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Abstract A modified multiple generalized regression

neural network (GRNN) is proposed to predict the noise

level of various compartments onboard of the offshore

platform. With limited samples available during the initial

design stage, GRNN can cause errors when it maps the

available inputs to sound pressure level for the entire off-

shore platform. To obtain more relevant group for GRNNs

training, fuzzy C-mean (FCM) is used. However, outliers

in some group may interfere the prediction accuracy. The

problem of selecting suitable inputs parameters (in each

cluster) is often impeded by lack of accurate information.

Principal component analysis (PCA) is used to ensure high

relevance input variables in each cluster. By fusing mul-

tiple GRNNs by an optimal spread parameter, the proposed

modeling scheme becomes quite effective for modeling

multiple frequency-dependent data set (ranging from 125

to 8000 Hz) with different input parameters. The perfor-

mance of FCM-PCA-GRNNs has improved significantly as

the results show a 25% improvement on the spatial sound

pressure level (SPL) and 85% improvement on the spatial

average SPL than just GRNNs alone. By comparing with

data obtained from real engine room on a jack-up rig, the

FCM-PCA-GRNNs noise model performs better with

around 16% less error than the empirical-based acoustic

models. Additionally, the results show comparable per-

formance to statistical energy analysis that requires more

time and resources to solve during the early stage of the

offshore platform design.

Keywords Fuzzy C-mean � Principal component analysis �
Generalized regression neural network � Noise prediction �
Offshore platform

1 Introduction

Noise control is an important aspect which ensures the

crew habitability onboard offshore platform. Implementing

noise prediction is an effective way to identify the potential

noise problem at the early stage of offshore platform design

to avoid expensive retrofitting cost in the later stage of

modification. Currently, excessive noise in the offshore and

marine applications is identified mainly using the empirical

formula or the computer-aided design (CAD)-based

mathematical tools. For example, the finite element anal-

ysis (FEA) and the boundary element method (BEM) solve

acoustic responses by considering wave propagation; the

statistical energy analysis (SEA) and the energy finite

element analysis (EFEA) determine the sound field based

on power flow between subsystems. However, the accuracy

of the results could not be guaranteed [1] if the empirical

formulas are applied to different applications as some

formulas are unable to meet the necessary assumptions

such as room’s shape, room’s size and sound source. On

the other hand, the CAD-based numerical tool is proven to

be quite accurate for certain frequency regime; however,

using these tools for large scale system such as the offshore

platform can be quite time and resource consuming.

For the past few decades, neural networks have been

used to model complex systems. In machine learning, there

are many methods available in the literature. In this study,
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a general regression neural network (GRNN) [2] is used. It

is quite advantageous due to its ability to converge to the

underlying function of the data after few training samples,

and the results are quite consistent. A full knowledge of the

system to be modeled is often not required. It makes

GRNN a useful tool to perform prediction and comparison

of system performance in practice. As a result, the noise

engineers can spend more time on the noise analysis

instead of creating an accurate CAD model that requires

exact values of the model variables in the computer-based

acoustic simulation.

Many applications including the noise-related applica-

tions [3–6] use GRNN. In the current literature, GRNN

application on the offshore platform such as a jack-up rig

has not been discussed. In addition, the inherent use of

steels for room construction in the jack-up rig differs from

most of the land-based industrial and acoustic rooms [7, 8]

that increase the percentage of structure-borne noise than

airborne noise. Moreover, the problems of selecting the

appropriate inputs from the design variables (e.g., actual

position of the noise sources, room dimensions, and other

acoustic variables) are often impeded by a lack of exact

information during the early design stage of the offshore

platform. The relevant inputs used for GRNN training are

often quite subjective, and the types of input variables used

for training can vary across different noise engineers due to

their experience.

Hence, a modified multiple GRNN using fuzzy C-means

(FCM) clustering and principal component analysis (PCA)

is proposed to predict the noise level on the jack-up rig

with the least number of significant inputs. The training

and test samples from 125 to 8000 Hz obtained from the

computer-based statistical energy analysis (SEA) with

direct field (SEA-DF) software approach validated by

experimental data [9] will be used. These input data will be

preprocessed by FCM and PCA to group the dominant

samples together and reduce the dimensionality of the input

variables before commencing the training using GRNN.

With optimal spread variables obtained for each cluster at

different frequencies, multiple GRNN can be fused to form

an optimal GRNN. The proposed method enables noise

engineers to predict the noise level on any similar offshore

platform without repeating the SEA modeling that is often

time and resource consuming.

The contributions of the paper are as follows. First, by

fusing multiple GRNNs at different frequencies, the pro-

posed modeling scheme is sufficient for modeling various

frequency-dependent data that contain several input vari-

ables (as compared to current acoustic room models in the

literature that do not consider the frequency variation,

room geometry, source power, and receiver position in a

single formula). With more relevant variables used in each

cluster after the FCM-PCA, it consumes less computational

time as compared to conventional GRNNs that applied to

original data set with higher dimensions. Second, with

multiple GRNNs training and FCM-PCA, it enhances the

input variables selection and thus delivers more reliability

and robustness to the overall noise prediction model.

