# Northumbria Research Link

Citation: Wu, Zhonglin, Li, Zhijie, Li, Hao, Sun, Mengxuan, Han, Shaobo, Cai, Chao, Shen, Wenzhong and Fu, Yong Qing (2019) Ultrafast Response/Recovery and High Selectivity of H2S Gas Sensor Based on  $\alpha$ -Fe2O3 Nano-Ellipsoids from One-Step Hydrothermal Synthesis. ACS Applied Materials & Interfaces, 11 (13). pp. 12761-12769. ISSN 1944-8244

Published by: American Chemical Society

URL: https://doi.org/10.1021/acsami.8b22517 < https://doi.org/10.1021/acsami.8b22517 >

This version was downloaded from Northumbria Research Link: http://nrl.northumbria.ac.uk/38356/

Northumbria University has developed Northumbria Research Link (NRL) to enable users to access the University's research output. Copyright © and moral rights for items on NRL are retained by the individual author(s) and/or other copyright owners. Single copies of full items can be reproduced, displayed or performed, and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided the authors, title and full bibliographic details are given, as well as a hyperlink and/or URL to the original metadata page. The content must not be changed in any way. Full items must not be sold commercially in any format or medium without formal permission of the copyright holder. The full policy is available online: http://nrl.northumbria.ac.uk/policies.html

This document may differ from the final, published version of the research and has been made available online in accordance with publisher policies. To read and/or cite from the published version of the research, please visit the publisher's website (a subscription may be required.)





# Ultrafast Response/Recovery and High Selectivity of H<sub>2</sub>S Gas Sensor Based on α-Fe<sub>2</sub>O<sub>3</sub> Nano-Ellipsoids from One-Step Hydrothermal Synthesis

Zhonglin Wu<sup>1</sup>, Zhijie Li<sup>1\*</sup>, Hao Li<sup>1</sup>, Mengxuan Sun<sup>1</sup>, Shaobo Han<sup>1</sup>, Chao Cai<sup>2</sup>, Wenzhong Shen<sup>3</sup>, YongQing Fu<sup>4\*</sup>

 <sup>1</sup>School of Physics, University of Electronic Science and Technology of China, Chengdu, 610054, China
 <sup>2</sup>Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China
 <sup>3</sup>State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Science, Taiyuan, 030001, China
 <sup>4</sup>Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne, NE1 8ST, UK

Keywords: α-Fe<sub>2</sub>O<sub>3</sub>; Nano-ellipsoid; Hydrothermal; Hydrogen sulfide; Gas sensors

Zhijie Li (Corresponding Author): ORCID: 0000-0001-9870-9939;

\*E-mail: zhijieli@uestc.edu.cn; TEL: +86 02883202160

YongQing (Richard) Fu (Corresponding Author): ORCID: 0000-0001-9797-4036;

\*E-mail: Richard.fu@northumbria.ac.uk; TEL: +44 (0)191 2274662

# Abstract

Ultrafast response/recovery and high selectivity of gas sensors are critical for real-time and online monitoring of hazardous gases. In this work,  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> nano-ellipsoids were synthesized using a facile one-step hydrothermal method and investigated as highly sensitive H<sub>2</sub>S sensing materials. The nano-ellipsoids have an average long axis diameter of 275 nm and an average short axis diameter of 125 nm. H<sub>2</sub>S gas sensors fabricated using the  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> nano-ellipsoids showed excellent H<sub>2</sub>S sensing performance at an optimum working temperature of 260 °C. The response and recovery times were 0.8 s/2.2 s for H<sub>2</sub>S gas with a concentration of 50 ppm, which are much faster than those of H<sub>2</sub>S gas sensors reported in literature. The  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> nano-ellipsoid based sensors also showed a high selectivity to H<sub>2</sub>S compared to other commonly investigated gases including NH<sub>3</sub>, CO, NO<sub>2</sub>, H<sub>2</sub>, CH<sub>2</sub>Cl<sub>2</sub> and ethanol. In addition, the sensors exhibited high response values to different concentrations of H<sub>2</sub>S with a detection limit as low as 100 ppb, as well as excellent repeatability and long-term stability.

# **1. Introduction**

Hydrogen sulfide (H<sub>2</sub>S), one of the highly toxic gases, is widely existed in petroleum industry, natural gas and biological decomposition of organic materials and extensively used in many industrial processes. Leakage of H<sub>2</sub>S gas will impose tremendous risks on environment and human health even at a very low concentration. Therefore, rapid and selective detection of H<sub>2</sub>S gas is of great importance.<sup>1</sup> In recent years, many types of H<sub>2</sub>S gas sensors have been developed, such as resistive sensor,<sup>2</sup> electrochemical sensor <sup>3</sup> and surface acoustic wave sensor.<sup>4</sup> Among these, the resistive sensor based on semiconducting metal oxide nanostructures attracts great attention due to its facile fabrication process and excellent sensing performance.<sup>5</sup>

Various semiconducting metal oxide nanostructures<sup>6</sup> have been explored to detect H<sub>2</sub>S gas, including ZnO,<sup>7</sup> CeO<sub>2</sub>,<sup>8</sup> WO<sub>3</sub>,<sup>9-10</sup> CuO,<sup>11</sup> MoO<sub>3</sub>,<sup>12</sup> NiO,<sup>13</sup> SnO<sub>2</sub>,<sup>14</sup> In<sub>2</sub>O<sub>3</sub><sup>15</sup> and  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub>.<sup>16</sup> Among them, the  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> nanomaterials are nontoxic, chemically stable and low cost, which are good sensing materials to detect ethanol,<sup>17</sup> acetone,<sup>18</sup>

