor

function (as observed in Figure 5.2). This implies that the shape of the

unconditional survivor function has to be assumed, or rather, the shape of

the underlying hazard function. This might be reasonable in some settings,

where biological or epidemiological considerations strongly suggest a partic-

ular parametric form (for instance, the Weibull distribution), but in general

it would appear unsafe to make strong assumptions about the age-specific

risk of infection. In particular, under the piecewise constant models that

have been the focus so far there would be no information with which to es-
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timate the frailty distribution, provided that the cut-points are sufficient to

capture the general shape of any plausible hazard function.

Multivariate models address this problem by providing information on

the fraily via the correlation between infections. Infections that share a

transmission route will naturally be correlated, although correlation may

occur for other reasons, such as variation in individuals’ general biological

susceptibility to infection. Assuming for now that transmission routes are

identical, the degree of correlation determines the extent of individual het-

erogeneity. An individual that has a higher risk of infection with A due to

certain risk behaviours or susceptibility will also have a higher risk of infec-

tion with B if the route of transmission is the same, inducing an association

between A and B. There may still be some interplay between the assumed

frailty distribution and function for the FOI; for instance, models incorpo-

rating age and time effects, or covariates, might allow distortions from the

population survivor function to “feed into” the estimated frailty; but in gen-

eral if the baseline FOI function is sufficiently flexible then the estimated

frailty should give a true indication of the extent of individual heterogeneity.

5.2.1 Implementation of simple frailty models

Infection status probabilities are denoted as follows: let π00(t) be the prob-

ability that neither infection has occurred by time t, π10(t) the probability

that infection 1 has occurred by time t but infection 2 has not, π01(t) the

probability that infection 2 has occurred by time t but infection 1 has not,

and π11(t) the probability that both infections have occurred by time t. Then

the survival function for remaining free from both infections may be derived

as in equation 3.13. Assuming for now that the risks of infection 1 and 2 are

independent gives

π00(t) = P (T1 > t)P (T2 > t)

= exp

(
−
∫ t

0

h1(u) du

)
exp

(
−
∫ t

0

h2(u) du

)
= exp

(
−
∫ t

0

h1(u) du−
∫ t

0

h2(u) du

)
,
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where Ti is the time infection i occurs and hi(t) is the hazard for infection

i. It is simplest to then derive the probabilities for a single infection π10(t)

and π01(t) in terms of the marginal probability of remaining free from the

other infection, minus the probability of neither infection. The probability

of both infections occurring is then the remaining probability. With Ai(t) =∫ t
0
hi(u)du, the cumulative hazard for infection i,

π00(t) = exp (−A1(t)− A2(t))

π10(t) = exp (−A2(t))− π00(t)

π01(t) = exp (−A1(t))− π00(t)

π11(t) = 1− π00(t)− π10(t)− π01(t).

(5.21)

The log-likelihood for paired infection data then takes the product multino-

mial form ∑
t

1∑
i,j=0

nijt log(πij(t)),

where nijt is the number of individuals with disease status (i, j) at time t.

In the case that some individuals are missing status data for one infection,

these individuals contribute to the likelihood via marginal terms, e.g.,

∑
t

1∑
i=0

ni.t log(πi0(t) + πi1(t))

for data on infection 1 only.

The formulae outlined above are not particularly useful in themselves, as

no further information is gained from analysing the joint data compared to

fitting separate models for each infection, but the equations form the basis of

the multivariate frailty models. For a gamma distributed frailty, using the

expression S(t|Z) = exp (−ZA(t)), then integrating out Z as in equation
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5.6, leads to

π00(t) =

(
1 +

A1(t) + A2(t)

θ

)−θ
π10(t) =

(
1 +

A2(t)

θ

)−θ
− π00(t)

π01(t) =

(
1 +

A1(t)

θ

)−θ
− π00(t)

π11(t) = 1− π00(t)− π10(t)− π01(t)

(5.22)

The equations for the inverse Gaussian distribution may be derived in a

similar way. These models may readily be extended to an age- and time-

specific force of infection by substituting cumulative force of infection func-

tions A(a, t) =
∫ t

0
h(u, t − a + u)du for infections 1 and 2; and indeed any

of the general forms of covariate model described in section 3.2.5. The like-

lihood then follows the same multinomial form, but is of course indexed by

age, time, and any other covariates. As with the univariate models, the

observed probabilities of infection may be related to true infection status if

information is available on the sensitivity and specificity of the tests. The

tests for the infections considered in this thesis have imperfect sensitivity but

near-100% specificity, so only sensitivity need be considered. This results in

the following formulae:

p00 = π00 + (1− S1)π10 + (1− S2)π01 + (1− S1)(1− S2)π11

p10 = π10S1 + S1(1− S2)π11

p01 = π01S2 + S2(1− S1)π11

p11 = π11S1S2,

(5.23)

where pij are expected proportions observed for infection 1 and 2, πij the

true probabilities, and S1 and S2 the sensitivity of tests for infection 1 and 2

respectively. This approach is based on the assumption that the sensitivity

of the two tests is independent and the sensitivity of one test is not altered

by positive infection status for the other test.

Model fitting will generally require bespoke code to maximise the likeli-

hood under frailty models. Extending such models to include covariates in

piecewise constant models with additive effects is relatively simple. Covari-
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ates are simply added to the linear predictor in the GLM form of the model,

with a parameter representing the additive difference in the force of infection,

multiplied by the exposure time at that covariate level, being added to the

cumulative FOI (see equations 3.22 and 3.23). For multiplicative models the

relationship between covariates, exposure time and the cumulative hazard is

more difficult to specify in a general form. For instance, for a model with

piecewise age-specific FOI exp(µi) for age band i and proportional hazards

for a covariate x with hazard ratio exp(β) the survivor function is given by

S(a, x) = exp[−(exp(µ1 + βx)A1(a) + exp(µ2 + βx)A2(a)+

...+ exp(µk + βx)Ak(a)].
(5.24)

It is straightforward to extend the model in equation 5.24 to incorporate

additional covariates, interactions with age, time and so on, but will require

adapting the code used to run the model (in contrast to additive models,

which will only require specification of a different design matrix). Therefore

testing alternative model forms can be time-consuming.

An alternative approach is to create multiple data rows for each observa-

tion, where each row consists of a particular age, time and covariate pattern

in the individual’s exposure history, and the exposure time at this covariate

combination. With indicator variables for a particular covariate combina-

tion, the FOI is the exponentiated sum of the relevant parameters, which is

multiplied by the exposure time. For instance, in equation 5.24 there is a sep-

arate row in the data corresponding to each of the terms exp(µi + βx)Ai(a).

These contributions to the cumulative hazard are then summed across each

individual’s history, and it is far easier to derive general-purpose model code

to calculate each such contribution to the cumulative hazard (model code

is provided in appendix section 9.2.2). Table 5.1 shows an example of such

data, which are similar in form to that used for time-varying covariates in

survival analysis.

This formulation requires larger datasets and increased computation time

(the summation across rows and columns must be performed at each iteration

of the numerical search procedure), but the advantage is generalisable model

code.

The time-varying frailty models require some care in implementation,
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Table 5.1: Example data for split exposure periods, with three age bands
(a1, a2, a3) and three time bands (t2, t3; baseline period is 1), a covariate x
that can modify the hazard in the first age period and the exposure time t
for individual i at exposure period j.

i j a1 a2 a3 t2 t3 x t
1 1 1 0 0 0 0 1 3
1 2 1 0 0 1 0 1 2
1 3 0 1 0 1 0 0 7
1 4 0 1 0 0 1 0 3
1 5 0 0 1 0 1 0 4
2 1 1 0 0 1 0 0 5
2 2 0 1 0 1 0 0 2
...

...
...

...
...

...
...

...
...

as unlike the simple frailty models, which consist of the cumulative hazard

within an expression for the Laplace transform, time-varying frailty models

include a number of terms involving cumulative hazards and different pa-

rameters. In particular, the piecewise constant model defined in equation

5.17 includes cumulative sums of the exposure times and FOI up to each

age band, which for models that include both age and time effects becomes

complicated. Again, splitting observations into exposure periods simplifies

things somewhat; with exposure periods sorted in their temporal sequence

the necessary sums are easier to calculate. Model code is provided in ap-

pendix section 9.2.3.

5.2.2 Separable mixing and shared parameters

It is important to remember when modelling data on infectious diseases that

changes in the FOI according to age (or exposure time) and calendar time

are the result of changes in the frequency and patterns of contact between

infected and susceptible individuals. This may be accounted for in infectious

disease models via the formulation of a contact matrix, representing the

relative frequencies of effective contacts (“mixing”) between individuals of

age group i and age group j (see for instance, Farrington et al. (2001)). A

specific form of contact frequencies is separable mixing, in which the contacts

of age i are distributed according to the activity level in each age group j.

If the contact functions for each infection are proportional, then the age-
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specific FOI for the two infections must also be proportional (Farrington

et al., 2001). Specifying the age-specific FOI for infection 1 as λa1 = λa, if

the age-specific FOI for infection 2 is proportional to that for infection 1, it

is given by λa2 = cλa, where c is a constant. Likelihood ratio tests or other

model fit statistics may then be used to test the null hypothesis that the

FOIs are proportional. If this null hypothesis is rejected, then the model

with non-proportional FOIs is preferable.

This test may also be extended to the case where there is individual het-

erogeneity; in fact, when heterogeneity is present but not allowed for in the

analysis, the test may reject the separable mixing model even if this model

is sufficient. If separable mixing is tested for while incorporating frailty ap-

propriately however, the test is then valid. For instance, the multinomial

proportions for infection status under the gamma frailty model in equation

5.22 would be:

π00(t) =

(
1 +

A1(t) + cA1(t)

θ

)−θ
π10(t) =

(
1 +

cA1(t)

θ

)−θ
− π00(t)

π01(t) =

(
1 +

A1(t)

θ

)−θ
− π00(t)

π11(t) = 1− π00(t)− π10(t)− π01(t).

(5.25)

Calendar time may also be considered. HCV, HBV and HIV are likely to

differ in temporal effects due to improvements in HBV vaccination and HIV

treatment (which decreases infectivity), while until relatively recently there

has been no such direct intervention on infection risk for HCV. In this case,

the temporal effects for two infections might differ, while having proportional

injecting duration (age) effects. In this case, if the model is specified in terms

of injecting duration-specific hazard ratios (HR) as in equation 3.19 then the

HRs would be the same for the two infections.

In general, proportionality tests may be applied for age, time or any

other other covariate, to assess whether the change in risk according to cer-

tain factors is proportional for the two infections. The interpretation of the

test as a test for separable mixing may become somewhat muddied for more

complex models in which some factors are shared and some are not. In par-
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ticular, temporal changes due to HBV vaccination and HIV treatment may

not have a proportional effect at different injecting durations, and therefore

the contact matrix may effectively change over time. Nevertheless, tests

of proportionality for different factors may yet provide insights into shared

elements of risk behaviour.

5.2.3 Associations between infections and further in-

vestigation of heterogeneity

The correlation between infections provides information on shared frailty

(Farrington et al., 2001), and therefore investigation of the dependence struc-

ture can provide an indication of suitable frailty distributions. Archimedean

copulas provide a framework for doing this, in which a bivariate distribu-

tion on the unit square is specified in terms of its marginal distributions,

in this context the marginal survivor functions S1(t) and S2(t) for infec-

tions 1 and 2 respectively, and an associated dependence function C (Genest

and Rivest, 1993). This allows the dependence structure to be investigated

independently of the marginal effects.

The Clayton copula is particularly useful for bivariate survival data

(Clayton, 1978). The resulting cross-ratio function (CRF) can be written

as

θ∗(t1, t2) =
S(t1, t2)D1D2S(t1, t2)

[D1S(t1, t2)][D2S(t1, t2)]
, (5.26)

where Dj denotes the derivative operator δ/δtj. The CRF may be interpreted

as the ratio of the hazard rates for event 1 given event 2 has, or has not yet,

occurred (and vice versa) (Oakes, 1989). A key feature of this measure is its

frailty interpretation, as θ∗(t1, t2) depends only on (t1, t2) through S(t1, t2)

(Oakes, 1989).

Clayton (1978) provides an alternative derivation of this model based

on the Cox model (Cox, 1972) and frailty with a gamma distribution, which

has constant RFV. Alternative models would therefore not result in constant

θ∗(t1, t2) when the underlying RFV is constant and would therefore not be

suitable for the purpose of choosing an appropriate frailty distribution. Plots

of the CRF can thus be used to suggest an appropriate frailty distribution,

with the gamma distribution suggested by a constant CRF, and decreasing
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or increasing CRFs suggesting alternative distributions.

For current status data, the joint survivor function S(t1, t2) is not ob-

servable and the CRF cannot be evaluated. Unkel and Farrington (2012)

proposed a measure of association that tracks the RFV over time in bi-

variate current status data, which can help to choose an appropriate frailty

distribution. This measure is defined as the value Φ solving the implicit

equation

(
p1(t)1−exp(Φ) + p2(t)1−exp(Φ) − 1

)1/[1−exp(Φ)]
= p00(t), (5.27)

where p00(t) is the proportion of individuals susceptible to both infections

at time t and p1(t) and p2(t) the proportion susceptible to infection 1 and

2. This approach is preferable to other measures of association, such as the

odds ratio, which can increase over time even if the RFV is not increasing

(Unkel and Farrington, 2012).

Examination of plots of Φ against time at risk (injecting duration in this

context) can help to understand whether the RFV is constant or changes

over time, with a common pattern in epidemiology being a decreasing RFV.

Such plots may also be constructed according to subgroups based on covari-

ate information, such as gender and calendar time, to examine whether the

evolution of the RFV differs. If important differences are revealed, strati-

fied analysis may then be undertaken to examine differences in heterogeneity

between the subgroups. Stratification also allows the baseline FOI and any

other covariates to differ between subgroups, which may or may not be de-

sirable. An alternative approach would be to allow some shared parameter

values across strata in the structural part of the model, but a stratified frailty

distribution; for instance, different frailty variances for males and females,

a fixed HR for females compared to males and common effects for calendar

time and injecting duration.

The FOI for a stratified frailty variance model with age-specific FOI λi(t)

in subgroup i and frailty variance Zi in subgroup i is therefore

λi(t|Zi) = Ziλi(t). (5.28)

The marginal survivor functions are obtained as in section 5.1 for any of
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the frailty distributions considered so far, with the δi parameters for frailty

variance (and the rate and asymptote parameters ρ and q for the TVF model)

being estimated separately for each subgroup i of the data. For instance,

under a gamma frailty the marginal survivor function with FOI and frailty

variances as in equation 5.28 becomes

Si(t) =

(
1 +

Ai(t)

θi

)−θi
. (5.29)

This model is readily extended to include calendar time and any other co-

variates, and may include a mixture of parameters that are specific to each

subgroup, common across subgroups, or based on proportional FOIs across

subgroups. If differences in frailty variance are being examined across sub-

groups, then the baseline FOI should also vary across these subgroups, at

least allowing for differences under a proportional hazards assumption (for

example a FOI of λ(t) in males and cλ(t) in females, where c is a constant).

As ever, the frailty variance is being estimated conditional on the baseline

FOI structure, so some care is required to incorporate relevant sources of

measured heterogeneity, which might include interactions between the sub-

group variable with age or time.

Further extensions might allow some aspects of the more complex models,

such as the TVF model, to vary but not others. For instance, stratified δ but

a common shape for the decline in frailty variance or asymptote parameters.

The frailty variance might also be allowed to vary according to more than one

covariate factor. However, further complexity is not considered subsequently,

and only the basic stratified frailty variance models are considered.
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Chapter 6

Bivariate models for

blood-borne viruses in people

who inject drugs

In this chapter the methods described in chapter 5 are applied to the UAM

data on people who inject drugs (PWID). Chapter 4 focussed on two main

areas: firstly, how the risk of infection for HCV, HBV and HIV changed

with injecting duration, over calendar time, and whether injecting duration-

specific risk changed over time (interactions). The second aim was to exam-

ine a broad range of covariates using demographic and risk factor data col-

lected by the UAM survey that might be of potential interest for modelling.

In this chapter the aim is to conduct further modelling of covariates within a

force of infection (FOI) model while incorporating a frailty distribution that

represents individual heterogeneity. The use of different distributions that

reflect different types of individual heterogeneity is investigated, in order to

understand how risk evolves over the course of injecting career.

The combination of covariate models and frailty distributions allows the

interplay between these two factors to be explored. One obvious question is

whether the frailty variance is decreased by the addition of covariate infor-

mation; as the frailty distribution accounts for unmeasured heterogeneity,

accounting for some of the differences in risk should of course decrease the

level of residual variation. Secondly, the frailty distribution itself might be

altered by the inclusion of covariates, especially where the distribution of
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covariate levels changes with exposure or calendar time, or there are in-

teractions or time-varying covariates. Including covariates may therefore

lead to different patterns of residual variation with increasing time at risk.

The inclusion of individual heterogeneity will also answer the more common

question considered in survival analysis and analysis of current status data:

whether a FOI/hazard that apparently decreases with time at risk is due to

selection effects induced by heterogeneity.

Finally, individual heterogeneity may vary according to different risk

groups, such as by region or gender. Such differences can be explored via

stratified analysis. Alternatively, the problem may be framed within a co-

variate model with group-specific frailty variances but some covariate effects

common to the different groups. This approach may be preferable to fit-

ting separate models to each stratum, which might be inefficient and lead to

estimation problems if the data are too finely subdivided.

The chapter is organised as follows. Firstly, patterns of relative frailty

variance are examined via the measure of association Φ described in section

5.2.3 to determine appropriate functional forms for the frailty distribution.

Multiplicative models are then used to examine the injecting duration- and

time-specific force of infection, with and without interactions, under a range

of frailty distributions. The following section then focusses on the inclusion

of covariates: demographic information on region, age and gender, and risk

factor information on ever received works (needles, syringes etc.) from an-

other person, ever use and age at first use of needle exchange, ever/age first

imprisoned, and men who have sex with men. Finally, stratified frailty vari-

ances are implemented in order to explore whether certain subgroups exhibit

greater levels of individual heterogeneity.

The focus of the analysis is on the bivariate HCV-HBV data, with HCV

being the the key outcome of interest and the correlation with HBV pro-

viding information on individual variability. Data are far more limited for

HIV, although the key models are examined for HCV-HIV and HBV-HIV

pairings, with a particular view as to how the HIV data can inform more

complex structures for the correlation between infections. The HBV-HIV

pair is therefore also of particular interest, as these infections have a wholly

shared transmission route, namely both injecting and sexual contacts. All

analyses are based on data from 2000 onwards that have complete informa-
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tion on the key covariates.

6.1 Measures of bivariate association: het-

erogeneity in risk of BBV infection in

people who inject drugs

The measure of association Φ described in section 5.2.3 tracks the relative

frailty variance (RFV) over exposure time, showing how frailty evolves in

survivors and suggesting an appropriate structure for the frailty distribution

(Unkel and Farrington, 2012). Figure 6.1 shows Φ by injecting duration

for the three infection pairs, HCV-HBV, HCV-HIV and HBV-HIV. For all

three pairings there is a general decline in RFV with injecting duration. For

HCV-HBV, Φ drops sharply over the first three years of injecting, before

declining more slowly subsequently, although still significantly above zero

(which would indicate no heterogeneity). A similar pattern is observed for

HCV-HIV, although HIV infections are sparse and estimates more variable

across injecting duration, with wide confidence intervals. For HBV-HIV

there is also some decline, but more slowly, and heterogeneity is greater

than the other pairings, although again, data are sparse.
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Figure 6.1: Associations between the three infection pairs by injecting du-
ration, estimates of Φ and 95% confidence intervals, and Lowess curve. In-
jecting durations are grouped where data are sparse to prevent zero cells.
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It is worth considering the routes of transmission for the different in-

fections, with all being transmitted via sharing of injecting equipment but

the addition of sexual transmission for HIV and HBV (which can be consid-

ered relatively uncommon for HCV). The Lowess curves for HCV-HBV and

HCV-HIV pairs are more similar than the HBV-HIV pair (albeit with wide

confidence intervals for the HIV pairs). This is as would be expected if the

correlation is due to heterogeneity in injecting behaviour.

The HCV-HIV pair may have a slightly lower correlation, and in particu-

lar decline fastest towards zero. Data are too sparse to be conclusive, but this

might point to a smaller component of shared risk of infection following the

high-risk initiation period. Conversely, the HIV-HBV pair, which have iden-

tical transmission routes, show the highest level of correlation, which may

reflect the additional shared heterogeneity resulting from the sexual trans-

mission route. Although conclusions are uncertain, the observed patterns are

consistent with epidemiological considerations. Also of note is that sexual

exposure may occur prior to injecting for HBV and HIV, which could affect

the evolution of the RFV in unpredictable ways, depending on the baseline

forces of infection and correlation between the routes of transmission.

It is also of interest to see whether the RFV may have different patterns

over time and according to covariate levels. Data are too sparse for further

subdivision of the HIV pairs, but this can be investigated for HCV-HBV. The

following plots therefore show the measure Φ for HCV-HBV by injecting du-

ration according to survey year, region, age at first use, gender, ever received

works and ever imprisonment (it was not possible to examine whether men

who have sex with men and those that have never used a needle exchange

have different patterns, as both these groups are too small).

Figure 6.2 shows Φ according to survey year, which is divided into three

5-year periods from 2000 onwards. The relative frailty variance appears to

change pattern across periods, with a continuous decline for 2000-2004, a

sharp decline over the first 5 years of injecting and more constant thereafter

for 2005-2009, and fairly constant for 2010-2014.

Results for region are shown in Figure 6.3, with North East combined

with Yorkshire and Humber and East and West Midlands combined due to

sparsity of data. Φ appears to be high initially but declining for London,

compared to a lower, but more stable value in the North West. Results

158



-.
5

0
.5

1
1.

