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Recently, Antibiotics have been extensively applied in various industries including agricultural, pharmaceutical
and veterinary. Great concerns of antibiotics are about discharge into environment, especially water sources sup-
plied forwater demand over theworld. The present studywas developed to investigate the performance of pow-
der activated carbonmodifiedwithmagnetite nanoparticles (PAC-MNPs) in removal of Ceftriaxone from aquatic
solutions with response surface methodology (RSM). A co-precipitation was applied to synthesize magnetized
powdered activated carbon and its characteristicswere analyzedwith TEM, SEMandXRD. The effects of indepen-
dent parameters pH (3−11), initial Ceftriaxone values (10–100mg/L), temperature (298–313 K), and adsorbent
dosage (1.05–2 g/L) on removal efficiency were analyzed by RSM based Box-Benhken Design (BBD). The opti-
mum conditions for maximum removal of Ceftriaxone (97.18% with desirability of 0.9720) were recorded from
desirability function (DF) at pH: 3.14, contact time: 90 min, adsorbent dosage: 1.99 g/L, initial concentration:
10 mg/L and temperature: 298 K. The survey of isotherms and Kinetics indicated that the experimental data
are fitted to Langmuir and second-pseudo-ordermodels. Thermodynamic studies revealed that the CTX removal
was spontaneous and exothermic. Regeneration experiments were performed for 6 cycles and the results indi-
cate a removal efficiency loss of b10%.

© 2018 Published by Elsevier B.V.
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1. Introduction

Recently, the studies on treatment of emerging contaminants (EC)
including, antibiotic, insecticide, pharmaceutical, and personal care
product (PCP) have been attracted considerably because conventional
treatment systems are not capable of eliminating these pollutants
[1–3]. These contaminants accumulate in surface and groundwater
water sources, and accordingly cause health risks for both human and
environment [4]. Furthermore, Over-consuming of antibiotics over the
past few decades has forced researchers to find new techniques in
order to deal with or better management of this issue [5]. Ceftriaxone
(CTX), as an antibiotic, is extensively applied to treat respiratory tract
infection (RTI), urinary system infection and gonorrhea. It poses poten-
tial risks to aquatic ecosystemand humanhealth due to recalcitrantmo-
lecular structure, as its chemical structure is shown in Table 1 [6]. In the
last few decades, various techniques i.e. chemical oxidation [7], Ion ex-
change [8], Biological treatment [9], photochemical degradation [10],
and adsorption [11] have been utilized for CTX removing from aqueous
solutions, but each one has its own disadvantages. The most important
problemswith these techniques are high energy consuming, high initial
).
investment, lowmineralization efficiency of antibiotics. Due to simplifi-
cation, high removal efficiency, no harmful by-products, and potential
of reusing, adsorption on the activated carbon has been considered as
a suitable method for CTX removal from aqueous solution [11,12]. The
main drawback of the powdered absorbents such as PAC in water and
wastewater treatment systems is difficulty to separation from the efflu-
ents samples. In most previous studies, the adsorbent separation is car-
ried out by filtration and centrifugation methods. The mentioned
methods have mainly developed additional costs. On the other hand,
these techniques may not be able to completely isolate the absorbent
from the sample, and instead result in the formation of secondary tur-
bidity. To overcome the problems described, a magnetized activated
carbon is suggested as appropriate solution. In this method, modifica-
tion of activated carbon with iron oxide (Fe3O4 MNPs) as a magnetic
source, used for quick and easy separation of adsorbent and adsorbed
contaminate by an external magnetic field [13,14]. Azari et al. reported
that the presence of Fe3O4 MNPs leads to chemical stability and excel-
lent recyclability of adsorbent for removal of toxic ions and organic con-
taminants from water and wastewater [15]. The regeneration ability of
the magnetic adsorbents represent that these green technologies can
be applied at full-scale wastewater treatment (industrial application)
formany times, aswell as batch-adsorption tests. The irrefutable advan-
tages of the PAC-MNPs adsorbent including inexpensive preparation
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Table 1
Chemical specifications of Ceftriaxone.

Molecular Ceftriaxone Sodium

Chemical formula C18H18N8O7S3
Chemical structure

Molecular weight 661.60
Density 0.35 g/mL
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method, good adsorption capacity andhigh separation rate via an exter-
nal magnetic field, recommend it as a promising candidate for the re-
moval of CTX from aqueous solutions [16].