trimethylamine,<sup>19</sup> NH<sub>3</sub><sup>20</sup> and H<sub>2</sub>S.<sup>21</sup> It was reported that  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> nanomaterials exhibit good sensing performance for H<sub>2</sub>S.<sup>16</sup> It is well known that the size, morphology and porosity of  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> nanomaterials significantly affect their gas sensing properties, such as sensitivity, response/recovery times (t<sub>res</sub>/t<sub>rec</sub>), selectivity and stability. Therefore, great effort has been made to prepare different  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> nanostructures to improve the H<sub>2</sub>S gas sensing performance, such as flute-like porous nanorods,<sup>22</sup> micro-ellipsoids,<sup>21</sup> sheaf-like architectures,<sup>17</sup> hollow urchin-like spheres<sup>23</sup> and microcubes<sup>24</sup>, etc. The sensing properties of H<sub>2</sub>S gas sensors based on different Fe<sub>2</sub>O<sub>3</sub> nanostructures reported in literature are summarized in Table 1. It can be found that high response values and ppb level detection limits have been achieved using some Fe<sub>2</sub>O<sub>3</sub> nanostructures. However, the response/recovery speeds of these reported H<sub>2</sub>S gas sensors based on these  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> nanostructures are not fast enough to timely trigger the alarm. In addition, many of these H<sub>2</sub>S gas sensors do not show a good selectivity to H<sub>2</sub>S gas.<sup>19</sup> For example, although the porous  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> exhibited fast responses/recovery speeds at 250 °C, there were no significant difference in the response values toward H<sub>2</sub>S and ethanol.<sup>25</sup>

| Materials                                                    | Working<br>Temp. | Con.<br>(ppm) | Response | $t_{res}/t_{rec}$ | Detection<br>Limit | Ref. |
|--------------------------------------------------------------|------------------|---------------|----------|-------------------|--------------------|------|
| Fe <sub>2</sub> O <sub>3</sub> nanoboxes                     | 50               | 5             | 2.58     | 806 s/1100 s      | 250 ppb            | 26   |
| Porous α-Fe <sub>2</sub> O <sub>3</sub>                      | 25               | 0.05          | 1.08     | 250 s/200 s       | 50 ppb             | 27   |
| Fe <sub>2</sub> O <sub>3</sub> film                          | 250              | 100           | 5        | 64 s/670 s        | 1 ppm              | 28   |
| $\alpha$ -Fe <sub>2</sub> O <sub>3</sub> micro-ellipsoids    | 350              | 100           | 11.7     | 78 s/15 s         | 500 ppb            | 21   |
| $\alpha$ -Fe <sub>2</sub> O <sub>3</sub> nanochains          | 285              | 5             | 4.5      | 10 s/60 s         | 1 ppm              | 29   |
| $\alpha$ -Fe <sub>2</sub> O <sub>3</sub> nanosheets          | 135              | 5             | 5.8      | 10 s/45 s         | 1 ppm              | 30   |
| Porous α-Fe <sub>2</sub> O <sub>3</sub>                      | 250              | 50            | 1.6      | 5 s/10 s          | 1 ppm              | 25   |
| Au/Fe <sub>2</sub> O <sub>3</sub> thin film                  | 250              | 10            | 5.23     | 80 s/180 s        | 1 ppm              | 31   |
| Ag/a-Fe2O3 nanoparticles                                     | 160              | 100           | 220      | 42 s/26 s         | -                  | 32   |
| $Pt/\alpha$ -Fe <sub>2</sub> O <sub>3</sub> nanoparticles    | 150              | 100           | 300      | 100 s/180 s       | 10 ppm             | 33   |
| Fe <sub>2</sub> O <sub>3</sub> /WO <sub>3</sub> nanocrystals | 150              | 5             | 120      | 60 s/240 s        | 500 ppb            | 34   |
| Fe <sub>2</sub> O <sub>3</sub> /NiO nanoparticles            | 200              | 10            | 8        | 100 s/20 s        | 1 ppm              | 35   |
|                                                              |                  |               |          |                   |                    |      |

Table 1 Sensing properties of H<sub>2</sub>S gas sensors based on different Fe<sub>2</sub>O<sub>3</sub>

nanostructures

In order to enhance the H<sub>2</sub>S gas sensing performance, modifications of the  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> nanomaterials using noble metals have been widely reported. For examples, Wang et al.<sup>32</sup> prepared a gas sensor made of Ag modified  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> nanoparticles, which showed a high response value of 220 and fast response/recovery times of 42 s /26 s toward 100 ppm H<sub>2</sub>S and a good selectivity at 160 °C. Balouria et al.<sup>31</sup> reported that Au modified  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> film achieved the response/recovery times of 80 s/180 s to 10 ppm H<sub>2</sub>S and a good H<sub>2</sub>S selectivity compared to gases of C<sub>2</sub>H<sub>3</sub>OH, CO, NH<sub>3</sub>, CO<sub>2</sub>, NO and Cl<sub>2</sub> at 250 °C. Although the response values, selectivity and response/recovery speeds of these  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> based H<sub>2</sub>S gas sensors have been remarkably improved by modification using noble metal nanoparticles, the response/recovery times are still mostly longer than 40 s. Therefore, it is still a critical challenge to optimize the  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> nanostructures for achieving the best sensing performance to H<sub>2</sub>S gas with fast response/recovery speeds, high sensitivity and good selectivity.

Nanocrystals of  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> are usually prepared using multiple processes. For example, the precursor of iron hydroxide is often initially prepared using a hydrothermal method,<sup>16</sup> a sol–gel method<sup>36</sup> or an electrospinning method,<sup>37</sup> and then the iron hydroxide is calcined to obtain  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> nanocrystals. The increases of nanocrystal sizes are often observed during the calcining process, which will influence the sensing performance. However, there are few reports for using one-step synthesis method to produce the  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> nanocrystals.

In this work,  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> nano-ellipsoids were directly synthesized using a facile onestep hydrothermal method. The H<sub>2</sub>S gas sensors based on these  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> nano-ellipsoids exhibit not only high response values, but also ultrafast response/recovery speeds and good selectivity to H<sub>2</sub>S gas.

