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ABSTRACT
In the current study, radiation dose-reduction factor (DRF) of nanoceria or cerium oxide nanoparticles
(CONPs) in MRC-5 Human Lung Fibroblastic Cells and MCF-7 Breast-Cancer Cells was estimated.
Characterization of CONPs was determined using scanner electron microscope (SEM), energy dispersive
spectroscopy (EDS), transmission electron microscopy (TEM) and spectrophotometer. Then, six plans
were designed with different radiation dose values on planning target value. The obtained MRC-5 and
MCF-7 cells were treated with non-toxic concentrations of CONPs and then exposed. Finally, cell viabil-
ity (%) of the cell lines was determined using MTT assay. The findings showed that CONPs have no sig-
nificant radioprotective effect against 10 cGy radiation dose value. Nevertheless, 70lM CONPs resulted
in a significant radioprotection against 100, 200, 300, 400 and 500 cGy radiation dose values compared
with the control group in MRC-5 cells. For all radiation dose values, mean cell viability (%) of MCF-7
had not increased significantly at the presence of nanoceria compared with control group. According
to the findings, it was revealed that the use of CONPs have a significant radioprotective effect on nor-
mal lung cells, while they do not provide any protection for MCF-7 cancer cells. These properties can
help to increase therapeutic ratio of radiotherapy.
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Introduction

Cancer is considered as the main cause of death in devel-
oped countries and the second chief cause of death in devel-
oping countries [1]. Along with chemotherapy and surgery,
radiation therapy is used, an important modality, in cancer
treatment. It has been reported that approximately 50% of
all patients with localized malignancy are treated with radi-
ation therapy [2,3]. The main goal of this treatment modality
is to deliver the highest radiation dose to the tumour tissue
and the lowest radiation dose to the normal tissue [4].
Tolerability of normal tissues to a radiation dose is limited
and a high dose of radiation may cause early and late com-
plications [5]. Generally, there are two main methods to
reduce radiation damage caused by radiation therapy, includ-
ing non-pharmacological and pharmaceutical strategies. The
non-pharmacological method is a change in the technique of
radiation energy transfer in the tumour. With regard to the
emergence of cross-sectional images (CT, MRI, and PET) and
modern radiotherapy (IMRT, VMAT, SBRT and IGRT), the

correctness and precision of treatments have increased [6–9].
However, the incidence of secondary cancer following radio-
therapy is still remarkable and its incidence increases with
the advancement of treatment technology [10]. In pharma-
ceutical strategies, radioprotectors and radiosensitizers are
used as a moderator of free radical damage in the targeted
radiotherapy [11]. Pharmaceutical strategies may reduce tox-
icity in normal tissues, leading to reducing normal tissue
complications and secondary cancer probability.

Free radicals are responsible for main effect of them in irra-
diated cells. Free radicals are formed by interaction of ionizing
radiation with water molecules which results in radiolysis of
water. They react with vital macromolecules which cause func-
tional impairment in cell function [12]. So far, the efficacy of
various radioprotectors including both natural and chemical
agents, and also nanostructures have been investigated to
ameliorate radiation toxicity in different cell types [13,14].

Cerium oxide nanoparticles (CONPs) or nanoceria, in add-
ition to having the general characteristics of the radioprotec-
tive nanoparticles such as reactive oxygen species (ROS)
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scavenging, biocompatibility, lower toxicity and favourable
biologic distribution, have the important feature of self-
regeneration which makes it possible to use less concentra-
tions of CONPs to have the desired results [15,16]. CONPs
consist of Ce (3þ) and Ce (4þ) and they are converting to
each other constantly. Ce3O2 scavenge the free radicals and
eventually CeO2 is produced. With regard to the self-regener-
ation property, CeO2 will be decomposed during the chem-
ical process and again Ce3O2 is produced to scavenge more
ROS. The ability of scavenging the free radicals by nanoceria
or the biological activity of the nanoceria is determined by
the ratio of the amount of Ce (3þ) to Ce (4þ). Therefore, Ce
(3þ) is thought of as an active site for scavenging the free
radicals [17]. On the other hand, it was reported that second-
ary lung cancer after second sarcoma have high relative
risk in radiation therapy of breast-cancer [18]. Furthermore,
human fibroblast lung cells (MRC-5 cells) are the most
sensitive to ionizing radiation and under the same conditions
of irradiation, these cells compared to other tissues (such
as liver, thyroid gland, and skin) will be the most damaged
[19]. Therefore, in the current study, radiation dose-reduction
factor (DRF) of CONPs for normal lung cells (MRC-5) and
MCF-7 Breast-Cancer Cells was estimated. Furthermore,
DRF of CONPs for a wide radiation dose range, which are
frequently used in radiation therapy of breast cancer,
was determined.

