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Title of paper:  

The impact of burial period on compact bone microstructure: histological analysis of matrix 

loss and cell integrity in human bones exhumed from tropical soil 

 

Abstract: Human bone histological analysis is a useful tool to assess post mortem diagenesis and 

to predict successful nuclear DNA typing of forensic material. This study is part of a series of 

studies developed by the authors intended to improve the understanding of post mortem 

diagenesis and to develop applications for DNA analysis of skeletal species from tropical soils, 

in order to optimize genetic and anthropological protocols. The aim of this study was to analyze 

the impact of burial period on the integrity of exhumed compact bone microstructure from tropical 

climate. In fragments of exhumed human femora from 39 individuals from the same cemetery 

(exhumed group) and 5 fresh femora from routine autopsies (control group), sections stained by 

hematoxylin-eosin were analyzed in order to measure bone microstructural integrity. We found 

that bone integrity index in exhumed group was negatively influenced by the period of burial (r=-

0.37, p<0.05) and highly significantly decreased (p<0.0001) in comparison to control group. The 

period of burial and nitric acid decalcification time was positively correlated (r=0.51; p<0.01), 

leading to imply a bone petrification process during inhumation. Exhumed group showed higher 

level of matrix bone loss (p<0.001), as expected, and 87% of cases analyzed were “tunneled” as 

described by Hackett. Bone integrity index and bone matrix tend to decrease in bones buried in 

tropical soil between 8-14 years of inhumation. This period is 00000000000000short if we 

consider cases in which there are preserved bones interred for longer periods in other 

environments. These data must be considered in cases where genetic identification of exhumed 

skeletons from tropical environment is required. The diagenesis in these bones and the variations 

of results found are discussed, clarifying some challenges for forensic laboratories, especially in 

DNA analysis. 

 
Keywords: Forensic sciences, exhumation, compact bone, burial environment, postmortem diagenesis 
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1. Introduction 

 

1.1 Human exhumed bones and forensics  

 

When performing bone analyzes, it is possible to differentiate human and non-

human bones [1], predict time of burial [2, 3] and age at death, diseases [4] and other 

many questions of forensic relevance [5-8]. However, these analyzes can reveal many 

difficulties regarding interpretation. Usually exhumed bones diagenesis is subjected to 

numerous factors (temperature, location, characteristic of the soil, time of burial, size of 

the body, age at death). Even skeletal remains recently buried can be affected by a rapid 

decomposition, determining a quick transformation which makes the remains look older 

than they actually are. On the other hand, optimal conditions can preserve the remains 

very well for ages [9, 10].  

In a previous study is possible to observe forensic interest in post mortem changes 

in 60 years-buried human bones. On these bones, it was observed certain microscopic 

pathological changes such as periosteal deposits, probably syphilitics [11]. These studies 

complement contemporary investigations of diagenesis of skeleton remains related to the 

prospects of obtaining a useful DNA profile in cases of skeletonized or partially 

skeletonized human remains—such as in mass graves [12-14], historical [15, 16], 

criminal [17-19] or civil forensic cases. Also in the field of forensic investigations burial 

is a relatively common way of hiding corpses [20]. In all those cases, bone degradation 

may be a key factor affecting whether DNA can be recovered from buried samples. A 

comprehensive understanding of post mortem diagenesis of buried skeletal material is 

therefore crucial for recovering genetic material and potentially for optimizing the choice 

of samples for DNA extraction [21].  

 

1.2. General changes in bones after burial 

 

Following inhumation, bone structural changes (including destruction of 

histological integrity or bioerosion) consist of a multiphase process involving alteration 

of the organic fraction of the bone matrix, changes to the mineral component 

(hydroxyapatite) and mineral infilling of vascular spaces [22, 23]. Briefly, these structural 

changes may affect the integrity of the structural bone matrix, osteocytes and endothelial 

cells [10, 24].  In general terms, buried skeletons may be considered to follow a 
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“diagenetic trajectory” through time, the expression of which has increasingly been used 

to describe various degradation pathways that bones may follow under the influence of 

various environmental factors—such as temperature, pH [21, 25], local microbial fauna, 

hydrology [21, 26-32] and method of burial [24]. As a result of diagenesis, buried bones 

present a loss of bone matrix, frequently described as 'canals' or 'tunnels', caused by 

microorganisms or environment [10, 33].  