So far, a few studies have been investigated the remediation of
antibiotic- contaminated water by sorption on magnetic activated car-
bon. For example, Danalıoğlu et al. recently reported that the magnetic
activated carbon/chitosan (MACC) is a promising technique for antibi-
otic removal from aquatic solutions [17]. In another research, the feasi-
bility of activated carbon was investigated in removal of 28 different
antibiotics [18]. In 2014, Kakavandi [19] conducted a study on
Amoxcocilin removal and found that the Fe3O4@C nanoparticles had
the proper ability to remove this organic matter from aquatic solutions.
However, despite the above-mentioned studies, no report on the re-
moval of CTX by PAC-MNPs are not provided. Almost all research
about adsorption process have been carried out in batch systems with-
out considering the number of

required experiments, expense, time-saving and decrease in the
consumption of reagent and material as well. To overcome the each of
the above problems and achieve the best probable response, the optimi-
zation process is the key solution. Box-Behenken design (BBD) is
established to be the most extensively used optimization method for
the adsorption process because of the benefits of optimizing several fac-
tor problems with the best number of test runs according to response
surface methodology (RSM) [20].

Given the issues that were addressed, the objectives of this study
were (i) synthesized of powdered activated carbon magnetized with
Fe3O4 nanoparticles and it's extensively characterized using TEM,
SEM, and XRD; (ii) investigating the effect of key variables such as pH,
contact time, temperature, CTX initial concentration and PAC-MNPs
dosage on the adsorptive removal of CTX from aqueous solution using
experimental design approach based on the Box-Behenken design
(BBD) (iii) Investigating the adsorption equilibrium, kinetic and ther-
modynamic to examine adsorption behavior of CTX onto the PAC-
MNPs and (IV) Investigating the stability and reusability of the adsor-
bent under six consecutive cycles.

2. Methods and material

2.1. Chemicals and instruments

In the present study, all used chemicals and reagents including Hexa
Chloride Ferric (FeCl3.6H2O), Tetrachloride Ferric (FeCl2.4H2O), CTX, Ni-
tric Acid (HNO3), Ammonium, and powdered activated carbon were in
analytical grade and purchased from Merck Company (Germany). De-
ionized water was used throughout the experiments. To specify the re-
sidual CTX in the experiments, the High-performance liquid
chromatography (HPLC) (Cecil 4100 Powerstream Interface, England)
was used. The pH was measured using Metrohm pH meter (Swiss,
model-827). For keeping a constant temperature and mixing solutions,
a shaker incubator (n-BioTEK NB-205) was utilized. A magnet with the
magnetic strength field of 1.3 Tesla used for separation of PAC-MNPs.
2.2. Magnetizing of activated carbon with Fe3O4

A co-precipitation method was employed to synthesize magnetized
activated carbon powder [21]. To promote the porosity and specific area
of activated carbon, 100 cm3 HNO3 with purity of 63.1% was added to
10 g of PAC and then placed on shaker (200 rpm) for 30 min; then,
passed through the Wattman filter with 0.45 μm in size. The PAC was
rinsed with deionized water several times until the pH of drained
water reached 7 ± 0.2, and then dried in oven at 80 °C for 24 h. After
that, in order to Fe3O4 nanoparticle bonding to the PAC, 8 g FeCl3 and
2.5 g FeCl2weremixed to the dried activated carbon. This stagewas per-
formed in an ultrasonic bath under N2 gas. Then, to create co-
precipitation process of Fe3O4 nanoparticles on the surface of PAC, a
50 cm3 of ammonia (25% purity) were gradually added to the mixture
[22,23]. The co-precipitation method with Fe2+ and Fe3+ ions which
react in alkaline conditions to magnetite formation [24–28], following
as:

Fe3þ þ 3OH− ¼ Fe OHð Þ3 sð Þ ð1Þ

Fe OHð Þ3 sð Þ ¼ FeOOH sð Þ þ H2O ð2Þ

Fe2þ þ 2OH− ¼ Fe OHð Þ2 sð Þ ð3Þ

2FeOOH sð Þ þ Fe OHð Þ2 sð Þ ¼ Fe3O4 sð Þ þ 2H2O ð4Þ

Giving an overall reaction:

2Fe3þ þ Fe2þ þ 8OH− ¼ 2Fe OHð Þ3Fe OHð Þ2 sð Þ→Fe3O4 sð Þ þ 2H2O ð5Þ

Initially, the ferric and ferrous hydroxides are precipitated. These re-
actions occur at very fast rate. Secondly, as the lowwater activity of the
resulting NaCl solution in a slower reaction, the ferric hydroxide de-
grades to FeOOH. Finally, a solid state reaction between FeOOH and Fe
(OH)2 takes place, due to the low water activity of the solution, which
produces magnetite. This solid state reaction takes place between 10
and 30 min at room temperature. The overall reaction mechanism is a
dynamic equilibrium equation in which the concentration and size of
Fe3O4 nanoparticles are affected by [Fe3+], [Fe2+] and [OH−], as well
as the water activity of the solution.