# 2. Experimental Section

#### 2.1 Synthesis and characterization of α-Fe<sub>2</sub>O<sub>3</sub> nano-ellipsoids

Iron nitrate nonahydrate (Fe(NO<sub>3</sub>)<sub>3</sub>·9H<sub>2</sub>O), sodium nitrate (NaNO<sub>3</sub>), sodium dodecyl sulfate (SDS), ethanolamine, urea, ethyl alcohol and n, n-dimethylformamide (DMF)

were obtained from Sinopharm Chemical Reagents Limited, Shanghai, China, all with the analytical purity.

In a typical hydrothermal process, 1.616 g of Fe(NO<sub>3</sub>)<sub>3</sub>·9H<sub>2</sub>O and 2.0 g of urea were dissolved into a mixed solution which contained 20 mL of distilled water, 9 mL of ethyl alcohol and 1 mL of ethanolamine under a continuous magnetic stirring. After stirring for 10 min, 0.5 g NaNO<sub>3</sub> and 0.5 g SDS were successively added into the above solution to form a homogeneous solution. Then, 5 mL of DMF was added drop by drop into the above solution under a magnetic stirring and the solution was maintained under an ultrasonic agitation for 30 min. The hydrothermal reaction was maintained at 120 °C for 20 hrs in a 50 mL Teflon-lined autoclave in an air oven. After that, the red-brown precipitate in the autoclave was washed using a mix solution of deionized H<sub>2</sub>O and anhydrous ethyl alcohol for four times. Finally, it were dried at 60 °C for 10 hrs to obtain red-brown  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> nano-ellipsoids.

Crystalline structure of the  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> nano-ellipsoids was characterized using X-ray diffraction (XRD, D/MAX-2500) with Cu K $\alpha$  radiation. Their morphologies were observed using a scanning electron microscope (SEM, Inspect F50, USA) and a transmission electron microscope (TEM, JEM-2200FS, Japan) attached with selected-area electron diffraction (SAED). Chemical binding information of the  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> nano-ellipsoids was characterized using an X-ray photoelectron spectroscope (XPS, Thermo Fisher Scientific) with Al K $\alpha$  radiation. The specific surface area was measured using the N<sub>2</sub> physisorption apparatus (JW-BK122W, JWGB SCI. TECH.) and the data was calculated using the Brunauer-Emmett-Teller (BET) method. Fourier transform infrared (FT-IR) spectrum was recorded using an FT-IR transmittance spectrometer (FT-IR, Nicolet 6700, USA).

#### 2.2 Sensor Fabrication and Measurement

The gas sensors were made on the alumina ceramic tubes, and Ni-Cr heating resistors were used to control the working temperature. The  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> nano-ellipsoids were dispersed into ethanol, and then dip-coated on the surface of the tube to form a uniform sensing layer. The thickness of the  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> nano-ellipsoid layer was about 20 µm. This tube with the layer of  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> nano-ellipsoids was heated at 500 °C for 2 hrs in air. The detailed configuration of the gas sensor device has been previously reported.<sup>11</sup> The sensor devices were placed in a chamber of airproof black box (with a volume of 2 liters) for the evaluation of gas sensing performance. The H<sub>2</sub>S gas was injected into the black box using a microinjector to achieve the required concentration. The electrical resistances of the sensor were measured using a source meter (Keithley 2400), and a computer with a suitable Lab View interface was used to handle the data acquisition. During the measurement, the working voltage was set as 1 V. The response value is defined using the following equation:  $S = R_a/R_g$  ( $R_a$  and  $R_g$  are the sensors' resistance readings in air and the target gases, respectively). The selectivity coefficient ( $S_{AB}$ ) of gas A to gas B is defined as  $S_A/S_B$ , where  $S_A$  and  $S_B$  are the response values to H<sub>2</sub>S gas and to other gases (e.g., C<sub>2</sub>H<sub>5</sub>OH, CO, NO<sub>2</sub>, H<sub>2</sub>, CH<sub>2</sub>Cl<sub>2</sub>, NH<sub>3</sub> in this study), respectively. The response times ( $t_{res}$ ) is defined as the time at which the response value reaches 90% of its maximum one after the injection of H<sub>2</sub>S, while the recovery times ( $t_{rec}$ ) is defined as the time at which the response value reaches 90% of its maximum one after the H<sub>2</sub>S was replaced by air.<sup>38</sup>

# 3. Results and discussion

# 3.1 Characterization of the $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> nano-ellipsoids



Fig. 1 XRD spectrum of the  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> nano-ellipsoids.

XRD spectrum of the  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> nano-ellipsoids is shown in Fig. 1. For the  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> nano-ellipsoids obtained from the hydrothermal reaction, all the diffraction peaks in the

spectrum are corresponding to (012), (104), (110), (113), (024), (116), (018), (214), (300), (208), (119) and (220) crystal planes of the rhombohedral phase of  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> crystalline structure (JCPDS No. 33-0664), with lattice parameters of a = b = 5.036Å, c = 13.747Å. No peaks associated with other phases are observed, suggesting that the as-synthesized powders after the hydrothermal reaction are pure  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> crystals. This indicates that the  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> nanocrystals with a rhombohedral crystal structure can be directly prepared using the one-step hydrothermal process in this study.



Fig. 2 (a) SEM image of α-Fe<sub>2</sub>O<sub>3</sub> nano-ellipsoids, (b) SEM images of α-Fe<sub>2</sub>O<sub>3</sub> nano-ellipsoids after calcination at 500 °C, (c) TEM image of α-Fe<sub>2</sub>O<sub>3</sub> nano-ellipsoids after the calcination process at 500 °C and (d) the corresponding HRTEM image. Inset in (d) shows the SAED pattern of α-Fe<sub>2</sub>O<sub>3</sub> nano-ellipsoids.