Most diagenetic parameters change in a correlated way, but the specific pattern of 

correlation tends to be somewhat site-dependent [26, 28]: bone diagenesis occurs 

according to environment conditions - which may affect DNA differently [21, 23]. 

Studies of bone diagenesis have led to increasing knowledge of structural changes 

affecting ancient bones buried in different environments and the survival of genetic 

material [21, 27]. For example, bone specimens preserved in ice environments exhibit 

greater DNA recovery than specimens stored in environments with elevated temperatures 

and greater access to oxygen [9, 28].  Previous study of forensic samples have indicated 

that soiled materials like exhumed bones tend to be poorer sources of amplifiable DNA 

than clean specimens, such as dried blood or semen stains and formalin-fixed specimens 

[29]. Reliable DNA amplification seems to be particularly difficult, as a consequence of 

the very low yield and extreme degradation of human DNA recovered, largely caused by 

the activity of microorganisms in the soil [5, 9, 32]. Microorganisms are present in most 

soil types, even though their absolute numbers may be small. The quantity will depend 

upon soil type and condition, which may partly explain variability in diagenesis according 

to environment [26]. Furthermore, microbial activity increases exponentially with 

increasing temperature, which is an important issue in tropical environments [5, 9, 26, 

34]. 

Among studies of bone diagenesis, Yoshino and colleagues [35] investigated 

changes in buried bone occurring over a time period of 0–15 years and found that vacuoles 

of 5–10 μm diameter, which contained a honeycomb-like structure formed by small 

vacuoles of 0.5–1 μm diameter, were found in the peripheral zone of the substantia 

compacta approximately 5 years since death, and in bones of 6 years or more, this change 

extended to the mid-zone. Castellano and colleagues [36] established measurements in 

0–50 years buried bones and found correlation between the time of death and certain 

variables. However, these studies were based on bones buried in temperate soil.  

Thin section analysis is extremely useful as structural changes in inhumed bones 

can be observed in contemporary and early stages. The purpose of this study was to 
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examine diagenesis in exhumed compact bone from a contemporary cemetery in a 

tropical environment by the assessment of microstructural parameters and measures of 

bone cell integrity with the aim to contribute to the understanding of bone degradation 

and the consequences of this process on bone. This can also provide a better sense of the 

methodologies of DNA-based genetic analysis.  

 

 

2. Material and Methods 

 

Ethical approval 

 

The remains were donated by the deceased’s families for anthropological research 

at the Medico-Legal Centre, Department of Pathology, Ribeirão Preto School of 

Medicine—University of São Paulo (FMRP-USP). This study was approved by the Ethics 

Committee of the Escola Paulista de Medicina of the Universidade Federal de São Paulo 

(EPM/Unifesp) under the Plataforma Brasil number (#337.104/13).The project also has the 

approval of the company that administrates the cemetery Companhia de Desenvolvimento 

Economico de Ribeirão Preto (CODERP), from which the bones used in this research 

were exhumed. All samples were obtained from male individuals over 18 years old. No 

personal identification information was used.  

 

Control group  

 

A control group comprising 2cm² cross-sections of femoral mid-shaft was 

obtained from 5 individuals, following routine amputations at Hospital Sao Paulo. In all 

cases they had been performed as a consequence of vascular disease (n=5, all males aged 

60-65 years). The samples were uniform and plausible to be used, we excluded bone 

diseases that would interfere in the analysis.  Following collection of the samples at the 

Department of Pathology, EPM/Unifesp, soft tissues were immediately removed and 

bone specimens cleaned with a sterile solution of  0.9% NaCl and fixed in 10% 

formaldehyde for 48h under agitation, prior to histological preparation.  

 

Exhumed group sampling and soil characterization 
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The exhumed group comprised of 2cm² cross-sections of femoral mid-shaft 

collected from 39 males. The age at death and causa mortis of 27 individuals and skin 

color of 38 individuals were recorded from death certificates, held in the Centre of Legal 

Medicine (CEMEL) of Ribeirão Preto Medical School of Sao Paulo University 

(CEMEL/FMRP USP). Skin color was classified according to The Brazilian Institute of 

Geography and Statistics (IBGE) criteria [37] and it was important to demonstrate how 

mixed the studied population is. The exhumations took place between 2012 and 2014, as 

part of an authorized civic redevelopment of a cemetery in the city. 