2.3. Characterization of prepared PAC-MNPs

In the current study, transmission electron microscope (TEM,
PHILIPS, EM) at 100 kV was used to characterize the shape and size of
synthesized PAC-MNPs. A scanning electron microscopy (SEM)
(CamScan,MV2300)was applied to determine surface andmorphology
of PAC and PAC-MNPs as well as the size of magnetized nanoparticles.
The crystallographic pattern of PACwas determined byX-ray diffraction
(XRD)method on an X-ray diffractometer (PANalytical X'Pert PRO XRD,
Germany)with Cu-kα radiation (λ=1.54 Å at 25 °C, 45 kV, 40mA). The



Table 2
Isotherm equations and their Linear and non-linear relationships.

Model Non-linear form Linear form Equation number

Langmuir qe ¼
q maxKL Ce
1þKL Ce

Ce
qe
¼ Ce

qmax
þ 1

KLqmax
(8)

Freundlich qe = KF Ce
1/n lnqe ¼ lnK f þ 1

n þ lnCe (9)

Temkin qe ¼ RT
bt

lnðat CeÞ qe = A + B ln Ce (10)
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experiments related to pHzpc of the adsorbent were performed at pH
range 2–12. At first, 100 mL of PAC-MPNs solution was transferred to
a series of Elnermayer fasks and then pH was adjusted to desirable
values by adding a few drops of 0.1 M HCl or 0.1 M NaOH solutions.
After that, 0.2 g of PAC-MPNs was added to each flask and the final pH
was measured after 48 h under agitation at room temperature. The dif-
ference between the initial (pHi) and the final pH (pHf) values (ΔpH=
pHi−pHf) was plotted against the initial pH (pHi). The pHzpc is the
point of intersection of the resulting curve at which pH = 0.

2.4. Analysis and measurement methods

To specify and determination of CTX in the experiments, the high
performance liquid chromatography (HPLC, Cecil 4100 Power stream
Interface, England) equipped with the UV–visible detector (4900 CE)
at 240 nm was used. 20 μL of samples were injected in a C18 column
(250 mm × 4.6 mm), using a mixture of acetonitrile and 0.05 M
Na2HPO4 at pH = 7.6 as mobile phase. The mobile phase was pumped
at flow rate of 1.0 mL/min.

2.5. Experiments methodology

In current study, the effect of different variables such as initial con-
centration of CTX, adsorbent dosage, pH, temperature, and contact
time on the removal of CTX were investigated. For this purpose, a
1000 mg/L of CTX stock solution was prepared with deionized water
and then diluted in different concentrations. The pH of solution was ad-
justed by addition of 0.1 N NaOH and HCl solutions. All experiments
were examined in an Erlenmeyer flask. The solutions were placed on
shaker incubation (120 rpm) and when the target contact time was
reached, the adsorbent was separated from solution by an external
magnet; afterwards, a 20 μL of sample solution was injected to HPLC
to specify the residual CTX. The amount of CTX adsorbed (qe, mg/g)
onto the adsorbent was calculated using the following equation:

qe ¼ C0−Ceð Þ � V
M

ð6Þ

where C0 (mg/L) is the initial concentration of CTX, Ce (mg/L) is equilib-
rium concentration of CTX,M (mg) ismass of adsorbent andV (L) is vol-
ume of solution.

2.6. Adsorption isotherms

The study on equilibrium adsorption isotherms of CTX was con-
ducted at optimum conditions. The Langmuir, Freundlich and Temkin
models were used to investigate the adsorption isotherms of CTX at
10, 25, 50, 75 and 100 mg/L concentrations. Each isotherm model was
expressed by relative certain constants which characterized the surface
Table 3
Kinetic models and their linear and non-linear forms.

Model Non-linear form

Pseudo-first order q = qe (1 − exp−K1t)
Pseudo-second order q ¼ K2qet

1þK2qet

Intra-particle diffusion qt = Kidt
1/2 + K0
properties and indicated adsorption capacity of this material. Langmuir
isotherm model is defined as a one-layer and homogenous adsorption
of adsorbate with equal energy on entire the adsorbent surface [29].
The Freundlich isotherm is an empirical equation that assumes that
the adsorption process occurs on heterogeneous surfaces with non-
uniform distribution of adsorption heat. The Temkin isotherm model
proposed the impact of some indirect adsorbent–adsorbate interactions
on adsorption isotherms [19]. The linear and non-linear equations of
mentioned isotherm models are shown in Table 2 [30].