As can be seen from the SEM image shown in Fig. 2a, the morphology of as-prepared  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> nanocrystals after the hydrothermal process are nano-ellipsoids. These  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> nano-ellipsoids have an average long axis diameter of 275 nm and an average short axis diameter of 125 nm. No other types of morphologies are observed. After these nano-ellipsoids were annealed at 500 °C for 2hrs, the morphology and size of  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> nano-

ellipsoids are not significantly changed as shown in the SEM image in Fig 2b, indicating that the  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> nano-ellipsoids have good stability when annealed at high temperature. In addition, it can be found from the TEM image (see Fig. 2c) that the  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> nano-ellipsoids after calcination at 500 °C have smooth surfaces without any apparent pores. The smooth surface of the annealed  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> nano-ellipsoids can facilitate fast absorption and desorption of H<sub>2</sub>S gas molecules, which is beneficial to the fast response and recovery of gas sensor. As observed in Fig. 2d, the lattice fringe analysis shows that the interplanar distance of 0.365 nm is corresponding to (012) planes of  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> nano-ellipsoids are crystalline in nature. The BET surface area of the  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> nano-ellipsoids obtained by the N<sub>2</sub> physisorption is 12.09 m<sup>2</sup>/g.



Fig. 3. (a) XPS survey spectrum, (b) Fe 2p and (c) O 1s high-resolution spectra of the  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> nano-ellipsoids, (d) FT-IR spectrum of the  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> nano-ellipsoids.

XPS survey spectrum of the  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> nano-ellipsoids is shown in Fig. 3a. It reveals the presence of Fe, O, and C elements. The binding energy peaks at 724.1 and 710.5 eV

and their corresponding satellite peak at 732.3 and 718.7 eV in the Fe 2p high-resolution XPS spectrum in Fig. 3(b) are attributed to Fe  $2p_{1/2}$  and Fe  $2p_{3/2}$ , respectively,<sup>19</sup> which proves that the chemical state of iron element is Fe<sup>3+,27, 33</sup> Two obvious peaks can be observed in the O 1s high-resolution XPS spectrum as shown in Fig. 3(c), which have the binding energy values of 529.2 and 530.7 eV. The peak located at 529.2 eV is associated with the lattice oxygen atoms in  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub>, and the peak located at 530.7 eV is linked with the chemisorbed oxygen species on the surface of  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> nano-ellipsoids. The large peak area of chemisorbed oxygen species in Fig. 3(c) means that there are many chemisorbed oxygen species on the surfaces of  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> nano-ellipsoids.<sup>33</sup>

Fig. 3 (d) shows the FT-IR spectrum of the  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> nano-ellipsoids. The peaks at 482 cm<sup>-1</sup> and 574 cm<sup>-1</sup> are corresponding to the Fe-O vibration modes of  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub>. The peak at 3428 cm<sup>-1</sup> can be assigned to O-H stretching vibration mode of the absorbed water molecules, and that at 1632 cm<sup>-1</sup> can be assigned to O-H bending vibration of absorbed water.

#### 3.2 Gas-sensing properties

Fig. 4(a) shows typical current-voltage (I-V) curves measured with the two neighboring platinum electrodes bridged by the  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> nano-ellipsoids layer at working temperatures from 100 °C to 340 °C. All the current values are increased linearly with the applied bias voltage increased from -10 V to 10 V. Such a linear behavior reveals a good ohmic contact formed between the  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> nano-ellipsoid layer and Au electrodes. Moreover, when the working temperature is increased, the conductivity of the  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> nano-ellipsoid layer is increased, which is consistent with the conduction behavior of a standard semiconductor.



Fig. 4 (a) I-V curves of the  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> nano-ellipsoids based sensor device at different working temperatures. (b) Response values of the sensor to H<sub>2</sub>S (50 ppm) at different working temperatures (the inset in b is the response/recovery curves of 50 ppm H<sub>2</sub>S at

26 °C). (c) the corresponding response/recovery times from 100 °C to 340 °C (d) response/recovery curves of the sensor to various gases at a fixed concentration of 50

ppm at 260 °C (the inset in (d) is the response histogram).

The working temperature affects the adsorption/desorption rates of oxygen molecules and target gas molecules on the surface of metal oxides, and thus affects the sensitivity of metal oxide based gas sensor. The response values of the  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> nano-ellipsoids based sensor to 50 ppm H<sub>2</sub>S have been tested at various working temperatures from 26 °C to 340 °C, and the obtained data are shown in Fig. 4 (b). The gas sensor shows the highest response value of 12.0 at the room temperature of 26 °C. However, as shown in Fig. 4 (b), the long response time (30 s) and recovery time (~ 787 s) of the sensor for sensing 50 ppm H<sub>2</sub>S make it unsuitable for real-time application for the H<sub>2</sub>S detection operated at room temperature. Whereas when the sensor was operated at

different working temperature from 100 °C to 340 °C, all the obtained response/recovery times are less than 15 s as shown in Fig 4 (c). With the increase of working temperature from 100 °C to 260 °C, the responses values are increased as shown in Fig. 4(b). However, they are then slowly decreased with the further increase of working temperature. The response value of the  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> nano-ellipsoids based sensor achieves a high value of 8.0 at 260 °C, which is higher than many reported values for sensors made of pure  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub>. For example, the response values of the sensors made of porous  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> and Fe<sub>2</sub>O<sub>3</sub> film <sup>28</sup> were 1.6 to 50 ppm of H<sub>2</sub>S and 5 to 100 ppm H<sub>2</sub>S operated at 250 °C, respectively. Taking into accounts of both response/recovery times and sensitivity response, the optimum working temperature for this study is 260 °C for the H<sub>2</sub>S gas sensor based on  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> nano-ellipsoids.