Moreover, small fluctuations in delivered radiation dose
can lead to tangible biological changes, subsequently it can
lead to changes in the probability of deterministic and sto-
chastic damage [20,21]. The precision and correctness of
delivered radiation dose of cells in the in-vitro studies is an
important challenge. As far as we know, the process of irradi-
ation to the cells is not clear in the past-studies. In the cur-
rent study, irradiation schedule with designed phantom is
unique and this designed phantom can increase the deter-
mination accuracy of DRF for CONPs on cells.

Material and methods

CONPs characterization

CONPs (CeO2, nanoceria) were acquired US Research
Nanoparticles. The grain size and morphology of nanoceria
were scrutinized by using scanning electron microscopy
(SEM, Phenom, Phenom Prox) with a magnification of 20000x
(accelerating voltage of 15 kV) and transmission electron
microscopy (TEM, ZEISS, LEO 906) with a magnification of
167000x (accelerating voltage of 100 KeV). Energy dispersive
spectroscopy (EDS, Phenom, Phenom Prox) in region mode
with a resolution of Mn K_a� 140 eV was used to determine
CONPs chemical composition. The UV/VIS absorption of
CONPs was recorded by spectrophotometer (4802 UV/VIS
double beam spectrometer).

Preparation of CONPs suspension

Nanoceria suspension was prepared with distilled water.
To optimize suspension dispersivity syringe filter (PVDF,
0.22-micron, WhatmanVR ) was used and ultrasound

sonicator (D-78224 Singen/Htw). According to the UV/VIS
spectrum of nanoceria, the wavelength of maximum
absorption was determined and used for concentration
detection of suspensions. To increase the suspension (with
1000 lg/ml concentration) UV/VIS absorption, time of son-
ication increased after filtration and the absorption was
recorded after 24 h.

Splitting of cell lines

The MRC-5 (human fibroblast line, normal cells, derived from
lung) and MCF-7 (human epithelial line, cancerous cells,
derived from breast) cell lines were prepared from the
Iranian biological research centre, and were seeded in
DMEM/F12 and DMEM High Glucose medium containing 10%
fatal bovine serum plus penicillin antibiotics (100 IU/ml) and
streptomycin (100lg/ml), respectively and incubated in 37 �C
with humidified atmosphere of 5% CO2.

MTT [3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl-
tetrazolium bromide] assay

To assess the effect of CONPs on MRC-5 and MCF-7 cell via-
bility, sub confluent cells (20,000 cell/well) were treated for
24 h with different concentrations of CONPs (0, 5, 10, 30, 50,
70, 110, 150, 200, 250 and 300 lM). After treatment with
CONPs, the medium of cells was elicited and added 20 ml of
MTT solution (5mg/ml dissolved in PBS) to each well and
micro-plates were then incubated for 3 h at 37 �C in a
humidified 5% CO2-air mixture. After configuration of forma-
zan crystals, the MTT solution was discarded from the wells
without perturbing the formazan precipitate. 100ml/well
dimethyl sulphoxide (CinagenVR , Iran) was added and then
vigorously shaken thoroughly for 10min to intermingle the
formazan crystals. The absorbance of each well was meas-
ured with a micro ELISA reader (Biotech Instrument Model:
Box998) at 570 nm (triplicate).