After exhumation, the amount of soil attached to the cortical femur was classified 

qualitatively, before cleaning, as: 0 = no adhered soil; 1 = low amount of adhered soil; 2 

= moderate amount of adhered soil; and 3 = high amount of adhered soil. Subsequently, 

the soil excess was removed from the cortical bones prior to histological processing.  

The cemetery is located at an altitude of 545 meters above sea level, and the 

weather is characterized by rainy summers and dry winters. Average temperatures are 

above 18°C in all months of the year, with an annual average of 21.9°C and rainfall of 

about 1500mm per annum. The cemetery’s soil is characterized as red latosoil, slightly 

acid (pH 6.4), and composed mostly of clay, water, acric latosoil, carbon and iron [38]. 

The interments had taken place between 2000 and 2006, in wooden coffins buried at about 

1.5 m. below the ground surface.  

The average known age at death (n=27) of the exhumed group was 52.44 ± 14.74 

years - the youngest and oldest adults were 22 and 85 years old, respectively (Table 1). 

The most common known causa mortis (n=35) were septic shock, pneumonia and 

cranioencephalic trauma. In the cases 9, 14, 20 and 36 the causa mortis was not reported 

in death certificates. Skin pigmentation was known (n=38) and classified as medium 

brown (53%), white (29%) and black (18%). In a single case (number 34) it was not 

possible to obtain a photographic record or death certification from which the skin 

pigmentation could be assigned (Supplementary Table 1). Skin color was not correlated 

with any parameter. The average period of inhumation was 11.69 ± 1.76 years, and ranged 

from 8 to 14 years (Table 1). 

 

 

Histological processing of fragments of cortical femur  
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Histological sections were performed in accordance with EPM/Unifesp routine 

service protocols. Briefly, the cleaned samples were fixed directly in 10% neutral 

buffered formalin for about 21 hours under agitation. After fixation, the samples were 

decalcified in an aqueous solution of 7% nitric acid, changed daily until the fragments 

were sufficiently softened to allow histological sectioning. The time required for 

complete decalcification was recorded. Sections from the tissue paraffin blocks 5 

micrometer (µm)-thick were stained with hematoxylin–eosin (HE). 

 

Histomorphometric and integrity analyses  

 

Histological analysis was performed by light microscopy: (Olympus™ BX40 

microscope; Olympus Corporation, Shinjuku Monolith, 2-3-1 Nishi-Shinjuku, Shinjuku-

ku Tokyo, Japan) coupled to a video camera Olympus Q Color 3 (Olympus America, 

Melville, NY) for digital image processing in QCapture Pro version 6.0 (QImaging, 

Surrey, BC, Canada).  

 

Bone matrix loss 

 

Bone matrix loss analysis was performed analyzing 10 consecutive fields in each 

histological section, from each case. After scanning the HE stained sections, at a 100x 

magnification, in order to enable further bone region analysis, areas of highest bone 

matrix loss were located. These areas were nominated as “hotspot” starting points, and 

10 contiguous field images were digitalized in a zigzag pattern from these points. Bone 

matrix loss was measured using ImageJ® (Windows Version 1.49, US National Institutes 

of Health, Bethesda, MD, USA) by two independent observers. Structures possessing a 

normal absence of bone matrix - such as Volkmann's canals and Haversian canals - were 

disregarded. Bone matrix loss measurement was performed in both exhumed and control 

groups, considering that the latter is they are formed by individuals who would have bone 

loss due to aging or physiological conditions. The total mean of bone matrix loss area (in 

µm²) in these 10 contiguous fields was used in the statistical analysis described below. 

 

Osteocyte or cell nuclei and bone integrity index 
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Cell index was calculated as the ratio between total mean of osteocytes and 

osteocyte lacunae [39] in preserved areas, for each case. After scanning the HE-stained 

sections at a low magnification (100x), the areas of highest concentration of osteocytes 

in the bone were located and chosen as hot spots. From these areas, 10 contiguous fields 

were digitized at 400x magnification to enable better differentiation of structures and of 

osteocytes and osteocyte lacunae. Images were analyzed in Image Pro-Plus® (Windows 

Version 6.0, Media Cybernetics, Silver Spring, MD, USA), yielding an interobserver 

agreement index of 100%. Only well-defined osteocyte nuclei and lacunae were 

considered. Doubtful cases, such as histological artifacts or areas of bone matrix loss due 

to decomposition were excluded. Cell and bone integrity indices and osteocytes/preserved 

bone matrix area (nuclei/µm²) in 10 contiguous fields were used for the statistical 

analysis. The data were collected by two independent experienced observers.  