The high response values of the  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> nano-ellipsoids based sensor when operated at room temperature can be explained as follows. Besides the chemical reactions between H<sub>2</sub>S molecules and chemisorption oxygen ions, the formation of iron sulphides (i.e. Fe<sub>2</sub>S<sub>3</sub>) on the surfaces of  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> nano-ellipsoids due to the reaction between H<sub>2</sub>S and Fe<sub>2</sub>O<sub>3</sub> is another important factor to enhance the response values of the sensor.<sup>27</sup> It was reported that the H<sub>2</sub>S molecules can generate ions of S<sup>2–</sup> and H<sup>+</sup> on the surfaces of Fe<sub>2</sub>O<sub>3</sub> to form iron sulphides, even at room temperature.<sup>39</sup> Therefore, iron sulphides can be easily formed onto the surfaces of  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> nano-ellipsoids, which results in a much higher response value than those operated at a much higher working temperatures. However, the formation rate of these iron sulphides is slow at room temperature, which means that the longer response time is needed. For example, Huang et al reported that the porous-Fe<sub>2</sub>O<sub>3</sub> based H<sub>2</sub>S gas sensor showed the highest sensitivity of 38.4 but with long response/recovery times of about180/3700 s when sensing 100 ppm H<sub>2</sub>S operated at room temperature.<sup>27</sup>

When the working temperature is increased to above 100 °C, the chemical reactions between H<sub>2</sub>S molecules and chemisorption oxygen ions becomes dominant.<sup>39</sup> More active oxygen ions can form and the chemical activation potentials of sensing materials have been increased with the increase of working temperature, all of which can enhance the response values of the gas sensor. However, at a very high working temperature, the

adsorbed gas molecules can be quickly released from the surface of materials before the chemical reaction happens. Therefore, with the further increase of the working temperature, the quantities of the adsorbed H<sub>2</sub>S molecules are decreased significantly, thus resulting in the decreased responses.<sup>40</sup> Clearly, there is an optimum working temperature for these resistive H<sub>2</sub>S gas sensors, such as those based on Fe<sub>2</sub>O<sub>3</sub> film,<sup>28</sup>  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> micro-ellipsoids,<sup>21</sup>  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> nanochains<sup>29</sup> and Au/Fe<sub>2</sub>O<sub>3</sub> thin films <sup>31</sup>, whose optimum working temperatures were reported to be 250, 350, 285 and 250 °C, respectively.

Good selectivity is another important requirement of gas sensors in order to avoid the interference from the other gases during gas sensing. The response/recovery curves of the α-Fe<sub>2</sub>O<sub>3</sub> nano-ellipsoid based gas sensor to different gases (including C<sub>2</sub>H<sub>5</sub>OH, CO, NO<sub>2</sub>, H<sub>2</sub>, CH<sub>2</sub>Cl<sub>2</sub>, NH<sub>3</sub>) were measured at the same concentration of 50 ppm at 260 °C and these obtained results are shown in Fig. 4(d). It can be found that the gas sensor shows insignificant responses toward NO<sub>2</sub>, CH<sub>2</sub>Cl<sub>2</sub> and NH<sub>3</sub>, and the response values toward C<sub>2</sub>H<sub>5</sub>OH, CO and H<sub>2</sub> are also very small, e.g., 1.5, 1.1 and 1.05, respectively. The response value of 8.0 towards H<sub>2</sub>S for this gas sensor is remarkable higher than the values towards other types of gases. The selective coefficients (SAB, which is defined as the ratio of response values of gas sensor for H<sub>2</sub>S and other gases) are 5.3, 7.0 and 7.6 for C<sub>2</sub>H<sub>5</sub>OH, CO and H<sub>2</sub>, respectively. Generally, when the selective coefficient of a gas sensor is higher than 3, this gas sensor is regarded as having a good selectivity. For examples, the H<sub>2</sub>S gas sensors made of porous ZnFe<sub>2</sub>O<sub>4</sub> nanosheets<sup>41</sup> and porous ZnO thin film<sup>42</sup> showed H<sub>2</sub>S selective coefficients of 5.3 and 4.1 to ethanol, respectively. The nanocrystalline ZnO thin films based H<sub>2</sub>S gas sensor<sup>43</sup> showed the H<sub>2</sub>S selective coefficient of 3.48 to NH<sub>3</sub> and 2.92 to ethanol. All these above-mentioned H<sub>2</sub>S gas sensors are regarded to have a good selectivity to H2S. For the  $\alpha$ -Fe2O3 nano-ellipsoids based H<sub>2</sub>S gas sensor in this study, its high selective coefficient value reveals its excellent H<sub>2</sub>S selectivity.

Various factors influence the selectivity of gas sensor. Firstly, the different responses of gas sensor toward different gases are mainly due to the chemical properties of gas molecules. The bond dissociation energy of H-S in H<sub>2</sub>S molecules is only 381 kJ/mol, which is smaller than those of other interfering gases.<sup>44</sup> Consequently, compared to those of the other gases, the H-S bonds in H<sub>2</sub>S molecules can be easily broken due to the chemisorbed oxide ions on the surface of  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> nano-ellipsoids, thus achieving a high response. On the other hand, the higher response of the sensor to H<sub>2</sub>S than those to the other gases is also attributed to the formation of iron sulphides on the surface of  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> nano-ellipsoids, which can improve the response due to its higher conductance value than that of the  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub>.<sup>42</sup> Whereas there is no such effect when the sensor is used for the other types of gases. Therefore, the gas sensor based on  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> nano-ellipsoids based H<sub>2</sub>S gas sensor displays a good selectivity to H<sub>2</sub>S gas.



Fig. 5 (a) Response/recovery curves of α-Fe<sub>2</sub>O<sub>3</sub> nano-ellipsoids based sensors for various H<sub>2</sub>S concentrations (100 ppb~400 ppm) at 260 °C, (b) the corresponding response values and (c) the corresponding response/recovery times, (d) the high-resolution response/recovery curve toward 50 ppm H<sub>2</sub>S at 260 °C.