5
2

0 5 10 15 20 0 5 10 15 20 0 5 10 15 20

2000-2004 2005-2009 2010-2014
f

Injecting duration

Figure 6.2: Association between HCV-HBV by survey period and injecting
duration, estimates of Φ and 95% confidence intervals, and Lowess curve.
Injecting durations are grouped where data are sparse to prevent zero cells.

are less precise for other regions, but appear to point to different regional

patterns, with a sharp decline and lower correlation subsequently in the

South West, higher correlation in Wales, and an unusual “bathtub” (de-

creasing then increasing) shape for the combined North East and Yorkshire

and Humber region.

Figure 6.4 shows Φ for males and females. The decline in RFV is slightly

sharper for males compared to females, and interestingly HCV-HBV infec-

tion in males has a generally stronger association, indicating that females

may be more homogeneous in their risk of infection.

Figure 6.5 shows Φ by age at first use. The pattern for those that began

injecting at less than 18 years of age shows a slow decline over injecting

career, while those aged 18-24 have a steeper decline over the first 5 years

and more stable thereafter. The pattern is similar for those that began

injecting at 25 or older, but with a lower value of Φ at initiation.

There was little difference in pattern according to whether ever received

works or not (Figure 6.6), although Φ may remain slightly elevated at longer

injecting durations in those that report never receiving works. The difference

is plausible: those that report never sharing equipment are a mixture of those

that genuinely have never shared and those that have incorrectly answered

the question (if all responses were genuine, prevalence in this group would be
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Figure 6.3: Association between HCV-HBV by region and injecting duration,
estimates of Φ and 95% confidence intervals, and Lowess curve. Injecting
durations and some regions are grouped where data are sparse to prevent
zero cells.

extremely low, as those infected with a blood-borne virus are highly likely

to have acquired infection via sharing injecting equipment). Conversely,

those that report sharing equipment would probably be less likely to have

misreported their answer, and therefore be a more homogeneous group in

terms of risk.

Finally, Figure 6.7 shows Φ by ever-imprisoned status. Φ is at around the

same level at initiation, but declines more quickly to a slightly lower value

for those ever imprisoned. For most PWID, imprisonment is likely at some

point in injecting career (69% of those in the data from 2000 onwards have

been imprisoned) and therefore those that have never been imprisoned are

the rarer, and apparently more heterogeneous group. There may also be an

aspect of under-reporting of imprisonment, similar to that for ever receiving

works, which would result in a mixture of risk-types in the never-imprisoned

group.
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Figure 6.4: Association between HCV-HBV by gender and injecting dura-
tion, estimates of Φ and 95% confidence intervals, and Lowess curve. Inject-
ing durations are grouped where data are sparse to prevent zero cells.
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Figure 6.5: Association between HCV-HBV by age at first use and injecting
duration, estimates of Φ and 95% confidence intervals, and Lowess curve.
Injecting durations are grouped where data are sparse to prevent zero cells.
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Figure 6.6: Association between HCV-HBV by ever receiving works and
injecting duration, estimates of Φ and 95% confidence intervals, and Lowess
curve. Injecting durations are grouped where data are sparse to prevent zero
cells.
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Figure 6.7: Association between HCV-HBV by ever-imprisonment and in-
jecting duration, estimates of Φ and 95% confidence intervals, and Lowess
curve. Injecting durations are grouped where data are sparse to prevent zero
cells.

162



6.1.1 Conclusions

The data from all three pairs of infections point strongly toward a declining

frailty variance in survivors, which is consistent for the majority of sub-

groups across a range of covariates. However, the pattern of decline changes

markedly across some subgroups, and according to survey year. Stratified

plots of Φ can reveal such differences, but may not capture the structure

of residual heterogeneity after accounting for time and other covariates; in

other words, although the patterns may appear to vary across subgroups,

a common frailty distribution might still capture the residual heterogeneity

adequately in more complex models. This can be assessed via the predicted

association between infections, with Φ calculated from the bivariate preva-

lence predicted by a frailty model and plotted against the observed values

to examine how well the chosen distribution for residual frailty fits. These

plots require some care in interpretation, representing the estimated associ-

ation between infections conditional on both the frailty distribution and any

modelled covariates.

6.2 Bivariate frailty models: trends and risk

patterns

The inclusion of frailty distributions is first examined within models with in-

jecting duration and time effects only, with and without interactions between

them. Data from 2000 onwards are considered, for which key covariates are

non-missing (equipment sharing, needle exchange, imprisonment and men

who have sex with men. Region, age and sex are always complete). Within

this subset of data, all individuals have data on at least one infection test

within each bivariate pair (HCV-HBV, HCV-HIV and HBV-HIV). Therefore

the same dataset is used in all subsequent analyses.

Calendar time and injecting duration are defined as in section 4.2: pre-

1980, 1980-1985, 1985-1990, 1995-2000, 2000-2005, 2005-2010 and 2010 on-

wards; and injecting duration as ≤ 1, 1-3, 3-5, 5-10, 10-15, 15-25 and > 25

years. Four models are considered for the frailty distribution: independence

(no frailty), gamma, inverse Gaussian and a single-component time-varying

frailty (TVF) model as described in section 5.1.4. The gamma distribution
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provides a constant relative frailty variance (RVF), such that the hetero-

geneity of survivors is unchanged, whereas the inverse Gaussian distribution

results in declining RVF due to selection effects. The TVF model uses a

gamma distribution that declines in variability over time towards an asymp-

tote (equation 5.14).

6.2.1 Estimated frailty variance and model fit

Table 6.1 shows frailty variances and AIC scores for the eight possible models

(four frailty distributions, with and without interaction between time and

injecting duration) fitted to the bivariate HCV-HBV data. Under the no

interaction models, the frailty variance δ is greater for the inverse Gaussian

than the gamma model, and highest for the TVF model. These values are

for the frailty variance at t = 0, when all individuals are susceptible, but

this variability decreases over time for the non-gamma frailty models. The

ρ parameter for the TVF model is 0.99 (see equation 5.14), such that the

frailty variance declines rapidly towards the asymptotic lower bound; the

estimate of q is 0.74 such that this lower bound is 0.68, around two-thirds

of the initial frailty variance.

Table 6.1: Bivariate model statistics for HCV-HBV data, with and with-
out interaction between injecting duration and time and under four different
frailty distributions. Frailty variance δ, -log-likelihood, number of parame-
ters k and AIC score.

No interaction Interaction
Distribution δ -LL d.f. AIC δ -LL k AIC

Independence NA 22798.1 28 45652.3 NA 22770.3 52 45644.6
Gamma 0.97 22445.8 29 44949.6 0.98 22424.5 53 44955.0

Inv. Gaussian 1.94 22422.0 29 44901.9 1.92 22398.2 53 44902.3
Time-varying 3.16 22416.0 31 44893.9 3.18 22392.0 55 44894.1

There is a substantially better fit to the data under the frailty models

compared to independence, and a fair improvement under the inverse Gaus-

sian and TVF models compared to the gamma model, indicating that the

RFV in survivors declines over time in some way. The TVF model provides

some further improvement on the inverse Gaussian, although the two extra

parameters for the rate of decline and asymptotic minimum will provide more
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flexibility so this cannot necessarily be viewed as evidence for a time-varying

frailty rather than a selection effect; it may be that neither distribution is

quite right.

There is very little change in any of the frailty parameter estimates when

including an interaction between injecting duration and time. For all frailty

models the AIC score is increased by the addition of interaction terms, al-

though there is an improvement for the independence model. Figure 6.8

shows the observed and predicted bivariate proportions of HCV-HBV under

the inverse Gaussian model. The model fit appears reasonable from visual

inspection, although there is some lack of fit at longer injecting durations.

This occurs for models with and without interactions and is due to the fixed

effects of injecting duration in the pre-survey period: as the cumulative haz-

ard must increase monotonically, there is a lower bound on prevalence at

longer injecting durations. There is little that can be done to address this,

as interaction terms outside the range of the survey data are not identifiable.

As in section 4.2.1, models with and without interactions are very similar for

the data from 2000 onwards, and the predicted prevalences are also similar

for other frailty distributions.

Figure 6.9 shows estimates of the measure of association Φ based on

the predicted bivariate prevalence from the different frailty models, with in-

teractions between injecting duration and calendar time. This is close to

constant for the gamma model, as would be expected, but increases and

decreases slightly with injecting duration due to changes in covariates for

calendar time. The predicted value of Φ for the inverse Gaussian model

decreases over time, as expected, due to the selection effect. Finally, under

the TVF model Φ decreases rapidly over the first 3 years of injecting du-

ration, but then continues to decrease, and more rapidly than the inverse

Gaussian. This may be counter-intuitive, as under the estimated parameters

for the TVF distribution the frailty variance is very close to its asymptotic

value within a few years and is no longer declining substantially. However,

the association measure Φ at time t reflects the cumulative impact of the

association over the interval (0, t], rather than its impact at time t; this is

unavoidable with current status data, as event times are not observed. For

all frailty distributions, estimates of Φ are very close for the models with

and without interactions.
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Figure 6.8: Observed and predicted bivariate HCV-HBV prevalence (positive
+, negative -) by injecting duration and survey period, inverse Gaussian
frailty. Models with and without interactions between injecting duration
and calendar time effects. Observed proportions are plotted according to
sample size.

Assessing the absolute fit of the models is complicated by the sparsity

of the multinomial data, with HBV-positive HCV-negative individuals com-

paratively rare. Of the possible survey year, injecting duration and bivariate

infection status combinations, 21.6% of cells are zero, 13.6% are ones and

61% of all cells less than or equal to 5. Categories are therefore first col-

lapsed before calculating the deviance, according to the categorisation of

survey year and injecting duration used for the logistic regression models in

section 4.1.1 and removing injecting durations of > 35 years. This results

in 60 combinations of survey period/injecting duration category and only

13.3% of cells less than or equal to 5. The deviance of the inverse Gaussian

model with no interaction between calendar time and injecting duration ef-

fects was 332.4 on 151 degrees of freedom, and the interaction model 296.7

on 127 degrees of freedom, indicating neither fit the data very well. Exam-
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Figure 6.9: Observed and predicted estimates of association between HCV
and HBV under different frailty distributions, with interactions between in-
jecting duration and calendar time. Injecting durations are grouped where
data are sparse to prevent zero cells.

ination of the data points with high deviance contributions reveals little in

the way of a regular pattern, with areas of poor fit spread across injecting

durations and survey years, and pointing more to overdispersion rather than

inadequate model structure.

To further assess the fit of the model the univariate deviance for HCV and

HBV were examined separately. As data are less sparse, survey year is not

grouped and injecting duration can be grouped at a finer level (un-aggregated

for durations up to 10 years, 2-year bands from 10-20 years, 5-year bands

subsequently). The univariate deviance for HCV was 282.7 on 255 degrees

of freedom for the model with no interaction between injecting duration

and calendar time and 254.6 on 243 degrees of freedom for the interaction

model, and for HBV a deviance of 417.5 on 255 degrees of freedom for the

no interaction model and 397.5 on 243 degrees of freedom for the interaction

model. The fit is therefore adequate for HCV but somewhat poor for HBV.

Plots of deviance residuals are shown in figures 6.10 and 6.11 for HCV and
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HBV. As would be expected from the deviances, the variability of deviance

residuals is higher for HBV than HCV. There do not appear to be obvious

systematic patterns in the residuals for HCV, although there is perhaps more

variability in residuals at shorted injecting durations. For HBV there are

some systematic patterns, but this tends to occur in individual survey years;

for instance most of the residuals are negative in 2009 and 2014. This was

noted in section 4.1.2: such “local” patterns can only be captured within the

model if the structural part of the model includes parameters for individual

years. Further, the FOI model is parameterised in terms of cumulative risk

over calendar time and injecting duration, so sharp changes in prevalence in

individual survey years would only be captured by interaction terms at the

level of individual years.
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Figure 6.10: Deviance residuals for HCV under bivariate HCV-HBV model,
with survey year and injecting duration interaction and inverse Guassian
frailty.

For the HCV-HIV and HBV-HIV pairings there were some model fitting

issues: there is far less information to estimate the frailty variance, in partic-

ular changes over time, which is made yet more difficult with the inclusion
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Figure 6.11: Deviance residuals for HBV under bivariate HCV-HBV model,
with survey year and injecting duration interaction and inverse Guassian
frailty.

of interactions between injecting duration and time. Table 6.2 shows the

model fit statistics and frailty variances for the bivariate HCV-HIV model.

Patterns are similar to those for HCV-HBV, but somewhat less conclusive,

with a declining frailty variance being preferred to the gamma model but

little difference between the inverse Gaussian and TVF models, and a very

high estimate of the frailty variance under the latter (9.17). For the TVF

model the estimate for ρ, the rate of decline in relative frailty variance, is

73.0, resulting in an immediate decline to the asymptote, estimated at 0.47.

The interaction model results appear unreliable, with the gamma frailty be-

ing preferred to the inverse Gaussian, and an extremely high estimate of the

frailty variance for the TVF model (361). Results are also inconclusive as to

whether the interaction terms are necessary or not, with a better AIC score

for the independence and gamma models with the interaction, but worse for

the two other models.

Table 6.3 shows the model fit statistics for the bivariate HBV-HIV mod-
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Table 6.2: Bivariate model statistics for HCV-HIV data, with and without
an interaction between injecting duration and time and under four different
frailty distributions. Frailty variance δ, -log-likelihood, number of parame-
ters k and AIC score.

No interaction Interaction
Distribution δ -LL d.f. AIC δ -LL k AIC

Independence - 15048.6 28 30153.2 - 15020.9 52 30145.8
Gamma 0.84 15042.9 29 30143.9 0.56 15008.4 53 30122.8

Inv. Gaussian 0.89 15033.4 29 30124.7 0.82 15015.1 53 30136.3
Time-varying 9.17 15032.3 31 30126.6 360.8 15004.2 55 30118.4

els. The pattern is similar to the HCV-HBV results, and appear more or-

derly: the AIC scores decline for the independence, gamma, inverse Gaus-

sian, and TVF models in turn for models with and without interactions,

and there is a fairly consistent preference for the no interaction model over

the interaction model. The frailty variance is estimated to be higher for

the inverse Gaussian model, which is to be expected, given that the vari-

ance in survivors will decline. The TVF model has a high variance (11.5 no

interaction, 8.7 interaction) and a less rapid rate of decline than the other

pairings(ρ = 0.43 and 0.18 for no interaction/interaction models). However,

the asymptotic minimum is far lower at 0.26 for the no interaction model and

practically zero for the interaction model, indicating far less heterogeneity

in survivors over time.

Table 6.3: Bivariate model statistics for HBV-HIV data, with and without
an interaction between injecting duration and time and under four different
frailty distributions. Frailty variance δ, -log-likelihood, number of parame-
ters k and AIC score.

No interaction Interaction
Distribution δ -LL d.f. AIC δ -LL k AIC

Independence NA 10378.8 28 20813.7 NA 10368.6 52 20841.2
Gamma 1.42 10352.1 29 20762.2 1.44 10328.1 53 20762.3

Inv. Gaussian 2.34 10349.3 29 20756.5 2.30 10325.9 53 20757.7
Time-varying 11.46 10341.8 31 20745.5 8.73 10320.9 55 20751.9

Figure 6.12 shows the observed and predicted proportions of bivariate

HCV-HIV status by survey period and injecting duration. The fit is generally

good for those not infected with HIV, but proportions of HIV positive are
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Figure 6.12: Observed and predicted bivariate HCV-HIV prevalence (posi-
tive +, negative -) by injecting duration and survey period, gamma frailty.
Models with and without interactions between injecting duration and cal-
endar time effects, and no-interaction model with shared injecting duration
effect. Observed proportions are plotted according to sample size; y-axis
scales vary for clarity.

very low, and models both with and without interactions do not capture the

variability in observed proportions very well due to the sparsity of the data.

Figure 6.13 shows the observed and predicted proportions of bivariate

HBV-HIV status by survey period and injecting duration. As with the HCV-

HBV model, there is some lack of fit for HBV at longer injecting durations.

Proportions of HIV positive are very low, and models both with and without

interactions do not capture the variability in observed proportions very well.

The figure also displays predictions according to a shared injecting duration

effect (see section 6.2.2).

Figure 6.14 shows estimates of the measure of association Φ between HCV

and HIV based on the predicted bivariate prevalence from the different frailty

models, with interactions between injecting duration and calendar time. The
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Figure 6.13: Observed and predicted bivariate HBV-HIV prevalence (posi-
tive +, negative -) by injecting duration and survey period, gamma frailty.
Models with and without interactions between injecting duration and cal-
endar time effects, and no-interaction model with shared injecting duration
effect. Observed proportions are plotted according to sample size; y-axis
scales vary for clarity.

inverse Gaussian model shows a slight decline in association as injecting

duration increases, but is generally comparable to the gamma frailty model.

The TVF model captures the decline in Φ better; this is due to the very

high estimate of initial frailty variance and subsequent high rate of decline,

although this was somewhat less for the model without interactions. For the

other frailty distributions, there was little difference between models with or

without interactions.

Figure 6.15 shows estimates of the measure of association Φ between

HBV and HIV based on the predicted bivariate prevalence from the different

frailty models, with interactions between injecting duration and calendar

time. The inverse Gaussian model shows a slightly higher association at

shorter injecting durations but Φ declines to the same level as the estimates
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Figure 6.14: Observed and predicted estimates of association between HCV
and HIV under different frailty distributions, with interactions between in-
jecting duration and calendar time effects. Injecting durations are grouped
where data are sparse to prevent zero cells.

from the gamma distribution at longer durations (over 20 years). Neither fit

the observed pattern well for shorter injecting durations. The TVF model

however captures the decline in Φ better over this period and although data

are sparse, appears the most plausible model for the observed frailty. There

are only minor differences in the estimates for models with and without

interactions.

Assessment of model fit is again difficult, as data are even sparser for

infection pairs including HIV, with 46% of cells equal to zero and 72% with

counts of five or less. Grouping survey year and injecting duration as for

HCV-HBV gives a deviance of 308.9 on 151 degrees of freedom for the gamma

frailty model with no interaction between injecting duration and survey year

effects, and 270.5 on 127 degrees of freedom for the interaction model. Again,

this appears to be partly due to overdispersion and the constrained lower

bound on prevalence at longer injecting durations, with models with and

without interaction terms overestimating HBV prevalence at longer injecting
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Figure 6.15: Observed and predicted estimates of association between HBV
and HIV under different frailty distributions, with interactions between in-
jecting duration and calendar time effects. Injecting durations are grouped
where data are sparse to prevent zero cells.

durations in more recent years.

6.2.2 Trends and risk patterns under bivariate frailty

models

Parameter estimates for the baseline FOI by calendar time and injecting

duration-specific HRs for HCV and HBV are shown in Table 6.4, for each of

the frailty distributions, in the model with no interaction between injecting

duration and calendar time. As observed in section 4.2, there is a substan-

tially increased risk of infection in the 1st year of injecting (compared to 3-5

years) for both HCV and HBV. This is reduced somewhat under the frailty

models compared to the independence model, but still very high. Accounting

for heterogeneity therefore only partly explains the high prevalence of BBVs

in 1st year injectors. Subsequent to the first year of injecting, the FOI stays

relatively constant for HCV and HRs for injecting durations of 5-10 and
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10-15 years are fairly similar under the different frailty models. Beyond 15

years the estimates differ according to the choice in frailty distribution. This

is due to a combination of sparse data and the constraining effect described

above.

Temporal patterns for HCV suggest that risk was highest in the early

1980s and declined slightly until 1995, was markedly reduced in 1995-2000

but then slowly increasing from this point onwards. Temporal patterns are

fairly similar for the different models (the baseline rates vary due to the dif-

ferent estimates of injecting duration, but the patterns are similar) except

for the period before 1980, which are affected by the choice of frailty dis-

tribution. All of the frailty models estimate a low or practically zero risk

(unlike the independence model) prior to 1980, which may be epidemiologi-

cally plausible.

For HBV, as well as a very high FOI in the 1st year, the FOI for years

1-3 is 2-3 times higher than the baseline group of 3-5 years. The estimated

FOI is then similar for 3-5 years and 5-10 years, but estimates are practically

zero from 10 years onwards, such that all of the estimated risk of infection

occurs in the first 10 years of injecting. Therefore although observed HBV

prevalence increases monotonically with injecting duration, according to the

model this is solely due to higher levels of risk in the past, which has de-

creased steadily since 1980.

Obtaining parameter estimates for injecting duration-specific hazard ra-

tios is problematic for HIV. This is due to sparsity of the outcome, and a

general pattern of injecting duration-specific prevalence that causes difficul-

ties in fitting: prevalence rises sharply at initiation, but then does not in-

crease monotonically, staying at around the same level from durations 2-10

years before increasing again. This results in HRs for injecting duration-

specific risk being estimated as practically zero or extremely high in some

categories, with variable patterns in estimated risk depending on the infec-

tion pair (HCV-HIV or HBV-HIV) and chosen frailty distribution (although

an excess risk in the first year is a common feature). Despite this instability

in estimated injecting duration-specific risk, estimates for temporal trends

are plausible and similar across different models and infection pairs. Never-

theless, it would be preferable to model the data according to a reasonable

pattern of risk, rather than one in which the estimated at-risk periods only
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Table 6.4: Parameter estimates for bivariate HCV-HBV model under dif-
ferent frailty distributions: independence (Indep), gamma, inverse Gaussian
(Inv G) and time-varying frailty (TVF). Model with main effects for calendar
time and injecting duration (no interaction).