This paper has the following sections. Section 2

describes the proposed noise prediction using FCM-PCA-

GRNNs. Section 3 illustrates the selection of input vari-

ables for FCM-PCA-GRNNS. Sections 4 and 5 introduce

the real offshore structure case study and the data prepro-

cessing using FCM and PCA, respectively. Section 6

describes the design of multiple FCM-PCA-GRNNs. Sec-

tion 7 shows the results and discussion. Section 8 con-

cludes the paper.

2 Proposed noise prediction using FCM-PCA-
GRNNs

The proposed approach uses a validated SEA-DF model [9]

to train the FCM-PCA-GRNNs model. The neural net-

works determine the relationship between the room input

parameters to the total spatial equivalent sound pressure

level (SPL) and spatial average SPL at different [10] fre-

quencies (e.g., 125–8000 Hz). The total equivalent SPL

consists of both direct and diffuse field (or reverberant

field) where the former is obtained via MATLABTM, and

later by a commercial SEA modeling software called VA-

OneTM. It is capable to compute both the airborne and

structure-borne noise from the mid- to high-frequency

range [10]. The total equivalent noise level is the loga-

rithmic sum of both the direct field (Lp,dir) and reverberant

(Lp,rev) component as shown.

Lp;tot ¼ 10 log 100:1Lp;dir þ 100:1Lp;rev
� �

ð1Þ

The proposed noise prediction architecture is shown in

Fig. 1. The first layer (see the top of Fig. 1) models the

reverberant field noise level and direct field noise level

using VA-OneTM and MATLABTM, respectively. The

experimental validations of the total or equivalent noise

levels are performed before the training of the neural net-

work. The next layer (see the bottom of Fig. 1) requires the

total equivalent SPL and the input parameters from the

acoustic and structure features of the offshore platform

compartments. The fuzzy C-means clustering on the

available input data can help to identify clusters from the

data set of 424 samples (for each frequency range 125, 250,

500, 1000, 2000, 4000, and 8000 Hz) to obtain a concise

representation of a system’s input–output behavior. The

GRNN training is then performed on these clusters. If the

spread parameter r0 can produce the desired results for the
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cross-validation set, an updated spread parameter ri = -

r0 ? i 9 h (where h is the learning factor and i is the

number of iteration) will be used. The optimization of

spread parameter will terminate when the root mean

squared error (RMSE) of the cross-validation set is less

than the desired error. The final GRNNs will be built using

the optimal spread parameter, followed by testing the

results with a validation set and experimental data (if

available). With the FCM-PCA-GRNNs model for each

frequency established, it can predict the corresponding total

equivalent SPL in any compartments on any similar type of

offshore platform.

3 Selection of input parameters for FCM-PCA-
GRNNs

The input variable for FCM-PCA-GRNNs training is

selected based on two main principles: (1) parameters that

describe the acoustics and structure features of the offshore

platform, and (2) parameters that influence the response of

the sound fields. This information will require a prior

understanding of the acoustic problem on the board of the

jack-up rig at a different frequency. In addition, the

acoustic environment on the jack-up rig is quite complex

due to its large number of noise and vibration sources
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distributed quite closely within a compact space, and the

use of wide variety of different materials for wall’s con-

struction. Noise is transmitted via an airborne and struc-

ture-borne transmission. The airborne noise governs the

compartment’s sound field where the high noise level

machinery is concentrated. In general, the SPL measured in

the airborne-dominated compartments can be approxi-

mated by the Heerema and Hodgson empirical formula

[9, 11]. The formula used to determine the room sound

pressure level is directly related to the room geometry,

source power level, source–receiver distance, absorption

coefficient, and fitting density of the source room.

The strong airborne noise in the source room can pen-

etrate through the common bulkheads or decks to influence

the noise in the adjacent rooms. The transmitted acoustic

energy depends on the incident acoustic energy and

transmission loss which is determined by the plate material

properties and thickness as shown.

Ladj ¼ Lsource � Rþ 10 log
S

Sa
ð2Þ

where Ladj and Lsource are the SPL of the adjacent room and

source room, respectively. R and S are the transmission loss

and surface area of the common bulkhead/deck, respec-

tively. Here a is the mean absorption coefficient of the

adjacent room. In some cases where the SPL within the

source and the adjacent room is not known, the range of

SPL is provided by the regulation, namely NORSOK S-002

for eight different room types based on the permitted noise

levels onboard of the offshore platform as seen in Table 1.

On the other hand, the structure-borne sound is directly

caused by vibrating machinery-induced mechanical force,

or indirectly by the structure excitation due to incident

airborne noise. The energy radiated by structures is

proportional to the plate’s radiation efficiency, surface

area, density, sound propagation speed, and the square of

plate vibration velocity. The structure-borne sound affected

the remote rooms and attenuated as distance increases. The

structure-borne SPL can be expressed as.

LSB ¼ LV þ 10 log rþ 10 log
Sa
4S

ð3Þ

where LV denotes the structure vibration level, r is the

radiation efficiency, and S and a are the structure surface

area and room absorption coefficient, respectively.

The acoustic field in the compartments behaves differ-

ently. For example, the machinery compartments contain

airborne source radiation (e.g., engine room, mud pump

room); structure-borne and transmission noise (e.g.,

workshops, stores); and airborne, structure-borne and

transmission noise (e.g., pump room, transformer room).