Fig. 5(a) shows the response/recovery curves of the  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> nano-ellipsoid sensors toward various H<sub>2</sub>S concentrations (100 ppb~400 ppm) operated at 260 °C, and the

corresponding response values are shown in Fig. 5 (b). For all different concentrations of H<sub>2</sub>S, this gas sensor can be fully recovered (e.g., returning back to the baseline) after the H<sub>2</sub>S gas is quickly replaced with air, which indicates that the sensor made of the  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> nano-ellipsoids has an excellent reversibility. It also show high responses as can be seen in Fig. 5(b), e.g., the response is as high as 33.1 for detecting 400 ppm H<sub>2</sub>S. Even when the H<sub>2</sub>S concentration is as low as 100 ppb, the sensor still exhibits obvious response/recovery phenomena with a response of 1.2, indicating that the sensor can detect a low H<sub>2</sub>S concentration down to ppb-level.

Furthermore, the response value (S) and concentration of  $H_2S$  ( $C_{H_2S}$ ) are found to have a power law function relation (as listed in equation (1)) with a good correlation coefficient (R = 0.9974). This is beneficial for precisely detecting the concentrations of  $H_2S$  gas.

$$S = 1.07C_{H2S}^{0.57} \qquad (R = 0.9974) \qquad (1)$$

The fast response/recovery speeds play a vital role for real-time detection of the toxic gases. For all response/recovery curves of the sensors based on the  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> nanoellipsoids to various H<sub>2</sub>S concentrations, the resistance value of the sensor is decreased sharply after injection of H<sub>2</sub>S gas, whereas it quickly returns to the baseline quickly after the release of H<sub>2</sub>S. This indicates that the H<sub>2</sub>S gas sensor has very fast response/recovery speeds. The obtained response/recovery times are shown in Fig. 5 (c), and all the response times are less than 9 s and all the recovery times are less than 5 s. When the H<sub>2</sub>S concentrations are increased from 1 ppm to 200 ppm, the response/recovery times are all less than 5 s. Fig. 5 (d) shows the response/recovery curve toward 50 ppm of H<sub>2</sub>S with a sampling interval of 0.1 s. It is found that the response and recovery times to 50 ppm H<sub>2</sub>S are only 0.8 s and 2.2 s respectively, showing an ultra-fast response/recovery behavior of the sensor.

Compared with the other reported  $Fe_2O_3$  based  $H_2S$  gas sensors listed in Table 1, it is worthwhile to note that the  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> nano-ellipsoid based  $H_2S$  gas sensor developed in this study exhibits much faster response/recovery speeds (for examples, compared to those based on Fe<sub>2</sub>O<sub>3</sub> nanostructures,<sup>21, 25-30</sup> noble metal modified Fe<sub>2</sub>O<sub>3</sub> <sup>31-33</sup> and hybrid Fe<sub>2</sub>O<sub>3</sub> nanostructures <sup>34-35</sup>). Furthermore, compared with other semiconducting metals oxides based H<sub>2</sub>S gas sensors reported in the literature (some of them are listed in Table 2), the response/recovery speeds of the H<sub>2</sub>S gas sensor developed in this study are the fastest values as far as we have searched in the literature. For examples, the H<sub>2</sub>S gas sensors based on various nanostructures of  $Co_3O_4$ ,<sup>45</sup>  $SnO_2$ ,<sup>44, 46,</sup>  $\alpha$ -MoO<sub>3</sub>,<sup>12, 47</sup> ZnO,<sup>48-50</sup> WO<sub>3</sub> <sup>51</sup> and CuO <sup>52-55, 50, 56,</sup> all showed much longer response/recovery times than those of the  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> nano-ellipsoids reported in this study.

Table 2 Sensing properties of H<sub>2</sub>S gas sensors based on other semiconducting metal oxide nanomaterials.

|                                                  | Working   | Con.  |          |                   | Detection |           |
|--------------------------------------------------|-----------|-------|----------|-------------------|-----------|-----------|
| Materials                                        | Temp.(°C) | (ppm) | Response | $t_{res}/t_{rec}$ | Limit     | Ref.      |
| a-MoO3                                           | 177       | 100   | 225      | 15 s/23 s         | 1 ppm     | 12        |
| CuO                                              | 325       | 0.01  | 1.3      | 810 s/1080 s      | 100 ppb   | 52        |
| CuO                                              | 25        | 1     | 2.1      | 240 s/1341 s      | 100 ppb   | 53        |
| CuO                                              | 30        | 300   | 1.3      | 180 s/150 s       | 10 ppm    | 54        |
| WO <sub>3</sub>                                  | 300       | 2     | 6.7      | ~120 s/~300 s     | 120 ppb   | 51        |
| Co <sub>3</sub> O <sub>4</sub>                   | 300       | 100   | 4        | 46 s/24 s         | 1 ppm     | 45        |
| ZnO                                              | 25        | 5     | 581      | 500 s/6000 s      | 0.5 ppm   | 48        |
| ZnO                                              | 25        | 50    | 113.5    | 16 s/820 s        | 10 ppm    | 49        |
| TiO <sub>2</sub>                                 | 100       | 10    | 275      | 150 s/2500 s      | 1 ppm     | 57        |
| Pt/SnO <sub>2</sub>                              | 300       | 1     | 89.3     | 99 s/111 s        | 100 ppb   | 44        |
| Pd/CuO                                           | 300       | 20    | 69.04    | 700 s/120 s       | -         | 55        |
| Fe/SnO <sub>2</sub>                              | 225       | 10    | 14.5     | 90 s/98 s         | -         | 46        |
| Cd/a-MoO3                                        | 140       | 50    | 229      | 23 s/45 s         | 5 ppm     | 47        |
| SnO <sub>2</sub> /CuO                            | 180       | 100   | 25.3     | 10 s/42 s         | 10 ppm    | 56        |
| CuO/NiO                                          | 260       | 100   | 46.7     | 18 s/29 s         | 10 ppm    | 58        |
| CuO/ZnO                                          | 336       | 5     | 13.3     | 270 s/720 s       | 5 ppm     | 50        |
| TiO <sub>2</sub> /Al <sub>2</sub> O <sub>3</sub> | 650       | 1000  | 38.7     | 390 s/480 s       | 20 ppm    | 59        |
| a-Fe <sub>2</sub> O <sub>3</sub>                 | 260       | 50    | 8.0      | 0.8 s/2.2 s       | 100 ppb   | this work |