HCV HBV
Parameter Indep Gamma Inv G TVF Indep Gamma Inv G TVF

Time-specific baseline rate (3-5 years injecting)
pre-1980 0.054 0.000 0.016 0.000 0.059 0.145 0.179 0.225

1980-1985 0.075 0.119 0.153 0.145 0.032 0.057 0.074 0.095
1985-1990 0.069 0.098 0.124 0.115 0.020 0.029 0.037 0.048
1990-1995 0.066 0.103 0.129 0.128 0.012 0.016 0.020 0.025
1995-2000 0.046 0.062 0.072 0.069 0.009 0.012 0.015 0.018
2000-2005 0.060 0.089 0.107 0.103 0.007 0.009 0.010 0.012
2005-2010 0.066 0.099 0.119 0.114 0.003 0.004 0.005 0.006
post-2010 0.076 0.117 0.142 0.136 0.002 0.003 0.003 0.004

Injecting duration-specific hazard ratios
1st year 3.21 2.39 2.14 2.38 11.60 9.34 8.38 7.18

1-3 yr 0.83 0.72 0.69 0.72 3.06 2.62 2.39 1.92
3-5 yr 1 (ref) 1 (ref) 1 (ref) 1 (ref) 1 (ref) 1 (ref) 1 (ref) 1 (ref)

5-10 yr 0.66 0.69 0.69 0.64 1.04 0.85 0.82 0.53
10-15 yr 0.79 1.04 1.02 0.87 0.00 0.00 0.00 0.00
15-25 yr 0.68 1.35 1.27 0.99 0.00 0.00 0.00 0.01
25+ yrs 0.76 3.22 2.31 1.48 0.00 0.00 0.00 0.01

occur at initiation and 5-10 or 10-15 years, with a FOI of practically zero at

other times.

Here, assuming common hazard ratios for injecting duration-specific risk

becomes useful. HBV and HIV have identical transmission routes, and al-

though risk has clearly changed over time, the relative hazards according to

injecting duration should be broadly comparable. The likelihood ratio test

(LRT) for separate injecting duration HRs vs. shared parameters, under

the gamma model with no interaction between injecting duration and time,

gave a p-value of 0.844, so no evidence of a poorer fit. Conversely, assuming

shared hazard ratios for calendar time effects provided an extremely small

LRT p-value (p < 0.0001) and therefore the assumption of common time

trends is not tenable. The assumption of shared common parameters had

some impact on the estimate frailty variance, decreasing from 1.42 to 1.29

with common injecting duration parameters, and to 0.54 under common time

parameters.

Table 6.5 shows parameter estimates for calendar time and injecting du-
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ration under separate and shared injecting duration effects. The time effect

(which is expressed as a hazard ratio vs. 2005-2010) is little changed for

HBV under shared effects, but shifted somewhat for HIV with a generally

higher risk of infection prior to 1995, although following the same declining

pattern, and higher risk post-2010. Estimates of injecting duration-specific

risk differ for both infections, with the estimates being an average of the

patterns of risk for the individual infections, but more heavily weighted to-

ward the HBV estimate. Of note is that although the shared HRs appear

markedly higher than for HBV for 1st year and 1-3 years injecting dura-

tions, this is more to do with the estimated FOI in the baseline category,

3-5 years, being “pushed” downwards, as all the HRs are increased. Figure

6.13 shows estimated bivariate prevalence from the shared parameter model

in comparison with the non-shared model. There is little visual difference

in estimated HBV prevalence for those that are HIV negative, and for HIV

prevalence the data are too sparse to tell whether the estimates are better

or worse.

For comparison, the equivalence of injecting duration and calendar time-

specific HRs was tested for the other infection pairs, under the same model

and frailty structure above. For HCV-HIV, there was also no difference in

model fit under common injecting duration-specific hazard ratios (p = 0.795)

and little difference with common time effects (p = 0.221). The frailty vari-

ance was again reduced, from 0.84 to 0.46 under common injecting duration

parameters, and 0.59 under common time parameters. For HCV-HBV the

fit was significantly worse when either effect was assumed to be the same

(p < 0.0001). However, there was little change in the frailty variance (0.97

under no shared parameters, 0.90 with shared injecting duration parameters,

1.03 with shared time parameters).

6.2.3 Conclusions

Under the model with no interaction between injecting duration and time

effects and a gamma frailty distribution, the estimated frailty variances were

0.97 for HCV-HBV, 0.84 for HCV-HIV and 1.42 for HBV-HIV, with gen-

erally similar results under the interaction models. These values represent

a moderate level of individual heterogeneity, with the hazard ratio between

177



Table 6.5: Estimated hazard ratios from bivariate HBV-HIV model under
gamma frailty distribution with separate and shared injecting duration ef-
fects. Model with main effects for calendar time and injecting duration (no
interaction).

Separate Shared

Parameter HBV HIV HBV HIV
Time-specific baseline rate (3-5 years injecting)

pre-1980 48.6 2.20 42.5 3.32
1980-1985 16.1 1.67 15.1 2.56
1985-1990 7.81 1.23 7.41 1.42
1990-1995 4.08 1.15 3.93 1.81
1995-2000 3.05 0.43 3.04 0.60
2000-2005 2.13 1.08 2.14 1.06
2005-2010 1 (ref) 1 (ref) 1 (ref) 1 (ref)
post-2010 0.70 1.18 0.68 1.78

Injecting duration-specific hazard ratios
1st year 7.89 571.2 20.9

1-3 yr 2.15 0.00 5.56
3-5 yr 1 (ref) 1 (ref) 1 (ref)

5-10 yr 0.78 62.0 2.71
10-15 yr 0.00 141.8 0.31
15-25 yr 0.00 0.00 0.01

25+ years 0.00 0.00 0.01

the 75th percentile and the 25th percentiles of the estimated gamma distri-

bution being 4.7 for HCV-HBV, 4.1 for HCV-HIV and 7.3 for HBV-HIV.

There is strong evidence of a declining relative frailty variance, and the in-

verse Gaussian distribution provides a better fit and with a higher variance,

predictably so as the correlation between infections naturally declines due

to a selection effect, and therefore must be higher to start with.

The TVF model provides the most detail on how the frailty variance

changes over time, although it is also the most sensitive to the parameterisa-

tion of the baseline FOI. For HCV-HBV there is a rapid decline in variance,

dropping to around two-thirds the initial value. For HCV-HIV the initial

variance is very high, but the decline is near-immediate, to around half the

initial value. Due to the rapid decline the period of time that the frailty vari-

ance is near its initial value at t = 0 is extremely short. For the HBV-HIV

pair the decline in variance is slower, but tends toward a low asymptotic
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value, indicating homogeneity in long-term injectors.

None of the frailty models fully captured the pattern of relative frailty

variance indicated by plots of Φ for HCV-HBV, which showed a sharp initial

decline followed by a slower decline in RFV. As the frailty variance in the

TVF model declines toward an asymptote, it can only capture one of these

features unless additional parameters are introduced. The observed plots

indicate a slight underestimation of the variability in the first 1-3 years of

injecting, although the slow decline is present in the model predictions. For

HBV-HIV, the TVF model gives a more plausible approximation of the ob-

served pattern of Φ. There is something of a dip in RFV around 4-7 years,

but data are extremely sparse and the global pattern appears to have been

captured well.

As noted in section 6.1, the two routes of transmission are only shared

by HBV and HIV, with this pairing showing the strongest association and a

smaller decline in RFV over time. Conversely, the HCV-HIV pairing showed

the least association, with a generally smaller frailty variance in most models.

Following this line of reasoning, heterogeneity in risk may be underestimated

for HCV, given that the transmission route is only partially shared, although

it appears the overlap between HCV and HBV risk is still high.

Identification of parameters is a problem for the HIV data. Tests of

common parameters for each infection indicate that the effect of injecting

duration is comparable for HIV and HBV. However, results also showed

no evidence for a difference between the HCV and HIV injecting duration-

specific HRs, although there was a significant difference for the HCV and

HBV HRs. Clearly there is a lack of data on HIV to conclusively demonstrate

similar patterns of risk according to injecting duration. Nevertheless, a com-

mon effect for injecting duration-specific risk for HBV and HIV is plausible,

due to a wholly shared route of transmission. Conversely, there was strong

evidence for differences in risk according to calendar time for HBV and HIV,

confirming that direct and indirect infection control measures (HBV vacci-

nation, HIV treatment) are likely to have had a different impact on levels

of risk over time for these infections. For the HIV pairings, the estimated

frailty variance was sensitive to the choice of shared parameters. However,

the frailty variance for HCV-HBV showed little change, despite the shared

parameter models giving a markedly poorer fit, so this again may be more
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due to the sparsity of the HIV data, rather than a systematic effect of con-

straints on the injecting duration parameters.

6.3 Bivariate frailty models with covariates

In this section covariates are introduced into the frailty models to examine

their effect on the force of infection and residual frailty. This is a somewhat

different approach to model building than that usually employed, which

would seek to identify relevant covariates and model structure before exam-

ining whether random effects were required to account for residual variation.

However, the analysis of multivariate current status data largely focuses on

unmeasured heterogeneity, and it is the introduction of covariate data that

is relatively novel here.

The key factors of interest are the covariates identified in sections 4.1.4

and 4.2.4: demographic variables for region, age and sex, and risk factor

information on sharing equipment, needle exchange use, imprisonment and

men who have sex with men (MSM). There are 10 regions, with SE England

set as the baseline group, and the age variable is defined in terms of age

at first use, with < 18, 18 − 24 and 25+. Gender is binary (1 for females

vs. 0 for males) and estimates the difference between females and men

who do not have sex with men: a binary variable for MSM (1) vs. non-

MSM (0) is included to estimate differences in MSM risk in males. Ever

receiving “works” (injecting equipment) is binary, and the needle exchange

use and imprisonment variables are defined in terms of ever occurring plus a

time-varying covariate for pre- and post-first occurrence. This formulation is

intended to unpick the possible effects for being the type of individual that is

ever imprisoned or uses a needle exchange and the change in risk subsequent

to having been first imprisoned or starting to use a needle exchange. An

example of these two aspects of risk would be that heavier users may be

more likely to have ever used a needle exchange, but experience a decline in

risk once usage is initiated.

In most models in section 6.2 there was not a strong preference for includ-

ing interactions between injecting duration and time, and little difference in

the estimates of parameters for the frailty distribution. Therefore only the

main effects for injecting duration and time are considered in this section,
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which reduces the number of models that need be considered and avoids

estimation problems that occur where data are sparse and a number of co-

variates included. Model building is conducted hierarchically in four steps,

starting from the model with no interaction between injecting duration and

calendar time effects in section 6.2 (1). Models 2-4 then successively add

covariates to the model: (2) region (this being the most important factor

identified in section 4.1.4), (3) age and sex, and (4) the risk factor covari-

ates. The sequence is repeated for each of the three infection pairs under

the four frailty models, giving 16 possible models for each pair of infections.

6.3.1 Estimated frailty variance and model fit

Table 6.6 shows the estimated frailty parameters under models with dif-

ferent covariate structures and frailty distributions. For the Gamma and

inverse Gaussian models there is a sequential decline in the frailty variance

δ as covariates are added to the model; however the reductions in variance

are only 20% and 26% respectively. The pattern is similar for the TVF

model, with a marked reduction in δ for the model with region vs. no co-

variates, although initial variance is slightly higher in the full model. In

all the TVF models with covariates, the initial variance is lower but the

asymptotic value to which the frailty variance declines is between 0.80 and

0.84, compared to 0.68 without covariates. The decline toward the asymp-

tote is near-immediate under the covariate models, with ρ ranging from 18.7

to 41.1, but very rapid under the model without the covariates also: with

ρ = 0.99 the frailty variance is two-thirds of the way from the initial value to

the asymptote within 1 year. These results may point to a high variance on

initiation of injecting, which rapidly stabilises, although it is worth noting

that the information to detect changes in frailty is low and models, and their

estimates, are somewhat sensitive.

Model fit is steadily improved by the addition of covariates, with AIC

scores decreasing by 1414.5, 167.1 and 619.0 as region, age and sex, and risk

factors are added sequentially to the model (inverse Gaussian frailty). For

the full covariate models, the inverse Gaussian distribution provides the low-

est AIC score, with a difference in AIC score of 28.4 compared to the gamma

distribution and 6.6 compared to TVF. The TVF model, while providing the
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Table 6.6: Estimated variance parameters for HCV-HBV data under co-
variate models with different frailty distributions. No covariates (No cov);
region; region, age and gender (R,A,G) and all covariates and risk factors
(Full). Frailty variances δ and parameters for time-varying model: ρ, rate
of decline; and asymptotic proportion to which the initial variance at t = 0
declines.

Frailty (1) No cov (2) Region (3) R,A,G (4) Full

Gamma δ 0.97 0.86 0.83 0.77
Inv. Gaussian δ 1.94 1.58 1.52 1.44
Time-varying δ 3.16 1.83 1.74 1.96

ρ 0.99 41.1 18.7 24.8
Asymptote 0.68 0.84 0.84 0.80

best fit without covariates, appears unnecessarily complex once covariate in-

formation is incorporated. Nevertheless, there is still significant residual

heterogeneity, and this appears to follow the same pattern of declining RFV

identified in sections 6.1 and 6.2.

The absolute fits of the covariate models are difficult to assess, as the

data are now cross-classified according to a number of factors. Examining

the deviance according to data collapsed by survey period and injecting

duration categories, as in section 6.2.1, reveals a modest improvement in

fit but with a large number of additional parameters (deviance of 265.2 on

115 degrees of freedom, vs. 332.4 on 151 degrees of freedom). However, a

substantial improvement would not be expected, as the covariates are not

part of the survey year/injecting duration cross-classification used in the

calculation of the deviance.

Figure 6.16 shows estimates of the measure of association Φ obtained

under the full covariate model. Under the gamma frailty model the estimate

declines over time: due to the covariate mix changing with injecting dura-

tion, accounting for covariates has partly explained the declining RFV. The

inverse Gaussian predictions are similar, but with a more marked decline,

as expected. Interestingly, the TVF results are near-identical to those pre-

dicted from the inverse Gaussian model, and therefore do not capture the

initial high RFV at the start of injecting.

Table 6.7 shows the estimated frailty variances for the bivariate HCV-

HIV models. Unlike HCV-HBV, there was not an orderly reduction in frailty
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Figure 6.16: Observed and predicted estimates of association between HCV
and HBV under different frailty distributions and including full covariate in-
formation. Injecting durations are grouped where data are sparse to prevent
zero cells. Inv G=inverse Gaussian, TVF =time-varying frailty.

variance with the addition of extra parameters, with the variance increasing

for both gamma and inverse Gaussian distributions when region was added

to the model. The AIC scores indicated substantial improvement with the

addition of covariates, reducing by 1249, 120 and 617 as each set of covari-

ates was added to the model (gamma frailty). With region, age and sex, and

under the full model, the gamma frailty gave the lowest AIC score. However,

the TVF model could not be fitted at all, with estimation problems when re-

gion was entered in the model. Simplifications of the baseline FOI, grouping

of regions or examining covariates other than region may have allowed some

form of this model to be fitted, but as the HCV-HIV pair is of less interest

this was not pursued further.

Table 6.8 shows the estimated frailty variances for the bivariate HBV-HIV

models. There is some evidence that the frailty variance declines with the

addition of covariates, but the reduction is small and does not sequentially

decrease with the addition of each set of covariates, as for HCV-HBV. The
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Table 6.7: Estimated variance parameters for HCV-HIV data under covariate
models with different frailty distributions. No covariates (No cov); region;
region, age and gender (R,A,G) and all covariates and risk factors (Full).
Frailty variances δ; time-varying model not fitted.

Frailty (1) No cov (2) Region (3) R,A,G (4) Full

Gamma δ 0.84 1.16 0.92 0.75
Inv. Gaussian δ 0.89 0.95 0.96 0.86

TVF model shows very different patterns under different covariates. For

region only, the initial variance is lower but does not decrease as markedly

over time, to an asymptotic value of 0.86 of its initial value. When age

and gender are added, the initial variance is higher than with region alone

and decreases to an asymptote of near-zero, but the decrease is very slow

(ρ=0.07). Finally, with the other covariate information (full model) the

decline in RFV is faster than with region, age and sex, but with a lower

initial variance and a higher asymptote.

Table 6.8: Estimated variance parameters for HBV-HIV data under covariate
models with different frailty distributions. No covariates (No cov); region;
region, age and gender (R,A,G) and all covariates and risk factors (Full).
Frailty variances δ and parameters for time-varying model: ρ, rate of decline;
and asymptotic proportion to which the initial variance at t = 0 declines.

Frailty (1) No cov (2) Region (3) R,A,G (4) Full

Gamma δ 1.42 1.29 1.26 1.30
Inv. Gaussian δ 2.34 1.93 2.01 2.03
Time-varying δ 11.46 3.46 6.08 3.69

ρ 0.43 0.51 0.07 0.15
Asymptote 0.26 0.86 0.00 0.34

Figure 6.17 shows predictions of the measure of association Φ for the

TVF model under different sets of covariates. With no covariates, the esti-

mate of Φ declines steadily over injecting duration and slightly overestimates

the strength of association at longer injecting durations (over 15 years). Es-

timates appear worse with region only: the declining RFV is not captured

by the model and only a slight decline is predicted, with overestimation of

association at longer injecting durations. With age and sex also included

the pattern is captured better and the predicted association is similar to the
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Figure 6.17: Observed and predicted estimates of association between HBV
and HIV under different covariate models under the time-varying frailty
model. R,A,G=region, age and gender. Injecting durations are grouped
where data are sparse to prevent zero cells.

no covariate model. Under the full model the pattern is shifted again, with

similar estimates as the region-only model for injecting durations less than

10 years, but a lower predicted association at longer durations.

6.3.2 Covariate effects

The inclusion of covariates altered the estimated trend over calendar time for

HCV and HBV, largely due to the inclusion of region as a covariate (Figure

6.18). For HCV there was a smoother U-shape in the post-1980 period: the

FOI falls from a peak in 1980-1985 to its lowest point in 1995-2000 before

rising again. Without covariates, there is a sharper dip in 1995-2000 and a

far lower FOI in the pre-1980 period. For HBV the fall in FOI over time is

very steep in any case, but including region suggests that the fall in risk from

1990-1995 to post-2010 is slightly less than the estimates without covariates.

Region is a very important factor, as shown in chapter 4, and crucial
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Figure 6.18: Estimated temporal trends for HCV and HBV under different
covariate models with inverse Gaussian frailty, hazard ratios for 5-year survey
periods vs. 1990-1995. No covariates; region; region, age and gender (R,A,G)
and full model (all the above plus risk factor information).

to understanding trends over time due to changing patterns of the injecting

epidemic and the sampling frame of the UAM data. Figure 6.19 shows the

proportions of individuals at risk over time across regions. Of those sampled

by the survey who were injecting in the 1970s, a large proportion were in

the London region (35−40%), but this proportion has declined steadily over

time, to 10% or less since 2010. The proportion of those injecting in the

North West grew steadily from 1980 to 1995, from 10% to 21%, but declined

subsequently to 10% or less since 2010. These areas have markedly higher

prevalence of BBVs, and if region is not adjusted for then estimated trends

over time will be distorted by the changing composition of the sample. This

is seen in the estimated trends, with the underlying risk increasing more

noticeably for HCV and declining less markedly for HBV once region is

adjusted for. The declining frailty variance observed in Figure 6.16 may also

be due to changes in sampled regions; as the high-risk areas of London and
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the North West are proportionally less-represented in the sample over time,

the population may have become more homogeneous. Having accounted for

regional effects in the analysis, the variability of residual frailty declines less

over time. Therefore the predicted RFV in Figure 6.16 declines under the

gamma model, despite the gamma distribution having constant RFV.

0
.2

.4
.6

.8
1

P
ro

po
rt

io
n 

of
 in

je
ct

or
s

19
71

19
72

19
73

19
74

19
75

19
76

19
77

19
78

19
79

19
80

19
81

19
82

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

Wales

North East

East Midlands

Yorkshire & Humber

North West

West Midlands

South West

South East

London

East of England

Figure 6.19: Proportion of injectors across regions over time, from those
participating in the UAM survey from 2000 onwards with complete covari-
ate information. The injecting career length of each participant is used to
calculate the numbers injecting in 1971, 1972, etc. in each region. Bars are
stacked in the same order that they appear in the legend on the right.

Figure 6.20 shows the estimated temporal trend from the full covariate

model under different frailty distributions. The choice of frailty distribution

has little impact on the estimated trend, but all trends with frailty differ from

that under independence, particularly in early years. For HCV, the pre-1980

risk is much lower under the frailty distribution but higher for 1980-1985,

which is epidemiologically plausible. For HBV, the decrease in risk over time

is somewhat steeper under the frailty models.

Patterns of injecting duration-specific risk for HCV and HBV were not

changed markedly by the inclusion of different covariates, and the estimated

HRs for the covariate effects were similar across different frailty distribu-

tions. The best-fitting model is therefore focussed on, which included all

covariate effects and an inverse Gaussian frailty distribution. Similarly, the

estimated HRs for HIV were fairly consistent for different frailty distribu-
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Figure 6.20: Estimated temporal trends under different frailty models with
all covariates, hazard ratios for 5-year survey periods vs. 1990-1995. Inde-
pendence, gamma, inverse Gaussian (Inv. G) and time-varying frailty (TVF)
distributions.

tions, adjustment for other covariates, and for both HCV-HIV and HBV-HIV

pairings. Therefore HIV results are taken from the HBV-HIV model, also

with inverse Gaussian frailty for consistency. Estimated hazard ratios and

95% confidence intervals from these models are shown in Table 6.9.

The patterns of estimated HRs, in terms of higher/lower risk for different

regions, ages of first use, gender and risk factors, are very similar to the

estimated odds ratios from generalised linear models of prevalence in section

4.1.4. Briefly, London has a higher FOI for HCV and HBV, and much higher

for HIV; and the North West has a higher FOI for HCV, and particularly

high for HBV. Older age at first use is associated with a higher FOI for HCV

and HBV, but younger age at first use for HIV. The interesting additions

are the time-varying aspects of risk factors: ever-use of needle exchange is

possibly associated with an increased FOI for HCV (HR=1.18, 95% CI: 0.94-

1.49) but the period following first use also has a higher FOI (HR=1.19, 95%
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Table 6.9: Hazard ratios for covariates for HCV, HBV and HIV under bivari-
ate inverse Gaussian frailty models; HCV-HBV estimates and HIV estimates
from HBV-HIV bivariate model. NX : needle exchange.