Due to the good isolation strategies and damping treatment,

the SPL in the living quarter is usually dominated by the

air-conditioning diffuser radiated noise. The mechanical

diffusers are typically found in heating, ventilating, and air-

conditioning systems (HVAC). Some room adjacent to the

machinery compartments is affected by the transmitted

structure-borne noise. As a result, the compartments in the

offshore platform can be classified into five general groups:

• Compartments dominated by the airborne noise

• Compartments influenced by the structure-borne and

transmission noise

• Compartments influenced by airborne and structure-

borne noise

• Compartments influenced by airborne and transmission

noise

• Compartments influenced by airborne, structure-borne

and transmission noise simultaneously

Table 1 Room types defined for compartment onboard

Room

Type (1 to

8)

Descriptions Compartments Permitted

noise level

(dBA)

1 Unmanned machinery room Engine room, fire pump room, emergency generator room, and thruster room 110

2 Unmanned machinery room AHU room 90

3 Manned machinery room Switchboard room, transformer room, drill floor, mud room, mixing area,

pipe rack, general process and utility area, pump room, and cement room

85

4 Unmanned instrument room Local instrument room, electrical MCC room 75

5 Store, workshop, and instrument

room

Mechanical/electrical workshop, paint store, LQ stores, dish washing 70

6 Living quarter public area change room, LQ corridor, and toilets 60–65

7 Living quarter public area,

laboratory, and local control

room

Local control room, laboratory, galley, mess room, workshop office,

gymnasium, and lobby

50–60

8 Cabin, hospital, and central

control room

Cabin, hospital, and wheelhouse control room 45

1130 Neural Comput & Applic (2019) 31:1127–1142
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Based on the above sound analysis, several main

parameters that determine the spatial and spatial average

SPL of the room on the offshore platform can be obtained.

These includes the following 13 inputs and two output

parameters: (1) total interior source power level; (2) room

type; (3) room surface area; (4) room volume; (5) first

nearest source sound power level; (6) source/receiver dis-

tance from the first source; (7) second nearest source sound

power level; (8) source/receiver distance from the second

source; (9) room mean absorption coefficient; (10) maxi-

mum sound power level of adjacent rooms; (11) panel or

insulation thickness; (12) room type of the adjacent room;

(13) number of decks to the main deck; (14) spatial SPL;

and (15) average spatial SPL.

4 Case study on real offshore structure

The hull dimensions of the jack-up rig [9] involved in the

study are approximately 88.8 m (length) 9 115.1 m

(width) 9 12 m (height) as seen in Fig. 2a. There are four

aspects of developing a SEA model: (a) the structure

properties and configurations; (b) designed noise control

treatment; (c) the source information; and lastly (d) the

frequency range.

The offshore structures are mainly made of steels

modeled by a ribbed plate with the specific properties in the

construction drawing. The interior of each compartment in

the offshore platform is treated as a ‘‘cavity’’ which rep-

resents one acoustic subsystem of SEA model. These air

cavities together with structural subsystem such as six

walls around the room are connected to one another by

point, line, and surface area junctions which enable the

energy flow within the entire SEA model. The sound

pressure level, sound power level, and vibration level of

equipment are obtained from the vendor during the factory

acceptance test (FAT) at 100% of the nominal load. The

absorbing effects of the applied insulation layers in all

compartments are obtained from reverberation time (T60)

measurement. For the damped acoustic spaces, the SEA

model is based on the assumption of reverberant energy. It

is important to separate the direct field component from the

total energy. At steady-state condition, the final sound

power injects to the reverberant field of the subsystem is as

follows.

Pk
rev ¼ ð1� �akÞPk

in ð4Þ

where the reverberant sound power in subspace k denoted

by Pin
k is reduced by a factor of ð1� �akÞ. Here �ak is the

mean absorption of the subspace k.

The frequency range is set from 125 to 8000 Hz after

examining the number of modes present in each subsys-

tem within the compartment. After solving the SEA

energy balance equation of the jack-up rig, the reverber-

ant SPL in each compartment is obtained. Due to the

space limitation in the offshore platform compartments,

equipment is distributed quite closely. The direct sound

radiation from the equipment can also affect the equiva-

lent SPL. Thus, the correct noise model of the equipment

is crucial for the equivalent SPL. According to the liter-

ature [12], the marine equipment can be modeled by three

types of the noise source. A point source has inverse

square (1/r2) attenuation for small- and medium-sized

equipments such as compressors, pumps, and purifiers; a

rectangular surface source will generate box-like shaped

contours like large machinery such as main diesel gen-

erator, mud pumps, and hydraulic pumping unit (HPU). In

this study, both the reverberant (see Fig. 2a) and direct

(a)

(b)

Fig. 2 a Statistical energy analysis model of jack-up rig (color

indicates level of SPL), b SPL (in dB) of direct field from two pumps

(indicated by two black dots) (color figure online)

Neural Comput & Applic (2019) 31:1127–1142 1131

123



sound transmissions (see Fig. 2b) in the room are con-

sidered. The direct sound contribution from the adjacent

rooms is neglected. The direct field component will be

computed before adding to the reverberant field to obtain

the total equivalent SPL using (1). A total number of 424

input and output samples at the seven frequencies are

obtained from different rooms on the jack-up rig as shown

in Fig. 2a. For clarity, the input and output range of these

samples are tabulated in Table 2. Note that the above-

mentioned thirteen input variables (see row 1–13) and two

outputs (see last two rows) are used.

