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Abstract 

Zeolitic imidazolate frameworks (ZIFs), a group of metal–organic frameworks (MOFs), hold 

promise as building blocks in electromagnetic (EM) wave absorption/shielding materials and 

devices. In this contribution, we proposed a facile strategy to synthesize three dimensional ZIF-

67-based hierarchical heterostructures through coordinated reacting a preceramic component, 

poly(dimethylsilylene)diacetylenes (PDSDA) with ZIF-67, following by carbonizing the PDSDA 

wrapped ZIF at high temperature. The introduction of PDSDA leads to a controllable generation 

of surface network containing branched carbon nanotubes and regional distributed graphitic 

carbons, in addition to the nanostructures with well-defined size and porous surface made by 

cobalt nanoparticles. The surface structures can be tailored through variations in pyrolysis 

temperatures, therefore enabling a simple and robust route to facilitate suitable structural surface. 

The heterostructure of ZIF nanocomplex allows the existence of dielectric loss and magnetic 

loss, therefore, yielding a significant improvement on EM wave absorption with a minimum 

reflection coefficient (RCmin) of -50.9 dB at 17.0 GHz at a thickness of 1.9 mm and an effective 

absorption bandwidth (EAB) covering the full Ku-band (12.0 GHz to 18.0 GHz). 

 
Keywords: zeolitic imidazolate frameworks, electromagnetic wave absorbing, nanocomplex, 

heterostructure, coordination reaction 

  



 

Introduction 

Metal-organic frameworks (MOFs) have attracted significant interests in last decades from 

various fields such as absorbent materials for gas separation, energy storage, luminescence 

materials, bio-sensors.1-5 The high designability on functionalities for MOFs can be facilitated 

via changing the precursors and/or synthetic conditions,6,7 as well as post-synthesis modifications 

(extended annealing, etc.).8-10 Recently, a sub-group of MOFs, zeolitic imidazolate framework 

(ZIF), has been seen as a rising material with high porosity,11,12 excellent mechanical stability,13 

tunable surface properties14,15 and their exceptional chemical and thermal stabilities.11,16 ZIFs 

also offer excellent configurability on structures by substituting the metal centre with other 

ions,5,17,18 such as Cu2+, Ni2+, Cd2+, yielding zeolite-like structures,19,20 which is desired for 

electromagnetic (EM) wave absorbing/shielding.21-30 The ultra-wide band absorption in specific 

band such as Ku-band (12-18 GHz), X-band (8.2-12.4 GHz) for EM wave absorbing materials is 

always important for their application in wireless communication, satellite communication, 

medical and aerospace fields.31,32 

Thus far, the ZIF faces challenges to achieve a high real permittivity (ε') and poor impedance 

matching after pyrolysis, which lead to a strong reflectivity of EM wave on surface and a poor 

performance on EM wave absorption. One potential solution is to construct structural surface 

with using low dielectric materials to ‘trap’ the EM wave on surface. The concept remains yet to 

achieve due to the challenges in facilitating nanostructures during multi-step synthesis and the 

withholding of synthesized structure during pyrolysis at high temperature during the post 

synthesis treatment. Ceramic materials with lower complex permittivity can essentially bridge 

the gap and provide good electromagnetic wave absorption properties.33-35 Dedicated 



 

heterostructure from ceramics can be achieved by introducing the polymeric ceramic precursors 

into the multi-stage synthesis, resulting into a controllable generation of surface structure after 

pyrolysis. However, this route has been less considered in ZIF-based nanomaterials. 

Here, we proposed a facile strategy to synthesis ZIF-67-based nanocomplex with hierarchical 

structures by initializing a coordination reaction between poly(dimethylsilylene)diacetylenes 

(PDSDA), a polymeric ceramic precursor with lower complex permittivity with cobalt in ZIF-

67.36,37 After pyrolysis, we successfully prepared nanocomplex consisting of multi-lengthscale 

interfaces between core-shell structures with porous low dielectric external shell (formed by 

PDSDA), high permittivity magnetic core (formed by ZIF-67), carbon nanotubes (formed by 

amorphous carbon locally catalyzed by cobalt) on surface, and amorphous carbons. We 

demonstrate an enhanced EM wave absorption with a minimum reflection coefficient (RCmin) of 

-50.9 dB at 17.0 GHz with a sample thickness of 1.9 mm and an effective absorption bandwidth 

(EAB) covering the full Ku-band (12.0 GHz to 18.0 GHz) with designable heterostructure. 

