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ABSTRACT
We present the first nature-inspired algorithm for the NP-complete
Nurikabe pencil puzzle. Our method, based on Ant Colony Op-
timization (ACO), offers competitive performance with a direct
logic-based solver, with improved run-time performance on smaller
instances, but poorer performance on large instances. Importantly,
our algorithm is “problem agnostic", and requires no heuristic in-
formation. This suggests the possibility of a generic ACO-based
framework for the efficient solution of a wide range of similar logic
puzzles and games. We further suggest that Nurikabe may provide
a challenging benchmark for nature-inspired optimization.
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1 INTRODUCTION
Nurikabe is a Japanese pencil puzzle [2], the wider set of which
includes well-known problems such as Sudoku [3] and Hashi-
wokakero [1]. The puzzle is played on a rectangular grid of white
cells, some of which initially contain numbers. A successful solu-
tion to the puzzle requires the player to shade in (colour black)
non-numbered cells according to the following rules: (1) Black cells
must form a single continuous region (the “wall”); (2) Every num-
bered cell must occupy its own disjoint white region (an “island”)
whose size, in terms of the number of cells it occupies, is the same
as the number label of that cell; (3) There must not exist any 2×2
black regions.

In Figure 1 (left-middle), we show an example Nurikabe puzzle
and a correct solution. Note that, in the solution, each island con-
tains a number of white squares that is equal to its labelled value,
the black wall occupies a single continuous region (with no 2×2
regions), and no islands are touching. We also show, in Figure 1
(right), an invalid attempt at a solution, with the following prob-
lems highlighted: (A) Numerous 2×2 blocks of black squares, (B)
Island containing more than one value (which might be interpreted
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as touching “4" and “3" islands, (C) Island containing the wrong
number of white squares, (D) Discontinuous wall.

Figure 1: The structure of a Nurikabe puzzle instance (left),
a correct solution (middle), and an invalid solution (right).

The problem of solving Nurikabe is known to be NP-complete [5].
As such, it presents a useful challenge for new algorithms. In this
paper, we present a novel method based on the well-established Ant
Colony System (ACS) algorithm [4], and compare its performance
with an existing Constraint Programming algorithm [8]. To the best
of our knowledge, the work in this paper represents the first attempt
to solve Nurikabe using a stochastic optimization algorithm.

2 ALGORITHM OVERVIEW
Rather than “constructing” the wall around the islands, we instead
colour all cells black at the outset (apart from numbered cells), and
then individually grow the islands, by repeatedly colouring selected
cells white. We now describe how the ACS algorithm is applied to
Nurikabe. At each iteration, a number of “ants” are given their own
local copy of the game board, and each ant is placed on a randomly-
selected numbered cell (that is, the “seed" of an island). Each ant
then moves around the board, gradually “growing" the island by
colouring cells white, until either the island reaches the desired size,
or no more moves are possible. Movement is informed by the global
pheromone trail. The ant then moves to the next numbered cell, and
the process continues. At the end of each generation, we therefore
have a number of possible solutions to the problem (one per ant);
we then select the best solution (details below) and “reward" its
white island cells with additional pheromone. In this way, future
generations of ants are biased towards those cells. Specifically, at
each iteration within a generation, each ant constructs a set of
possible candidate cells to which it might move, based on both the
game rule constraints and the current state of the grid. The initial
candidate set is constructed by taking all cells that border the current
island, and is then pruned according to the following two rules: (1)
Remove any cell that is a cut cell for the black “wall” region (i.e., any
cell whose removal would lead to the wall becoming disconnected),
(2) Remove any cell that is adjacent (horizontally/vertically) to an
existing island. Once the candidate set has been pruned, the next cell
is selected according to ACS principles, and is added to the current
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island (this process includes a local pheromone update). Once this
island is completely filled, the ant moves to the next island, and the
process repeats until all ants have completed their moves. The best-
performing ant is then selected (according to a cost function which
counts how many constraints are broken), the global pheromone
matrix is updated, and the “best value evaporation” [7] operator is
applied.

3 EXPERIMENTAL RESULTS
In this Section we present the results of experimental runs of a
Java implementation of our algorithm and, for comparison, the
Copris Constraint Programming code [8]. All runs were carried
out using a single core of a Xeon E5-2640 v4 2.40 GHz processor,
on a machine running Ubuntu Linux. We use the collection of 911
Nurikabe instances available from [6], ignoring three instances in
which some islands have an unspecified number (a total of 908
instances). The instances range in size (total number of cellsm ×n),
from 9 to 2500 cells, and all have a unique solution. We ran the ACS
code 100 times per instance. In all runs we set a timeout of one
minute of wall-clock time. For all ACS runs, we used the following
parameters:m = 10, ρ = 0.2, ξ = 0.1, q0 = 0.9, and fBVE = 0.001
(see [7] for the meanings of parameters). We ran the Copris solver
[8] on each of the instances, using the same machine (and Java
Virtual Machine) as for the ACS solver. Since the Copris solver is
deterministic, we performed only one run per instance, again with a
one minute wall-clock time limit. Figure 2 (left) shows a scatter plot
of average solution times for all instances that were solved by both
algorithms; for ACS this measure includes the timeouts, and is the
total run time divided by the number of successful runs. The upper
half of the plot shows instances where our ACS method performs
worse, and the lower half shows instances where our ACS method
performs better than the Copris solver. Figure 2 (right) shows the
success rates as a function of instance size. For ACS, this shows
the fraction of instances for which any run found a solution. In
Figure 3, we show the largest solution found by our ACS solver.

Figure 2: Scatter plot of solution times for all instances
solved by both solvers (left), and solution rates as a function
of instance size (right).

Our results show that the ACS-based algorithm out-performs
the Copris solver in terms of runtime on the smallest instances,
but the Copris solver performs better in terms of runtime and
success rate on the larger (greater than 200 cells) instances. On the

Figure 3: Largest solution foundwithACS; instancewith 336
cells.

smallest instances (0-99 cells), ACS is generally quicker to achieve
a solution, with 100 instances solved in a shorter average time by
ACS, compared to 35 solved in shorter time by Copris. For the
medium-sized instances (100-199 cells), ACS is quicker for 259
instances, and Copris for 335. On larger instances, the failure rate
for ACS within the one minute timeout is substantially greater
than for Copris. It is worth noting that the runtime for the Copris
solver is always of order a second or longer, whereas ACS runs on
the small instances often complete in milliseconds. These results
contrast with the results on Sudoku [7], in which ACS significantly
outperformed the best direct solvers on harder instances. This may
suggest that Nurikabe offers a far more challenging benchmark for
ACO algorithms than Sudoku.

4 CONCLUSIONS
In this paper we have presented the first nature-inspired algorithm
for the computationally hard Nurikabe pencil puzzle. We compared
the performance of our method against that of an existing logic-
based solver, and found that our algorithm was faster on smaller
instances. Importantly, our method relies on next to no heuristic
information about the puzzle (that is, “tips" for its solution), em-
bedding only the game rules. We argue, therefore, that ACS offers
a promising method for the rapid solution of such puzzles. Future
work will focus on the development of a general-purpose pencil
puzzle solver, incorporating Nurikabe and other games, and investi-
gation of their use as benchmarks for nature-inspired optimization.
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