5 Data preprocessing using FCM-PCA

As discussed in Sect. 4, the sound transmission path in

various compartments is different. By preprocessing the

collected samples via data clustering can help to group

samples into clusters of similar characteristics. The FCM

algorithm [13, 14, 15] creates groups according to the

distance between the data points and the cluster centers.

Let xi be input parameters at each frequency, e.g., 125,

250,…,8000 Hz. The input variables of n-dimensional are

denoted by Xi ¼ x1; x2; . . .; xnð Þ 2 <n; 8i ¼ 1; 2; . . .;N

Table 2 Input and output range for each input parameter

No. Input variables and

outputs

125 Hz 250 Hz 500 Hz 1000 Hz 2000 Hz 4000 Hz 8000 Hz

Max. Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Min.

Inputs

1 Total interior sound

power level (dBA)

104.6 0.0 115.2 0.0 122.0 0.0 128.0 0.0 123.0 0.0 122.0 0.0 114.0 0.0

2 Room type 8.0 1.0 8.0 1.0 8.0 1.0 8.0 1.0 8.0 1.0 8.0 1.0 8.0 1.0

3 Room surface area

(m2)

2052.0 39.2 2052.0 39.2 2052.0 39.2 2052.0 39.2 2052.0 39.2 2052.0 39.2 2052.0 39.2

4 Room volume, V

(m3)

2160.0 16.2 2160.0 16.2 2160.0 16.2 2160.0 16.2 2160.0 16.2 2160.0 16.2 2160.0 16.2

5 First nearest source

sound power

levels (dBA)

101.0 0.0 112.0 0.0 119.0 0.0 125.0 0.0 120.0 0.0 119.0 0.0 111.0 0.0

6 Source/receiver

distance from the

first source (m)

20.0 0.0 20.0 0.0 20.0 0.0 20.0 0.0 20.0 0.0 20.0 0.0 20.0 0.0

7 Second nearest

source sound

power levels

(dBA)

101.0 0.0 112.0 0.0 119.0 0.0 125.0 0.0 120.0 0.0 119.0 0.0 111.0 0.0

8 Source/receiver

distance from the

second source (m)

20.2 0.0 20.2 0.0 20.2 0.0 20.2 0.0 20.2 0.0 20.2 0.0 20.2 0.0

9 Room mean

absorption

coefficient

0.3 0.0 0.6 0.0 0.7 0.0 0.6 0.0 0.6 0.0 0.5 0.0 0.5 0.0

10 Max sound power

level of adjacent

room (dBA)

104.6 0.0 115.2 0.0 122.0 0.0 128.0 0.0 123.0 0.0 122.0 0.0 114.0 0.0

11 Room type of

adjacent room

8.0 1.0 8.0 1.0 8.0 1.0 8.0 1.0 8.0 1.0 75.0 1.0 8.0 1.0

12 Panel/insulation

thickness between

adjacent room

(mm)

75.0 0.0 75.0 0.0 75.0 0.0 75.0 0.0 75.0 0.0 75.0 0.0 75.0 0.0

13 Number of decks to

main deck

6.0 -2.0 6.0 -2.0 6.0 -2.0 6.0 -2.0 6.0 -2.0 6.0 -2.0 6.0 -2.0

Outputs

14 Spatial l SPL (dBA) 90.5 20.4 97.2 21.0 103.3 16.2 109.4 12.9 104.5 9.9 103.9 0.0 95.9 0.0

15 Spatial averaging

SPL (dBA)

89.8 20.4 96.5 21.0 101.6 16.2 108.0 12.9 103.0 9.9 102.6 0.0 94.6 0.0
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form the corresponding columns in the data matrix X ¼
½X1;X2; . . .;XN �T 2 <N�n where N is the number of sam-

ples for each frequency as shown in Fig. 3.

The FCM algorithm partitions the data matrix X into jth

cluster (denotes as X j) for each frequency. A fuzzy parti-

tion represented as a matrix U, with elements of uji -

[0, 1], gives the membership degree in the partition. The

fuzzy partitioning is carried out through an iterative opti-

mization of the objective function in (7), with the update of

membership for each frequency as

lji ¼
1
�
d2ðXi; vjÞ

� �1= m�1ð Þ

PJ
j¼1 1

�
d2ðXi; vjÞ

� �1= m�1ð Þ ð5Þ

and cluster centers

vj ¼
PN

i¼1 ðljiÞ
m
Xi

PN
i¼1 ðljiÞ

m
; 8j ¼ 1; 2; . . .; J ð6Þ

where vj represents the center of jth cluster, m is the

fuzziness index, and m 2 (1, ?) determines the fuzziness

of the clusters. The number of the cluster center is denoted

by J. The Euclidean distance between ith data and jth

cluster’s center is dðXi; vjÞ ¼ Xi � vj
�� ��, and lji accounts

for the membership of ith data to the center of jth cluster.

The main objective of the FCM algorithm is to minimize

the objective function J X; U;Vð Þ on U and V.