 

Experimental Section 

Materials. The dichlorodimethylsilane (98%), trichloroethylene (>98%), hexachloro-1, 3-

butadiene (97%), n-butyllithium (1.6 M solution in hexanes) and N, N-dimethylformamide 

(DMF) were purchased from Alfa Aesar China (Tianjin, China). The cobalt nitrate hexahydrate 

(99.99 % metals basis) was bought from Macklin Co. (Shanghai, China) and 2-methylimidazole 

(99%) was purchased from TCI Co. (Shanghai, China). All other reagents were used as received. 

 

Synthesis of poly(dimethylsilylene)diacetylenes (PDSDA). The synthesis of PDSDA was 

conducted using a standard Schlenk technique.38,39 The 0.14 mol (42.51 g) n-butyllithium was 



 

dissolved in 60 mL THF at -78 °C in an acetone/dry ice bath under an argon atmosphere. Then 

0.035 mol (9.456 g) hexachloro-1, 3-butadiene was added through an argon-purged syringe. 

Subsequently, 0.035 mol dichlorodimethylsilane (4.578 g) was dropped into the flask at −78 °C. 

After stirring at room temperature for 12 h, the chlorotrimethylsilane (2 mL) was added. Then 

the mixture was dissolved in toluene to filter out the lithium chloride The polymer was 

precipitated in methanol and dried under vacuum environment. Finally the alkyne-containing 

PDSDA was obtained. 

 

Syntheses of ZIF-67 and pre-pyrolyzed ZIF-67. The ZIF-67 was synthesized according to 

references.40-42 1.5 mmol of cobalt nitrate in 12 mL deionized water and 67 mmol of 

dimethylimidazole in 80 mL deionized water were mixed and stirred vigorously for 6 h. After 

stirring 24 h, the purple precipitates were collected by centrifugation three times using methanol 

as eluent. Finally, the as-prepared ZIF-67 was purple solid. The ZIF-67 was pyrolyzed at 500°C 

for 2 h (heating rate 5 K/min under argon) in tube finance to prepare pre-pyrolyzed ZIF-67 (P-

ZIF-67). The 0.02g of PDSDA and 0.1g of pre-pyrolyzed ZIF-67 were mixed in DMF at room 

temperature under ultrasonic for 4 h, to fulfill the coordinated reaction to get P-ZIF-67 wrapped 

with PDSDA.  

 

Preparation of ZIF-67-based nanocomplex. The P-ZIF-67 wrapped with PDSDA was 

pyrolyzed at various temperatures (500 °C, 600 °C, 700 °C and 800 °C) under an argon 

atmosphere in the tube furnace (GSL-1700X, Kejing New Mater. Ltd., Hefei, China). The 

obtained Co/Si/C/N nanocomplex was named as Co/Si/C/N-500, Co/Si/C/N-600, Co/Si/C/N-700 

and Co/Si/C/N-800, respectively, according to the pyrolyzed temperature.  



 

 

Characterization. Fourier transform infrared spectroscopy (FT-IR) measurement was performed 

on a FT-IR spectrometer (DSOR 27, Bruck, Germany). Thermogravimetric analysis and mass 

spectrometry analysis were conducted on a simultaneous thermal device (STA, 449C Jupiter, 

Netzsch, Gerätebau GmbH, Selb, Germany) coupled with a quadrupole mass spectrometer. The 

flow of argon is 40 mL/min and the heating rate is 10 K/min, respectively. The crystal structure 

was analyzed by using X-ray diffractometer (XRD) (Rigaku D/Max-2550VB+/PC) with Cu Kα 

irradiation (λ =1.54178 Å, 40.0 kV, 40.0 mA). The scanning electron microscopy (SEM) 