 

Haversian canal analysis  

  

Haversian canal analysis was performed in 10 contiguous fields of each 

histological section. The first field was randomly chosen and the images obtained were 

digitalized from that in a zigzag pattern at 100x magnification. Haversian canal total 

number was manually counted using Image Pro-Plus® and the results expressed as 

Haversian system density (Haversian canals per mm² of preserved matrix bone). The 

maximum diameter and total area of each Haversian canal were also measured. The total 

mean density, maximum diameter (in µm) and area of Haversian canals (in µm²) in 10 

contiguous fields were used in the statistical analysis.   

 

Statistical analysis  

  

In the intra-group analysis performed on the exhumed group, correlations were 

measured using Pearson's coefficient “r” for parametric data or Spearman's coefficient 

“rs” for nonparametric data. In the intergroup analysis performed between the exhumed 

and control groups, the comparison was undertaken using the Student’s t-test. Values of 

p<0.05 with a confidence interval of 95% were considered significant. All statistical 

analyses were carried out using GraphPad Prism® (Windows Version 4.0, GraphPad 

Software, San Diego, CA, USA). 
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3. Results 

 

Exhumed sample attributes 

 

Macroscopic analyses of adhered soil were classified as follows: score 00: 2.56%; 

score 01: 17.94%; score 02: 35.89%; score 03: 43.61% (Supplementary Table 1). There 

was no statistically significant correlation between adhered soil and period of burial 

(p=0.16; n=39), matrix bone loss (p=0.81, n=39) or bone integrity decay (p=0.94, n=39). 

  

Histological processing of cortical femur fragments 

 

 The average time to decalcification was 8.8 ± 0.84 and 11.69 ± 1.76 days, in the 

control and exhumed groups, respectively. A statistically significant positive correlation 

between period of burial and decalcification time in the exhumed group was observed 

(Pearson’s r=0.49; p<0.01; n=39) (Table 2). There was no statistically significant 

difference between decalcification time and age at death (p=0.37; n=27). The exhumed 

group took longer to decalcify compared to control group (p<0.001) (Table 2 and Figure 

1A). 

 

Bone matrix loss area 

  

 The bone loss total mean area was 239.36 ± 133.81 and 1,419.28 ± 696.52 µm², 

in the control and exhumed groups, respectively (Table 2). Of the 39 exhumed cases 

analyzed, 34 showed the different types of tunnels as described by Hackett such as Wedl 

(fungal), linear longitudinal, budded and lamellate tunnelling [10]. However, not 

necessarily all the types were found in the same bone. In the exhumed group, no 

significant positive correlation between matrix bone loss area and age at death (p=0.16; 

n=27) nor period of burial (p=0.38; n=39) was found. However, the exhumed group 

showed a higher matrix bone loss total mean area than control group (p<0.001) (Table 2, 

Figure 1B and Figure 2).  

Haversian canal analysis  

 

The Haversian canal average total area was 6.92 ± 0.8 and 7.19 ± 1.7 µm², in the 

control and exhumed groups, respectively. The greatest diameter was 85.69 ± 10.21 and 
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88.76 ± 33.61 µm, respectively. There was no difference between control and exhumed 

groups in the Haversian canals average total area (p=0.72) nor in the maximum diameter 

(p=0.84) (Table 2). Intra-group comparison showed that age at death was directly 

proportional to Haversian canals average total area (r=0.51; p<0.01; n=27) but no 

correlation with Haversian canals maximum diameter (p=0.47; n=27) (Table 03).  

 

Osteocyte or cell nuclei and bone integrity index 

 

The average absolute number of osteocytes was 68.2 ± 0.0005 and 4.77 ± 6.36, in 

the control and exhumed groups, respectively (Table 2). In the exhumed group, the 

number of osteocytes was lower in femora that had remained buried for a longer period 

(r=-0.40, p<0.05; n=39) (Table 1 and 2) and it was not correlated with the age at death 

(p=0.6; n=27). The exhumed group showed a lower average absolute number of 

osteocytes (p<0.0001) and a lower number of osteocytes per preserved bone matrix area 

(p<0.001) than the control group (Table 2 and Figure 1C).  