In Table 2, Ce (mg/L) is the equilibrium concentration, qe (mg/g) is
the rate of the adsorbed CTX per mass unit of the absorbent, KL (L/mg)
represents Langmuir constant, qmax (mg/g) is themaximum adsorption
capacity of adsorbent. The parameters qe and kl were calculated from
the slope and intercept of the plot of Ce

qe
against Ce. n and Kf (1 mg/g(L/

mg)n) are Freundlich constant and the intensity of adsorption, respec-
tively. R (8.314 J/mol K) is the universal gas constant and T (°K) is the
absolute temperature, and A ((RT/bt) lnat) and B (RT/bt) are considered
as constants of the Temkin isotherm. One of the important parameters
that is discussed in Langmuir isotherm is RL. The RL parameter is the di-
mensionless constant factor which indicates the affinity of adsorbed
material to the adsorbent and calculated using Eq. (7):

RL ¼ 1
1þ KLCe

ð7Þ

Based on RL factor the nature of the isotherm to be classified as fol-
lows: RL N 1: unfavorable isotherm;

RL = 1: linear isotherm; 0 b RL b 1: favorable isotherm and RL b 1:
irreversible isotherm.
2.7. Adsorption kinetics

Adsorption kinetic provides imperative information about the ad-
sorption mechanism and velocity of adsorption process. For the kinetic
study of CTX adsorption on PAC-MNPs, the influencingparameterswere
considered in optimum condition at 0 to 90 min. In the present work,
three kinetic equations i.e. Pseudo-first-order, Pseudo-second-order
and Intra-particle diffusion were applied to analyze the kinetic adsorp-
tion of CTX on PAC-MNPs; the linear and non-linear forms of these
equations are presented in Table 3 [31,32].

In Table 3, qt (mg/g) is the adsorbed CTX per mass unit of the absor-
bent at the time of t, K1 (1/min) is Pseudo-first-order rate constant, qe
(mg/g) is the adsorbed CTX per mass unit of the absorbent at the equi-
librium time. K2 (1/min) is Pseudo-second-order rate constant, t (min)
is the contact time. K0 is the intercept and Kid (mg/g/min−1/2) is the
intraparticle diffusion rate constant.
Linear form Equation number

ln(qe − qt) = ln (qe) − k1t (11)
t
qt
¼ 1

k2q2e
þ t

qe
(12)

qt = Kidt
1/2 + K0 (13)
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Fig. 2. The effect of pH on the removal percentage of CTX (Adsorbent dose = 1.05 g/L,
Temperature = 305.5 K, Concentration CTX = 55.0 mg/L).

Table 4
Independent variables and their ranges.

Parameters Abbreviation -1 0 +1

pH X1 3 7 11
Contact time (min) X2 5 47.5 90
Concentration (mg/L) X3 10 55 100
Adsorbent dosage(g/L) X4 0.1 1.05 2
Temperature ( ̊K) X5 298 305.5 313
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2.8. CTX thermodynamic studies

In order to investigation the effect of temperature on the adsorption
efficiency of CTX onto the prepared sorbent, the thermodynamic study
was applied in three different temperature values (298.15, 305.65 and
313.15 K). It is important to note that the other affecting parameters
were considered in optimum conditions.

The adsorption standard free energy changes (ΔG°) can be calcu-
lated according to

ΔG ¼ −RT lnKCð Þ ð14Þ

where ΔG° (kJ/mol) indicates the Gibbs standard free energy change, T
(°K) is the temperature, R (8.314 J mol K) is the universal gas constant,
Kc (L/g) is a constant that is calculated from Eq. (15).

Kc ¼ qe

Ce
ð15Þ

qe (mg/g) and Ce (mg/L) are the equilibrium concentration of CTX on
(a)

(c)

Fig. 1. SEM images of PAC (a) and PAC-MNPs
the PAC-MNPs and in the solution respectively. The average standard
enthalpy change (ΔH°) is obtained from Van't Hoof equation,

lnkc ¼ ΔS0

R
−

ΔH0

RT
ð16Þ
(b)

(d)

(b), TEM (c) and XRD (d) of PAC-MNPs.
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Fig. 5. The effect of temperature on the removal percentage of CTX (Concentration CTX=
55.0 mg/L, Time = 47.5 min, pH= 7.0).
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Fig. 3. The effect of concentration on the removal percentage of CTX (Adsorbent dose =
1.05 g/L, Temperature = 305.5 K, pH= 7.0).
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The standard entropy change (ΔS°) can be obtained by

ΔG ¼ ΔH0−T ΔS0 ð17Þ
Table 5
Results of ANOVA analysis in the Square Surface Response Model to determine the effi-
ciency of CTX adsorption.

Source Sum of
squares

df Mean
square

F Value p-Value
prob. N F

Model 1593.55 20 79.68 1976.03 b0.0001 significant
2.9. Adsorption optimization

Using the Response Surface Methodology (RSM) and basis on Box-
Behnken design (Design Expert 10.0), the effect of five parameters in-
cluding pH, contact time, initial concentration of CTX and dosage of
PAC-MNPs on removal efficiency were investigated and listed in
Table 4. The Eq. (18) was employed to determine the CTX removal
[16,33].