(Hitachi-S-4800) and the transmission electron microscopy (TEM) (FEI Talos-F200X) were used 

to observe the morphology and elemental distribution of samples. The Raman spectrum (Invia, 

Renishaw, USA) was equipped with 514 nm Ar laser excitation device. The Micrometrics Tristar 

3020 (Micromeritics Co.) nitrogen adsorption instrument was used to measure specific surface 

and pore size distribution (Brunauer-Emmett-Teller, BJH model). The magnetic hysteresis loop 

was measured using a vibrating sample magnetometer (Lake Shore VSM 7307) at 298.15 K. 

 

EM wave absorbing measurement. The complex permittivity and complex permeability of 

Co/Si/C/N heterostructure nanocomplex were measured using a vector network analyzer (VNA, 

MS4644A, Anritsu) in the frequency range of 2−18 GHz. The milled Co/Si/C/N samples were 

dispersed in paraffin matrix with 30 % mass fraction to form the coaxial rings with an inner 

diameter of 3.04 mm and an outer diameter of 7.0 mm. On the basis of the generalized 

transmission line theory and metal backplane model,43,44 the reflection coefficient (RC) can be 

calculated using relative complex permittivity according to the following equation.45 
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where Zin, εr and μr is the normalized input impedance, permittivity, and permeability of the 

materials, respectively. The f, d and c represents the frequency, thickness (m) and the velocity of 

the EM wave in vacuum, respectively. 

 

Results and Discussion 

The synthesis route of ZIF-67-based heterostructure nanocomplex is schematically illustrated in 

Figure 1a, where the ZIF-67 is prepared from cobalt nitrate and 2-methylimidazole (Step 

I).40,41,43 The pre-pyrolyzed ZIF-67 (Step II) represents a basic polyhedral geometry with 80 % 

yield as shown in Supporting Information (Figure S1) with a number of cobalt atoms. In Step III 

and Step IV, the PDSDA was wrapped on ZIFs to fulfill low complex permittivity and high 

ceramic yield (Figure S1) in the final nanocomplex. The complete disappearance of alkenyl peak 

at 2100 cm-1 in FT-IR (Figure S2) suggests that coordination reaction successfully occurs 

between the transitional metal ions (Co2+) with the alkenyl groups in PDSDA.39 After pyrolysis 

at high temperatures (500 °C or above) under Ar atmosphere (Step V), we successfully obtain the 

ZIF-67-based heterostructure nanocomplex (Figure1b), which are assumed to have core-shell 

structure (Figure 1a) with low dielectric shell (formed by PDSDA) and high real permittivity (ε'), 

magnetic core (formed by ZIF-67) and branched carbon nanotubes on surface as metal Co could 

indorse graphitic carbon to form carbon nanotubes and amorphous carbons.46-48 The samples are 

labeled as Co/Si/C/N-500, Co/Si/C/N-600, Co/Si/C/N-700, Co/Si/C/N-800, respectively, where 

the digital number refers to the pyrolysis temperature. 
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Figure 1 Schematic illustration of  the fabrication route towards ZIF-67-based heterostructure 

nanocomplex (a, b), SEM images of ZIF-67 (c)  after Step II in (a) with the magnified 

observation (d) in the selected area, the morphology of ZIF-67-based heterostructure 

nanocomplex with the magnified observation  in the selected area (e, f), theoretical and 

experimental XRD results for ZIF-67 crystal (g). 

 

The morphology and structure of pre-pyrolyzed ZIF-67 and their derived nanocomplex were 

evaluated by scanning electron microscopy (SEM, Figure 1c-f), where we observed typical 

rhombic dodecahedron morphology for pre-pyrolyzed ZIF-67 (Figure 1c-d) in a size distribution 

of 300 - 400 nm.49,50 After initializing the coordinated reaction with PDSDA on ZIF surface and 

pyrolyzing at high temperature, we obtain a highly mesoporous surface on ZIF-based 



 

nanocomplex (Figure 1e-f). The powder X-ray diffraction (XRD) result for pre-pyrolyzed ZIF-