The average absolute number of osteocyte lacunae was 109.8 ± 7.01 and 96.70 ± 

45.32, in control and exhumed bones, respectively (Table 2). In two cases in the exhumed 

group (numbers 33 and 37) it was not possible to count osteocyte lacunae (Table 1) due 

to bioerosion. Intra-group comparison showed that osteocyte lacunae total number was 

not correlated with age at death (p=0.25; n=25). In addition, osteocyte lacunae total area 

was 43.86 ± 3.26 and 39.88 ± 7.37 in control and exhumed bones, respectively. There 

was no statistically significant difference between exhumed and control groups (p=0.24). 

Intra-group comparison showed that osteocyte lacunae total area was directly 

proportional to age at death (r=0.57; p<0.01; n=25) (Table 3) but not correlated with time 

of burial (p=0.91; n=37). 

The bone integrity index was 0.62 ± 0.07 and 0.05 ± 0.07 in control and exhumed 

groups, respectively. The exhumed group showed a lower bone integrity index than 

control group (p<0.0001) (Table 2, Figure 1D and Figure 3). Additionally, intra-group 

analysis showed that the bone integrity index was inversely proportional to the period of 

inhumation (r=-0.38; p<0.05; n=39) (Table 1).     

4. Discussion 

 

Analysis of bone microstructure and cell integrity in exhumed skeleton cases are 

important for understanding bone diagenesis and its molecular correlates [40-42]. It may 
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permit species discrimination [1, 43], time since death estimation [2, 44], distinction of 

forensic and archaeological remains [2] and optimization of DNA-based analyses [21, 45, 

46]. Inhumations, especially those made in tropical climates, such as those of Brazil, may 

provide peculiarity characteristics to bone microstructure, osteocyte cells presence and 

others. Therefore, studies involving bones exhumed from that environment are worthy of 

independent investigation. 

The specimens considered in this study are recent and comparable to forensic 

specimens (Table 1). Although the remains had been buried in coffins, it was observed in 

all cases that, after 8 to 14 years of inhumation, the coffin lid had broken and the remains 

had been contaminated with soil, allowing interaction between bones and soil chemistry, 

microorganisms and humidity. This phenomenon was also reported by Jarvis [47], who 

noted the presence of water and soil in contact with skeletons inside wooden coffins 

exhumed after 50 to 100 years of burial in a temperate climate. Usually, soil contains by-

products of metabolism from the microorganisms responsible for decomposition and the 

more resistant soil humates [26]. Fernández-Jalvo and colleagues (2010) suggested 

correlations between surface and histological modifications in bones from temperate 

environments [48]. However, in our study there was no relationship between the quantity 

of adhered soil on the bone surface and the period of burial. This may be due to differences 

in coffins materials (some coffins are more or less resistant to degradation) and the soil 

humidity in the exact locality in which the coffin is located (in some parts of the cemetery 

there is a greater accumulation of rain water, which can speed up the coffin degradation). 

James and Wells [49] postulated that soil chemical characteristics may vary in relation to 

the distance between two points of sample collection according to three scales: 

macrovariations (bigger than 2 meters), mesovariations (between 0.05 and 2 meters) and 

microvariations (less than 5 centimeters). Besides, adhered soil was not correlated to bone 

integrity decay, probably because not only soil chemistry or microorganisms but other 

factors such as humidity and temperature may also destroy osteocyte cells and contribute 

to decay of bone integrity index following burial. Kendall and colleagues (2018) 

postulated that fluctuating water levels in and around the bone are the most harmful for 

preservation and lead to rapid skeletal destruction [42]. 