HCV HBV HIV

Region
East England 0.58 (0.50, 0.67) 0.82 (0.63, 1.07) 0.84 (0.39, 1.81)

London 1.35 (1.21, 1.50) 1.28 (1.07, 1.53) 4.43 (2.87, 6.84)
South East 1 (ref) 1 (ref) 1 (ref)
South West 0.56 (0.50, 0.63) 0.70 (0.55, 0.89) 0.58 (0.31, 1.10)

West Midlands 0.51 (0.44, 0.58) 0.42 (0.33, 0.53) 0.40 (0.15, 1.06)
North West 1.70 (1.53, 1.90) 2.04 (1.67, 2.48) 1.37 (0.81, 2.30)

Yorskshire & Humber 1.04 (0.90, 1.21) 0.53 (0.38, 0.73) 0.09 (0.01, 0.64)
East Midlands 0.88 (0.78, 0.99) 0.80 (0.65, 0.97) 0.93 (0.51, 1.72)

North East 0.46 (0.41, 0.52) 0.77 (0.61, 0.99) 0.29 (0.12, 0.71)
Wales 0.47 (0.40, 0.54) 0.62 (0.49, 0.77) 0.41 (0.17, 1.03)

Demographics
Age first used < 18 0.94 (0.87, 1.01) 0.80 (0.71, 0.91) 1.75 (1.29, 2.39)
Age first used 18-24 1 (ref) 1 (ref) 1 (ref)
Age first used 25+ 1.32 (1.23, 1.42) 1.54 (1.38, 1.72) 1.21 (0.84, 1.73)

Female vs. male 1.38 (1.28, 1.48) 1.22 (1.08, 1.37) 0.78 (0.55, 1.09)
Risk factors

Ever rec’d works 1.56 (1.47, 1.65) 1.23 (1.10, 1.38) 1.56 (1.18, 2.06)
Ever used NX 1.18 (0.94, 1.49) 0.90 (0.67, 1.19) 1.59 (0.73, 3.49)
Post-first NX 1.19 (1.02, 1.37) 0.90 (0.78, 1.02) 0.57 (0.35, 0.92)

Ever imprisoned 1.48 (1.27, 1.73) 1.20 (0.93, 1.55) 0.95 (0.54, 1.65)
Post-first prison 1.32 (1.13, 1.54) 1.17 (0.93, 1.49) 0.75 (0.41, 1.37)

MSM 1.07 (0.90, 1.27) 1.21 (0.95, 1.54) 4.01 (2.56, 6.28)
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CI: 1.02-1.37). For HBV, both ever using a needle exchange and post-first

use period have a reduced FOI, although the 95% CI for the HR crosses 1.

For HIV, there is a possible, but uncertain, increase in FOI for those ever

using a needle exchange, but reduced risk following first use (HR=0.57, 95%

CI: 0.35-0.92). For imprisonment, the FOI for both ever being imprisoned

and the period following imprisonment is increased for HCV, somewhat less

for HBV, and shows little effect for HIV. As for the analysis in section 4.1.4,

ever receiving works is associated with an increased risk of all BBVs, and

MSM a substantially increased risk of HIV infection.

6.3.3 Age, gender and individual frailty

In this section patterns of HCV and HBV infection by age and gender are

further explored. The base model considered here includes injecting dura-

tion and time (without interaction), an overall region effect (vs. the South

East) and examines age at first use (< 18, 18 − 24 and 25+), females vs.

males and an interaction between age at first use and gender. Multiplicative

covariate effects are assumed and an inverse Gaussian distribution used to

model individual variability.

Despite fairly strong differences in risk according to age at first use and

gender, models fit was not improved by including interactions between them;

in other words, the effect of age at first use was similar for males and fe-

males. There was also no evidence of an interaction between gender and

injecting duration, with little improvement in model fit, despite the addi-

tional parameters. There was however evidence of a difference in injecting

duration-specific risk according to age at first use, with a reduction of 5.7

in AIC under the latter. Examination of the interaction terms showed that

the strongest effect was in those starting injecting at age 25 or older, with

an excess risk in the first year but a broadly comparable FOI subsequently.

A simplified model including only interaction terms for the first year risk of

injecting provided a similar AIC score, with an increase of just 0.4 vs. the

more complex model.

In section 6.1 there were apparent differences in the measure of associa-

tion, Φ, according to gender and possibly age at first use. The base model was

extended to incorporate separate frailty variances for males and females, and
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for the three categories of age at first use. For the former, a somewhat higher

frailty variance was estimated for males (δ = 1.64) vs. females (δ = 1.17),

compared to an overall frailty variance of (δ = 1.52). AIC scores indicated

a modest improvement under the stratified frailty variance model, with a

decrease of 3.0 under stratified frailty variances. A similar model was fitted

with separate frailty variances for those aged < 18, 18− 24 and 25+ at first

use, giving frailty variances of 1.35, 1.68 and 1.47 respectively. AIC scores

indicated that there was no benefit to the additional parameters however,

with an increase of 2.1 for the more complex model.

6.3.4 Conclusions

The inclusion of covariates reduced the frailty variance, which represents

residual heterogeneity. Although model fit is enormously improved, the re-

duction in residual heterogeneity is relatively modest, indicating substantial

variability in risk that is not captured by the covariates. A wealth of ques-

tionnaire data is available in the UAM data, but it seems that there are

underlying differences in risk that are not easily captured.

The inclusion of covariates may have altered the shape of the residual

frailty distribution, with the inverse Gaussian model being preferred over the

TVF model for HCV-HBV, whereas the more complex model was favoured

without covariates. Model predictions are virtually identical for the inverse

Gaussian and TVF models, and estimates of Φ do not match the observed

pattern as well as the models without covariates in section 6.2.1. This might

be partly an identifiability problem: the covariate information is more easily

identifiable than the correlation between infections, with the latter poten-

tially being distorted by the inclusion of covariates. The measure of associa-

tion is based on the 2x2 tables of bivariate status, with the proportion that

are positive for both (++) typically small, especially at short injecting du-

rations where the RFV is changing most rapidly. Therefore underestimates

of the ++ cell (resulting in a weaker estimated association) may have less

impact on maximising the likelihood in comparison to fitting to the mean

prevalence according to different covariates. In other words, the univariate

fit of each infection (or just one if the second is sparse) may take precedence.

Shifts in the estimated frailty distribution also occur for HBV-HIV. When
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region alone is added to the model, the resulting estimates of Φ do not match

the observed pattern well, although once age and sex are also added to the

model, the pattern is a better match. In general, estimates of the shape of

the frailty distribution appear quite sensitive to the inclusion of covariates.

The estimated hazard ratios for covariates are generally comparable to

the odds ratios obtained under logistic regression models in section 4.1.4.

The function that links the covariates to the mean of the response variable

differs, but ultimately the two models are both estimating ratios of infection

prevalence at different levels of the covariate. In order to uncover more detail

with regard to the effect of risk factors on the FOI, covariate interactions

or time-varying covariates are required. However, there is limited scope for

increasing model complexity due to sparsity of data.

The time-varying covariates here provided some interesting but unusual

results, being parameterised in terms of ever-occurrence and change in risk

post-first occurrence. For needle exchange use, there is a different pattern

for each infection: increased risk for ever and post-first use for HCV, a slight

decrease for both for HBV, and increased risk for ever use but decreased

risk post-first use for HIV. It is somewhat difficult to make sense of these

results, with an increase in the risk of HCV infection following use of harm

reduction services, and inconsistencies in the direction of effects across in-

fections. Possibly they are the result of the combination of the propensity

for injecting and sexual risk, the correlations between these factors and their

relative importance for each infection; or, there may be no sensible epidemi-

ological interpretation. Both ever and post-first imprisonment are associated

with an increased risk of HCV infection, slightly increased risk of HBV in-

fection, but little association for HIV. If the relative importance of injecting

to sexual risk is high for HCV, sexual risk somewhat important for HBV and

more important than injecting risk for HIV, and prison is a high-risk envi-

ronment for injecting but not for sexual transmission, this may be plausible.

Further, individuals that have ever been imprisoned may have lower sexual

risks and vice versa; a purely speculative idea, but one that would explain

the attenuation of the risk associated with imprisonment for HBV and HIV.

Further investigation of age at first use and females vs. males confirmed

that risk of HCV and HBV infection in males is more variable than that of

females. This was indicated by plots of the association between infections in

192



section 6.1 but the inclusion of a stratified frailty variance, while accounting

for relevant covariate information, provides a basis for statistical hypothesis

testing. Further exploration of patterns of RFV might be considered in

this way (for instance, via group-specific parameters in time-varying frailty

models) but are likely to be hampered by a lack of information.

An interaction between age at first use and injecting duration was also

noted, in particular an apparent excess risk in the first year of injecting for

those starting at older ages. This may reflect the different circumstances

in which individuals start injecting, with more comparable levels of risk

post-initiation. However, another explanation is misreporting of age at first

use, as these results would also be consistent with a portion of individuals

erroneously giving their current age as the age they first injected, and in fact

having been at risk for longer.

6.4 Concluding remarks

This chapter has shown that the inclusion of demographic and risk factor

information as covariates reduces residual individual heterogeneity in the

risk of infection in people who inject drugs, but the effect is modest. De-

spite identifying several risk factors that are strongly predictive, there is

still substantial variability in the risk of infection. The data clearly point

to a declining RFV, such that the pool of uninfected individuals become

more homogeneous over time. Under the inverse Gaussian model, this is

attributed to a selection effect, while the TVF model assumes the decline

is due to changes in the underlying risk of individuals. The TVF model

provides more flexibility and in the absence of covariates improves model fit,

although still does not quite capture the patterns of relative frailty variance

for HCV-HBV. With the inclusion of covariates, simpler frailty distributions

are preferred. However, rather than this being due to a simpler distributional

structure (whose variance does not decline over time) it may be that the es-

timated frailty distribution is being distorted by the presence of covariates,

as the estimate association between infections sometimes provided a poorer

approximation of the pattern of RFV when additional covariate information

were included.

A full understanding of individual heterogeneity in people who inject
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drugs requires appropriate modelling of the different routes of transmission,

incorporating both injecting and sexual risk. People who inject drugs may

have high sexual risks (BMA Board of Science, 2013, Chapter 4) due to

decreased inhibitions (both a cause and consequence of drug use) and a

general variability in levels of inhibition could result in a correlation between

injecting and sexual risk. In order to identify the sexual component, or any

structural form for the frailty variance that involves different components

of risk (i.e., beyond the shared frailty model) requires the use of trivariate

data. The HIV data are however very sparse and therefore the identification

of complex correlation structures is challenging.

One way to make progress would be to either simplify the baseline FOI

or place constraints on model parameters, an example of the latter being

the shared injecting duration-specific hazard ratios explored in section 6.2.2.

Such constraints will generally take the form of assumptions: there is no

evidence against a common injecting duration-specific risk for HBV and

HIV, but it is only considered as a modelling possibility because data are

insufficient to distinguish between different parameter estimates for the two

infections in the first place. Estimation is then conditional on the assumed

model structure - as with any statistical model of course, but the assumptions

here cannot be verified by the data. In section 6.2.2, the estimated frailty

variance was altered by the assumptions of shared parameters, and indeed,

the estimated frailty, particularly the TVF model, sensitive to covariates and

other model structure where data are sparse. The situation is similar in ways

to the estimation of frailty in a univariate model, which is only detectable via

divergence from an assumed model structure. In the bivariate case, under

a collection of covariates which may or may not be shared, estimates of the

frailty distribution may be influenced by divergence from the assumed model

structure in unpredictable ways.
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Chapter 7

Trivariate models and

components of risk

7.1 Introduction

The extension from univariate to bivariate analysis considered in chapters 5

and 6 allows for individual heterogeneity to be estimated and a more detailed

investigation of the infection process. Trivariate data allow yet more complex

structures to be considered, in terms of different aspects of heterogeneity in

individual risk for different infections. A key consideration for HCV, HBV

and HIV in people who inject drugs (PWID) is that injecting risk is common

to all infections, but there is potentially an additional component of sexual

risk for HBV and HIV, which is negligible for HCV. There is also the more

general issue that individual variability may have components that are not

wholly shared by all three infections, for instance, variation in biological

susceptibility.

Components of individual heterogeneity in survival analysis have largely

been considered within the framework of correlated gamma frailties : the

correlation in frailties for different outcomes occurring due to there being a

common component for all outcomes, but with additional components spe-

cific to each outcome. For current status data this presents a problem: as

with shared frailty models, heterogeneity is only identified via the correla-

tion between infections, and components that are specific to a single infection

cannot be identified at any single time point. Models in which frailty com-
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ponents are common to at least two infections are therefore required, as

parameters for the variance components can be identified directly from the

correlation structure of the data.

This chapter is organised as follows. The correlated gamma frailty model

is reviewed, and two forms of additive model based on shared components

are proposed, based on the correlated frailty model. Multiplicative compo-

nent structures are then considered. For both types of model, simplifications

of the full (saturated) model are likely to be required in practice, and possi-

ble sub-models are explored. Some epidemiological considerations are then

discussed in terms of suitable models for trivariate data on blood-borne in-

fections in PWID. The proposed models are then fitted to the UAM data.

7.2 Correlated frailties and component

frailty models

7.2.1 The correlated gamma frailty model

A limitation of the shared frailty model is that individual heterogeneity is

assumed to have an identical effect on the risk of each infection, and (equiv-

alently) that there are no aspects of individual frailty that are specific to

one infection; or at least, any such factors are not considered in the analysis.

This is a necessary assumption unless the baseline hazard is parameterised

to have a certain shape, from which any deviation would be assumed to arise

from some component of individual frailty (Farrington et al., 2001).

A more flexible form of frailty model is the correlated frailty model, in

which the frailties for each infection are positively correlated, but not identi-

cal (Yashin et al., 1995). This is achieved by specifying additive components,

usually with gamma distributions, with the overall frailty for each infection

being the sum of a shared component, plus individual frailty components

that are specific to each infection. This approach has generally been applied

to bivariate data, but could readily be extended to higher-order multivariate

data.

For general survival analysis models, the bivariate survivor function for
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the shared gamma frailty model with frailty variance σ2 can be written as

S(t1, t2) =
(
S1(t1)−σ

2

+ S2(t2)−σ
2 − 1

)− 1
σ2

(see for example, Wienke et al. (2005)). The bivariate correlated frailty

model described by Yashin et al. (1995) is defined in terms of additive com-

ponents. The components Yi (i = 0, 1, 2) are independent random variables

that have gamma distributions with scale parameter 1, and Zi = σ2
i (Y0 +Yi)

for i = 1, 2. Y0 therefore corresponds to the shared component of individual

frailty and Y1, Y2 the non-shared components, while the σi terms control the

variance. With k0, k1 and k2 positive parameters, Yi ∼ Γ(ki, 1) for i = 0, 1, 2,

σ2
i = (k0 + ki)

−1 for i = 1, 2 and ρ = k0[(k0 + k1)(k0 + k2)]−
1
2 , the bivariate

survivor function proposed by Yashin et al. (1995) is

S(t1, t2) = S1(t1)1−ρσ1/σ2S2(t2)1−ρσ2/σ1 [S1(t1)−σ
2
1 + S2(t2)−σ

2
2 − 1]−ρ/(σ1σ2),

(7.1)

The shared frailty model is therefore a special case of the correlated model

where ρ = 1, or equivalently k1 = k2 = 0, and individual frailty is identical

for both infections.

The bivariate correlated frailty model may readily be extended to a

trivariate or higher order model, and a general formulation is given in Yashin

et al. (1995) for the multivariate survivor function, which can be written as

S(t1, ..., tn) =

(
n∑
i=1

Si(ti)
− 1
k0+ki − n+ 1

)−k0 n∏
i=1

Si(ti)
1−k0/(k0+ki), (7.2)

where k0 is the inverse of the variance of the gamma frailty component

common to all outcomes and ki for the components specific to each outcome

i.

7.2.2 The correlated gamma frailty model for current

status data

For current status data observed at a single time point t, equation 7.2 can

be written in terms of the cumulative hazard functions Ai(t) for infection i
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as:

S1,...,n(t) =

(
1 +

n∑
i=1

Ai(t)

k0 + ki

)−k0 n∏
i=1

(
1 +

Ai(t)

k0 + ki

)−ki
. (7.3)

Having defined the multivariate survivor functions for up to n infections,

this can be used as the basis of deriving the 2n table of probabilities for each

possible infection status in a similar way as the bivariate case, as in equation

5.22. This chapter is primarily concerned with models for trivariate data, in

which case we define univariate, bivariate and trivariate survivor functions

with cumulative hazards Ai(t) at time t for infection i as:

S1(t) =

(
1 +

A1(t)

k123 + k1

)−(k123+k1)

S12(t) =

(
1 +

2∑
i=1

Ai(t)

k123 + ki

)−k123 2∏
i=1

(
1 +

Ai(t)

k123 + ki

)−ki
S123(t) =

(
1 +

3∑
i=1

Ai(t)

k123 + ki

)−k123 3∏
i=1

(
1 +

Ai(t)

k123 + ki

)−ki
,

(7.4)

where k123 is the inverse of the variance of the component shared by all three

infections and ki those specific to infection i = 1, 2, 3. S2(t), S3(t), S13(t)

and S23(t) are defined similarly, and the probabilities of trivariate infection

status pabc(t) with a = 0, 1 for infection 1, b = 0, 1 for infection 2 and c = 0, 1

for infection 3 at time t are:

p000(t) = S123(t)

p100(t) = S23(t)− p000(t)

p010(t) = S13(t)− p000(t)

p001(t) = S12(t)− p000(t)

p110(t) = S3(t)− p000(t)− p100(t)− p010(t)

p101(t) = S2(t)− p000(t)− p100(t)− p001(t)

p011(t) = S1(t)− p000(t)− p010(t)− p001(t)

p111(t) = 1− p000(t)− p100(t)− p010(t)− p001(t)− p110(t)− p101(t)− p011(t)

(7.5)
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Equation 7.5 also holds for models that involve both age and time and any

other covariates in the cumulative hazard functions featuring in equation 7.4.

The general approach of combining survivor functions for 1,2,...n infections

to obtain the 2n cell probabilities can readily be extended to higher-order

multivariate data.

Correlated frailty models have been shown to be identifiable for bivariate

event times (Iachine, 2004), although the information contained in current

status data is weaker: at a single time point, frailty can only be estimated

via the correlation between infections. Therefore any component of variabil-

ity attributable to a single infection cannot be reliably identified without

fairly strong assumptions. From the perspective of statistical modelling of

bivariate current status data, given an unconstrained hazard function and

some specified frailty distribution for the common frailty component, an im-

provement in model fit might still be achieved via the addition of infection-

specific components. It may be tempting to interpret such an improvement

as evidence of infection-specific components of frailty, but the improvement

could also arise from particular selection effects or time-varying aspects of

the underlying frailty that are not captured by the assumed functional form.

Even if the functional form is correct, the amount of information available

to estimate frailty components is likely to be very low.

7.2.3 Shared component models

For current status data, information on individual frailty should ideally be

identifiable solely from the correlation structure of the data at a single time

point, thereby avoiding the need to gain information on individual frailty via

distortions in the baseline hazard function(s). For a 2× 2 table of bivariate

infection status at a single time point, there are three degrees of freedom:

given the total sample size, once three cells are known the fourth is deter-

mined. Therefore the two cumulative hazards may be estimated, with one

degree of freedom remaining to estimate the correlation between the two

infections, and thereby the frailty variance.

Given the 8 cells of the 2 × 2 × 2 table for trivariate data, there are

7 degrees of freedom with which to estimate parameters. Three cumulative

hazards need to be estimated, leaving 4 degrees of freedom for the estimation
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of the correlation (frailty) structure. As components cannot be specific to a

single infection, there is a unique saturated model consisting of frailty com-

ponents for each pair of infections, plus a frailty parameter that acts on all

three infections. This is conceptually similar to log-linear modelling of three

binary covariates, in which the baseline is the sum-to-one constraint, the

cumulative hazards are main effects, and frailty parameters are interaction

terms (three 2-way, one 3-way).

Assuming that additive gamma frailty components are to be considered,

where the overall frailty for each infection consists of a weighted sum of vari-

ables with a gamma distribution, the general form for the trivariate saturated

component frailty model is

Z1 = w123Y123 + w12Y12 + w13Y13

Z2 = w123Y123 + w12Y12 + w23Y23

Z3 = w123Y123 + w13Y13 + w23Y23,

(7.6)

where the 123 subscript refers to components common to all three infections

and 12, 13 and 23 the pairwise components; w123, w12, w13 and w23 are real

numbers corresponding to the weight of each frailty component, and Y123,

Y12, Y13 and Y23 are independent random variables with a gamma distribu-

tion. This general form requires some constraints to be usable in practice,

namely that the w terms and random variables combine such that Z1, Z2 and

Z3 each have unit mean. Two possible specifications that achieve this are

(1) to use gamma variables with unit mean and set the sum of the weights

to equal one, and (2) to use gamma variables with scale parameter 1 and

use properties of sums of such gamma variables to derive another gamma

distribution that has mean one. Both models are additive shared component

models, and the first is referred to as the fixed weight model and the second

the variable weight model. The reason that one or the other must be chosen

is that there is not sufficient information to estimate both the variances of

the random variables and the weight terms, again assuming that the infor-

mation from time-variation in the correlation structure is likely to be weak

and unreliable for this purpose and we wish to be able to estimate the frailty

structure from a single time point. Therefore if the variances are uncon-

strained the weight terms must be fixed. The variable weight model is a
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modification of the approach used for the correlated frailty model described

in section 7.2.2, where the weights and variances are linked by the same

parameters. Properties of each of these models are discussed subsequently.

7.2.4 Fixed weight component model

In the fixed weight component model Y123 ∼ Γ(k123, k123), Y12 ∼ Γ(k12, k12),

Y13 ∼ Γ(k13, k13) and Y23 ∼ Γ(k23, k23). The four k parameters for the shape

and scale of the component gamma distributions with mean one are the

inverses of the variances of each frailty component, for example δ123 = 1
k123

.