67 (Figure 1g) suggests a sodalite topology of (Co(mIM)2) in good agreement to the theoretical 

crystal structure. Overall, the good preservation in dodecahedron shape was presented after 

pyrolyzing at high temperatures.51,52 

 

Figure 2 The TEM images of  pre-pyrolyzed ZIF-67 crystals collected after Step II (a), ZIF-67-

based heterostructure nanocomplex after Step V (b), with the magnified observation on Co 

nanoparticles and SAED image (inset) in (c)., the AFM profile (d) of the selected area in (b), the 

EDS mapping (Co, Si, C, N) (e) for the nanocomplex in (b), XRD (f) and Raman results (g) for 

the nanocomplex under different temperature, N2 adsorption and pore size distribution plots (h) 

and hysteresis loop and coercivity (inset) of nanocomplex (i). 



 

By thermally pyrolyzing at an inert atmosphere, the organic ligands in ZIF-67 crystal (Figure 

2a) can be carbonized and metal ions will be reduced to form a hybrid metal/carbon 

structure.53,54 By characterizing the pyrolyzed ZIF-based nanocomplex using TEM, we found (i) 

clear boundaries as being defined by original ZIF (Figure 2b) covered by (ii) highly branched 

carbon nanotubes (CNTs, typically ca. 10 nm in diameter and ca. a few micrometers in length), 

(iii) a mesoporous surface where metallic cobalt particles (Figure 2c) were formed. After the 

decomposition and carbonization, most of the cobalt deposit outside of the carbon matrix to form 

a porous shell. The corresponding selected area electron diffraction (SAED) pattern (inset, 

Figure 2c) confirms that polycrystallinity phase occur for the pyrolyzed ZIF-67. The organic 

ligands in PDSDA were catalyzed by cobalt to generate CNTs on the surface, as well as 

graphene skirts regionally located at the edge of nanocomplex (Figure 2d).  

 

From the EDS mapping in Figure 2e, we find a uniform distribution of C (red), Si (green) and N 

(blue) with the same profile of pre-pyrolyzed ZIF (labelled by Co), which prove the homogeneity 

coverage of the branched CNTs on the ZIF nanocomplex. We next assess the elemental and 

valance states for ZIF-67 based nanocomplex at 700 °C using XPS (Figure S3a). The high-

resolution C 1s spectrum (from 282 eV to 292 eV, Figure S3b) reveals four types of carbon 

bonds corresponding to C-C (284.6 eV), C-N (285.4 eV), C-O (286.5 eV), O-C=O (289.2 

eV).39,55-57 The Co 2p spectrum (from 773 eV to 789 eV for Co 2p 3/2 and from 790 eV to 809 

eV for Co 2p 1/2, Figure S3c) agrees well to four signature peaks, i.e. Co (779.0 eV), Co 

trivalent (783.6 eV) and bivalent (794.5 eV and 800 eV). The divalent cobalt is oxidized to 

trivalent cobalt when being exposed in the air.58 The N 1s spectrum (from 395 eV to 405 eV, 

Figure S3d) deconvolute into pyridinium-N at 398.5 eV, pyrrole nitrogen at 400.3 eV, graphitic 



 

nitrogen at 401.3 eV, and nitric oxide at 404.5 eV.59 The Si 2p spectrum from (98 eV to 106 eV, 

Figure S3e) indicates the coexistence of three deconvoluted peaks of SiC (100.8 eV), SiOxCy 

(102.5 eV) and SiO2 (103.4 eV).60 Combined with the TGA curve (green) in Figure S1, the 

PDSDA seems only partially degraded under 700 °C and 800 °C, indicating a transition layer can 

be formed. 