Phantom design and irradiation set-up

In order to ensure the uniformity of irradiation to the cell
lines, the plexiglass phantom (transparent polycarbonate)
was designed and built (40� 40� 1 cm3, 17 pcs). As shown
in Figure 1, 10 slabs with 1 cm thickness were placed under
the 96-well plate and 5 slabs with 1 cm thickness were placed
on top of it. The centres of 11 and 12 slabs were pierced at
the size of 96-well plates (8.5� 12.7� 2 cm3).

According to the irradiation schedule, the image of phan-
tom was provided by the CT simulator (Siemens, AG,
Germany) using the thorax protocol in 89 slices and it was
transferred to the Prowess Panther version 5.20 (Prowess Inc.,
Concord, CA, USA) treatment planning system. It should be
noted that all wells of 96-well plates were filled with 200 ll
of distilled water.

Six plans were designed with different monitor unites
(Mus) on the desired phantom. The information of these
plans is presented in Table 1. Planning target volume (PTV),
seeded cells at the bottom of the 96-well plate, was
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contoured on all CT slices. The dose values of 10, 100, 200,
300, 400500 cGy were delivered to the cell lines using of AP/
PA plans. The plans were designed such that the entire PTV
received 100% of the prescribed dose (Figure 2).

As seen from Table 1, the couch occupancy factor was
considered to be 0.04 in the dose calculation for PA beam.
To investigate the effect of CONPs’ radioprotection, the cells
were cultured in 36 wells of centre with non-toxic

concentrations of CONPs. The rest of the wells were filled up
to 200 ll of distilled water and then exposed (Figure 1).

Expression of data

Cell viability
The percentage of cytotoxicity was calculated by the follow-
ing equation:

Percentage of cytotoxicity ¼ 1� A
B

� �
� 100

Where A is the optical density of target cells co-incubated
with CONPs and B is the optical density of control groups.
The concentrations of CONPs which resulted in deaths of
more than 10% of the cells, were known as toxic concentra-
tions of nanoceria.

In the next step, the percentage of cell survival was deter-
mined according to the following equation:

Percentage of cell viability ¼ C
D

� �
� 100

Where C is optical density of target cells co-cultured with
nanoceria which were treated with ionization radiation and D
is the optical density of control groups which were exposed
to ionization radiation without using the nanoceria.

Table 1. Treatment planning information of slab phantom.

Beam Data AP Beam PA Beam

Common conditions in all Plans Machine ONCOR ONCOR
Energy 6MV FP 6MV FP

Blocks/MLC No/No No/No
Wedge Name Open Field Open Field

Couch (Lat, Vert, Long) (cm) 0.0, �7.90, 29.50 0.0, �8.10, 29.50
Isocenter (L-R, I-S, A-P) (cm) �0.30, 0.00, 0.82 �0.30, 0.00, 1.02

SSD (cm) 91.1 91.8
Collimator (o) 0.0 0.0
Field Size (cm) 30.0� 30.0 30.0� 30.0
Coll Size (cm) X1:15.0 X2:15.0 X1:15.0 X2:15.0

Geo. Depth of WP (cm) Y1:15.0 Y2:15.0 Y1:15.0 Y2:15.0
Plan No. Prescribed Dose (cGy) MU/fx MU/fx
1 10 5.11 5.22
2 100 51.04 52.14
3 200 102.8 104.28
4 300 153.11 156.41
5 400 204.15 208.56
6 500 255.18 260.69

All conditions were fixed in the plans, except MU/fx.

Figure 1. Irradiation set-up of slab phantom. Microplate was placed at a depth of
5 cm from the phantom surface. Cells were cultured in 26 wells of core. In order to
prevent the isodose irregularity, the rest of the wells were filled with distilled water.

Figure 2. Treatment planning by treatment planning system on CT images of phantom. (a) Axial view. (b) Coronal view.
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Dose-reduction factor
The radiation DRF for each cell line treated with CONPs was
determined from the general equation at two cell viability
percentages (63% and 50%):

DRF63 ¼ LD63 drug group
LD63 control group

DRF50 ¼ LD50 drug group
LD50 control group

Where LD63 (lethal dose, 37%) and LD50 (lethal dose, 50%)
are the radiation dose values that cause the death of 37%
and 50% of cells, respectively [22].