These four parameters use all of the available degrees of freedom for the

correlation structure, and therefore the weight parameters w must be set at

fixed values.

Although the weight terms are not strictly identifiable, there may still

be aspects of the data that would result in a better or worse fit for certain

combinations of w terms. Firstly, as already mentioned, the way in which the

correlation structure evolves over time might provide weak information on

the relative importance (weights) of each component. These would be subtle

differences, as the difference between a component with low variance and high

weight and one with high variance and low weight is likely to be slight. Again,

this would also require that the frailty distributions themselves are of the

correct form and not inherently time-varying. Secondly, component models

in general require all of the correlations to be positive, as frailty variances

must be non-negative. Although not usually considered as a potential issue

for the shared frailty model as infections do not usually show a negative

correlation, the saturated model in equation 7.6 requires that each pairwise

correlation and the three-way (or “residual”) correlation are all non-negative.

This means that the saturated model does not guarantee a perfect fit to

the data, even at a single time point, and this could result in one or more

of the weight terms being estimated at zero in order to accommodate the

negatively-correlated component. However, such issues would point to the

model being generally incorrect, and not a good basis for obtaining estimates

of the weight terms.

In the absence of any external information, a natural choice for the weight

terms is just to set all of them equal to 1
3
. A priori information might
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indicate that the component shared by all infections, Y123 has greater or lesser

importance than the others; for instance w123 = 0.5, w12 = w13 = w23 = 0.25,

and different values could potentially be explored in sensitivity analyses. It

is of course possible to assign different weight terms to each component,

and potentially different contributions for a component to the risk of each

infection, although the expert knowledge required for appropriate choices is

likely to be lacking.

Assuming for now that w123 = w12 = w13 = w23 = 1
3
, the overall frailty

terms for infections 1, 2 and 3 are

Z1 = (Y123 + Y12 + Y13)/3

Z2 = (Y123 + Y12 + Y23)/3

Z3 = (Y123 + Y13 + Y23)/3.

(7.7)

The variances of the overall frailties (specified in terms of their component

variances) are

var(Z1) = (δ123 + δ12 + δ13)/9

var(Z2) = (δ123 + δ12 + δ23)/9

var(Z3) = (δ123 + δ13 + δ23)/9.

(7.8)

WithAi(t) the baseline cumulative hazard function for infection i, the trivari-

ate survivor function, bivariate survivor function for infections 1 and 2 and

univariate survivor function for infection 1 are:

S123(t) =

(
1 +

A1(t) + A2(t) + A3(t)

3k123

)−k123 (
1 +

A1(t) + A2(t)

3k12

)−k12
(

1 +
A1(t) + A3(t)

3k13

)−k13 (
1 +

A2(t) + A3(t)

3k23

)−k23

S12(t) =

(
1 +

A1(t) + A2(t)

3k123

)−k123 (
1 +

A1(t) + A2(t)

3k12

)−k12
(

1 +
A1(t)

3k13

)−k13 (
1 +

A2(t)

3k23

)−k23
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S1(t) =

(
1 +

A1(t)

3k123

)−k123 (
1 +

A1(t)

3k12

)−k12 (
1 +

A1(t)

3k13

)−k13
. (7.9)

The bivariate survivor functions for pairs 1-3 and 2-3 and univariate func-

tions for infections 2 and 3 are defined similarly. The probabilities for trivari-

ate infection status are then defined as in equation 7.5.

It is important to note that the shared frailty model is not a special case

of this model when the variances of the pairwise components are zero. If

the variances of the pairwise components in equation 7.6 are zero then the

overall frailties become

Z1 = w123Y123 + w12 + w13

Z2 = w123Y123 + w12 + w23

Z3 = w123Y123 + w13 + w23,

(7.10)

such that Z1, Z2 and Z3 have limited support and can only take values in the

range (1 − w123,∞). This model may therefore have a tendency to provide

non-zero variance estimates for the pairwise components, even if individual

variability genuinely is predominantly related to a single component shared

by all infections, as the potentially limited support may not be compatible

with the correlation structure in the data. The parameters for the fixed

weight model should therefore be interpreted as the relative importance of

each component, rather than the amount of variation directly attributable

to each component.

Also of note is that if k123 = k12 = k13 = k23 = k and the weight terms

are equal, then the sum of gamma distributions for each Zi have the form

of another gamma distribution with variance 1
3k

. The univariate survivor

function in equation 7.9 will therefore be equivalent to that of a shared

frailty model; however, the bivariate and trivariate functions are not.

The fixed weight model is therefore an alternative to the shared frailty

model which allows for non-perfect correlation in the frailties Zi for each

infection, but with limited support for frailties that have low correlation

in the case that the variance of one or more components approaches zero.

The correlations between the Zi terms, which again may be expressed more
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naturally in terms of their component variances, are

ρ12 =

(
(δ123 + δ12)2

(δ123 + δ12 + δ13) (δ123 + δ12 + δ23)

) 1
2

ρ13 =

(
(δ123 + δ13)2

(δ123 + δ13 + δ12) (δ123 + δ13 + δ23)

) 1
2

ρ23 =

(
(δ123 + δ23)2

(δ123 + δ23 + δ12) (δ123 + δ23 + δ13)

) 1
2

.

(7.11)

It can be seen from equation 7.11 that the values of the variance components

restrict the range of the correlations, although to a lesser degree than the

correlated frailty model described in section 7.2.2.

Another consideration for this model is the variability of survivors and

how the relative frailty variance (RFV) changes over time (Unkel and Far-

rington, 2012). Except for the special case where all of the components have

equal variance and the weights are equal, the overall frailties Z1, Z2 and Z3

will not have a gamma distribution and therefore do not have the property

of constant RFV.

7.2.5 Variable weight component model

As mentioned previously the way in which the gamma components are de-

fined for the correlated frailty model proposed by Yashin et al. (1995) spec-

ifies the weights of the general form for additive components in equation

7.6 via the k terms. This approach also has the property that the resulting

overall frailties Zi have gamma distributions. This approach therefore does

not have the potentially limited support for the overall frailty of the fixed-

weight approach described in section 7.2.4, and will preserve the property of

constant RFV that the shared gamma frailty model has.

The components are expressed as independent gamma variates:

Y123 ∼ Γ (k123, 1)

Y12 ∼ Γ (k12, 1)

Y13 ∼ Γ (k13, 1)

Y23 ∼ Γ (k23, 1)

(7.12)
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and the overall frailties defined as

Z1 =
1

k123 + k12 + k13

(Y123 + Y12 + Y13)

Z2 =
1

k123 + k12 + k23

(Y123 + Y12 + Y23)

Z3 =
1

k123 + k13 + k23

(Y123 + Y13 + Y23).

(7.13)

WithAi(t) the baseline cumulative hazard function for infection i, the trivari-

ate survivor function, bivariate survivor function for infections 1 and 2 and

univariate survivor function for infection 1 are:

S123(t) =

(
1 +

A1(t)

k123 + k12 + k13

+
A2(t)

k123 + k12 + k23

+
A3(t)

k123 + k13 + k23

)−k123
(

1 +
A1(t)

k123 + k12 + k13

+
A2(t)

k123 + k12 + k23

)−k12
(

1 +
A1(t)

k123 + k12 + k13

+
A3(t)

k123 + k13 + k23

)−k13
(

1 +
A2(t)

k123 + k12 + k23

+
A3(t)

k123 + k13 + k23

)−k23

S12(t) =

(
1 +

A1(t)

k123 + k12 + k13

+
A2(t)

k123 + k12 + k23

)−(k123+k12)

(
1 +

A1(t)

k123 + k12 + k13

)−k13 (
1 +

A2(t)

k123 + k12 + k23

)−k23

S1(t) =

(
1 +

A1(t)

k123 + k12 + k13

)−(k123+k12+k13)

. (7.14)

The functions for S13, S23, S2 and S3 are expressed similarly, and the trivari-

ate cell probabilities derived as in equation 7.5. These equations can be

expressed more compactly by substituting σ2
i = 1

k123+kij+kik
as in equation

7.1, but writing in terms of k terms illustrates the similarities and differ-

ences to the fixed weight model expressed in equation 7.9. In the case where

k123 = k12 = k13 = k23 = k, this model is equivalent to the fixed weight

model with k123 = k12 = k13 = k23 = k, as the gamma contributions have

equal weights and variances.
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The variable weight model has properties that may make it implausible

for many applications. The variances of the overall frailties (specified in

terms of their component variances) are

var(Z1) =
1

1/δ123 + 1/δ12 + 1/δ13

var(Z2) =
1

1/δ123 + 1/δ12 + 1/δ23

var(Z3) =
1

1/δ123 + 1/δ13 + 1/δ13

.

(7.15)

Under the fixed weight model in section 7.2.4, the larger the variance com-

ponents in equation 7.8, the larger the overall frailty variance. Under the

variable weight model, if all the components are large then the frailty vari-

ance is also large, however smaller components will increase the denominator

in equation 7.15 and thus limit the size of the overall frailty variance.

There are further constraints on the correlations between frailties for the

different infections. The correlations between the Zi terms, which again may

be expressed more naturally in terms of their component variances, are

ρ12 =

(
1/δ2

123 + 1/δ2
12

(1/δ2
123 + 1/δ12 + 1/δ13) (1/δ2

123 + 1/δ12 + 1/δ23)

) 1
2

ρ13 =

(
1/δ2

123 + 1/δ2
13

(1/δ2
123 + 1/δ12 + 1/δ13) (1/δ2

123 + 1/δ13 + 1/δ23)

) 1
2

ρ23 =

(
1/δ2

123 + 1/δ2
23

(1/δ2
123 + 1/δ12 + 1/δ23) (1/δ2

123 + 1/δ13 + 1/δ23)

) 1
2

.

(7.16)

Therefore pairs of infections with higher overall frailty variances will tend

to have a lower correlation under the variable weight model, whereas the

converse is true under the fixed weight model (equation 7.11). These are

similar issues to those of the correlated frailty model described in section

7.2.2.

The fixed weight model therefore makes more sense from an epidemi-

ological perspective and is easier to interpret: frailty components directly

represent the variability in transmission risks that are shared between in-

fections. The components of the variable weight model do not have such

a natural interpretation, and infections with higher overall frailty variances
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are less correlated than those with a smaller variance. Given that the frailty

models considered here estimate components of frailty that are shared be-

tween infections, this is a rather unusual property and it is questionable

whether such a model is useful.

7.2.6 Multiplicative component models

The two models consisting of additive gamma components proposed in sec-

tions 7.2.4 and 7.2.5 are restricted by the potentially limited support for

the overall frailty components for the fixed weight model and restrictions on

the correlation between frailties for the variable weight model. Fixed weight

models are also not nested, so it is not possible to build up a sequence of

models for comparison; for instance, two or more components compared to

a shared frailty model. Models based on multiplicative frailties do not suffer

these issues. The general form of a 2-component multiplicative frailty is:

Z = Y1Y2, (7.17)

where Y1 and Y2 are independent random variables with unit mean. Provided

both variables have support over the range (0,∞) then Z will also not be

limited, and if Y1 or Y2 have zero variance then the model will naturally

reduce to some simpler model that does not have limited support. The

multiplicative version of the shared component model for trivariate data in

equation 7.6 is

Z1 = Y123Y12Y13

Z2 = Y123Y12Y23

Z3 = Y123Y13Y23,

(7.18)

which would reduce to a shared frailty model if the pairwise components

have zero variance.

Multiplicative models based on gamma components do not have an al-

gebraic expression for the survivor functions: only one of the gamma com-

ponents can be integrated out via the Laplace transform, leaving some part

of the function that must be evaluated numerically (or approximated) for

the remaining random variable(s). In the univariate case for instance, with
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cumulative hazard function A(t) and gamma-distributed frailty components

x1, x2 with shape parameters θ1, θ2 and rate parameters k1, k2, the survivor

function is derived as

S(t) =

∫ ∞
0

∫ ∞
0

exp(−A(t)x1x2)
θk11

Γ(k1)
xk1−1

1

exp(−θ1x1)
θk22

Γ(k2)
xk2−1

2 exp(−θ2x2)dx1dx2

=

∫ ∞
0

θk22

Γ(k2)
xk2−1

2 exp(−θ2x2)
θk11

(A(t)x2 + θ1)k1∫ ∞
0

exp(−x1(A(t)x2 + θ1))
(A(t)x2 + θ1)k1

Γ(k1)
xk1−1

1 dx1dx2

=

∫ ∞
0

θk22

Γ(k2)
xk2−1

2 exp(−θ2x2)
θk11

(A(t)x2 + θ1)k1
dx2

=
θk11 θ

k2
2

Γ(k2)

∫ ∞
0

xk2−1
2 exp(−θ2x2)

(A(t)x2 + θ1)k1
dx2.

Under the full shared component model, with an overall frailty term and

three pairwise components, the trivariate and bivariate functions involve

four frailty components. As only one can be integrated out algebraically, the

resulting functions require 3-dimensional integration, and therefore substan-

tial computation time. Simpler models are therefore likely to be needed in

practice, or an alternative approach to estimation used.

7.3 Identifiability and model simplification

Although the models described in sections 7.2.4 and 7.2.5 are technically

identifiable, the information available to estimate differences in variances in

the “saturated” forms is likely to be very low. In particular, the sparsity of

HIV data in the UAM study is likely to result in a lack of identifiability of

components shared by all infections and the pairwise components. A small

simulation study was conducted under the fixed weight model (equation 7.9)

and indicated that even with large amounts of data in all of the trivariate

2 × 2 × 2 table, the log-likelihood surface did not have a well-defined op-

timum. Briefly, the k123 parameter can be higher (lower) and the pairwise
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components lower (higher) with negligible difference to the likelihood.

The model also has some issues with convergence. As

λ1|Z1 = λ0,1(Y123 + Y12 + Y13)/3

λ2|Z2 = λ0,2(Y123 + Y12 + Y23)/3

λ3|Z3 = λ0,3(Y123 + Y13 + Y23)/3,

if the variance of any component is high, then the mean of the frailty vari-

ance will still be 1, but the majority of the distribution has extremely low

values. For instance, for a gamma distribution with variance of 100, over

90% of the distribution is less than 0.01. As variance components tend to

infinity, the baseline hazard is therefore effectively reduced by about 1
3
, and

if two components have variance approaching infinity (or very high) then the

reduction is 2
3
. The baseline hazard is thus inflated by a factor of 1.5 or 3

if 1 or 2 components are effectively reduced to zero in this way. Care must

therefore be taken, as the model can easily converge to a local optimum

at very high estimated variance components, with individual frailty being

attributed wholly to k123 or to the pairwise components.

The multiplicative form of component model does not have quite the

same issue with local optima, but there is likely to still be little information

to identify individual components of frailty. Further, as only one component

can be integrated out algebraically, the saturated model would require 3-

dimensional numerical integration, which is time-consuming to carry out

with a sufficient degree of precision. Simpler models would therefore be

preferable in both the additive and multiplicative framework.

7.3.1 Pairwise-only models

Pairwise-only components may be a pragmatic approach for an investigation

of frailties for different infections with no specific hypothesis. The general

form of the overall frailty for trivariate data under this model is

Z1 = w12Y12 + w13Y13

Z2 = w12Y12 + w23Y23

Z3 = w13Y13 + w23Y23.

(7.19)
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The survivor functions for the fixed weight model (equation 7.9) reduce to

S123(t) =

(
1 +

A1(t) + A2(t)

2k12

)−k12
(

1 +
A1(t) + A3(t)

2k13

)−k13 (
1 +

A2(t) + A3(t)

2k23

)−k23

S12(t) =

(
1 +

A1(t) + A2(t)

2k12

)−k12 (
1 +

A1(t)

2k13

)−k13 (
1 +

A2(t)

2k23

)−k23

S1(t) =

(
1 +

A1(t)

2k12

)−k12 (
1 +

A1(t)

2k13

)−k13
,

(7.20)

with the bivariate survivor functions for pairs 1-3 and 2-3 and univariate

functions for infections 2 and 3 defined similarly. The survivor functions for

the variable weight model in equation 7.14 reduce to

S123(t) =

(
1 +

A1(t)

k12 + k13

+
A2(t)

k12 + k23

)−k12
(

1 +
A1(t)

k12 + k13

+
A3(t)

k13 + k23

)−k13 (
1 +

A2(t)

k12 + k23

+
A3(t)

k13 + k23

)−k23

S12(t) =

(
1 +

A1(t)

k12 + k13

+
A2(t)

k12 + k23

)−k12
(

1 +
A1(t)

k12 + k13

)−k13 (
1 +

A2(t)

k12 + k23

)−k23

S1(t) =

(
1 +

A1(t)

k12 + k13

)−(k12+k13)

,

(7.21)

with the bivariate survivor functions for pairs 1-3 and 2-3 and univariate

functions for infections 2 and 3 defined similarly.

The multiplicative model is also simplified: two-dimensional integration

is still required, which is still slow, but feasible for relatively small datasets

(in terms of the number of binomial data points).

Pairwise models are much less likely to suffer from convergence issues,

as each component kij is informed exclusively by the pairwise correlation
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between infection i and j, rather than differences between correlations that

inform k123 and kij in saturated models. However, this also severely restricts

the range of variance estimates that can be obtained from the model, as if

pairs 1-2 and 1-3 are positively correlated, 2-3 must be also. As with many of

these models, the pattern of parameters and hypothesis tests against simpler

models may be more informative than attempts at direct interpretation of

the estimates. However, this is something of a problem with the pairwise-

only model as it does not include the shared frailty model as a special case,

either in the additive or multiplicative form.

7.3.2 Asymmetric models

An alternative approach to simplifying the saturated shared component

model is to add just one (or two) of the three possible pairwise terms to

the shared frailty model. Although there may still be difficulties in distin-

guishing the 3-way and pairwise component(s), this simplified version is less

likely to be problematic than the full flexibility of the saturated form, and

can be used to test specific hypotheses about certain infection pairs.

The model is asymmetric in the sense that different infections may have

different numbers of frailty components. For an additive component model,

this requires that a constant is added to the overall frailty for one or more in-

fections. This is the same issue as the limited support of additive component

frailty distributions described in section 7.2.4, as the variances of some of

the pairwise components are effectively set to zero. For instance, the single

pair asymmetric model with the additional component for pair 1-2 may be

specified as

Z1 = (Y123 + Y12)/2

Z2 = (Y123 + Y12)/2

Z3 = (Y123 + 1)/2,

(7.22)

where Y123 and Y12 are gamma distributions with unit mean. For a two-pair

asymmetric model that also includes a component for pair 1-3 the model
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may be specified as

Z1 = (Y123 + Y12 + Y13)/3

Z2 = (Y123 + Y12 + 1)/3

Z3 = (Y123 + Y13 + 1)/3.

(7.23)

Again, the multiplicative model more naturally handles the asymmetric spec-

ification as pairwise components with mean 1 are simply multiplied to pro-

duce the overall frailty density, which also has mean 1. The multiplicative

version of equation 7.23 for instance is

Z1 = Y123Y12Y13

Z2 = Y123Y12

Z3 = Y123Y13,

(7.24)

and the model may be simplified to a single component by omitting Y12

or Y13, or the shared frailty model if both are omitted. The shared frailty

model is therefore nested in multiplicative asymmetric models and hypoth-

esis tests can be conducted to determine whether the additional complexity

is warranted.

7.4 Epidemiological considerations

Two approaches for additive gamma components have been proposed with

slightly different properties: the fixed weight model and the varying weight

model. The varying weight model scales the weights of each component ac-

cording to their variances, while the fixed weight model assumes that the

weights are fixed, regardless of the variance of each component. The latter

results in a potentially limited support, which may or may not be appropri-

ate for the data. However, the variable weight model has restrictions on the

range of possible correlations between the overall frailties for each infection.

The alternative is to specify frailty components that combine multiplica-

tively, although these models are more challenging to work with, requiring

approximation of the necessary integrals.

It is worth considering the potential scenarios in which the shared frailty
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model requires extension, i.e., where individual susceptibility to infection is

not determined by some factor that has an identical effect on the risk of all

infections. This may occur where there is more than one route of infection,

and the relative importance of these routes differs between infections. In

the context of blood-borne viruses in PWID, HCV, HBV and HIV may

all be transmitted via sharing of injecting paraphenalia, but there is also a

risk of sexual aquisition which is comparatively low for HCV (Balogun et al.,

2003), while HIV is transmitted sexually more easily than via blood-to-blood

contact and therefore would have a smaller component of injecting risk.

In the case of two infection routes A and B, each of which have an

associated frailty distribution YA and YB with unit means, the overall hazard

at time t may be written as

λ(t|YA, YB) = λA(t)YA + λB(t)YB, (7.25)

where λA(t) and λB(t) are the route-specific baseline forces of infection.

Writing the relative contribution of infection A as wA(t) = λA(t)
λA(t)+λB(t)

and

wB(t) = 1−wA(t), the frailties combine additively in a similar way to that of

the general additive components model in equation 7.6, acting on the overall

hazard. However, there would likely be insufficient information to estimate

both the weight term wA(t) and the variances. Some progress might be made

if the FOIs could be considered proportional, although strong assumptions

are required in order to consider this model as directly representing route-

specific frailty.

Considering further the route-specific risks of infection through sexual

and injecting risk, there is in fact some information to investigate their rel-

ative contributions in the UAM data. Assuming an average age of sexual

maturity, the data consist of time at sexual risk only (pre-injecting) and time

at risk of both injecting and sexual risk, plus infection status.

Denoting Ai(t) the cumulative hazard due to injecting, equal to zero for

t < ti, the age at start of injecting, and As(t) the cumulative hazard due to

sexual transmission, equal to zero for t < ts, the age at sexual maturity, the

survivor function is defined as

S(t) = exp (−Ai(t)− As(t)) . (7.26)
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This model may therefore estimate age-specific variation in the hazard for

sexual transmission within the age range of age at first use available in the

data (before the two hazards become confounded) and injecting-duration

specific risk, provided the risk of sexual infection is not modified by the

onset of injecting. The latter might be a strong assumption, as both overall

risk and heterogeneity in risk may be strongly influenced by injecting drug

use. This model may therefore be of limited usefulness in determining the

injecting and sexual components of risk in PWID, although could provide a

basis for exploring alternative weight terms for components of injecting and

sexual risk in the model described in section 7.2.4.