 

We next investigated the temperature dependent phase composition and morphology changes for 

the synthesized nanocomplex by analyzing the powder XRD results (Figure 2f). Weak 

diffraction peaks are found for the Co/Si/C/N-500 at CoN (111), (220) crystal face at 2θ=36.9°, 

2θ=61.7° (JCPDS#83-0831) and Co2N (111), (200) crystal face at 2θ=42.5°, 2θ=65.3° 

(JCPDS#72-1368), respectively. However, no obvious characteristic peaks for CoN are shown 

for Co/Si/C/N-600, Co/Si/C/N-700 and Co/Si/C/N-800, indicating the collapse of CoN structure 

at 600°C. The diffraction peaks at 2θ=44.5°, 2θ=51.5°, 2θ=76.0° are assigned to (111), (200) and 

(220) crystal face of cubic Co crystals. The enhanced peak for graphitic carbons is observed 

when the pyrolysis temperature increases. The grain sizes for graphitic carbons and cubic Co are 

calculated using Debye-Scherrer equation.50,61 

       (3) 

where K=0.90, λ=0.154 nm, θ is diffraction angle and β is full width at half maxima of the most 

intense peak (FWHM). The calculated grain sizes for cubic cobalt atoms in Co/Si/C/N-600, 

Co/Si/C/N-700 and Co/Si/C/N-800 are 15.3 nm, 16.4 nm and 20.7 nm, respectively, the dendritic 

structure gradually grows on the surface of ZIF-67-based nanocomplex when the temperature 

increases to 600 °C and above (Figure S4). 
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Raman spectra are used to understand the morphological distribution of carbons in the pyrolyzed 

nanocomplex (Figure 2g). With the increase of pyrolysis temperature, the ID/IG of integrated 

intensity changes to represent the degree of disorder. Compared to Co/Si/C/N-600/800, the ID/IG 

of Co/Si/C/N-700 is higher, indicating a higher lattice disorder in sp2-hybridized carbon atoms 

and/or deposition of amorphous carbon. The black spot (cobalt nanoparticles, Figure 2b) 

distributed around the dendritic polyhedron and causes hysteresis. Meanwhile, the branching 

dendrite extends free space and offer more contact surface, thus improve the impedance 

matching. The results of XRD in Figure 2f indicate clear polycrystalline phases, e.g. (111), 

(200), (220), for the metallic cobalt, which agrees well with TEM and SAED results as shown in 

Figure 2c. 

 

We then analyzed the porosity of nanocomplex by plotting N2 adsorption desorption curves 

using BJH calculation method (Figure 2h). All samples present typical type IV adsorption 

hysteresis characteristic loop at the nominal pressure (p/p0) of 0.15-1.0 and 0.40-1.0.62,63 The 

rapid increase of N2 adsorption curve near the nominal pressure of 0.95 is attributed to the 

capillary condensation, revealing the presences of large pores in sample with a size distribution 

from 1.5 nm to 4.0 nm (see Table S2). For the ZIF67 crystals, the specific surface area is up to 

2055.4 m2/g. Due to the introduction of poly(dimethylsilylene)diacetylenes with high ceramic 

yield on surfaces, the specific surface area and pore size for the ZIF-based nanocomplex rapidly 

decreased when pyrolysis temperature increases. The small specific surface area for Co/Si/C/N-

500 indicates an incomplete formation of porous structure at low temperature. The Co/Si/C/N-

700 shows a high specific surface area of 319.2 m2/g, whilst we discover a decrease on the 



 

porosity for Co/Si/C/N -800, likely to occur once the skeleton structures collapse and/or partially 

damage at high temperature. 

 

Figure 3 Reflection coefficient of Co/Si/C/N -700 at various thicknesses and demonstration of 

coercivity for ZIF-67, P-ZIF-67 and Co/Si/C/N -700 under magnetic field (a), comparison of the 

EM wave absorption properties for the ZIF-67-based nanocomplex with other reported values (b), 

where the solid symbol and hollow symbol refers to EAB and RCmin, respectively. 