As Figure 2 shows, it is possible to use histology to visualize destructive bone 

matrix foci (bioerosion) of 2-100 µm appearing around the Haversian canals and 

osteocyte lacunae in exhumed bones. These results correspond with those found in 

ancient bones by Hacket [10] in 1981, Bell and colleagues [50] in 1996 , Jans and 
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colleagues [33] in 2004, and by Cappella and colleagues [2] in 2018. The bioerosion 

observed in the present study contrasts with the sequence of changes due to pathological 

processes, such as degeneration and apoptosis. In this analysis, it was only possible to 

detect destruction as no new bone could be laid down post mortem. As the exhumed group 

showed an area of bone matrix loss significantly higher than the control group, it can be 

assumed that histomorphological change was caused by diagenesis. Due to the natural 

stiffness, performing histological sections of bones is not an easy task. Therefore, the 

decalcification in nitric acid was monitored daily to identify the optimum texture for the 

microtome. Even after careful monitoring, some histological artifacts were observed both 

in control and in exhumed bones. Comparative analysis of exhumed and control bones 

was performed, so that no histological artifact was considered bone loss due to burial. 

Thus, if any doubts arise regarding certain bone loss in a given histological field, this 

region has not been accounted for.  

The diagenetic trajectory including bone matrix loss may be relatively consistent, 

if not exactly linear, especially in the case of bones enclosed in a burial environment [30]. 

Although the samples of the present study were collected from the same cemetery and 

remained in situ throughout the burial period in the same conditions, no correlation 

between bone matrix loss and period of inhumation was observed. Despite that, a recent 

study concluded that the more ancient samples are more extensive microscopic focal 

destruction and recent samples exhibited a better preservation of bone micromorphology 

[51]. Furthermore, five out of thirty-nine exhumed samples showed less no bone area than 

other cases, even after being buried for many years (Table 1). These observations may be 

explained by differences in the immediate environment, such as in local hydrology and 

pH, even for the same cemetery. In these cases, the diagenetic trajectory may be different 

to others [52, 53]. Verhoff and Kreutz [6] conclude that skeletons with identical post 

mortem interval from the same cemetery may show different qualitative and quantitative 

signs of decomposition. Bone is known to survive for more than 105 years in many burial 

contexts and less than 103 years in others [53]. In this study, bone samples from five 

individuals were recovered showing no bone microstructure diagenesis. Although they 

came from the same cemetery as all the samples, maybe they were situated in a local 

where the environmental components such as minor level of humidity or microorganisms 

favored their conservation. Further conclusions are not possible because the exact spot of 

exhumation in the cemetery was not provided. 
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In tunneled samples, there is uncertainty as to whether this "corrosion" of bone 

matrix will expand until full bone dissolution occurs and - if so - how long this process 

will take. So far, it has not been possible to resolve this issue, but it is postulated that 

accumulation of the waste products, in the surrounding tissue may hinder or stop the 

growth of the microorganism itself and consequentially limit bone destruction in some 

situations [10]. Further research on a similar sample interred for longer periods may be 

valuable in investigating this process. It may be inferred, however, that - in parallel to the 

formation of tunnels - a type of “bone petrification” occurs, as bone interred for longer 

periods took longer to decalcify in nitric acid during histological processing. It was also 

observed in samples decalcified in EDTA [54]. Maybe, this phenomenon occurred 

because the edges of the tunnels commonly appear dense and mineralized usually by iron-

rich minerals (iron oxides), sulphides or carbonates [22]. Another explanation may be 

related to water, collagen and bone cells loss during the burial period, leaving only the 

inorganic portion (rigid) of the bone. 

Histomorphometric analysis is potentially important in forensic osteological 

investigation [1, 7, 21, 55-57]. Although several techniques may be used, optical 

microscopy allows a large number of specimens to be quickly prepared, using an 

inexpensive and practical method. Using this approach, it was established in this study 

that Haversian canal average total area and maximum diameter showed no difference 

between exhumed and control groups (Table 2) and, therefore, even in exhumed bones 

from burials of 8-14 years in tropical soil, it may be possible to analyze these 

histomorphometric parameters. 

The histomorphometric parameters such as Haversian bone tissue may be an 

important tool to differentiate human from certain nonhuman species. However in species 

like pig, cow, goat, sheep, horse and water buffalo where only Haversian bone tissue 

exists in bone fragments, differentiation of these species from humans is not possible. 