E ¼ C0−Ce

C0
� 100 ð18Þ

where C0 (mg/L) is the initial concentration of CTX, Ce (mg/L) is equilib-
rium concentration of CTX, E indicates the removal efficiency of CTX (%).
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Fig. 4. The effect of PAC concentration on the removal percentage of CTX (Concentration
CTX = 55.0 mg/L, Temperature = 305.5 K, pH= 7.0).
The behavior of the adsorption process can be explained based on
the following empirical second order polynomial model Eq. (19):

Y ¼ b0 þ
Xn

i¼1

biXi þ
Xn

i¼1

biiX
2
i þ

Xn−1

i¼1

Xn

j¼iþ1

bijXiXj ð19Þ

where, Y is the predicted response (CTX removal efficiency), b0 is a con-
stant while, bi, bii and bij stand for the linear coefficient, quadratic coef-
ficient and interaction effect coefficient, respectively. Xi and Xj are also
the coded values of the variables. In addition, analysis of variance
(ANOVA)wasused to analyze the results and also to check the statistical
significance of the fitted quadratic models. The optimal values of the
critical parameters for adsorption process were calculated by using
the fitted models and then validated based on the results of the
experiments.
X1-pH 576.00 1 576.00 14,285.02 b0.0001
X2-Time 260.02 1 260.02 6448.49 b0.0001
X3-Concentration 216.09 1 216.09 5359.11 b0.0001
X4-Adsorbent dose 191.13 1 191.13 4740.11 b0.0001
X5-Temperature 256.00 1 256.00 6348.90 b0.0001
X1 X2 0.000 1 0.000 0.000 1.0000
X1 X3 0.063 1 0.063 1.55 0.2262
X1 X4 0.063 1 0.063 1.55 0.2262
X1 X5 0.000 1 0.000 0.000 1.0000
X2 X3 0.000 1 0.000 0.000 1.0000
X2 X4 0.063 1 0.063 1.55 0.2262
X2 X5 0.000 1 0.000 0.000 1.0000
X3 X4 0.12 1 0.12 3.04 0.0953
X3 X5 0.000 1 0.000 0.000 1.0000
X4 X5 0.000 1 0.000 0.000 1.0000
X1
2 5.14 1 5.14 127.38 b0.0001

X2
2 8.40 1 8.40 208.39 b0.0001

X3
2 48.55 1 48.55 1203.98 b0.0001

X4
2 2.53 1 2.53 62.83 b0.0001

X5
2 0.069 1 0.069 1.72 0.2029

Residual 0.89 22 0.40
Lack of Fit 0.65 20 0.032 0.27 0.9573 not significant
Pure Error 0.24 2 0.12
Cor Total 159.444 42

R2 = 0.9573, adjusted-R2 = 0.9989, R2-Predicted = 0.9980, Adeq precision = 159.610.
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2.10. Reusability of PAC-MPNs

The regeneration of adsorbent is key criteria for the recovery of pol-
lutants from wastewater. Therefore, a number of tests were performed
under the optimum conditions obtained earlier. For this reason, the
studied adsorbent (2 g/L) underwent six consecutive adsorption-
desorption cycles at a given concentration of the analyte (10 mg/L)
were considered. It is worth noting that at the end of each adsorption
cycle, desorption experimentswere carried out usingmethanol solution
as a desorbing agent. The adsorbent was thereafter repeatedly washed
with DI-water and finally dried in an oven and reused for the subse-
quent adsorption-desorption cycle.

3. Results and discussion

3.1. Characterization of PAC-MNPs

The surfacemorphology of activated carbon before and aftermodifi-
cation was determined by scanning electron microscopy (SEM). The
surface morphology of PAC and PAC-MNPs are shown in Fig. 1(a and
b). SEM analysis shows that the external adsorbent surface is rough
and has some cavities. It also indicates that cavities have been relatively
distributed uniformly on the adsorbent surface with various sizes and
shapes. The TEM analysis of the adsorbent (Fig. 1(c)) reveals that
Fe3O4 particles with a polygonal structure and diameter b75–100 nm
distributed on PAC. These results also confirmed the successful synthe-
sis of Fe3O4 nano-crystals on the PAC surface. The XRD patterns of the
synthesized adsorbent in the 2θ range of 10–70° show a narrow diffrac-
tion peak at 2θ=35.5°. The peak points createdwith diffraction angle at
35° in XRD diffractograms confirm that the Fe3O4 nanoparticles were at-
tached to the prepared powdered activated carbon successfully.