 

For electromagnetic wave absorption application, the general guideline suggests that more than 

90 % of the incident EM wave will be absorbed when the value of reflection coefficient (RC) 

reaches -10 dB or less, which is considered as a key criterion to determine effective absorption 

bandwidth (EAB). By plotting the RC data for Co/Si/C/N porous complex at a frequency range 



 

of 2-18 GHz (Figure 3a), RCmin value of -50.9 dB is found for Co/Si/C/N-700 with an EAB of 

5.72 GHz, which covers almost the whole Ku-band (12-18 GHz). This excellent EM wave 

absorption property is enabled by the multi-length scale heterostructure formed after introducing 

PDSDA into ZIF-67, where the pyrolyzed material without PDSDA presents an opposite 

performance (Figure S5). It should also be noted that the complex presents a strong magnetic 

effect after pyrolysis (inset, Figure 3a), as part of unique feature for ZIF-67. The thickness 

dependent peak shift can be given by the following equation,63 

       (4) 

where tm and fm is the thickness and frequency of peak dip, the λ and c represents the wavelength 

of the EM wave and the light velocity in vacuum, respectively. The Co/Si/C/N-700 presents the 

best EAB and RCmin performances among the rest samples (Figure S6), indicating that the 

optimized heterostructure is achieved at 700 °C. The ZIF-67 based complex in this research also 

presents advantage when comparing to the other reports (Figure 3b). 

 

For transition metal/ZIF-67 complex systems, i.e. Zn/ZIF-67,22 CuO/ZIF-67,23 and Fe/Ba-ZIF-

67,64 the Co/Si/C/N-700 with a RCmin value of -50.9 dB and an EAB of 5.72 GHz shows the best 

EAB and RCmin. Even though Fe/ZIF-67 shows an EAB of 6.72 GHz and a RCmin of -49.2 dB 

when the mass fraction in paraffin matrix is as high as 40%,65 the thickness and density are also 

much higher than the Co/Si/C/N nanocomplex. When it comes to silicon or carbon/ZIF-67 

systems, e.g. MWCNT/ZIF-67,24 SiC/ZIF-67,66 cotton/Ba-ZIF-67,67 our Co/Si/C/N nanocomplex 

also possess superior absorption in the whole Ku-band (12.0-18.0 GHz), where have not been 

reported elsewhere in silicon or carbon/ZIF-67 systems. 
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The EM wave absorbing performance is determined by complex permittivity and permeability. 

The real part (ε') of permittivity and the imaginary part (ε'') is related with polarization and 

dielectric loss ability, respectively. From the viewpoint of impedance matching, the low ε', high 

ε'' are favorable to the enhanced EM wave absorption, i.e. low reflection coefficient. As shown 

in Figure S7, the Z value of Co/Si/C/N-700 with a thickness of 1.9 mm is in the range of 0.8~1.0 

in Ku-band, implying good impedance matching performance and excellent EM wave absorption. 

The attenuation constant α of Co/Si/C/N nanocomplex calculated through Equ. 5 can access the 

dissipation effect for EM wave. The strong attenuation capability gradually increased in high 

frequency range as shown in Figure S7. Meanwhile, the best impedance matching as well as 

large attenuation ability of Co/Si/C/N-700 endows strong broadband absorbing performance.52 

( ) ( ) ( )2 f 2 2=
c
πα µ ε µ ε µ ε µ ε µ ε µ η′′ ′′ ′ ′ ′ ′′ ′′ ′ ′′ ′′ ′ ′× − + + + −

        
(5) 

Furthermore, in Figure 4a, the values of real part (ε') and imaginary part (ε'') in 2-18 GHz for all 

samples are presented. For Co/Si/C/N-700, the ε' value is in the range of 10-42 in 2-10 GHz. 

With the frequency increases, the ε' gradually decreased to about 5. At the same time, the ε'' 

(from 0.8 to 47) of Co/Si/C/N-700 is lower than that of other samples. Thus Co/Si/C/N-700 

shows the low reflection coefficient and wide effective absorption bandwidth in Ku-band. The 

magnetic permeability of Co/Si/C/N nanocomplex is also sensitive to the frequency. As shown in 

Figure 4b, the real part (μ') and imaginary part (μ'') increased in 2-18 GHz for Co/Si/C/N-500, 

Co/Si/C/N-600 and Co/Si/C/N-800, while the μ' decreased after 10 GHz for Co/Si/C/N-700. The 

μ'' of Co/Si/C/N-700 is higher than that of Co/Si/C/N-500 and Co/Si/C/N-800 in 10-18 GHz. 