The multiplicative frailty model is a less natural representation for route-

specific frailties, which would not generally have a multiplicative effect: in

the UAM example, a doubling of risk in sexual and injecting risks would not

result in a 4-fold increase in overall risk. However, this may approximate the

route-specific components themselves being positively correlated (without

this correlation being explicitly modelled).

One scenario in which the multiplicative model does directly represent

component frailties is when overall frailty is the product of behavioural het-

erogeneity and biological susceptibility, in which case the two components

naturally have a multiplicative effect on the overall hazard. Some biological

knowledge may be required to specify a model representing these effects,

as again the frailty components must be specified in terms of components

shared by all three infections or pairwise components. Again, the model

might be considered more generally as representing components of risk that

act on different infection pairs and overall, rather than an attempt to directly

quantify variability in a particular aspect of the risk of infection.

7.5 Fitting trivariate frailty models to the

UAM data

In this section trivariate frailty models are fitted to the UAM data on peo-

ple who inject drugs (PWID). The fixed weight additive components model

(with equal weights), variable weight model and multiplicative components

models are fitted to the data, assuming pairwise-only shared components as
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described in section 7.3.1. These models are used to examine general pat-

terns in pairwise correlations and compared with the shared frailty model,

which assumes a single common frailty component that acts equally on all

infections. Model fit statistics may then be used to determine if the addi-

tional complexity of the component models is necessary, although the shared

frailty is not a nested model for either the additive or multiplicative mod-

els. Asymmetric models are then considered, primarily to test the hypothesis

that additional variability in risk for HIV and HBV may arise through sexual

transmission. These models are fitted in their multiplicative form such that

the nested structure can be explicitly tested, and likelihood ratio statistics

used to compare against the shared frailty model.

The dataset considered is that used in section 6.2, which includes data

from 2000 onward with complete data for HCV, HBV and HIV tests. Al-

though the likelihood can incorporate partial data where one or more tests

are missing, the number of incomplete observations is small and these are

discarded. Those injecting for greater than 35 years are also excluded, leav-

ing 24977 observations for analysis. In order to simplify modelling, injecting

duration-specific baseline hazards are estimated but no other covariates, in-

cluding time, are included in the model. The data therefore take the form

of the standard age-specific seroprevalence data used in many epidemiologi-

cal studies (see for example Farrington et al. (2001)). Imperfect sensitivity

and specifity are accounted for in the observed data as described previously

(section 3.1.2). The trivariate data are summarised in Table 7.1.

Piecewise constant hazards are fitted with injecting duration bands of

≤ 1, 1-3, 3-5, 5-7, 7-10, 10-15, 15-20, 20-25 and > 25 years. Models were

fitted in R using bespoke code (see appendix section 9.2.4), and numer-

ical integration for the multiplicative models performed using integrate

and adaptIntegrate from the cubature package for univariate and bivari-

ate integrations respectively as required. Deviances were calculated based on

observed and predicted numbers in each trivariate cell, grouped by injecting

durations of ≤ 1, 2, 3-4, 5-7, 8-10, 11-14, 15-19, 20-24, 25-29 and 30-35 years

in order to reduce zero cell counts.
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Table 7.1: Trivariate infection status data by injecting duration (t) from the
UAM survey, 2000-2014. Cell counts are denoted nijk with 0=uninfected
and 1=infected for HCV (i), HBV (j) and HIV (k).

t n000 n100 n010 n110 n001 n101 n011 n111

1 1946 395 65 64 7 5 1 3
2 1222 287 55 55 7 3 0 3
3 978 266 57 56 4 3 2 3
4 870 338 67 63 3 1 0 0
5 864 360 69 68 5 1 0 0
6 821 382 68 67 4 3 0 2
7 685 371 47 77 3 5 0 2
8 649 371 47 87 5 2 0 5
9 554 325 50 97 0 2 0 2

10 595 441 76 109 1 4 1 3
11 483 345 58 111 3 1 0 5
12 451 322 36 125 5 3 0 4
13 414 381 40 118 1 8 1 6
14 364 314 44 109 5 6 0 5
15 298 335 36 141 5 5 0 4
16 274 285 37 137 2 3 1 3
17 247 277 38 130 3 8 2 4
18 199 267 41 114 4 2 0 2
19 196 234 28 108 4 4 2 6
20 152 245 34 145 3 6 4 2
21 107 184 26 114 1 5 2 1
22 97 166 25 100 0 6 0 3
23 97 147 16 85 1 5 0 6
24 69 138 29 74 2 1 0 3
25 55 111 18 70 0 1 0 8
26 41 103 5 65 0 3 0 2
27 39 54 10 66 0 3 1 1
28 28 63 6 58 0 0 1 0
29 18 54 16 54 0 1 0 1
30 23 49 8 48 1 1 1 1
31 6 38 3 35 0 2 0 0
32 13 28 10 49 0 1 1 0
33 15 26 4 46 0 0 0 1
34 11 20 2 32 0 0 0 4
35 4 15 3 26 0 0 0 0
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7.5.1 Pairwise component model results

Estimated baseline hazards from the four models are shown in Table 7.2.

The estimates show a similar pattern to those in chapters 4 and 6, with a

far higher risk in the first year of injecting and constant, or no particular

pattern thereafter; although the estimated hazards increase again somewhat

at longer injecting durations. This is partly due to sparsity of data, but

also likely due to not adjusting for variation in calendar time, with those

with longer injecting durations having been at risk during the peak of the

epidemic in the 1980s. Nevertheless, both of the additive component models

produced implausible estimates for the hazard for HCV infection in the 20-25

and 25+ groups, and for the HBV hazard in the 25+ group.

Table 7.3 shows the estimated frailty parameters from the pairwise com-

ponent models. The components themselves have different interpretations

for each model: the fixed weight additive components are scaled by a fac-

tor of 1
2

whereas the variances of the multiplicative components produce a

higher overall frailty variance. However, the patterns of these two models

are comparable and suggest that the HCV-HBV and HBV-HIV pairs have

a stronger component (correlation) than that of the HCV-HIV pairs. This

is reflected in the overall frailty variance, which is highest for HBV, as the

overall frailty does not include the weaker HCV-HIV component shared by

the other two infections. This is not the case for the variable weight addi-

tive model however, which has the smallest overall variance for HBV, due

to overall frailties being based on inverses of components (equation 7.15).

The HCV-HIV component is the largest, which is somewhat implausible as

HCV and HIV are expected to have the weakest correlation from an epidemi-

ological perspective and would therefore be expected to have the smallest

variance component.
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Table 7.2: Estimates of injecting duration-specific baseline hazards for HCV, HBV and HIV infection from trivariate frailty
models: shared frailty model, pairwise-only additive models (fixed weight, FW; variable weight, VW) and pairwise-only
multiplicative component model.

Injecting Shared Additive (FW) Additive (VW) Multiplicative
duration HCV HBV HIV HCV HBV HIV HCV HBV HIV HCV HBV HIV

≤ 1 0.233 0.075 0.0048 0.317 0.113 0.0027 0.287 0.074 0.0061 0.265 0.081 0.0044
1-3 0.048 0.024 0.0008 0.063 0.000 0.0014 0.077 0.024 0.0000 0.049 0.022 0.0008
3-5 0.088 0.008 0.0001 0.230 0.041 0.0009 0.152 0.017 0.0001 0.104 0.030 0.0004
5-7 0.034 0.006 0.0002 0.000 0.012 0.0007 0.147 0.004 0.0010 0.084 0.014 0.0011

7-10 0.088 0.031 0.0006 0.357 0.067 0.0014 0.206 0.040 0.0017 0.141 0.049 0.0010
10-15 0.144 0.030 0.0033 0.501 0.089 0.0025 0.472 0.032 0.0000 0.203 0.055 0.0020
15-20 0.136 0.036 0.0004 0.875 0.137 0.0009 0.910 0.063 0.0028 0.247 0.089 0.0015
20-25 0.118 0.027 0.0010 2.513 0.457 0.0017 1.492 0.044 0.0000 0.292 0.120 0.0016

25+ 0.227 0.103 0.0004 1.644 2.141 0.0011 3.982 0.202 0.0003 0.579 0.469 0.0016
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Interestingly however, the correlations between overall frailties, ρij, are

very similar under the three models, and support the hypothesis that HCV

and HBV are likely to have a strong correlation due to the importance of the

shared route of injecting transmission, and HBV and HIV will have a strong

correlation (compared to HCV-HIV) due to the shared sexual component.

The shared frailty model estimated the overall frailty variance to be 0.90,

less than any of the infection pairs under any of the component frailty models.

This might be due in part to the way that the relative frailty variance evolves

under the different models: the component models result in declining relative

frailty variance, while it is constant for the shared frailty model. A similar

pattern was observed under an inverse Gaussian model compared to gamma

frailties in chapter 6.

Table 7.3: Estimates of frailty parameters from trivariate frailty models:
pairwise-only additive models (fixed weight, FW; variable weight, VW) and
pairwise-only multiplicative component model. δ terms are component vari-
ances, var(Z) the overall frailty variances and ρ the correlations for infection
1, 2 and 3 (HCV, HBV and HIV).
Parameter Infection(s) Additive (FW) Additive (VW) Multiplicative

δ12 HCV-HBV 10.75 3.70 1.22
δ13 HCV-HIV 3.70 12.50 0.36
δ23 HBV-HIV 11.36 4.55 1.79

var(Z1) HCV 3.63 2.82 2.01
var(Z2) HBV 5.60 2.02 5.16
var(Z3) HIV 3.82 3.29 2.79

ρ12 HCV-HBV 0.60 0.65 0.60
ρ13 HCV-HIV 0.25 0.24 0.25
ρ23 HBV-HIV 0.62 0.58 0.63

Predicted trivariate infection status under the fitted models are shown in

Figure 7.1. In general, the model fit appears similar, and reasonably good, for

infection combinations for which there are sufficient data (uninfected, HCV

only, HCV-HBV coinfection) but with greater differences between models

where data are sparse (HBV without HCV, any combination with HIV).

In terms of formal model comparison, the multiplicative model provides an

improvement over the shared frailty model, with a difference in AIC scores

of 10.6. However, the fixed weight additive model provided a substantially

worse fit, with an increase in AIC of 49.0, which was particularly poor for
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Figure 7.1: Observed and predicted trivariate infection status by inject-
ing duration under a shared frailty model and pairwise-only additive (fixed
weight, FW; variable weight, VW) and multiplicative component models.

the HIV data. Despite its questionable interpretation, the variable weight

additive model provided the best fit to the data, with an improvement in

AIC score of 16.5 compared to the multiplicative model.

These results indicate that there is additional complexity in the data that

warrant a different model to the shared frailty model, but the additive pair-

wise component model with fixed weights is not the most appropriate choice.

The overall model fits were passable but not ideal, with a deviance of 366.7

for the shared frailty model on 35 octonomial observations (multinomial data

points with 8 possible categories) with 28 parameters. For the pairwise mod-

els (with 30 parameters) deviances were 410.9 for the fixed weight additive

model and 355.4 for the multiplicative model. Although the model fit was

best under the variable weight additive model, the multiplicative model has

a more natural interpretation and is likely to be a more suitable choice.
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7.5.2 Asymmetric model results

Multiplicative asymmetric models were fitted to the UAM data, primarily

with the purpose of testing for additional variability for HBV-HIV due to

sexual transmission, but also to examine any pairwise differences for the

infection pairs HCV-HBV and HCV-HIV beyond the shared frailty model.

Even these simple models showed some issues with identifiabilty, and fre-

quently converged to a lower log-likelihood than the shared frailty model.

Starting values were therefore based on estimates from the shared frailty

model, with a low initial variance assigned to pairwise components. Result-

ing estimates of frailty variances and AIC scores are shown in Table 7.4.

The HBV-HIV model provided a significant improvement in model fit,

with a reduction in AIC score of 9.6 compared to the shared frailty model,

and estimated an additional variance of 0.373 for HBV and HIV. The esti-

mate of the shared frailty component was very similar to the model including

a shared frailty only, indicating a similar variability for HCV but a marked

increase for HBV and HIV.

The HCV-HBV model provided a greater improvement in model fit, with

a reduction in AIC score of 23.0 compared to the shared frailty model. In-

terestingly, the variance of the shared frailty component was estimated to

be lower, but with a substantial HCV-HBV component. This results in the

overall frailty variance for HCV and HBV being comparable to the shared

frailty model, but a lower variance for HIV, in contrast to the HBV-HIV

component model. The HCV-HIV model provided a negligible improvement

in model fit, with a reduction in AIC score of 1.8, and the variance of the

HCV-HIV component estimated to be practically zero.

The results of the single pairwise component models indicated that a

model with both HCV-HBV and HBV-HIV components warranted investi-

gation. This model was fitted to the data using model estimates as initial

values from (1) the HCV-HBV model, and (2) the HBV-HIV model, with low

initial value for the added components. Different estimates were obtained

from the two starting points, with the estimated variance of the added com-

ponent remaining low. In both cases there were only modest improvements

in model fit, with a change in AIC score of 2.2 and 3.2 from the first and

second sets of initial values.
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Table 7.4: Estimates of frailty parameters from shared frailty and asymmet-
ric trivariate frailty models, with additional pairwise components for HCV-
HBV (var(YCB)), HBV-HIV (var(YBI)) and HCV-HIV (var(YCB)). The
model with both HCV-HBV and HBV-HIV components (C-B B-I) is started
from two sets of initial values: (1) estimates from the HCV-HBV model, and
(2) from the HBV-HIV model.

Model var(YCBI) var(YCB) var(YBI) var(YCI) AIC
Shared frailty 0.896 54675.2
HBV-HIV 0.911 0.373 54665.6
HCV-HBV 0.638 0.318 54652.2
HCV-HIV 0.898 0.050 54673.4
C-B B-I (1) 0.642 0.319 0.016 54650.0
C-B B-I (2) 0.893 0.037 0.352 54662.4

Deviances for the HBV-HIV and HCV-HBV models were 357.0 and 337.4

for 35 octonomial observations and 29 parameters; and for the best-fitting

HCV-HBV and HBV-HIV model 333.5 with 30 parameters. These results

indicate that there is a substantial improvement in model fit with the ad-

dition of HCV-HBV or HBV-HIV parameters, but the model fit is still not

ideal.

7.6 Conclusions

The models proposed in this chapter extend the available models for cur-

rent status data. Nevertheless, even with trivariate data there are limits

to what can be understood about aspects of frailty that are not shared by

all infections, due to the restriction that any component of frailty must be

common to at least two infections to be identifiable. Key areas of interest

in this topic, namely the contributions of different routes of infection and

behavioural heterogeneity vs. biological susceptibility, therefore have limited

scope for investigation.

The results obtained in section 7.5.1 are suggestive of a plausible epidemi-

ological explanation, in that both HCV and HBV are commonly transmitted

in PWID through the sharing of needles and syringes, whereas HIV trans-

mission is relatively rare due to its inherently lower infectiousness through

blood-borne routes. However, HIV is readily transmitted sexually, and this

is the component that is shared by HBV, while sexual transmission of HCV is
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relatively rare. This may therefore have produced the observed pattern here,

with HBV having the highest frailty variance and (equivalently) a weaker

correlation between HCV and HIV.

This is a plausible explanation, but is only a tentative hypothesis. One

argument against it is that for HBV to have a markedly higher frailty vari-

ance than HCV, the component of sexual transmission (or wi parameter, to

use the form of equation 7.6) would need to be of comparable magnitude to

that of injecting risk in order to have any substantial contribution to overall

heterogeneity. Although it is difficult to unpick the relative contributions of

injecting and sexual risk in this population, unless sexual risk is markedly

higher than that of the general population, injecting transmission risk would

far outweigh that of sexual risk.

The asymmetric models fitted in section 7.5.2 support the sexual risk

hypothesis for HBV-HIV, but the HCV-HBV model provided a better fit

still. The two models provided different estimates of frailty variance for

HIV; it is possible that both models have converged to local optima in the

likelihood and did not find the overall optimum. Some care is required in

the interpretation of these results, as the HIV data are very sparse and likely

outweighed by any potential improvements in model fit to the other data.

Differences in model fits, although substantial in a statistical sense, do not

markedly improve the absolute fit of the models, which remains adequate

rather than good.
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Chapter 8

Conclusions

8.1 Summary of findings

In this thesis models for current status data on people who inject drugs

(PWID) have been studied, using data from the Unlinked Anonymous Mon-

itoring (UAM) survey of PWID. Key themes have been the investigation of

risk factors and patterns of unmeasured heterogeneity in different groups,

which are examined in the framework of force of infection (FOI) models.

This thesis has explored technical developments of the FOI model, such as

the inclusion of covariate information and extension to trivariate frailty mod-

els; and addressed practical questions on patterns of risk that can be used

to develop public health policy.

FOI models provide a natural framework for investigating age-specific

current status data, which in this thesis are the injecting duration-specific

prevalence of HCV, HBV and HIV. The relationship between time at risk and

infection status can be economically modelled by the FOI. If it is constant, a

single parameter can describe how prevalence increases with time at risk, and

the rate of infection is also the most meaningful parameter when considering

public health policy. A key result of this thesis is that risk of infection with

HCV (and other viruses) is very high in the first year, but largely constant

thereafter; thus the risks of infection in PWID can be summarised by the

two parameters for the 1st year and subsequent FOI.

Fitting FOI models requires some technical expertise, but under the as-

sumption of additive risk this can be done using generalised linear model
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routines with standard software. This approach can therefore be used to

quickly investigate different models, in particular when considering a num-

ber of covariates and potential interactions. Additive covariate models were

fitted to the UAM data and revealed striking regional patterns in risk dur-

ing the first year of injecting, and a more homogenous risk across regions

for the remainder of injecting career. Differences in temporal trends were

also identified, although model comparison scores indicated that a three-

way interaction between region, injecting duration and time was not needed,

leading to a more parsimonious model than fitting models to each region

separately.

Covariate effects can be fixed, having the same effect on the FOI at

all injecting durations, or varying according to injecting duration, calendar

time, or both. Time-varying covariates can also be included, where effects

change according to exposure time, as in survival analysis. This approach

was used to determine the risk of infection before and after starting to use

needle exchange services, based on the reported age at first use of such

services. Results were somewhat difficult to interpret, indicating a decrease

in the risk of infection after starting to use needle exchange services, but

only in the post-2000 period (a time-varying covariate with changing effect

over calendar time). Nevertheless, this analysis shows that information on

the timing of a certain risk factor can be incorporated in force of infection

models, and could be considered when designing cross-sectional surveys.

Multiplicative risks are more complicated to handle, as the link between

the covariates and the outcome variable(s) is non-linear. In this thesis be-

spoke R code was developed to fit such models. Covariates are still some-

what problematic, as the model code requires adapting for different covariate

structures. A “multirow” formulation of the data was developed, in which

the injecting duration and calendar time bands are split within each indi-

vidual, allowing an arbitrary matrix of covariate information to be included

easily. This has the downside of increasing the size of the dataset and number

of computations required, and therefore the time and computing resources

needed to fit models. It is likely that the routine could be made more ef-

ficient, or somehow “compiled” (as in computer programming) to minimise

the number of calculations performed, although this was not pursued.

Shared frailty models identify the degree of unobserved heterogeneity via
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the correlation between infections in bivariate data. Patterns of bivariate

association were therefore examined. These revealed that the association

between infections declined with injecting duration for all infection pairs,

although data on HIV were sparse. For HCV-HBV, there was evidence of

a potential change in correlation patterns according to survey year, with a

broadly constant association in more recent data, but a greater decline with

increasing injecting duration in earlier years. Some potential differences ac-

cording to age and reported risk behaviour were also noted, but of particular

interest are the patterns by gender, with a higher level of variability in males

compared to females. Females have a higher average risk, leading to the con-

clusion that females are generally at high risk of infection, whereas males are

a mixture of lower and higher risks.

The declining association between infections with time at risk indicates

that the gamma frailty model, which has constant relative frailty variance

(RFV), will not capture the patterns of correlation in the data. The inverse

Gaussian distribution induces a selection effect that results in a declining

RFV, and indeed this model provided a better fit to the data. A better fit

still was obtained under a time-varying frailty (TVF) model, which explicitly

models a decline in frailty variance. This may point to a homogenisation in

risk behaviour throughout injecting career, which appears plausible as PWID

may commence injecting under a variety of circumstances, but become more

homogeneous in their risk patterns as time passes (as well as being at gen-

erally lower risk). However, selection effects cannot be distinguished from

genuine reductions in underlying variability, and the TVF model may simply

fit better due to the additional model parameter. In particular, the TVF

model indicates a faster decline in RFV following initiation of injecting than

the inverse Gaussian model, although other frailty distributions that better

reflect variability in risk are of course possible, and need not necessarily be

time-varying to capture the observed correlation pattern.

Covariates were then added to the different bivariate frailty models, fo-

cussing on HCV-HBV, which have the most data. Interestingly, inclusion

of covariates resulted in substantially improved model fit, but only mod-

est reductions in estimates of frailty variances, which may be interpreted

as residual heterogeneity. Overall estimates of frailty variances were 1.94 in

the unadjusted and 1.44 for the fully adjusted inverse Gaussion model. To
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interpret these results the ratio between the 75th and 25th percentiles of the

frailty distribution can be considered: this is 4.5 for the unadjusted model,

and 3.9 for the adjusted model, indicating substantial differences in risk even

after accounting for a number of risk factors.

Also of note is that the estimated excess risk in first year injectors per-

sisted in frailty models. A well-known effect of frailty is that high-risk indi-

viduals tend to experience the event of interest earlier on, which may have

partly explained the observed high prevalence in 1st year injectors. Unless

the underlying frailty distribution has a very different form to the standard

distributions considered here, this appears not to be the case.