3.2. The effect of pH on CTX adsorption

The effect of pH and contact time variation on the adsorption effi-
ciency of CTX on the PAC-MNPs are presented in Fig. 2. As can be seen,
Table 6
Validation of optimized conditions for CTX adsorption on the PAC-MNPs.

pH Time (min) Concentration (mg/L) Adsorbent dose (g/L)

3.14 90.00 10.00 1.99
by increasing the contact time from 0 to 90 min and decreasing pH
from 11 to 3, the removal efficiency of CTXwas increased. The pH of so-
lution is one critical factor in contaminant removal and adsorption pro-
cess. The results obtained from the present research show that the
highest removal efficiency value occurs at pH 3, and the removal effi-
ciency was decreased as the pH value was increased [34,35]. The num-
ber of protons rise up as pH value is decreased to acidic range, these
protons were adsorbed onto the adsorbent, and as a result, induce pos-
itive electrical charge on the adsorbent. A decline in removal efficiency
in alkanity conditions is assumed to be results from reduction in electro-
static affinity between PAC-MNPs with negative-ion surface and anions
in active sites onto adsorbent [35,36]. On the other hand, CTX has nega-
tive electrical charge; the positive electrical charge on the adsorbent and
negative charge of the CTX create an electrostatic gravity force and fi-
nally, it leads to greater CTX adsorption on the PAC-MNPs [37,38]. In a
study that conducted by Liu et al. the optimum pH for Norofleuxacine
removal was reported at acidic pH which it is in line with the present
work [39]. Besides, in another study, Kakavandi et al. concluded that
the optimum pH for Amoxicillin removal using magnetized powdered
activated carbon with Fe3O4 is in acidic range [40]. The point of zero
charge (pzc) for PAC-MNPs is 6.4 thus, the surface of PAC-MNPs will
be positively charged at pH b 6.4, and negatively charged at pH N 6.4,
and neutral for pH = 6.4. Also, CTX has electron rich aromatic rings
tending to be adsorbed on the positively charged surface of adsorbent.
Considering the pKa values of Ceftriaxone (pKa1 = 1.72, pKa2 = 3.15
and pKa3 = 4.34) [41], it is assumed that ionic species of Ceftriaxone
varies fromneutral charge at acidic pH values to negative charge at neu-
tral and alkaline pH, which confirms the acceleration in the adsorption
efficiency of Ceftriaxone.

3.3. The effect of initial concentration on CTX adsorption

The effect of various initial concentration of CTX (ranged between 10
and 100 mg/L) on adsorption efficiency was surveyed and the obtained
results are shown in Fig. 3. As the Fig. 3 shows, the results of present
study indicate that increases in initial concentrations of CTX solutions
from 10 to 100 mg/L give rise to reduction of removal efficiency. The
highest removal efficiency was obtained at initial concentration equal
to 10 mg/L. As active adsorption sites on the surface of a adsorbent is
constant, when the concentration of adsorbate increases in solution,
the available active adsorbent site would be reduced and as a result,
the adsorption of adsorbate would be decreased [42,43].

3.4. The effect of PAC-MNPs dosage on CTX adsorption

The effect of different adsorbent dosage (0.1–2 g/L) on CTX removal
efficiency were investigated. As shown on Fig. 4, the removal efficiency
of CTX enhances by increasing adsorbent dosage and the highest effi-
ciency was found to be in dosage levels of 2 g/L. Considering the ob-
tained results, it can be concluded that the highest CTX removal
occurred in adsorbent dosage equal to 2 g/L. Adsorbent dosage is an ef-
fective parameter in removal efficiency, because the greater amount of
adsorbent prepares more free sites onto adsorbent in order to adsorb
the adsorbate. Hence, the free sites for CTX adsorption increase by in-
creasing the adsorbent dosage from 0.5 to 2 g/L and consequently it
causes the enhancement of the removal efficiency [44,45]. The resultant
removal efficiency are in line with Mousavi and et al. who reported the
removal efficiency range of 35 to 72% when applied the commercially
activated carbon from Merck company in dosage range 0.4 to 1.6, re-
spectively [46].
Temperature (k) Removal efficiency of ceftriaxone (%) Desirability

298.00 97.18 0.972
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Table 8
The values of thermodynamic parameters for the adsorption of CTX on the PAC.

Temperature(°K) lnkc ΔGo (kJ/mol) ΔHo (kJ/mol) ΔSo (kJ/mol.K)

293 2.12 5.181
308 2.08 5.330 −40.96 0.0081
323 2.07 5.57

Table 7
Isotherm and kinetic coefficients obtained from isotherm models.

