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Abstract—We demonstrate and validate Geometric Algebra
(GA) based terahertz (THz) signal classification of various
powders in tablet form of various thicknesses, and compare
the results with a conventional Support Vector Machine (SVM)
approach. By using geometric algebra we can perform classifi-
cation independently of dispersion and hence independently of
the transmission path length through the sample. In principle, it
may be possible to extend the GA coordinate-free transformation
to other types of pulsed signals, such as pulsed microwaves or
even acoustic signals in such fields as seismology. The classifier is
available for download at Github, https://github.com/swuzhousl/
Shengling-zhou/blob/geometric-algebra-classifier/GAclassifier/.

I. INTRODUCTION AND BACKGROUND

W ITH terahertz time-domain spectroscopy (THz-TDS)

systems, different substances can be distinguished via

adoption of a signal classifier that is trained to discriminate

absorption spectra in the terahertz regime [1], [2]. However, a

problem with using pulsed THz-TDS systems is the dispersion

of the terahertz pulse through the sample [3]. This dispersion

results in temporal pulse spreading and means that, if a signal

classifier has been trained using both frequency and phase data

for a sample of one thickness, it may not always work for an

arbitrary sample thickness.

To solve this problem we introduce theory based on geomet-

ric algebra (GA) and show how it may be used for classifying

the terahertz signal, isolating the influence of dispersion. We

define a conversion function g(·) which maps a m-dimensional

complex transfer function vector h̃ onto a 2m-dimensional real

vector h. The function is defined as follows:

h = g
(
h̃
)
=

m∑
i=1

∠h̃ei +
m∑
i=1

ln
∣∣∣h̃
∣∣∣ ei+m. (1)

It is demonstrated that all vectors h corresponding to

samples of one substance k, so that with different thickness

lie on the unique plane Hk,

Hk =
hd1

k ∧ hd2

k∣∣∣hd1

k ∧ hd2

k

∣∣∣
(2)

where hd1

k and hd2

k denote corresponding transfer function

vectors gained from samples of the substance k with thickness

d1 and d2 separately. Once the set of all planes for the different

substances under investigation is determined, the measurement

of the THz spectrum of an unknown substance x with un-

known sample thickness can take place, producing a mea-

surement vector hx. The wedge product λx
k =

∣∣∣ hx

|hx| ∧Hk

∣∣∣
is defined as the criterion for substance identification. The

lower the value λx
k the more likely the measured unknown

substance x with unknown sample thickness is the substance

corresponding to that plane.

Therefore, a substance identification method based on min-

imum value of the parameter λ is presented as:

x = argmin
k

{λx
k} = argmin

k

∣∣∣∣
hx

|hx| ∧Hk

∣∣∣∣ , k = 1, 2, ..., N.

(3)

The plane with the minimum value of λ with the measurement

vector hx is most likely the plane of the unknown measured

substance. This algorithm is illustrated in Fig. 1.

Fig. 1. Illustration of the terahertz signal classification.The closer the
measurement vector hx is to a particular plane, the lower the value is of
its wedge product with that plane and the more likely the measured unknown
substance with unknown sample thickness is the substance corresponding to
that plane.

II. RESULTS

To systematically evaluate the performance of the proposed

GA theory, THz frequency domain spectra from all four

substances, melamine, tartaric acid, lactose, and glucose of

five different thicknesses, 1.0 mm, 1.5 mm, 2.0 mm, 2.5 mm



TABLE I
CLASSIFICATION PERFORMANCE (%) VS SUBSTANCE THICKNESS USING SVM AND GA CLASSIFIERS.

Substances
SVM GA

1.0 mm 1.5 mm 2.0 mm 2.5 mm 3.0 mm 1.0 mm 1.5 mm 2.0 mm 2.5 mm 3.0 mm

Melamine 54.00 100.00 100.00 98.25 93.25 82.50 97.75 100.00 99.75 99.75

Tartaric Acid 100.00 100.00 100.00 100.00 85.25 100.00 99.75 99.75 99.50 99.50

Lactose 99.00 99.50 100.00 99.00 62.70 99.75 98.25 100.00 100.00 100.00

Glucose 59.25 100.00 100.00 84.00 80.50 100.00 97.50 97.75 86.50 85.00

Overall 78.06 99.87 100.00 95.31 80.43 95.56 98.31 99.37 96.43 96.06

Fig. 2. Illustration of substance identification based on the GA classifier.
Here, 100 tartaric acid vectors are obtained from 1.0 mm data samples. Their
vector rejection magnitudes λtar

k to each plane are calculated. Here, λtar
k

denotes the magnitude of the tartaric acid vector rejection to plane k, where
k corresponds to four substances, melamine, tartaric acid, lactose and glucose.
In this graph, all data points from a 1.0 mm tartaric acid sample are classified
as tartaric acid correctly by the GA classifier.

and 3.0 mm are used. The classification task is to correctly

identify the specific tablet sample given unknown thickness.

First, the complex transfer function vectors are collected,

then we calculate their corresponding vectors by via Eqn. 1.

For each substance, one vector from a 1.5 mm and a 2.0 mm

tablet sample are randomly selected and form the unit plane

according to Eqn. 2. For any vector hd
x corresponding to a

signal from an unknown substance x with unknown thickness

d to be identified, we computed the value of
∣∣∣ hx

|hx| ∧Hk

∣∣∣,
which is used as the criterion for substance identification. Then

the unknown sample is identified as the k-th substance based

on the minimum magnitude.

Fig.2 illustrates how the GA classifier works based on a

minimal value of λ. As we can see clearly from this graph,

due to inevitable influences of noise and other non-idealities

in THz-TDS systems, the tartaric acid vectors obtained from

1.0 mm data samples deviate from their real orientation. Their

corresponding λtar
tar is not the zero but the value of less than

0.15. However, compared to the planes of the other substances

the tartaric acid plane always has the lowest λ.

In order to further demonstrate the validity and stability

of the proposed GA classifier, the results are compared with

the Gaussian kernel SVM classifier, while the SVM classifier

is trained by amplitude spectra of 1.5 mm and 2.0 mm data

samples.

Table I reports the classification outcomes both of the

SVM classifier and the GA classifier for all four substances

at thicknesses of 1.0 mm, 1.5 mm, 2.0 mm, 2.5 mm, and

3.0 mm. As can be seen from this table, due to the influence of

dispersion and other inevitable noise, the prediction accuracy

of both the GA and SVM classifiers are affected. Generally

speaking, the dispersion due to thicker samples appears to

have less effect on the GA classifier compared to the SVM

classifier. For the SVM classifier trained on half of dataset

from substances of 1.5 mm and 2.0 mm thickness, the overall

classification accuracy is 99.87% for a substance thickness of

1.5 mm and 100.00% for a substance thickness of 2.0 mm.

Notice that the overall classification accuracy of the SVM

drops to as low as 54.00% for thicknesses that are outside

the training set. While the overall classification accuracy of

GA classifier remains above 96.06%. Even in the worst case,

(melamine at 3.0 mm), the GA prediction accuracy is still

above 82.00%.

III. CONCLUSION

Due to the presence of unquantifiable dispersion, classifica-

tion tasks are typically difficult to perform on samples having

non-uniform thickness or unknown thickness. Our work here

now solves this problem. The results confirm the superiority

in classification accuracy and robustness of our GA-based

classifier. It may also be concluded that the GA classifier is a

more powerful and less complex algorithm, without the need

for any tuning parameters.
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