J X;U;Vð Þ ¼
XJ

j¼1

XN

i¼1

lmji dðXi; vjÞ2; 2� J\N ð7Þ

where V ¼ ðv1; v2; . . .; vJÞ is the cluster prototype to be

determined and U is the fuzzy partition that must satisfy the

following constraints:

XJ

j¼1

lji ¼ 1;8i and 0\
XN

i¼1

lji ¼ N; 8j ð8Þ

The fuzzy cluster is obtained through an iterative opti-

mization of (7) according to the unsupervised optimal

fuzzy clustering.

After setting the number of clusters J = 5 and the

maximum number of iterations as 200, the FCM algorithm

is applied to all frequency samples. The clustering results

are presented in Fig. 4a–g in the form of parallel coordi-

nates plot to visualize and analyze multivariate data having

different range and SI unit. The values of the thirteen input

variables are polylines with vertices on the vertical axes.

The numbers in the X-axis represent the thirteen input

variables as seen in Table 2. The position of the vertex on

the ith axis corresponds to the ith coordinate of the sample

[16]. For example, there exists a higher value in the sixth

and eighth input within cluster 5. These high values can be

contributed by the possible noise [17] within samples

collected. The sound samples which are close to the cluster

centers are considered as normal samples. However, they

are assigned with very low or zero membership in the

cluster group. As a result, the PCA is used to reduce the

dimensionality through finding the high relevance input

variables for each cluster at a particular frequency.

The correlations of input variables to the outputs are

quite different in each cluster. The input variable selection

is implemented on the data matrix X in jth cluster (denotes

as X j) for each frequency to reduce the input dimension.

Note that the superscript ‘‘j’’ will be used to define jth

cluster and subscript ‘‘i’’ refers to the index for each

sample. PCA uses the singular value decomposition (SVD)

to rank the input variables in descending order of impor-

tance to least important. The most important variables are

given a higher priority than the less significant ones.

Briefly, the first step in the PCA algorithm is to normalize

the components such that they have unity variance and zero

means. It is followed by an orthogonalization method to

determine the normalized principal components. The PCA

operates on each cluster at particular frequency as follows.

1. Subtract the mean of each data point in the data set X j

to produce a data set of zero means in the cluster

j = 1, 2, …, J denotes as

X j � �X
j ð9Þ

where the mean �X
j ¼

PN j

i¼1 X
j
i

�
N j, X

j
i is the input

samples, Nj is the number of samples in the jth cluster,

respectively.

2. Compute the square covariance matrix X j of size

l 9 l for jth cluster where l is the number of reduced

input variables.

3. Perform singular value decomposition (SVD) on the

covariance matrix X j.

X j ¼ �U
j
S j �V

jT ð10Þ

Fig. 3 Input data matrix in three-dimensional
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where �U
j
is a l 9 l matrix with columns being

orthonormal eigenvectors or left singular vectors of

X jXjT, �V
jT

is a l 9 l matrix with columns being

orthonormal eigenvectors or right singular vectors of

XjTX j and S j ¼ diag(s1; . . .; slÞ is a l 9 l diagonal

matrix with the nonzero elements. It is also the singular

values or the square roots of eigenvalues from �U
j
or �V

j

positioned in descending order.

4. Apply U j, S j, and V j to determine the inverse square

root of the covariance matrix.
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Fig. 4 a Data distribution at 125 Hz after FCM, b data distribution at 250 Hz after FCM, c data distribution at 500 Hz after FCM, d data

distribution at 1000 Hz after FCM, e data distribution at 2000 Hz after FCM, f data distribution at 4000 Hz after FCM, and g data distribution at

8000 Hz after FCM
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Xj�1=2 ¼
Xh

i¼1

1
ffiffiffiffiffi
S j
i

q U j
iV

jT
i ð11Þ

where h is the number of eigenvectors for eigenvalues

in S j.

5. Multiply the SVD-computed inverse square root

covariance matrix as shown to obtain the reduced

dimensional data set.

Xj�1=2ðX j � �X
jÞ ð12Þ

Based on the acoustic field behavior in Sect. 4, the sam-

ples are grouped into five clusters at different center fre-

quencies using the FCM. The PCA is then applied to each

cluster to determine the number of principal components. In

this study, the cumulative percentage of variance criteria is

applied to determine the number of principal components.

According to this criterion, principal components are chosen

based on their cumulative proportion of variance higher than

a prescribed threshold value of 95%. The leverage scores for

each dimension are obtained by calculating their two norms.

Figure 5 shows the norm for the thirteen input parameters at

each frequency. The different heights shown on the respec-

tive bar charts reflect the dominant input parameters used for

each cluster. The dominant input parameters are only

retained in each cluster thus reduces the problem dimension

and eliminates the relativity between the input parameters.

As shown in Fig. 5, the significant principal components

are identified. The principal components below the prede-

termined threshold value are removed. The remaining input

variables should contain the most dominant variables for

GRNN training. Table 3 summarizes the result of Fig. 5,

and ‘‘x’’ refers to variable removed while ‘‘o’’ refers to the

dominant variables to retain for GRNN training. For

example, the seven remaining input variables for cluster 1

at 125 Hz are the total sound power level, room surface

area, room volume, nearest source#1 sound power level,

nearest source#2 sound power level, maximum sound

power level of adjacent room, and panel/insulation thick-

ness between adjacent room. Due to the unsupervised

characteristics of the FCM and application of PCA, the

importance of the input variables (or a number of dominant

parameters) in each cluster varies across the frequencies.