Statistical analysis

The data are presented as mean± standard error of mean.
Statistical significances were evaluated using One-way
ANOVA, followed by Tukey’s multiple comparison post hoc
test. The 95% confidence level was considered as the statis-
tical significance level of the results.

Results and discussion

Morphology study

The morphological structure of CeO2 nanoparticles scruti-
nized by SEM and TEM, as reported in Figure 3. The SEM
image of CONPs) Figure 3(a,b) (exhibits that the prepared
powders were polygon clusters (with �1.5–10 lm sizes) con-
taining nanoparticles (with 29.3 nm sizes). The TEM photo-
graphs (Figure 3(c,d)) also approved the presence of the
polygon grains (with �25–50 nm sizes) in cluster structure.
According to the Figure 4, the EDS analysis in region mode

indicates that a large weight percentage of nanoceria is the
cerium element (99.5wt%).

Optimization of CONPs dispersivity

As seen from the UV/VIS spectrum of CONPs (Figure 5), the
maximum UV/VIS absorption of nanoceria was obtained at
318 nm. This wavelength is closely matched with other stud-
ies [23,24]. Furthermore, UV/VIS absorption of CONPs suspen-
sion (with 1000 lg/ml concentration) is 1.5639 at 318 nm
wavelength immediately after preparation. This value with
1 h sonication of nanoceria suspension decreased to 1.0439
after 24 h from stoke fixation; but, 2 h sonication cause that it
increased to 1.4694. Eventually, sonication of nanoceria sus-
pension for 2 h led to stable distribution after 24 h from stoke
fixation and only 6.04% of the initial concentration of

Figure 3. SEM (a and b) and TEM (c and d) images of the CeO2 nanoparticles at different magnifications.

Figure 4. Energy-dispersive X-ray spectrum of CeO2 nanoparticles.

S1218 N. ABDI GOUSHBOLAGH ET AL.



suspension reduced due to the agglomeration of the nanoce-
ria. With regard to the dispersivity results (Figure 5), all of the
suspensions were prepared with 2 h sonication.

Effect of CONPs pretreatment on cell viability

Before evaluating the radioprotective effect of nanoceria, the
cytotoxicity of various concentrations of nanoceria was indicated
by the MTT assay. In MRC-5 cell lines treated with 5, 10, 30, 50
and 70lM of nanoceria, cell viability was more than 90% (Figure
6). Because of protecting the normal cells, these concentrations
were used to survey the radioprotective effect of CONPs. The
toxicity of nanoparticles has been investigated in various studies
[16,25–27]. The non-toxic concentration of CONPs can be vary
depending on the different conditions such as cell line, nanopar-
ticle synthesis method, and cell viability assay.

Radioprotective effect of cerium oxide nanoparticles

Both cell lines were treated with 5, 10, 30, 50 and 70mM concen-
trations of nanoceria and exposed to 6MV photon beam with
different radiation dose values. With regard to the findings of

the MTT assay and statistical analysis (Figure 7), CONPs had no
significant radioprotective effect in the both cell lines against
10cGy radiation dose value (p values >0.05). Therefore, the
using of nanoceria in this radiation dose value cannot be justi-
fied in observing the radiation protection effects.

Figure 8 presents the experimental data on exposed cells
with 100 cGy radiation dose value. In this radiation dose
value, treated normal cells with 70 lM of CONPs compared
to 0, 5, 10 and 30 lM treatment groups showed a significant
increase in the mean cell viability (%) (p values are 0.001,
0.002, 0.003 and 0.012, respectively). Also, 50lM of nanoceria
led to a significant increase in cell viability (%) compared to
treatment groups at 0, 5 and 10 lM concentrations of CONPs
(p values are 0.013, 0.025, and 0.037, respectively).