Isotherm models Kinetic models

Model Parameter Value Model Parameter Value

Langmuir qmax

(mg/g)
28.93 Pseudo-first order qe (mg/g) 6.46

Kl (L/mg) 0.259 Kl (min−1) 0.004
R2 0.9961 R2 0.9226

Freundlich n 2.43 Pseudo-second
order

qe (mg/g) 25.12
Kf 6.59 K2(g mg−1

min−1)
0.028

R2 0.964 R2 0.9998
Temkin qm 5.39 Intra-particle

diffusion
Kp 0.32

Kt 3.67 Ki (mg g−1

min−0.5)
−21.62

R2 0.9673 R2 0.
0.9685
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3.5. The effect of temperature on CTX adsorption

The effect of temperature on the CTX removal efficiency were inves-
tigated in three temperature values of 298.15, 305.65 and 313.15 K. As
Fig. 5 illustrates, the maximum adsorption of CTX was obtained at
298.15 K, and the removal efficiency of CTX decreases through increas-
ing of temperature.

3.6. The effect of contact time on CTX adsorption

The contact time were surveyed to determine the optimum time
with high CTX removal efficiency (Fig. 4). In the present research, the
adsorptionwas increased as time proceeded and themaximum adsorp-
tion was found to be at 90 min. The increases in adsorption by passing
time means the fact that more empty sites are available for adsorption,
however, from time 90min onwards, remaining empty sites were filled
gradually by CTX and adsorption is difficult to occur due to less driving
force between adsorbent and adsorbate [47]. Mousavi et al. reported
that by increasing the time, the removal efficiency of Diazenon using
chloride ammonium containing activated carbon increases, which is
similar to the results of present work [48]. In a study conducted by
Sari et al. on antimony removal by chitosan activated carbon, a contact
time in range 5–90minwere considered, and reported that as time pro-
ceeds to 90 min, the removal efficiency increases and after that the effi-
ciency was approximately constant [49].

3.7. Data analyzes

Nowadays, RSM is applied to analyze themulti-variable experiments
and optimize the responses. As shown in Eq. (20), the empirical rela-
tionship between experimental variables and removal efficiency was
determined using the RSM method;

Ceftriaxone removal ¼ þ72:80−ð6:00� X1
þ 4:03� X2ð Þ− 3:67� X3ð Þ
þ 3:46� X4ð Þ− 4:00� X5ð Þ
þ 0:000� X1

� X2ð Þ− 0:13� X1
� X3ð Þ− 0:13� X1

� Xð
þ 0:000� X1

� X5ð Þ
þ 0:000� X2

� X3ð Þ– 0:12� X2
� X4ð Þ

þ 0:000� X2
� X5ð Þ þ 0:18� X3

� X4ð Þ
þ 0:000� X3

� X5ð Þ
þ 0:000� X4

� X5ð Þ– 0:90� X1
2

� �

þ 1:15� X2
2

� �
þ 2:75� X3

2
� �

þ 0:63� X4
2

� �
þ 0:10� X5

2
� �

ð20Þ

As can be seen in equation expressed above, some factors or vari-
ables are positive sign, some negative effects. Negatively signed vari-
ables (X1, X3, and X5) mean decreases in the removal efficiency by
increasing in value. Positively signed variables (X2 and X4) have direct
relation to removal efficiency achieved. Statistical parameters summa-
rized in Table 5 reflect that the regression model with p-value =
0.0001 and F-Value=1976.03 is statistically significant and is appropri-
ate to spatialmodeling. It should be noted that all parameters examined
in the present work (p-value b 0.05) were significant in confidence in-
terval 95%. This suggests that themodel is significant and can appropri-
ately explain the relationship between response and independent
variables [50]. As presented in Table 5. The values of determination co-
efficient (R2), adjusted-R2 and Predicted-R2 were 95.73%, 99.89%, and
99.80%. Fig. 6 shows the predicted values versus the experimental
values for removal efficiency. It means that there is a good agreement
between Predicted-R2 and Adjusted -R2 [51]. The “Adequate Precision”
ratio of the model was found to be 159.444. Ratios N4 indicate that
there is an adequate signal for the model [14].
3.8. Optimization using the desirability function

Design Expert 10.0 was applied to determine the optimum condi-
tions for optimal removal efficiency. For this aim, themaximum CTX re-
moval efficiency was defined as response and influencing parameters
were considered in their range. Table 6 shows the numerically optimal
value of each affecting parameter in CTX removal efficiency. According
to results obtained from BBD, the maximum removal efficiency under
optimum conditions i.e. contact time = 90.00 min, pH = 3.14, CTX ini-
tial concentration = 10.00 mg/L, adsorbent dosage = 1.99 g/L and
temperature = 298.00 K was occurred to be 97.18%. The CTX removal
efficiency in real conditions was evaluated to be 94.35. As presented in
Table 6, the removal efficiency for response variable in BBD model and
laboratory conditions are in strong agreement, which emphasize valid-
ity and precision of model. The findings indicated that RSM is useful and
suitable tool for optimization CTX removal using PAC-MNPs.