Note that the reduced sample size used for the GRNN’s

training is different in each cluster for the frequencies.

6 Model of multiple GRNN after FCM-PCA

The GRNN (see Fig. 6) is one type of radial basis function

(RBF) networks based on the kernel regression [2] and is a

robust regression tool for its strong nonlinear mapping

capability and high training speed. Also, it overcomes the

shortcoming of back propagation neural network which

needs a large number of training samples. It is suitable for a

problem with limited training samples, and GRNN has

been proved to be a useful tool to perform prediction and

comparison in many fields [6, 14, 18]. Briefly, the structure

of GRNN is composed of four layers: an input layer, a

pattern layer, summation layer, and output layer. The first

input layer consists of reduced input variables from FCM-

PCA preprocess that connected to the second pattern layer.

The neurons in the pattern layer can memorize the rela-

tionship between the neuron of entry and the proper

response of pattern layer. The two summations Ss and Sw in

the summation layer compute the arithmetic sum of the

pattern outputs with the interconnection weight equals to

one and compute the weighted sum of the pattern layer

outputs with the interconnection weight, respectively. The

neurons in the summation layer are then summed and fed

into the output layer. The number of the neurons in the

output layer equals to the dimension of the output vector.

Since there are five clusters in each frequency, there are a

total number of thirty-five GRNN predictors for the seven

frequencies.

The primary function of GRNN [2] is to estimate a

linear or nonlinear regression surface on independent

variables. It assumes the continuous probability density

function f ðX j; y jÞ has a random variable ~X
j
and ~y j. The

corresponding regression of yj on X j [2] is given by:

E y j=X j
� �

¼
R1
�1 y jf ðX j; y jÞdy
R1
�1 f ðX j; y jÞdy

ð13Þ

where X j refers to the data matrix X in jth cluster.

The probability density function f ðX j; y jÞ is estimated by

Parzen nonparametric estimator from X j and yj using the

reduced �N j observation samples (that is less than the original

number of samples, Nj in each cluster). lj (less than the

original number of input variables, n in each cluster). The

probability estimator f̂ ðX j; y jÞ is based on the sample values

X j and yj of the random variable ~X
j
and ~y j, respectively. The

probability density function f̂ ðX j; y jÞ [2] is expressed as:

f̂ ðX j; yiÞ ¼ 1

ð2pÞ
l jþ1
2 rl jþ1

:
1

�N j

XN
* j

i¼1

exp �
X j � ~X

j
	 
���

���

2r2

2

4

3

5

: exp �
ðy j � ~y jÞ

�� ��2

2r2

" #

ð14Þ

A spread parameter r is assigned to X j and y j of jth cluster.

The resulting regression [2] in (15) involves summations

over the observations.
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Fig. 5 Leverage scores of each input parameter for each cluster

group at different frequencies (cluster 1: dark blue, cluster 2: blue,

cluster 3: cyan, cluster 4: Orange, and cluster 5: yellow). a 2-norm

distribution for input parameter across each cluster group at 125 Hz,

b 2-norm distribution for input parameter across each cluster group at

250 Hz, c 2-norm distribution for input parameter across each cluster

group at 500 Hz, d 2-norm distribution for input parameter across

each cluster group at 1000 Hz, e 2-norm distribution for input

parameter across each cluster group at 2000 Hz, f 2-norm distribution

for input parameter across each cluster group at 4000 Hz, and g 2-

norm distribution for input parameter across each cluster group at

8000 Hz (color figure online)
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Table 3 Selection of input variables in clusters

Freq. (Hz) Clusters Total sound power

level (dBA)

Room

type

Room surface

area (m2)

Room volume,

V (1113)

Nearest source 1

SWL, dBA

Dist to nearest

source 1

Nearest source 2

SWL, dBA

125 1 O X O O O X O

2 X O O O X O X

3 O X O O O X O

4 O X O O O X O

5 O O O O O X O

250 1 O X O O O X O

2 O X O O O X O

3 O X O O X X X

4 X O O O X O X

5 O O O O O O O

500 1 O O O O O X O

2 X O O O X O X

3 O X O O O X O

4 O O O O O X O

5 X X O O X X O

1000 1 O X O O O X O

2 X O O O X O X

3 O O O O O X O

4 O X O O X X O

5 O X O O O X O

2000 1 O O O O O X O

2 O X O O O X O

3 O X O O O X O

4 X O O O X O X

5 O X O O O X O

4000 1 O X O O O X O

2 O X O O O X O

3 X O O O X O X

4 O X O O O X O

5 X X O O O X O

8000 1 O X O O O X O

2 O X O O O O O

3 O X O O O X O

4 X O O O X O X

5 O O O O O X O

Freq.(Hz) Dist. To

nearest

source 2

Mean

absorption

coefficient

Max sound power

level of adjacent

room (dBA)

Room type

of adjacent

room

Panel/insulation

thickness between

adjacent room (mm)

Number of

decks to

main deck

No. of

dominant

input

variables

No. of samples

(total 424 samples

for each freq)

125 X X O X O X 7 48

O O X O X O 8 205

X X O X O X 7 61

X X O X O X 7 66

X X O O O X 9 44
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Ŷ
jðX jÞ ¼

P �N j

i¼1 ~y
j exp � D

j2
i

2r2

	 


P �N j

i¼1 exp � D
j2
i

2r2

	 
 ð15Þ

where the two norms of scalar function

D
j2
i ¼ X j � ~X

j
	 
���

���.