The findings of current study (Figure 8) reveal that increas-
ing the CONPs concentration from 50 to 70 lM cannot give
rise to significant radioprotection of the normal cells against
100 cGy radiation dose value. Therefore, a 50 lM of nanoceria
can be a proper choice for optimal radioprotection against
100 cGy radiation dose value. It is noteworthy that radiopro-
tective effect can be valuable at low concentrations of nano-
ceria (due to lower toxicity), because the cytotoxicity and
disposal mechanism of nanoparticles are very important in
this type of applications, especially for heavy nanostructures
with high aggregation velocities [28].

As seen from Figure 9, for 200 cGy radiation dose value,
there is a significant increment of mean cell viability (%) for
MRC-5 cells at the presence of 70 lM of CONPs compared to
those of 0, 5, 10, and 30 lM (p values are 0.001, 0.002, 0.001
and 0.005, respectively).

Figure 10 shows that 70 lM of nanoceria can cause to sig-
nificant protection of normal cells against 300 cGy radiation
dose value compared to control group and treatment group
with 5 lM of nanoceria (p values are 0.009 and 0.019 respect-
ively). The cancerous cell lines at the presence of nanoceria
were not protected against 300 cGy radiation dose value.

According to the statistical analysis (Figure 11), mean cell
viability (%) of treatment MRC-5 cells with 70 lM of nanoceria
increased significantly compared to the control group and
treatment groups with 5, 10 and 30 lM of nanoceria against
400 cGy radiation dose value (p values are 0.002, 0.002, 0.011
and 0.027 respectively).

Figure 5. Absorption spectrum of CONPs with different dispersivity plan. The highest absorption was recorded at 318 nm wavelengths.

Figure 6. Cell viability (%) of MRC-5 and MCF-7 cell lines for determination of
CONPs cytotoxicity. The non-toxic concentration of CONPs was 70 lM.
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Figure 12 presents that the normal cells were protected
significantly against 500 cGy radiation dose value by 70 lM of
nanoceria. Nevertheless, in the cancer cells no protection
against radiation by nanoceria occurred.

It is widely reported that CONPs protect normal cells/tis-
sues against ionization radiation. The main reason of these
observations is ability of CONPs in scavenging of free radicals
[29,30]. Our experiment is in line with previous results
[31,32]. Tarnuzzer et al. evaluated radioprotective effect of
CONPs on CRL8798, an immortalized normal breast epithelial

cell line, and MCF-7 at a 10Gy radiation dose value. Their
results demonstrated that 0.01lM of these nanoparticles
results in the survival of 99% the normal cells after 24 h,
while they did not observe any radioprotective effects on
cancerous cells. However, there was no reference to type and
energy of radiation beam, and irradiation process was also
not clear [33]. Briggs et al. and Colon et al. observed radio-
protective effect of 145.34lM and 10 nM concentrations of
CONPs on 9 L and CCL 135 cells against different X-ray beams
respectively [34,35]. It is notable that different radiation

Figure 7. MTT assay was used to measure cell viability (%) of MRC-5 and MCF-7 for determination of radioprotective effect of CONPs. The cells were irradiated with
6MV X-rays at 10 cGy radiation dose value in the presence of non-toxic concentration of CONPs. Mean ± STD of three-independent experiments (n¼ 9).

Figure 8. MTT assay was used to measure cell viability (%) of MRC-5 and MCF-7 for determination of radioprotective effect of CONPs. The cells were irradiated with
6MV X-rays at 100 cGy radiation dose value in the presence of non-toxic concentration of CONPs. Mean ± STD of three-independent experiments (n¼ 9). The groups
labeled with � and �� have p< .01 and p< .001, respectively.

Figure 9. MTT assay was used to measure cell viability (%) of MRC-5 and MCF-7 for determination of radioprotective effect of CONPs. The cells were irradiated with
6MV X-rays at 200 cGy radiation dose value in the presence of non-toxic concentration of CONPs. Mean ± STD of three-independent experiments (n¼ 9). The groups
labeled with �� have p< .001.
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beams have different energy transfer mechanisms, and small
variations in delivered dose to cells can lead to large bio-
logical changes [21]. The radiation energy and dose value,
cell line type, nanoceria suspension preparation schedule and
cell viability assay in this current study were different from
the above-mentioned studies, which can be the reasons for
the difference in observations.