It is well known that  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> is an n-type semiconducting metal oxide and the surface chemical reactions between the adsorbed oxygen species and target gases are

responsible for the gas sensing performance. Fig. 6 shows a schematic illustration of  $H_2S$  sensing process on the surface of  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> nano-ellipsoids. The possible reactions that have taken place on the surfaces of  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> nano-ellipsoids are listed as follows:<sup>47</sup>

$$O_{2(ads)} + 2e^- \rightarrow 2O_{(ads)}^- (100 \sim 300 \text{ °C})$$
 (2)

 $H_2S + 3O_{(ads)}^- \rightarrow SO_2 + H_2O + 3e^-$ (3)



Fig. 6 Schematic illustration of  $H_2S$  sensing mechanism on the surface of  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> nano-ellipsoids.

In air, the chemisorbed oxygen ions on the surfaces of  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> nano-ellipsoids are mainly O<sup>-</sup> ions at the working temperature of 260 °C.<sup>60</sup> Oxygen molecules are adsorbed onto the surfaces of  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> nano-ellipsoids, and then transfer into O<sup>-</sup> ions by gaining electrons from the conductive bands of  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> to form O<sup>-</sup> ions (as shown in reaction equation (2)). Therefore, an electron depletion layer with a high-resistance state is formed on the surface of  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> nano-ellipsoids as shown in Fig. 6. When the  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> nano-ellipsoids are exposed to H<sub>2</sub>S gas, H<sub>2</sub>S molecules react with the chemisorbed oxygen (O<sup>-</sup>), as listed in reaction equation (3). The reaction releases electrons to the electron depletion layers and thus reduces the resistance of the  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> nano-ellipsoids as shown in Fig. 6.

In addition, the H<sub>2</sub>S molecules can react with the lattice oxygen on the surface of the  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> nano-ellipsoids to form iron sulphides (Fe<sub>2</sub>S<sub>3</sub>), based on the reaction equation (4).<sup>28</sup> Fe<sub>2</sub>S<sub>3</sub> has a lower band gap than Fe<sub>2</sub>O<sub>3</sub>, which can cause the increase of surface conductance.<sup>61</sup> When the H<sub>2</sub>S gas is replaced with the air, the recovery of Fe<sub>2</sub>O<sub>3</sub> from Fe<sub>2</sub>S<sub>3</sub> will occur due to the reaction of the Fe<sub>2</sub>S<sub>3</sub> with the active oxygen ions of O<sup>-</sup> at

the working temperature of 260 °C as shown in the reaction equation (5).<sup>28, 39</sup>

$$H_2S + Fe_2O_3 \rightarrow Fe_2S_3 + 3H_2O \tag{4}$$

$$\operatorname{Fe}_2 S_3 + 9O^- \to \operatorname{Fe}_2 O_3 + 3SO_2 \tag{5}$$

The excellent  $H_2S$  gas sensing performance of the  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> nano-ellipsoids based sensor can be attributed to their homogeneous and smooth surface nanostructures, which promote the rapidly adsorptions of the O<sub>2</sub> and H<sub>2</sub>S molecules.



Fig. 7 (a) Repeatability of α-Fe<sub>2</sub>O<sub>3</sub> nano-ellipsoids based sensors for 200 ppm H<sub>2</sub>S at 260 °C, (b) long-term stability of α-Fe<sub>2</sub>O<sub>3</sub> nano-ellipsoids to H<sub>2</sub>S with the concentration of 100 ppm (black), 50 ppm (red) and 10 ppm (blue), respectively.

The repeatability of the gas sensors was further investigated by measuring the 200 ppm of H<sub>2</sub>S at the optimum operating temperature of 260 °C, and the obtained results are shown in Fig. 7 (a). It is found that all the response/recovery curves are repeatable without any significant changes, and the sensor maintains the similar responses and ultrafast response/recovery speeds within 13 cycles, indicating its good repeatability.

In order to prove its long-term stability, the sensor has been tested repeatedly for 30 days. The response values are shown in Fig. 7 (b). In the repeated tests for 30 days, the responses of the sensor toward the H<sub>2</sub>S gas with various concentrations (100 ppm, 50 ppm and 10 ppm) only show minor fluctuations within a small range. Moreover, comparing the response/recovery curves of 50 ppm H<sub>2</sub>S measured on the first day and the last day as shown in the Fig. 7 (b), the response/recovery curves have not shown apparent differences, and the response/recovery times are 0.8 s/2.2 s and 0.9 s/2.6 s,

respectively. Therefore, the  $H_2S$  gas sensor based on  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> nano-ellipsoids has shown a good long-term stability.

#### 4. Conclusions

In conclusion, a facile one-step hydrothermal method can be used to prepare the  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> nano-ellipsoids. The uniformly formed  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> nano-ellipsoids have smooth and dense surfaces. Such  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> nano-ellipsoids based gas sensor exhibits excellent H<sub>2</sub>S gas sensing performance with fast response/recovery speeds, good selectivity and a low detection limit at an optimum temperature of 260 °C. Moreover, this sensor shows a good repeatability and stable recycling performance as well as a good long-term stability. Therefore, the  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> nano-ellipsoids based gas sensor can be successfully applied in detetion H<sub>2</sub>S gas.

#### Acknowledgments

This work is supported by the Funding supports from UK Engineering Physics and Science Research Council (EPSRC EP/P018998/1), Newton Mobility Grant (IE161019) through Royal Society and NFSC, and Royal academy of Engineering UK-Research Exchange with China and India are also acknowledged.