The ‘‘spread’’ refers to the spread of radial basis func-

tions which plays a significant role in FCM-PCA-GRNNs

function approximation [2]. The larger spread gives a

smoother function approximation while the smaller spread

fits the data closely. The optimal spread variables can be

selected based on prior knowledge or intelligent opti-

mization algorithms [5]. In this study, a k-fold cross-

validation method is used to find the corresponding spread

parameter for each neuron based on the training samples in

the clusters. The selected value of spread parameter is

chosen once the error of the validation data starts to

increase. It is the point where overtraining of the network

may occur. The mean squared error (MSE) criteria measure

the difference between the estimated and target. An

updated spread parameter ri?1 = ri ? i 9 h with h is the

adjustable learning factor and i is the current loop index.

In each cluster, the data samples are randomly divided

into training and validation set with the following

weighting of 80 and 20%, respectively, for each cluster

(see Fig. 1). The validation set is used as an additional

independent measurement to estimate the quality of the

Table 3 continued

Freq.(Hz) Dist. To

nearest

source 2

Mean

absorption

coefficient

Max sound power

level of adjacent

room (dBA)

Room type

of adjacent

room

Panel/insulation

thickness between

adjacent room (mm)

Number of

decks to

main deck

No. of

dominant

input

variables

No. of samples

(total 424 samples

for each freq)

250 X X O X O X 7 25

X X O X O X 7 54

X X O X O X 5 83

O O X O X O 8 57

X O X O O O 8 205

500 X X O X O X 8 66

O O X O X O 8 205

X X O X O X 7 44

X X O O O X 9 48

X X O X O X 5 61

1000 X X O X O X 7 48

O O X O X O 8 66

X O X X X O 8 205

X X O X O X 6 61

X X O X O X 7 44

2000 X O X O X O 9 76

X X O X O X 7 61

X X O X O X 7 205

O O X O X O 8 48

X X O X O X 7 34

4000 X O O O O X 9 66

X X O X O X 7 44

O O X O X O 8 205

X X O X O X 7 61

X X O X O X 6 48

8000 X X O X O X 7 70

X X O X O X 8 38

X X O X O X 7 205

O O X O X O 8 76

X X O O O X 9 35

‘‘x’’ refers to variable removed while ‘‘o’’ refers to the dominant variables to retain for subsequent GRNN training
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trained network. In the k-fold cross-validation, the original

sample is randomly partitioned into similar-sized subsam-

ples. In the subsamples, one subsample is used as the

validation data for testing the model, and the remaining

subsamples as training data. After a maximum of four

iterations (from 0.01 to 3 with a step size of 0.01) for each

cluster at 125, 250, 500, 1000, 2000, 4000, and 8000 Hz,

the optimal spread variables that give the minimum MSE

are chosen. For the sake of clarity, Fig. 7 illustrates the

MSE of five clusters across different spread variables

ranging 0.01–3 for 125 and 250 Hz. The optimal spread

variables for each group are different. Typically, the FCM-

PCA-GRNNs tend to perform better with a smaller the

spread parameter than a larger value. As a result, the

optimal spread parameter is approximately 0.001 for all

frequencies.

7 Results and discussion

The data samples are randomly divided into training and

validation set with the following weighting of 80 and

20%, respectively, for each cluster (see the earlier pro-

posed architecture in Fig. 1). The optimal spread param-

eters are determined in Sect. 6, and the predicted SPLs

are compared with the SEA-DF simulation from the

validation set. The comparisons of spatial SPL and spatial

average SPL are compared in the following octave fre-

quency bands: 125, 250, 500, 1000, 2000, 4000, and

8000 Hz as shown in Fig. 8. The predicted, simulated

spatial SPL and spatial average SPL are compared. The

maximum and minimum noise levels, data distribution,

and the data mean are quite consistent. The results imply

the proposed FCM-PCA-GRNNs is able to predict the

SPL quite accurately as compared with the SEA-DF

simulation.

As seen in Table 4, the maximum and the mean value

of the errors at each frequency are tabulated to analyze

the prediction performance of the proposed method.

Table 4 presents the worst possible prediction results for

spatial and spatial average occur at 1000 Hz. The errors

of 1.8 and 1.75 dB can be determined in the maximum

spatial and spatial average, respectively. The mean errors

of the spatial and spatial average are 0.04 dB (8000 Hz)

and 0.025 dB (4000 Hz), respectively. The error is well

below the accepted limit of 3 dB for engineering survey

method. As seen in the prediction error tabulated in

Table 5, the error of FCM-PCA-GRNNs is quite small as

compared to GRNNs for the spatial average at each fre-

quency. The proposed FCM-PCA-GRNNs approach can

predict the spatial and the spatial average noise level.

Note that the training and validation sets are selected

Input Layer

Pattern Layer

Summation 
Layer

Output Layer

Fig. 6 Architectural implementation of multiple GRNN after FCM-

PCA
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Fig. 7 MSE of five clusters in

125 and 250 Hz after FCM-

PCA-GRNNs
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randomly such that the cross-validation can select the

optimal spread value for each run. It ensures the proposed

FCM- the PCA-GRNNs model is an optimal and robust

for the data set.