Another finding of the current study (Figure 13) demon-
strates that the mean cell viability (%) of normal cells is
reduced by the increasing the radiation dose value.
Nevertheless, the dose-response pattern of normal cells
reveals that the presence of nanoceria can give rise to pro-
tection of these cells against ionizing radiation.

Figure 10. MTT assay was used to measure cell viability (%) of MRC-5 and MCF-7 for determination of radioprotective effect of CONPs. The cells were irradiated
with 6MV X-rays at 300 cGy radiation dose value in the presence of non-toxic concentration of CONPs. Mean ± STD of three-independent experiments (n¼ 9). The
groups labeled with � and �� have p< .01 and p< .001, respectively.

Figure 11. MTT assay was used to measure cell viability (%) of MRC-5 and MCF-7 for determination of radioprotective effect of CONPs. The cells were irradiated
with 6MV X-rays at 400 cGy radiation dose value in the presence of non-toxic concentration of CONPs. Mean ± STD of three-independent experiments (n¼ 9). The
groups labeled with � and �� have p< .01 and p< .001, respectively.

Figure 12. MTT assay was used to measure cell viability (%) of MRC-5 and MCF-7 for determination of radioprotective effect of CONPs. The cells were irradiated
with 6MV X-rays at 500 cGy radiation dose value in the presence of non-toxic concentration of CONPs. Mean ± STD of three-independent experiments (n¼ 9). The
groups labeled with � and �� have p< .01 and p< .001, respectively.
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On the other hand, the results (Figures 7, 8, 9, 10, 11 and
12) show that presence of CONPs cannot lead to radioprotec-
tive effects in cancerous cell line which it can be due to the
high rate of proliferation of the cancer cells compared to the
normal cells. In the other words, it can be pointed out that
CONPs have selective radioprotection effects [31,35].

One of the duties of an oncologist is the reduction of sec-
ondary cancer following radiation therapy by appropriate
treatment planning. To achieve this goal, it is necessary to
know the absorbed dose of cells/tissues. In accordance with
the general guidelines in the treatment planning of radiation
therapy, when the lung tissue is an organ at risk, its mean
that radiation dose should not be greater than 20 to 23Gy
during treatment or 20% lung volume should not receive 30
to 35% of the prescribed radiation dose value. In breast can-
cer radiation therapy, at 25–30 fractions, cancerous cells will
receive 50Gy radiation dose value [36]. Furthermore, it was
reported that if lung tissue receives a 1750 cGy radiation
dose during a cancer radiation therapy, the patient will suffer
from lung inflammation with a 5% probability after 5 years of
treatment. If the radiation dose of lung tissue reaches
2450 cGy, the probability of lung inflammation will be 50%
during the same period of time. In the other words, with an
increase of 700 cGy in the absorbed dose of lung tissue, the
probability of lung inflammation will increase by 45% [37].
Therefore, if the MCF-7 cancerous cells receive a radiation
dose of 2 Gy per fraction, in the worst-case conditions, the

MRC-5 cells should not be given a radiation dose of more
than 60 cGy (2 cGy �30% of the prescribed radiation dose
value), conditions which were investigated in the current
study. According to Figure 14, the mean cell viability (%) of
MRC-5 in the group of 60 cGy þ70 lM of CONPs is 83.39%.
Dose-response curve (Figure 13) shows that a radiation dose
value of 2.6 cGy in the absence of CONPs leads to a cell via-
bility of 89.83%. To be more precise, when the lung tissue
receives a 1500 cGy radiation dose value during 25 fractions
(60 cGy �25), the presence of 70 lM nanoceria can lead to a
biological effect of 65 cGy (2.6 cGy �25) which it can reduce
the risk of inflammation and pulmonary fibrosis significantly.