Overall, from the contribution of both dielectric loss and magnetic loss, the Co/Si/C/N-700 

shows excellent EM absorption among all the nanocomplexes. 



 

 

Figure 4 Complex permittivity plots (a) and permeability plots (b) for Co/Si/C/N nanocomplex, 

the illustration of hypothesized interfacial-driven electromagnetic wave attenuation for 

Co/Si/C/N nanocomplex (c). 

 

As well known, the attenuation of EM wave is the consequence caused by the combined effects 

from dielectric loss and magnetic loss. Dielectric tangent loss ( /tan εδ ε ε′′ ′= ) and magnetic 

tangent loss ( /tan µδ µ µ′′ ′= ) are calculated to assess the electromagnetic dissipation factors. 

Figure S8 shows the value of electromagnetic loss with the Co/Si/C/N nanocomplex. It is 

obvious that the tanδε value of Co/Si/C/N-700 decreases as the frequency increases, whereas the 

tanδμ value shows an opposite trend. To well understand the effect of magnetic loss on the 

electromagnetic wave attenuation, we plot the hysteresis loop of the Co/Si/C/N porous complex 

in Figure 2i. The ZIF-67 and P-ZIF-67 only show linear paramagnetic response. However, the 

Co/Si/C/N nanocomplex shows strong ferromagnetic response with a gradually rising saturation 

magnetization (Ms) (7.9 emu/g, 20.6 emu/g, 47.3 emu/g, and 50.1 emu/g) when the pyrolysis 

temperature increases. Because the absolute values of susceptibility less than 1 (|χ|＜1, Table 



 

S2), so the paramagnetic response of Co/Si/C/N nanocomplex can be judged. The magnetization 

is attributed to the CoN and Co2N nanocrystals in nanocomplex. Since the Co/Si/C/N-700 

possesses the highest remanence (Mr) of 13.2 emu/g and coercivity (Hc) of 350 Oe in comparison 

to other three samples (44-277 Oe), it can dissipate the EM wave into heat to attenuate at high 

frequency.68  

 

Based on the analyses mentioned above, the illustration of hypothesized interfacial-driven 

electromagnetic wave attenuation for Co/Si/C/N nanocomplex is presented in Figure 4c. The 

heterostructured Co/Si/C/N nanocomplex consisting of low dielectric layer, porous structure and 

regular distribution of magnetic cobalt particles provides multiple interfaces to enable unique 

impedance matching and electromagnetic loss. The low dielectric layer like dendrite and porous 

structure can allow EM wave to enter the polyhedron and convert into heat and atomic vibration. 

The conductive network formed by amorphous carbon and cobalt particle can maximize the 

interfacial polarization loss. Ferromagnetism of the cobalt particle and transmission of low 

dielectric layer to high dielectric core allow more EM wave absorption rather than reflection, 

thus enhance the formation of magnetic eddy current.69,70 The combining effect from multi-

lengthscale structures among the interfaces contribute to outstanding EM wave absorption 

property together. 

 

Conclusions 

A facile strategy was developed to achieve ZIF-67-based heterostructured nanocomplex by 

introducing surface coordinated reaction between PDSDA and ZIF-67. The involvement of 

PDSDA allows the ZIF host to undergo significant surface morphological transformations by 



 

carbonatizing the organic ligand during the pyrolysis. The nanocomplex possesses hierarchical 

heterostructure consisting of MOF framework defined by the original ZIF particles, nano-

structured surface made by branched CNTs and regional distributed graphene skirt and a 

mesoporous surface based on Co particles. After further exploring the structure-functionality 

relationship for the nanocomplex, it demonstrates a unique EM wave absorption for the 

synthesized nanocomplex, by achieving a RCmin value of -50.9 dB and a EAB of 5.72 GHz at a 

thin thickness of 1.9 mm that almost covers the whole Ku-band (12.0-18.0 GHz). We expect this 

study of structural design of ZIF-based nanocomplex will open up a new window for developing 

high performance EM wave absorbing materials in future. 
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