The use of FCM-PCA on samples has significantly

improved the multiple GRNN models performance, i.e.,

FCM-PCA-GRNNs. Table 5 presents the average absolute

prediction error for the spatial SPL and spatial average SPL

before and after using FCM-PCA. It shows the

improvement in the spatial error of 0.14–0.42 dB, while the

improvement in the spatial average error is 0.21–0.43 dB.

Additionally, the error fluctuation in different frequencies

has been reduced. By defining the percentage of

improvement, Fig. 9 shows an average percent improve-

ment of minimal 25 and 85% in spatial and spatial average

SPL, respectively, across all the frequencies. With the

optimal GRNNs obtained, the use of FCM-PCA to pre-

processing the input parameters enhances the reliability
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Fig. 8 Comparisons of a spatial
SPL and b spatial average SPL

between FCM-PCA-GRNNs

prediction and SEA-DF

simulation

Table 4 Summary of

prediction errors between FCM-

PCA-GRNNs and SEA-DF

Center frequency (Hz) Error (dB)

Max spatial Mean spatial Max spatial average Mean spatial average

125 0.9 -0.016 0.9 0.02

250 0.7 0.01 0.7 -0.02

500 1.4 -0.01 1.3 -0.02

1000 1.8 0.03 1.75 0.01

2000 1.1 -0.02 1.05 0.02

4000 0.6 0.007 0.55 0.025

8000 0.7 0.04 0.66 0
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and robustness of the prediction model as more relevant

parameters and multiple GRNN models are used.

The proposed FCM-PCA-GRNNs model performance

is further evaluated by the actual measurement using the

real engine room case study [9]. The structural and

acoustic information of the engine room associated with

the thirteen input variables is collected as the test sam-

ples. The frequency-dependent spatial SPL and spatial

average SPL are directed mapped. As shown in Fig. 10,

the result from FCM-PCA-GRNNs model is compared

with the empirical acoustic models such as Thompson

model (L1), Kuttruff model (L2), SNAME method (L3),

Heerema and Hodgson model (L4), Sergeyev model

(L5), and SEA-DF. It shows that FCM-PCA-GRNNs

noise model exhibits at least 16% less error than the

SEA-DF and empirical-based acoustic models. In sum-

mary, FCM-PCA-GRNNs provides a comparable and

more robust model for noise prediction at much lower

cost as compared to commercial CAD modeling using

SEA-based software.

8 Conclusion

This paper proposed a modified multiple GRNN model

with FCM and principal component analysis (PCA)

before training to improve the performance of the GRNN

models. The sound pressure level (SPL) on various

compartments onboard of a jack-up rig is influenced by

many uncertain acoustical parameters. The

Table 5 Model performance with and without FCM-PCA preprocessing

Frequency (Hz) Description SPL (dB) Error in SPL (dB) % of improvement using FCM-PCA-GRNNs

Spatial Spatial average Spatial Spatial average Spatial Spatial average

125 GRNN 0.62 0.50 0.38 0.43 61 86

FCM-PCA-GRNNs 0.24 0.07

250 GRNN 0.54 0.29 0.19 0.25 35 86

FCM-PCA-GRNNs 0.35 0.04

500 GRNN 0.73 0.33 0.37 0.30 50 90

FCM-PCA-GRNNs 0.36 0.03

1000 GRNN 0.56 0.33 0.21 0.32 37 96

FCM-PCA-GRNNs 0.35 0.01

2000 GRNN 0.54 0.25 0.14 0.21 25 86

FCM-PCA-GRNNs 0.40 0.04

4000 GRNN 0.68 0.44 0.42 0.43 62 98

FCM-PCA-GRNNs 0.26 0.01

8000 GRNN 0.46 0.27 0.19 0.26 40 96

FCM-PCA-GRNNs 0.27 0.01
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Fig. 9 Performance improvement for FCM-PCA-GRNNs as com-

pared to GRNNs only
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implementation of the FCM-PCA groups the data sam-

ples into clusters with less and more relevant input

variables by removing the less correlated parameters

from the clusters in each frequency. With the FCM-PCA

preprocessing, the FCM-PCA-GRNNs prediction accu-

racy has improved the spatial and spatial average SPL by

approximately 0.14–0.42 dB and 0.21–0.43 dB, respec-

tively. The spread parameters are identified by cross-

validation with minimum root mean squared error to

ensure the FCM-PCA-GRNNs are an optimal and reli-

able predictor for the multiple frequency-dependent data.

In the engine room study, the FCM-PCA on the fused

multiple GRNN models exhibits less than 16% in the

SPL error as compared to commercial acoustic software

using statistical energy analysis (SEA) and empirical-

based acoustics models. The FCM-PCA-GRNNs are

useful when the room arrangement tends to change too

frequently due to different design requirements from

owner and designers during the preliminary design stage.

Hence, the proposed FCM-PCA-GRNNs model helps to

predict the SPL of different compartments effectively at

different frequencies as it consumes less time and

resources when compared to the commercial acoustics

software that requires approximately 2–3 months to

build the functional acoustics model.

For future works, the proposed model will be further

optimized and improved. More works will be done to

improve the FCM partition and fuzzy membership func-

tions for the multiple frequency-dependent data set.
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