DRF estimation

Dose-reduction factor (DRF) was calculated for each cell line
in 63 and 50% cell viability (using of dose-response curves in
Figure 13). According to Figures 15 and 16, there were no
increase in DRF63 and DRF50 values with increment of CONPs
concentration in the MCF-7 cell lines. So, the mean DRF value
clearly indicated that the nanoceria does not protect cancer-
ous cells against X-ray photon beams. Nevertheless, the
mean DRF63 value at the presence of 5 lM of nanoceria in
the MCF-7 cell lines (1.0815 ± 0.0294) had a higher value than
the MRC-5 cell lines at the same concentration of nanoceria
(0.99 ± 0.1836) and according to the independent-samples T
Test analysis, this difference was significant. Therefore, using
of 5 lM of nanoceria cannot be justified to protect the MRC-
5 cell lines against 6MV photon beams.

According to Figure 15, it is apparent that the MRC-5 cell
lines at 70 lM of nanoceria had been protected significantly
compared to the 5, 10 and 30 lM of nanoceria (p values are
0.001, p< 0.001 and p< 0.005, respectively). Also, the statis-
tical analysis of results revealed that DRF63 value at 50 lM of
nanoceria (1.4596 ± 0.1580) than 10 lM (1.1100 ± 0.1821) has
been increased in MRC-5 cell lines. Hence, 50 lM of nanoceria
can be a good choice to observe radioprotective effect in the
MRC-5 cell lines, because of lower toxicity in this concentra-
tion of nanoceria (Cell death ¼6.63%) than 70 lM (Cell
death ¼10.6%).

According to the DRF50 values in Figure 16, the normal cells
have not been protected by nanoceria significantly. On the
basis of the data above, it is possible to predict that 70 lM of

Figure 13. Dose-Response diagrams of MRC-5 and MCF-7 Cell lines in the presence of non-toxic concentration of CONPs.

Figure 14. Treatment of cancerous cells with a 200 cGy radiation dose value.
Normal cells received 30% of it (60 cGy). The group labeled with � have same
cell viability (%) with groups that treated 60 cGy þ70 lM CONPs.
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nanoceria contribute to significant radioprotective effect in
the normal cells when radiation inhibited the 37% of cells,
without having a specific plan for targeted drug delivery. As
far as we know, very few research studies have calculated the
DRF for nanoceria. In a study by Ouyang et al., it was reported
that that DRF value increases with increment of nanoceria con-
centration. However, this factor decreased with the increment
of radiation energy form 40 kVp to 140 kVp [30].

Perspective of future research

Th current study could be a springboard for more investiga-
tion on estimating the DRF value of CONPs in other cell lines
with various radiation energy and dose values. Moreover, it is

clear that the quantification of radioprotection or radiosensi-
tization effects is correct when the absorbed radiation dose
by target should be accurate. In this study, it was attempted
to design a unique phantom for accurate delivery of radi-
ation dose to target. As a future study, suggestion of a better
method than the current study would be of interest.

Conclusions

The findings of the current study reveal that the using of
CONPs in radiation therapy (with higher radiation dose val-
ues) can have a significant radioprotective effect on the
MRC-5 normal cells. Using of nanoceria at the 70 lM concen-
tration can increase the viability of normal cells by 14.45,

Figure 15. DRF63 of CONPs in MRC-5 and MCF-7 cell lines against 6MV photon beams.

Figure 16. DRF50 of CONPs in MRC-5 and MCF-7 cell lines against 6MV photon beams.
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18.76, 17.52, 19.66 and 7.93% against 100, 200, 300, 400 and
500 cGy of 6MV photon beams, respectively. Nonetheless, it
cannot protect the MCF-7 cell lines against X-ray beams.
Particularly when the nanocarriers are not as tissue-targeted
drug delivery systems, it can be certain that the cancerous
tissues are not significantly protected by CONPs against X-ray
beams. Because cancerous cells have a high proliferation,
and Ce3O2 cannot scavenge the countless free radicals
induced by radiation in this tissue. As a result, it can be men-
tioned that at the equal concentrations of CONPs, the active
site of Ce (3þ) in normal cells are higher than those of can-
cerous cells.
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