Where differentiation using Haversian bone tissue is undertaken, both the general 

microstructural appearance and measurements of histological structures should be 

applied. Haversian system diameter and Haversian canal diameter are the most optimal 

and diagnostic measurements to use [1]. Besides, intra-group comparison showed that 

age at death was directly proportional to Haversian canals average total area but no 

correlation with Haversian canals greatest diameter. From that, we can suggest that 

Haversian canals increased at the ends of smaller diameter, acquiring more rounded 

appearance in elderly individuals. A similar phenomenon has been observed by 
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Pankovich et al [5] and Sharpe [3], who suggested that among other bone changes, the 

lumina of Haversian canals are often larger in old people if compared to younger. Intra-

group comparison also showed that osteocyte lacunae total area was directly proportional 

to age at death but not correlated with the time of burial. Although in the present study 

only well-defined Haversian canals and osteocyte lacunae had been analyzed, it is not 

possible to affirm exactly that these total area increases occurred in life, since they were 

subject to changes in the burial environment. Previous study found that osteocyte death 

was not related to age, nor was it increased in osteoporosis compared with the controls 

[58]. Besides, a study revealed that osteocyte lacunar volumes were unaffected by both 

age and sex [59]. In the current study the bone integrity index calculated as the ratio 

between osteocyte cells and osteocyte lacunae (Figure 1D and Figure 3), as described by 

de Castilho [39], established osteocyte survival inside lacunae in exhumed bones. These 

findings are important because are related to bones inhumed between eight and twelve 

years in tropical soil. In the literature, it is possible to find similar data from Iwamura and 

colleagues [5] which found osteocyte cells in three-years exhumed bone from ossuaries 

and Muñoz and colleagues [8] which found these cells it in unknown-age bones from 

mass graves. 

Intra-group analysis showed that the period of burial was inversely correlated with 

the bone integrity index, showing that the longer bone remains interred, the lower its 

integrity (Table 1). Similar findings were reported in studies that correlated post mortem 

interval (PMI) and loss of collagen in human and non-human bones [60, 61]. While the 

number of osteocyte lacunae present in the exhumed bone group showed no difference in 

comparison to the control group, the number of osteocytes was significantly lower. 

Although it is possible that osteocyte lacunae may appear empty due to sectioning 

artifacts, this is very unlikely, however, as the bone was formaldehyde-fixed and 

undecalcified, and the cellular processes of osteocytes integrated within the bone matrix. 

Furthermore, if artifacts were to occur, it is assumed they occur equally in both control 

and exhumed groups, such that differences in the number of empty lacunae between the 

two groups will still be detected. Besides, intra-group analysis showed that age at death 

was not a correlate of osteocyte survival, and that the diminution of bone integrity index 

in the exhumed bone group is due to a reduction in the number of osteocytes following 

burial. Since the DNA can also be enclosed in the bone matrix [21], we cannot discard 

completely the chances of achieving genetic profile of bones with low rates of bone 

integrity index. Even in poorly preserved bones may be regions of bone with unchanged 
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morphology, particularly in the inner third of the cortex, between the diagenetically 

remodelled endosteal and periosteal layers. Histological screening of skeletal samples 

would optimize DNA recovery [46]. Studies in our laboratory are being conducted to 

evaluate the possibility to obtain genetic profiles of these bones, even those with low rates 

of bone integrity. It was already stated that significant amounts of genetic information 

can be recovered from an ancient human femur by using the polymerase chain reaction 

(PCR) [59]. Also the distribution of microbial destruction (bioerosion) patterns through 

time is being evaluated. While research examining post mortem changes in palaeological, 

archaeological and historical bone are commonplace, difficulties in obtaining consistent 

samples of exhumed material make studies of more recent specimens problematic.  

Finally, the need to give strong evidence for admissibility in the court room have 

pressed both forensic pathologists and forensic biologists to employ analytical methods 

consistently supported by scientific data in cases of exhumed human remains. This study 

is part of a series of studies developed by the authors intended to improve the 

understanding of post mortem diagenesis and to develop applications for DNA analysis 

of skeletal species from tropical soils, in order to optimize genetic and anthropological 

protocols [5, 9, 29, 54, 62]. 

 

5. Conclusion 

 

Histomorphometric analysis was possible and showed loss of bone integrity and 

significant bone matrix loss following periods of known burial period (8-14 years) in 

tropical soil. However, the presence of osteocyte cells was observed in areas of preserved 

matrix. The period of burial was inversely correlated with the bone integrity index. We 

observed in parallel to matrix loss that a type of “bone petrification” occurs. Thus, in 

forensic investigations aiming at DNA-based human identification, these data must be 

considered. 
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