The final chapter investigated trivariate frailty models. Trivariate

(2x2x2) data have seven degrees of freedom at each time point; after es-

timating the three baseline hazards, this leaves four degrees of freedom to

estimate the correlation structure between infections, and hence components

of frailty. However, the same limitation exists as for bivariate data: informa-

tion on individual variability is only available at a single time point via the

correlation between infections, and frailty components relating to a single

infection cannot be identified. The “saturated” model therefore consists of

a component relating to all three infections, and three pairwise components.

There is some choice in the manner in which additive components can be

combined to form a single frailty that has unit mean, which broadly fall into

fixed weight and variable weight models; the latter has a similar form to the

correlated frailty model. Alternatively, the components may combine mul-

tiplicatively. Multiplicative models have attractive properties, but require

numerical integration and are more difficult to work with.

The information available to estimate differences in variances is very low,

and in practice simpler models had to be fitted to the data. This allowed

for the investigation of a specific hypothesis for blood-borne infections in

PWID, that HBV and HIV would have an additional frailty component

pertaining broadly to sexual risk, which is generally low for HCV. While

this was found to provide a better fit compared to a model with a single

overall frailty parameter, a better fit still was obtained when including an

HCV-HBV component rather than the HBV-HIV component. Including

more than one pairwise component resulted in model instability, with the

model estimating that the pairwise variability (in addition to the overall
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variability) was wholly attributable to HCV-HBV or HBV-HIV, depending

on the initial values used when starting the model. Ultimately, the HCV-

HBV and HBV-HIV correlations are the strongest, whereas the correlation

between HCV and HIV is weakest. This may point to sexual risk being

a greater component for HIV, and this risk is shared for HBV. However,

the majority of risk for HCV and HBV is through injecting, and hence the

correlation between these infections is strong.

8.2 Public health implications

The analyses presented here confirm the high excess risk in recent initiates to

injecting drug use, which persisted after accounting for individual variability

and indicated that the FOI for HCV in 1st year injectors has increased in

recent years (2010-2015). The implication is that harm reduction efforts need

to focus on recent initiates (in addition to discouraging individuals to begin

injecting in the first place). High rates of infection in 1st year injectors were

observed in Yorkshire and the Humber, London, and in particular the North

West. The latter two are well-known areas of high prevalence, although

these analyses suggest that minimising risk in new initiates is of utmost

importance, with generally comparable levels of risk across regions following

the first year of injecting.

Females appear to be particularly vulnerable to infection from HCV, with

a higher risk and less variability than men, some of whom appear to be at

relatively low risk. There is less of a gender difference for HBV and HIV.

It is not clear under what circumstances females tend to start injecting, but

efforts clearly need to be made for vulnerable risk groups. Those that initiate

injecting at an older age (25 or more) appear to be at particularly high risk of

HCV and HBV, although for HIV those initiating injecting at younger ages

(< 18) appeared to be at higher risk. Ever being in prison is a major risk

factor for HCV and HBV, and the majority of PWID in the survey (69%)

have been imprisoned at least once. Potential explanations are the lack of

sterile injecting equipment when in prison, the disruption of networks and

routines, and post-imprisonment binge use when released.

It is interesting to consider the hypothesis that risk of infection is gen-

erally low in those with established injecting patterns and access to needle
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exchanges, with infections occurring during periods of disruption. The high

initial risk might (in part) be due to all PWID being in a “disrupted” state

at initiation, rather than something intrinsic about initiation risks. If such a

hypothesis holds, this would indicate that harm reductions should minimise

the impact of disruptive states, such as homelessness and imprisonment.

This thesis has focussed on HCV, which has the highest prevalence in

PWID and comparatively high risks of developing severe disease. Results

for HBV are somewhat more difficult to interpret, due to a proportion of in-

dividuals being vaccinated. However, HBV prevalence has fallen consistently

throughout the survey. HIV infection has remained low, but shows no sign

of decreasing. It is quite possible that sexual transmission is a major route

of infection in this population, rather than injecting. Patterns of correlation

indicate that this may be the case, in addition to the markedly higher HIV

prevalence in men who have sex with men, who are a key risk group for

sexually acquired HIV.

Of particular interest at the current time is the potential impact that new

treatments for HCV will have on the prevalence and resulting transmission

of infection in PWID. Incident infections are difficult to observe or estimate

directly, requiring large cohort studies or relying on elusively small numbers

of individuals with markers of recent infection. FOI models can provide

estimates of infection rates through the differences in injecting duration-

specific prevalence from one year to the next, and have the potential to

detect changes in incidence that might be associated with the impact of

treatment.

The FOI model is also superior to examining trends in observed preva-

lence across survey years, which does not account for potential changes in

factors such as injecting duration, either through sampling variability or a

systematic shift. This has become increasingly important as the average age,

and injecting duration, of PWID sampled in the UAM has increased over

time.

8.3 Further work

The methodology in this thesis has focussed on piecewise constant FOI mod-

els and standard frailty distributions, fitted within a classical framework.
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Parametric models may lead to more efficient estimates, which could allow

for more complexity in other areas of the model, such as local-level estimates.

Flexible, non-parametric models such as splines and their multidimensional

extensions may also be used to investigate the relationship between calen-

dar time, injecting duration and risk of infection. However, these analyses

appeared to indicate that the only important differences in risk occur in the

first year of injecting, although there was evidence of temporal changes.

Current modelling of HCV in England aims to generate prevalence esti-

mates for the 22 geographic areas of Operational Delivery Networks (ODN)

for HCV treatment, using a FOI model to estimate HCV incidence and preva-

lence in PWID (Public Health England, 2018b). Due to the sparse data at

this level a relatively simple model is required, such as a constant FOI with

excess risk in the first year of injecting, and broad, piecewise constant time

intervals. The modelling conducted as part of this thesis is therefore a valu-

able input for this work, guiding the formulation of ODN-level modelling.

Further investigation of alternative frailty distributions could be under-

taken, in particular the positive stable distribution. Of interest would be

to use information on contact patterns, or numbers of equipment sharing

partners, in PWID to determine an appropriate distribution. However, such

information is likely to be very difficult to obtain.

Fitting models within a Bayesian framework would allow a number of

possible extensions. Variance components may be assigned semi-informative

priors, which may improve identifiability of parameters, in particular frailty

components. However, if there is insufficient information to reliably esti-

mate a parameter in the classical framework, estimates will likely be highly

sensitive to prior assumptions. More usefully, the marginal distribution of

the survivor function need not be explicitly defined: the frailty distribution

may be assigned a prior distribution with hyper-parameters, and frailties

for each individual simulated with a fully Bayesian Markov Chain Monte

Carlo framework. This would allow the use of frailty distributions that are

not analytically tractable, and obviate the need for numerical integration of

multivariate functions such as that of the multiplicative component model.

Other possibilities in a Bayesian framework are to incorporate exter-

nal information, such as data on mortality rates (which could incorporate

uncertainty, rather than being fixed) in order to account for differential mor-
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tality in infected individuals. Another question around the UAM data is

whether self-reported injecting duration is accurate. The misreporting pro-

cess could be modelled within a Bayesian framework, although this would

either require some assigned distribution, parametric model assumptions for

the injecting-duration specific FOI, or external information on this process to

be identifiable. Finally, Bayesian models are a natural environment for non-

parametric functions, which may be used for the baseline injecting duration-

and time-specific FOI as described above.

Markers of recent infection have been tested for in the UAM data since

2011, including those RNA positive and antibody negative, and avidity lev-

els, although the latter has been discontinued. In principle, such data could

be incorporated as part of a multi-state FOI model, in which susceptible

individuals move to a recently-infected state initially, then to established

infection. This would provide an assessment of the consistency of estimates

generated under a standard FOI model and the data on recent infections, and

how modelling assumptions need to be adjusted to incorporate the data on

recent infections. For instance, the assumed window period may be too long

or short for a marker of recent infection to be consistent with the injecting

duration-specific seroprevalence data, and some flexibility needs incorporat-

ing in order to accommodate this. This may again naturally be accomplished

in a Bayesian framework, in which the window period could be assigned an

informative, but flexible prior distribution.

The modelling and approaches developed in this thesis can be applied

to other datasets. In particular Scotland’s NESI programme is very similar

to the UAM, consisting of time at risk, serological status and questionnaire-

based risk factor information. Routine surveillance data may include little

in the way of covariate information, but geographic differences and tem-

poral changes may be considered, as has been here. Other seroprevalence

surveys that include questionnaire data may also make use of the methods

for analysing covariates in a FOI model. One potential area of application

is sexual health, which might also include testing for multiple sexually ac-

quired infections, which would allow the type of frailty models considered in

this thesis. Of particular interest would be further investigation of trivariate

models, which was hampered in this thesis by sparse data on HIV.

Trivariate frailty models are a novel development, and further investiga-
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tion may be worthwhile. In practice, the model is limited by the ability to

estimate only components that are shared by two or more infections, rather

than infection-specific effects. Further, even with large amounts of data there

are likely to be identifiability issues, although progress might be made by

combining data from different countries. Much of the interpretation of the

trivariate model amounts to the investigation of the correlation structure of

trivariate infection status, and it may be more worthwhile to pursue meth-

ods of association for trivariate data, extending the definition of Unkel and

Farrington (2012) beyond the bivariate case.

There is currently great interest in reducing the disease burden of viral

hepatitis and HIV, with new treatments for HCV, effective HBV vaccines and

high standards of HIV care making elimination of these infections as major

public health threats a real prospect in the UK and elsewhere. Injecting drug

use is the cause of a substantial proportion of blood-borne virus infections,

and nearly all HCV infections in England. Monitoring the population of

people who inject drugs, and understanding patterns of risk will be a crucial

part of developing policy to tackle blood-borne viruses. The methods and

analyses developed in this thesis may be used to this end. Force of infection

models can be traced right back to Daniel Bernoulli’s seminal 1766 paper on

smallpox (Dietz, 2002). More than 250 years later, these methods are still

proving useful. And they are far from being exhausted.
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Chapter 9

Appendices

9.1 Unlinked Anonymous Monitoring survey

of people who inject drugs: questionnaire

The Unlinked Anonymous Monitoring survey of people who inject drugs

questionnaire is displayed in full below (2015 version). The document is

printed double-sided on a single sheet of landscape A3 paper and folded in

half to produce a 4-page A4 leaflet. Hence reading of the questionnaire as

shown below begins on the right hand side of the first page, follows on the

left then right sides of the second page and ends on the left side of the first

page.
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                       Please turn over  

 If yes:  How old were you when you first used a Needle Exchange?  _____ 
 

Have you used a Needle Exchange in the last 12 months?   Yes 2    No 1     

 

If yes: How many individual needles (including ones attached to syringes) did  

you get from Needle Exchanges during the last month (28 days)? _____ 
 

How many of these needles were already attached to syringes (barrels)? _____ 

T
y
p

e
 1

5
 (

2
0

1
4

) 

 
 
15.  Which of these health services have you used in the last year (12 months)? (Tick all that apply) 

Sexual Health, GUM or STI Clinic 2   Family Planning Clinic 2    NHS Walk-in Clinic   2 

A&E or Casualty Department    2   GP or Family Doctor 2   None of these services 2 
 

16.  Have you ever had a blood test for HIV?       

Yes 2    No 1 

 
 
 
 
 
 

17.  Have you ever had a blood test for hepatitis C?  

Yes 2    No 1  
 

 
 
 
 
 
 
 
 
 
 
 

 

18.  Have you ever been in prison (or a young offenders institution)?        
 

Yes 2    No 1  
 
 
 
 
 
 

 
19.  Have you ever been homeless - that is living in a hostel, having no fixed abode, or living on the  
       streets? 

Yes 2    No 1  
 

 
 
 
 

 

20.  Were you born in the United Kingdom? (England, Scotland, Wales or Northern Ireland) 
 

Yes 2    No 1  
 

 

 

 
 

 

 

         CONFIDENTIAL    Centre: ________  

Survey of People Who Inject Drugs 
 
 
 
 

 
 
 
 
 
 
 

 
Please  the box or write in your answer. 
 

Please try to answer all the questions. 

 
1a. Have you ever injected any drug?    No 1    Yes 2 

 
1b. How old were you when you first injected?  _____ 

 
2.  How old are you now?  _____ 

 
3.  Are you?    Male 1    Female 2 

 
4.  Have you done this survey before?    No 1   Yes 2     

 

5.  Have you ever used a Needle Exchange (including a pharmacy exchange)? 
 

Yes 2     No 1 
 
 
 
 
 
 
 
 

 

 
 

 
6.  Have you ever been prescribed a detox or maintenance drug regime? 

Yes 2    No 1 

 
 
 
 
 
 
 
 
 
 
 

 If yes:  How old were you when you were first prescribed a detox or maintenance drug 
regime (script)?  _____ 

Are you currently being prescribed a detox or maintenance drug regime?   

Yes 2     No 1   

 

If yes, how long have you been on your current regime (script)? 

Less than a month 1    1 to 6 months 2     Over 6 months 3 

 If yes:  In which year did you last have a hepatitis C test?  _________ 

What was the result of your last test? 

Positive  1   Negative 2   Awaiting result 3 

 

     If tested positive, have you ever seen a specialist nurse or doctor            
    (e.g. a hepatologist) about your hepatitis C?    

No 1       Yes, but not given any medicine for hepatitis C  2 

Yes, and been given medicine for hepatitis C   3  

 

 
If yes, in which year did you 

last take part?  _________ 

 If yes:  In which year did you last have an HIV test?  _________ 

What was the result of your last test?  

Positive 1     Negative 2    Awaiting result 3  

 If yes:  Have you been homeless during the last 12 months?    

Yes, currently 3     Yes, but not currently 2       No 1 

 If no:  What country were you born in?  ___________________________________ 

 

Lab use barcode 

 

This questionnaire is completely anonymous: we do not wish to 
know your name or any other form of identification. 

 

The information from this study can help to develop better services for 
people who inject drugs. 

Thank you for completing this questionnaire. 

Please fold the questionnaire back up and then place it inside the brown envelope.  

DO NOT SEAL THE ENVELOPE. 

NOTE: Sample questionnaire below has been reduced to A4 size 
 

If yes:  How many times have you been in prison?  _____ 

How old were you when you first went to prison?  _____ 

Have you ever injected drugs whilst in prison?   Yes 2     No 1 
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                       Please turn over  

 

7.  Have you injected drugs in the last year (12 months)?     

 

Yes 2      No 1     
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

8.  Have you injected drugs in the last month (28 days)?    

Yes 2     No 1       If you have not injected in the last month please go to Question 9. 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

9.   Have you ever received used needles or syringes from anyone?        
 

Yes 2    No 1 

 
10.  In the last month (28 days), have you? (Tick all that apply)  

  Snorted Cocaine          2     Drunk, snorted or swallowed Amphetamine (speed)  2 

  Smoked Crack             2      Smoked, chased or snorted Heroin           2 

  Smoked or swallowed Cannabis 2     Snorted, smoked or swallowed Mephedrone (m-cat)  2 

  Inhaled Solvents or Glue      2      Drunk, snorted or swallowed Ketamine        2   

  Taken Ecstasy/’E’ (MDMA)     2     Swallowed non-prescribed Benzodiazepines     2   

  Done none of these        2  

 
11.  In the last year (12 months), have you overdosed (OD-ed, gone-over, gone-under) to the point where 

  you have lost consciousness? 
 

Yes 2    No 1  

 
 
 
 
 
 
 
 

 
12.  Have you had sex (vaginal or anal) in the last year (12 months)?      
 

 
     Yes 2   
 
 
     No  1  

 
 
 
 

 
13.  Have you ever received money, goods or drugs in exchange for sex?   
 

Yes, in the last year 4   Yes, but not in the last year 3    Never 1 

 
14.  Have you ever been vaccinated for hepatitis B (hep B jab)?    

Yes 2    No 1     Not sure 3 

 
 

 

  If no:    In which year did you last inject drugs?  _________ 

How old were you when you last injected drugs?  _____ 

   Which drug were you injecting most often? _____________ 

  If you have not injected in the last year, please go to Question 9. 

If yes: 

In the last year, which of the following drugs have you injected? (Tick all that apply) 

Heroin   2     Crack   2      Amphetamine (speed)  2        Ketamine   2 

Methadone 2       Cocaine  2    Mephedrone (m-cat)   2        Other Drugs 2 

In the last year, have you had a swelling containing pus (abscess), sore, or open wound at an 

injection site?             Yes 2     No 1  

In the last year, did you inject with a needle or syringe that had already been used by someone else 

(including your partner)?     Yes 2     No 1 

If yes: 

In the last month (28 days), on how many days have you injected drugs?  _____ 

On the last full day that you injected, how many times did you inject drugs?  _____ 

In the last month (28 days), into which parts of your body did you inject drugs? (Tick all that apply)      

  Arms 2    Hands 2   Groin 2   Legs 2    Feet 2   Neck 2    Other 2  

In the last month (28 days), which drug have you injected most often? ________________ 

In the last month (28 days), which of these drugs have you injected? (Tick all that apply) 

Heroin   2     Crack   2      Amphetamine (speed)  2        Ketamine   2 

Methadone 2       Cocaine  2    Mephedrone (m-cat)   2        Other Drugs 2 

In the last month (28 days):  None   1 2 or more 

 To how many people have you passed on used needles or syringes 
(including your partner)? 

0 1      2 

 From how many people have you received used needles or syringes 
(including your partner)? 

0 1      2 

In the last month (28 days), did you use spoons or other containers for mixing which had previously  

been used by someone else (including your partner)?    Yes 2     No 1 

In the last month (28 days), did you use filters which had previously been used by  

someone else (including your partner)?            Yes 2     No 1 

In the last month (28 days), did you inject with a needle or syringe after it had been cleaned  

(e.g. with water, bleach or detergent)?             Yes 2     No 1 

 If yes:  With how many men in the last year?   

None 0  1 1    2-4 4   5-9 5   10 or more 3 

With how many women in the last year?  

None 0  1 1    2-4 4   5-9 5   10 or more 3 

Did you use a condom?  Always 1   Sometimes 2   Never 3 

 If yes:  How many times in the last 12 months have you overdosed? 

1 1   2-4 2    5-9 3   10 or more 4 

In the last 12 months, did you receive naloxone (the heroin overdose antidote) when 
you overdosed?  

Yes 2     No 1    Not Sure 3 

 If yes:  How many hep B jabs have you had?  

1 1     2 2     3+ 3     Not sure 4 

At which of the following services did you receive a hep B jab? (Tick all that apply)  

Needle Exchange          2      Drug Treatment Service 2 

Sexual Health, GUM or STI Clinic 2      In Prison         2 

Hostel or Homeless Service    2      GP or Family Doctor   2 

A&E or Casualty Department    2      Elsewhere        2 

Please go to top of the next page 

NOTE: Sample questionnaire below has been reduced to A4 size 
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9.2 R code

9.2.1 Univariate multiplicative model code

Shown below is the R code for a univariate, piecewise constant force of infec-

tion model. Injecting duration (“age”) and time combine multiplicatively,

and the model includes injecting duration X time interaction terms. The

model uses a dataset that includes the time at risk contributions to each

piecewise constant segment; for example, 2 years exposure in the 5-10 year

injecting duration category, 3 years exposure in the 1995-1999 time category

and so on, which contribute to the cumulative hazard. The code itself for

forming the cumulative hazard is not very concise: the sums of parameters

multiplied by time at risk contributions is written out term-by-term.

## y=outcome, n=denominator, s=sensitivity of test,

## data=exposure time contributions, inits=list of parameters

univarAT <- function(y,n,s,data,inits){

sumht <- array(0,c(1,length(y)))

llc <- rep(NA,length(y))

## 8 time periods: pre-1980 then 5 year

## first four have same injdur effect

## 7 injdur periods, baseline injdur is 3 (4-5 yrs)

## decompose init list

Bt <- array(0,8)

Ba <- array(0,7)

Bta <- array(0,c(8,7))

Bt <- inits[1:8]

Ba[1:2] <- inits[9:10]

Ba[4:7] <- inits[11:14]

for(i in 5:8){

Bta[i,1] <- inits[15+(i-5)*6]

Bta[i,2] <- inits[16+(i-5)*6]
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Bta[i,4] <- inits[17+(i-5)*6]

Bta[i,5] <- inits[18+(i-5)*6]

Bta[i,6] <- inits[19+(i-5)*6]

Bta[i,7] <- inits[20+(i-5)*6]

}

## hazards for each infection

## age and time parameters combine multiplicativel

ht <- array(0,c(8,7))

for(t in 1:8){

for(a in 1:7){

ht[t,a] <- exp(Bt[t] + Ba[a] + Bta[t,a])

}

}

## contributions to cumulative hazard

## could be written more efficiently!

sumht[] <- (

ht[1,1]*data$x1_1+ ht[1,2]*data$x1_2+ ht[1,3]*data$x1_3+

ht[1,4]*data$x1_4+ ht[1,5]*data$x1_5+ ht[1,6]*data$x1_6+

ht[1,7]*data$x1_7+

ht[2,1]*data$x2_1+ ht[2,2]*data$x2_2+ ht[2,3]*data$x2_3+

ht[2,4]*data$x2_4+ ht[2,5]*data$x2_5+ ht[2,6]*data$x2_6+

ht[2,7]*data$x2_7+

ht[3,1]*data$x3_1+ ht[3,2]*data$x3_2+ ht[3,3]*data$x3_3+

ht[3,4]*data$x3_4+ ht[3,5]*data$x3_5+ ht[3,6]*data$x3_6+

ht[3,7]*data$x3_7+

ht[4,1]*data$x4_1+ ht[4,2]*data$x4_2+ ht[4,3]*data$x4_3+

ht[4,4]*data$x4_4+ ht[4,5]*data$x4_5+ ht[4,6]*data$x4_6+

ht[4,7]*data$x4_7+

ht[5,1]*data$x5_1+ ht[5,2]*data$x5_2+ ht[5,3]*data$x5_3+

ht[5,4]*data$x5_4+ ht[5,5]*data$x5_5+ ht[5,6]*data$x5_6+

ht[5,7]*data$x5_7+

ht[6,1]*data$x6_1+ ht[6,2]*data$x6_2+ ht[6,3]*data$x6_3+
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ht[6,4]*data$x6_4+ ht[6,5]*data$x6_5+ ht[6,6]*data$x6_6+

ht[6,7]*data$x6_7+

ht[7,1]*data$x7_1+ ht[7,2]*data$x7_2+ ht[7,3]*data$x7_3+

ht[7,4]*data$x7_4+ ht[7,5]*data$x7_5+ ht[7,6]*data$x7_6+

ht[7,7]*data$x7_7+

ht[8,1]*data$x8_1+ ht[8,2]*data$x8_2+ ht[8,3]*data$x8_3+

ht[8,4]*data$x8_4+ ht[8,5]*data$x8_5+ ht[8,6]*data$x8_6+

ht[8,7]*data$x8_7)

################################

## probabilities and likelihood

pi_tru0 <- exp(-sumht[])

pi_tru1 <- 1 - pi_tru0

## relate true to observed via sensitivity

pi1 <- s*pi_tru1

pi0 <- 1-pi1

## likelihood - negative as optim minimises function

llc <- log(pi0)*(n-y) + log(pi1)*(y)

loglik <- -sum(llc)

return(loglik)

}

9.2.2 Bivariate shared frailty model code

Shown below is the R code used to fit bivariate frailty models. The code

is more general-purpose than the univariate model in section 9.2.1 and can

be used to fit bivariate models under independence, gamma and inverse

Gaussian frailty distributions, and also allows for different frailty variances

across subgroups (strata). The code also allows for an arbitrary covariate
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matrix, which can also be specified differently for each infection. In order

to achieve this flexibility a “multi-row” formulation of the data, in which

the time at risk for an individual is split according to changing covariate

combinations (described subsequently).