3.9. Isotherms of CTX adsorption

The values of parameters associated with equilibrium isotherms of
CTX removal onto synthesized PAC-MNPs are shown on Table 7. As
can be concluded from the obtained results and what are observed in
Table 7, the correlation coefficient of Langmuir is greater than those in
Freundlich and Temkin model. As such, correlation coefficients in Lang-
muir, Freundlich and Temkin models are in respect R2 = 0.9961, R2 =
0.964 and R2 = 0.9673. therefore, it can be reported that adsorption
process is fitted to Langmuir isotherm. According to Table 6, the high
value of R2 obtained from the Langmuir model shows that the CTX ad-
sorption on the PAC-MNPs probably follows themonolayermechanism
and the surface of the produced adsorbent is homogeneous [30]. The
separation factor (RL) value was between 0 and 1, indicating a favorable
adsorption of CTXmolecules onto PAC-MNPs. Liu et al. reported the op-
timum isotherm for Ceflaxine removal with activated carbon, by con-
trast, Liu et al. reported Langmuir isotherm as optimum isotherm for
Noroflaxine using activated carbon [39,52].

3.10. Kinetics of CTX adsorption

The equations derived by Pseudo-first-order, Pseudo-second-order
and Intra-particle diffusion kinetic models for adsorption of CTX onto
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Fig. 7. CTX adsorption on the PAC-MNPs adsorbent under six adsorption–desorption cycles.
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PAC-MNPs are presented in Table 7. The regression coefficient (R2) and
compatibility between qe (experiment) with qe (calculate) used to
choose the best kinetic models. The results showed the pseudo-
second-order model with R2 N 0.9998 can be better described adsorp-
tion of CTX, that exhibits the rate-limiting is chemisorption and sharing
of electrons from sorbent and adsorbate involving covalent forces [53].
In addition qe,cal at the pseudo-second–order compared to othermodels
were more closer with qe,exp. The similar studies confirm these results
and are line with this research [39,52].

3.11. Thermodynamics of CTX adsorption

The calculated constants of thermodynamic model for the CTX ad-
sorption on the PAC-MNPs is presented in Table 8. As the obtained re-
sults in Table 8 shows, the both values of ΔG° and ΔH° are negative.
By contrast, the value of ΔS° obtained positive. A negative value ΔG°
in our studies exhibits that the process of CTX removal with PAC-
MNPs is spontaneous. The value ofΔH° is negative that confirms the ad-
sorption process is exothermic in nature. Decreasing of ΔG° with in-
creasing temperature indicates that the adsorption process at higher
temperature is undesirable. The ΔS° value is positive, and increasing
the randomness at the solid/solution interface during the CTX adsorp-
tion could be expected; besides, the positive ΔS° value corresponds to
a rise in the freedom degree of the adsorbed species.

Xu et al. studied the Performance of rattle-type magnetic mesopo-
rous silica spheres in the adsorption of single and binary antibiotics
and concluded that rising the solution temperature decreases the ad-
sorption capacity of antibiotics Tetracyclin and Solfametazin [54].

3.12. Reusability of PAC-MPNs

Adsorption-desorption of CTX by PAC-MPNs were performed in
batch condition and shown in Fig. 7. Mentioned figure shows that reus-
ability of PAC-MPNs slightly reduced after the six successive sorption–
desorption cycles. Therefore, it can be suggested that PAC-MPNs can
be repeatedly used for CTX sorptionwithoutmany losses in initial sorp-
tion efficiency. Furthermore, N61.81% adsorbed CTX could be desorbed/
recovered in the presence of methanol in the sixth cycle which can be
used in different cases like industrial applications.

4. Conclusion

Themagnetic nanoparticles of PAC-Fe3O4with combining iron oxide
nanoparticles and powder activated carbon were successfully synthe-
sized and used in the removal of CTX from aqueous environments.
The Box–Behnken design (BBD) was found to be a valuable tool to
find optimal conditions for the procedure through a response surface
study. The magnetic activated carbon with a high removal efficiency
and perfectmagnetic separation performancewas examined by consid-
ering influencing parameters including the initial concentration, contact
time, temperature, adsorbent dosage and pH. The present study
demonstrated that the CTX removal using MNPs-PAC increases as
both the adsorbent dosage and contact time increase, and it decreases
when the pH, initial concentration of CTX and the temperature are in-
creased. The optimum conditions for the present research were deter-
mined, including pH = 3.14, contact time = 90 min, temperature =
298 K, and adsorbent dosage=1.99 g/L. Equilibrium and kinetic studies
indicated that the adsorption was fitted with Langmuir and pseudo-
second-order, respectively, Thermodynamic studies also showed that
the CTX adsorption on PAC-MPNs has been spontaneous and exother-
mic. The results of this study indicated that PAC-MPNs could be satisfac-
torily used for removing CTX from aqueous environments due to high
adsorption and easy and quick separation.
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