# fast tapply method

library("ecoreg",lib="C:/My programs/R library")

###############################################################

## multirow model

## - split age/time covariate levels into repeat observations

## y1, y2: infection status for 1 & 2

## s1, s2: sensitivity of tests for infection 1&2

## X1, X2: covariate matrix for infection risk

## frstr: frailty variance strata (constant for single frailty)

## inits: parameter list

## frdist: specified distribution

## (indep, gamma, inverse Gaussian)

## ret: log-likelihood for optim, or predictions/AIC

modelMR <- function(y1,y2,s1,s2,X1,X2,frstr,inits,frdist,ret){

llc <- rep(NA,length(y1))

## X - covar dataset consisting of ID, j (sub ID)

## , and T (time within band)

## subset inits - based on width of covar mat

clen1 <- dim(X1)[2]-3 ## width minus references and T

beta1 <- inits[1:clen1]

clen2 <- dim(X2)[2]-3 ## width minus references and T

beta2 <- inits[(clen1+1):(clen1+clen2)]

## remaining portion of inits are frailty variance(s)

theta <- inits[(clen1+clen2+1):length(inits)]

thstr <- theta[frstr]

table(thstr)
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## exposure X beta coefs

betalist1 <- t(t(X1[,4:(clen1+3)])*beta1)

betalist2 <- t(t(X2[,4:(clen2+3)])*beta2)

## sum of beta coefs

betasum1<-rowSums(betalist1)

betasum2<-rowSums(betalist2)

## combine with ID var and exponentiate, multiply by T

htx1<-cbind(X1[,1],exp(betasum1)*X1[,3])

htx2<-cbind(X2[,1],exp(betasum2)*X2[,3])

## sum over IDs - aggregate and tapply both slow

## - this is a special version where groups are ordered

## - much faster

At1<-tapplysum.fast(htx1[,2],htx1[,1])

At2<-tapplysum.fast(htx2[,2],htx2[,1])

#######################################################

## multinomial probabilities with different frailties

## No frailty

if(frdist=="INDEP"){

pi_tru00 <- exp(-At1-At2)

pi_tru10 <- exp(-At2) - pi_tru00

pi_tru01 <- exp(-At1) - pi_tru00

pi_tru11 <- 1-pi_tru00-pi_tru10-pi_tru01

}

## GAMMA

if(frdist=="GAM"){

pi_tru00 <- (1+(At1+At2)/thstr)^-thstr

pi_tru10 <- (1+At2/thstr)^-thstr - pi_tru00

pi_tru01 <- (1+At1/thstr)^-thstr - pi_tru00

pi_tru11 <- 1-pi_tru00-pi_tru10-pi_tru01

}

## INVERSE GAUSSIAN

if(frdist=="INVG"){
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pi_tru00 <- exp(thstr*(1- sqrt(1+2*(At1+At2)/thstr) ))

pi_tru10 <- exp(thstr*(1- sqrt(1+2*(At2)/thstr) )) - pi_tru00

pi_tru01 <- exp(thstr*(1- sqrt(1+2*(At1)/thstr) )) - pi_tru00

pi_tru11 <- 1-pi_tru00-pi_tru10-pi_tru01

}

## Relate true proportions to observed through sensitivity of test

## Sutton BMC 2006, p3

pi00 <- pi_tru00 + (1-s1)*pi_tru10 + (1-s2)*pi_tru01

+ (1-s1)*(1-s2)*pi_tru11

pi10 <- pi_tru10*s1 + s1*(1-s2)*pi_tru11

pi01 <- pi_tru01*s2 + s2*(1-s1)*pi_tru11

pi11 <- pi_tru11*s1*s2

pi1_0 <- pi00+pi01

pi1_1 <- pi10+pi11

pi2_0 <- pi00+pi10

pi2_1 <- pi01+pi11

## full likelihood where both infections present

llc <- ifelse(is.na(y1) | is.na(y2), 0, log(pi00)*((1-y1)*(1-y2)) +

log(pi10)*(y1*(1-y2)) + log(pi01)*((1-y1)*y2) + log(pi11)*(y1*y2) )

## partial likelihood where one infection missing - y1 present only

llc <- ifelse(is.na(y2),

llc+log(pi1_0)*(1-y1) + log(pi1_1)*(y1), llc)

## y2 only

llc <- ifelse(is.na(y1),

llc+log(pi2_0)*(1-y2) + log(pi2_1)*(y2), llc)

loglik <- -sum(llc)

## Minus LL for optimisation

if(ret=="LL"){

return(loglik)

}

## return predicted probabilities at fixed parameters
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if(ret=="pred"){

return(cbind(pi00,pi10,pi01,pi11))

}

## or AIC

if(ret=="AIC"){

npar<-length(inits)

if(frdist=="INDEP"){

npar<-npar-1

}

AIC<- 2*loglik+2*npar

return(AIC)

}

}
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Shown below is an excerpt of the covariate data used for the “multi-row”

formulation. The first column, id, is an identifier for the individual. j is

a counter for the time interval, and t is the amount of time spent by the

individual in a particular covariate combination. The a and t are indicator

variables specifying which age (injecting duration) and calendar time effects

the individual was subjected to within the time interval; the time terms

governing the log baseline FOI and the age/injecting duration effects are log

hazard ratios compared to the baseline category, 3.

For example, id=1 is subjected to the baseline hazard for the time inter-

val 4 (t 4) with the change in hazard associated with a 1 for one year (j=1),

then spends 2 years in time interval 4 with hazard associated with a 2 (j=2).

At (j=3) the individual is in the baseline age/injecting duration category for

1 year, and at (j=4) the individual moves to the next time interval (t 5) for

one year.

Additional covariate effects are age at first use groups (fage1 and fage3,

vs. a baseline group 2) and female (vs. male). Parameters for the log FOI

and log hazard ratios are then multiplied by the indicators, and the sum of

the products is thus the log FOI for that covariate combination. The log FOI

is exponentiated for the multiplicative effects model. The resulting FOIs are

multiplied by the time at risk in that covariate combination (t) and the sum

of the FOI contributions across the individual is equal to the cumulative

hazard.

Additional covariates are easy to include, and in particular interaction

effects may be obtained by multiplying columns (for instance, an interaction

between female and the age at first use variables).
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id j t a_1 a_2 a_4 a_5 a_6 a_7 t_1 t_2 t_3 t_4 t_5 t_6 t_7 t_8 fage1 fage3 female

1 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

1 2 2 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

1 3 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

1 4 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

1 5 4 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0

2 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1

2 2 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1

2 3 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1

2 4 2 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1

2 5 2 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 1

3 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

4 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

5 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0

5 2 2 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0

5 3 2 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0
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9.2.3 Bivariate time-varying frailty code

Shown below is the R code for the time-varying frailty model. This has

some additional complications, as the calculation of the cumulative hazards

for each infection cannot be performed separately, as in the simpler bivariate

frailty model (section 9.2.2) and also involves the frailty parameters.

##############################################################

## takes additional argument frstrC for

## frailty strata within covariate data

modelMRTVF <- function(y1,y2,s1,s2,X1,X2,frstr,frstrC,inits,ret){

llc <- rep(NA,length(y1))

## X - covar dataset consisting of ID, j (sub ID)

##, and T (time within band)

clen1 <- dim(X1)[2]-5 ## width minus references and T

beta1 <- inits[1:clen1]

clen2 <- dim(X2)[2]-5 ## width minus references and T

beta2 <- inits[(clen1+1):(clen1+clen2)]

## remaining portion of inits assigned to frailty variance

## 3 parts: theta, rho, q

frlen <- length(inits)-clen1-clen2

frN <- frlen/3

theta <- inits[(clen1+clen2+1):(clen1+clen2+frN)]

rho <- inits[(clen1+clen2+frN+1):(clen1+clen2+frN*2)]

q <- inits[(clen1+clen2+frN*2+1):(length(inits))]

## theta is needed for both outcome and multirow form

thstr <- theta[frstr]

thstrC <- theta[frstrC]

## rho and q are at at the multirow level

rhostr <- rho[frstrC]

qstr <- q[frstrC]

## time and other vars - note that the covariate matrices

## must have matching time cutpoints
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id <- X1[,1]

t <- X1[,3]

c_i <- X1[,4]

v_i <- X1[,5]

## exposure X beta coefs

betalist1 <- t(t(X1[,6:(clen1+5)])*beta1)

betalist2 <- t(t(X2[,6:(clen2+5)])*beta2)

## sum of beta coefs

betasum1<-rowSums(betalist1)

betasum2<-rowSums(betalist2)

## ht vars - used alone with t in places

ht<-array(NA,dim=c(dim(X1)[1],3))

ht[,1]<-exp(betasum1)

ht[,2]<-exp(betasum2)

ht[,3]<-ht[,1]+ht[,2]

## Derive the other variables

eqq <- exp(qstr)/(1+exp(qstr))

epv <- exp(-rhostr*v_i)

epc <- exp(-rhostr*c_i)

## loop over FOIs for 1, 2, combined (3)

## setup arrays

S<-array(NA,dim=c(dim(X1)[1],3,4))

S.sum<-array(NA,dim=c(length(y1),3,4))

St<-array(NA,dim=c(length(y1),3))

for(i in 1:3){

S[,i,1] <- ht[,i]*t*(1-eqq)

S[,i,2] <- ht[,i]*(epv-epc)/(rhostr*(1+exp(qstr)))

S[,i,3] <- ht[,i]*(epc-epv)/(rhostr*thstrC*(1+exp(qstr)))

S[,i,4] <- ht[,i]*t*eqq/thstrC

## summations over multirow ID

S.sum[,i,1] <- tapplysum.fast(S[,i,1],id)
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S.sum[,i,2] <- tapplysum.fast(S[,i,2],id)

S.sum[,i,3] <- tapplysum.fast(S[,i,3],id)

S.sum[,i,4] <- tapplysum.fast(S[,i,4],id)

St[,i] <- exp(-S.sum[,i,1]-S.sum[,i,2])

* (1+S.sum[,i,3]+S.sum[,i,4])^(-thstr)

}

########################################################

## multinomial probabilities

pi_tru00 <- St[,3]

pi_tru10 <- St[,2] - pi_tru00

pi_tru01 <- St[,1] - pi_tru00

pi_tru11 <- 1-pi_tru00-pi_tru10-pi_tru01

## sensitivity - Sutton BMC 2006, p3

pi00 <- pi_tru00 + (1-s1)*pi_tru10 + (1-s2)*pi_tru01

+ (1-s1)*(1-s2)*pi_tru11

pi10 <- pi_tru10*s1 + s1*(1-s2)*pi_tru11

pi01 <- pi_tru01*s2 + s2*(1-s1)*pi_tru11

pi11 <- pi_tru11*s1*s2

pi1_0 <- pi00+pi01

pi1_1 <- pi10+pi11

pi2_0 <- pi00+pi10

pi2_1 <- pi01+pi11

## full likelihood where both infections present

llc <- ifelse(is.na(y1) | is.na(y2), 0, log(pi00)*((1-y1)*(1-y2)) +

log(pi10)*(y1*(1-y2)) + log(pi01)*((1-y1)*y2) + log(pi11)*(y1*y2) )

## partial likelihood where one infection missing - y1 present only

llc <- ifelse(is.na(y2),

llc+log(pi1_0)*(1-y1) + log(pi1_1)*(y1), llc )

## y2 only

llc <- ifelse(is.na(y1),

llc+log(pi2_0)*(1-y2) + log(pi2_1)*(y2), llc )
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loglik <- -sum(llc)

if(ret=="LL"){

return(loglik)

}

if(ret=="pred"){

return(cbind(pi00,pi10,pi01,pi11))

}

if(ret=="AIC"){

npar<-length(inits)

AIC<- 2*loglik+2*npar

return(AIC)

}

}

9.2.4 Trivariate frailty model code

Shown below is R code for the asymmetric trivariate frailty model, with mul-

tiplicative components for frailty specific to all infections, and a component

relating to HBV-HIV only (or other pair). The model requires numerical

integration of the survivor functions. Model fitting is computationally in-

tensive, due to numerical integration being carried out at each step of the

numerical optimisation routine. Data are aggregated by injecting duration

(age) only, unlike earlier models which examined individual level data in-

cluding time and other covariates.

## numerical integration package

library(cubature)

## survivor functions for numerical integration

## trivariate

St123 <- function(x, A1,A2,A3,k1,k2){

exp(-k2*x)*(k1^k1)*(k2^k2)*(x^(k2-1))

/ (gamma(k2)*(A1+A2*x+A3*x+k1)^k1)
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}

## bivariate - same form for s13 and s23 (HBV & HIV)

## but spell out in case of any confusion

St12 <- function(x, A1,A2,k1,k2){

exp(-k2*x)*(k1^k1)*(k2^k2)*(x^(k2-1))

/ (gamma(k2)*(A1+A2*x+k1)^k1)

}

St13 <- function(x, A1,A3,k1,k2){

exp(-k2*x)*(k1^k1)*(k2^k2)*(x^(k2-1))

/ (gamma(k2)*(A1+A3*x+k1)^k1)

}

St23 <- function(x, A2,A3,k1,k2){

exp(-k2*x)*(k1^k1)*(k2^k2)*(x^(k2-1))

/ (gamma(k2)*((A2+A3)*x+k1)^k1)

}

## univariate - HCV does not require integration

St1 <- function(A1,k1){

(1+A1/k1)^(-k1)

}

St2 <- function(x, A2,k1,k2){

exp(-k2*x)*(k1^k1)*(k2^k2)*(x^(k2-1))

/ (gamma(k2)*(A2*x+k1)^k1)

}

St3 <- function(x, A3,k1,k2){

exp(-k2*x)*(k1^k1)*(k2^k2)*(x^(k2-1))

/ (gamma(k2)*(A3*x+k1)^k1)

}

## y is the dataset and includes time at risk, infection status

## (s000, s001, s010 etc.) and test sensitivities

trivarM4 <- function(y,inits,ret){

## inits and quantities for calculation

N <- dim(y)[1]

llc <- rep(NA,N)
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len<-(length(inits)-2)/3

ht <- matrix(data=NA, nrow=3, ncol=len)

ht[1,] <-exp(inits[1:len])

ht[2,] <-exp(inits[(len+1):(2*len)])

ht[3,] <-exp(inits[(2*len+1):(3*len)])

k1<-exp(inits[(3*len+1)]) ## exp. to ensure positive

k2<-exp(inits[(3*len+2)])

## cumulative hazard functions

At<-matrix(data=NA, nrow=N, ncol=3)

for(j in 1:3){

At[,j]<-ht[j,1]+ht[j,2]*(y$t2)+ht[j,3]*(y$t3)+ht[j,4]*(y$t4)

+ ht[j,5]*(y$t5)+ht[j,6]*(y$t6)+ht[j,7]*(y$t7)

+ ht[j,8]*(y$t8)+ht[j,9]*(y$t9)

}

## survivor functions

## upper limits of integrals are 1+ 10 times gamma variance

## or 5, whichever is greater

ilim <- 1+10/c(k1,k2)

ilim <- pmax(ilim,5)

S123<-rep(NA,N)

S12<-rep(NA,N)

S13<-rep(NA,N)

S23<-rep(NA,N)

S1<-rep(NA,N)

S2<-rep(NA,N)

S3<-rep(NA,N)

## numerical integration of survivor functions

for(i in 1:N){

S123[i] <-integrate(St123, 0,ilim[2],

At[i,1],At[i,2],At[i,3], k1,k2)$val

S12[i] <-integrate(St12, 0,ilim[2],

At[i,1],At[i,2], k1,k2)$val

252



S13[i] <-integrate(St13, 0,ilim[2],

At[i,1],At[i,3], k1,k2)$val

S23[i] <-integrate(St23, 0,ilim[2],

At[i,2],At[i,3], k1,k2)$val

S1[i] <- St1(At[i,1], k1)

S2[i] <- integrate(St2, 0,ilim[2], At[i,2], k1,k2)$val

S3[i] <- integrate(St3, 0,ilim[2], At[i,3], k1,k2)$val

}

pi_tru000 <- pmax(S123,0.0000001)

pi_tru100 <- pmax((S23-pi_tru000) ,0.0000001)

pi_tru010 <- pmax((S13-pi_tru000) ,0.0000001)

pi_tru001 <- pmax((S12-pi_tru000) ,0.0000001)

pi_tru110 <- pmax((S3-pi_tru000-pi_tru100-pi_tru010) ,0.0000001)

pi_tru101 <- pmax((S2-pi_tru000-pi_tru100-pi_tru001) ,0.0000001)

pi_tru011 <- pmax((S1-pi_tru000-pi_tru001-pi_tru010) ,0.0000001)

pi_tru111 <- pmax((1-pi_tru000-pi_tru100-pi_tru010-pi_tru001

-pi_tru110-pi_tru101-pi_tru011) ,0.0000001)

## sensitivity of tests

pi000 <- pi_tru000 + (1-y$senshcv)*pi_tru100

+ (1-y$senshbv)*pi_tru010 + (1-y$senshiv)*pi_tru001

+ (1-y$senshcv)*(1-y$senshbv)*pi_tru110

+ (1-y$senshcv)*(1-y$senshiv)*pi_tru101

+ (1-y$senshbv)*(1-y$senshiv)*pi_tru011

+ (1-y$senshcv)*(1-y$senshbv)*(1-y$senshiv)*pi_tru111

pi100 <- pi_tru100*y$senshcv

+ y$senshcv*(1-y$senshbv)*pi_tru110

+ y$senshcv*(1-y$senshiv)*pi_tru101

+ y$senshcv*(1-y$senshbv)*(1-y$senshiv)*pi_tru111

pi010 <- pi_tru010*y$senshbv

+ y$senshbv*(1-y$senshcv)*pi_tru110

+ y$senshbv*(1-y$senshiv)*pi_tru011

+ y$senshbv*(1-y$senshcv)*(1-y$senshiv)*pi_tru111
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pi001 <- pi_tru001*y$senshiv

+ y$senshiv*(1-y$senshcv)*pi_tru101

+ y$senshiv*(1-y$senshbv)*pi_tru011

+ y$senshiv*(1-y$senshcv)*(1-y$senshbv)*pi_tru111

pi110 <- pi_tru110*y$senshcv*y$senshbv

+ y$senshcv*y$senshbv*(1-y$senshiv)*pi_tru111

pi101 <- pi_tru101*y$senshcv*y$senshiv

+ y$senshcv*y$senshiv*(1-y$senshbv)*pi_tru111

pi011 <- pi_tru011*y$senshbv*y$senshiv

+ y$senshbv*y$senshiv*(1-y$senshcv)*pi_tru111

pi111 <- pi_tru111*y$senshcv*y$senshbv*y$senshiv

if(ret=="pred"){

pred<-cbind(pi000,pi100,pi010,pi001,pi110,pi101,pi011,pi111)

return(pred)

}

if(ret=="LL"){

llc <- log(pi000)*y$s000 +log(pi001)*y$s001

+log(pi010)*y$s010 +log(pi100)*y$s100

+log(pi011)*y$s011 +log(pi101)*y$s101

+log(pi110)*y$s110 +log(pi111)*y$s111

loglik <- -sum(llc)

return(loglik)

}

}
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9.3 Conference presentations

Ross Harris, Daniela De Angelis, Vivian Hope and Paddy Farrington. Anal-

ysis of serial cross-sectional data: Risk patterns of blood-borne viruses in

people who inject drugs. Applied Epidemiology Scientific Meeting 2015,

Warwick University.

Ross Harris, Daniela De Angelis, Vivian Hope and Paddy Farrington.

Estimating the force of infection via generalised linear models: hepatitis C

infection in people who inject drugs. Public Health Research and Science

Conference 2016, Warwick University.

Ross Harris, Daniela De Angelis, Vivian Hope and Paddy Farrington.

Estimating the force of infection of blood-borne viruses in people who inject

drugs: risk factors and frailty. Royal Statistical Society Conference 2017,

Glasgow.

Ross Harris, Daniela De Angelis, Helen Harris and Sema Mandal. Moni-

toring progress toward elimination of hepatitis C in England using routinely

collected data. Public Health Research and Science Conference 2018, War-

wick University.
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