# **Conflicts of interest**

There are no conflicts to declare.

#### References

(1) Hao, X.; Ma, C.; Yang, X.; Liu, T.; Wang, B.; Liu, F.; Liang, X.; Yang, C.; Zhu, H.; Lu, G. Ysz-Based Mixed Potential H<sub>2</sub>S Sensor Using La<sub>2</sub>NiO<sub>4</sub> Sensing Electrode. *Sens. Actuators, B.* **2018**, *255*, 3033-3039.

(2) Deng, J.; Ma, J.; Mei, L.; Tang, Y.; Chen, Y.; Lv, T.; Xu, Z.; Wang, T. Porous Alpha-Fe<sub>2</sub>O<sub>3</sub> Nanosphere-Based H<sub>2</sub>S Sensor with Fast Response, High Selectivity and Enhanced Sensitivity. *J. Mater. Chem. A.* **2013**, *1*, 12400-12403.

(3) Spilker, B.; Randhahn, J.; Grabow, H.; Beikirch, H.; Jeroschewski, P. New Electrochemical Sensor for the Detection of Hydrogen Sulfide and Other Redox Active Species. *J. Electroanal. Chem.* **2008**, *612*, 121-130.

(4) Fu, Y. Q.; Luo, J. K.; Nguyen, N. T.; Walton, A. J.; Flewitt, A. J.; Zu, X. T.; Li, Y.; McHale, G.;

Matthews, A.; Iborra, E.; Du, H.; Milne, W. I. Advances in Piezoelectric Thin Films for Acoustic Biosensors, Acoustofluidics and Lab-on-Chip Applications. *Prog. Mater. Sci.* **2017**, *89*, 31-91.

(5) Diao, K.; Zhou, M.; Zhang, J.; Tang, Y.; Wang, S.; Cui, X. High Response to H<sub>2</sub>S Gas with Facile Synthesized Hierarchical ZnO Microstructures. *Sens. Actuators, B.* **2015**, *219*, 30-37.

(6) Mirzaei, A.; Kim Sang, S.; Kim Hyoun, W. Resistance-Based H<sub>2</sub>S Gas Sensors Using Metal Oxide Nanostructures: A Review of Recent Advances. *J. Hazard. Mater.* **2018**, *357*, 314-331.

(7) Deng, J.; Fu, Q.; Luo, W.; Tong, X.; Xiong, J.; Hu, Y.; Zheng, Z. Enhanced H<sub>2</sub>S Gas Sensing Properties of Undoped ZnO Nanocrystalline Films from QDs by Low-Temperature Processing. *Sens. Actuators, B.* **2016**, *224*, 153-158.

(8) Li, Z.; Niu, X.; Lin, Z.; Wang, N.; Shen, H.; Liu, W.; Sun, K.; Fu Yong, Q.; Wang, Z. Hydrothermally Synthesized CeO<sub>2</sub> Nanowires for H<sub>2</sub>S Sensing at Room Temperature. *J. Alloys Compd.* **2016**, *682*, 647-653.

(9) Li, Y.; Luo, W.; Qin, N.; Dong, J.; Wei, J.; Li, W.; Feng, S.; Chen, J.; Xu, J.; Elzatahry Ahmed, A.; Es-Saheb Mahir, H.; Deng, Y.; Zhao, D. Highly Ordered Mesoporous Tungsten Oxides with a Large Pore Size and Crystalline Framework for H<sub>2</sub>S Sensing. *Angew. Chem., Int. Ed.* **2014**, *53*, 9035-9040.

(10) Xiao, B.; Zhao, Q.; Xiao, C.; Yang, T.; Wang, P.; Wang, F.; Chen, X.; Zhang, M. Low-Temperature Solvothermal Synthesis of Hierarchical Flower-Like WO<sub>3</sub> Nanostructures and Their Sensing Properties for H<sub>2</sub>S. *CrystEngComm.* **2015**, *17*, 5710-5716.

(11) Li, Z.; Wang, N.; Lin, Z.; Wang, J.; Liu, W.; Sun, K.; Fu Yong, Q.; Wang, Z. Room-Temperature High-Performance H<sub>2</sub>S Sensor Based on Porous CuO Nanosheets Prepared by Hydrothermal Method. *ACS Appl. Mater. Interfaces.* **2016**, *8*, 20962-20968.

(12) Zhang, L.; Liu, Z.; Jin, L.; Zhang, B.; Zhang, H.; Zhu, M.; Yang, W. Self-Assembly Gridding Alpha-MoO<sub>3</sub> Nanobelts for Highly Toxic H<sub>2</sub>S Gas Sensors. *Sens. Actuators, B.* **2016**, *237*, 350-357.

(13) Yu, T.; Cheng, X.; Zhang, X.; Sui, L.; Xu, Y.; Gao, S.; Zhao, H.; Huo, L. Highly Sensitive H<sub>2</sub>S Detection Sensors at Low Temperature Based on Hierarchically Structured NiO Porous Nanowall Arrays. *J. Mater. Chem. A.* **2015**, *3*, 11991-11999.

(14) Hu, J.; Yin, G.; Chen, J.; Ge, M.; Lu, J.; Yang, Z.; He, D. An Olive-Shaped SnO<sub>2</sub> Nanocrystal-Based Low Concentration H<sub>2</sub>S Gas Sensor with High Sensitivity and Selectivity. *Phys. Chem. Chem. Phys.* **2015**, *17*, 20537-20542.

(15) Yan, S.; Li, Z.; Li, H.; Wu, Z.; Wang, J.; Shen, W.; Fu, Y. Q. Ultra-Sensitive Room-Temperature H<sub>2</sub>S Sensor Using Ag–In<sub>2</sub>O<sub>3</sub> Nanorod Composites. *J. Mater. Sci.* **2018**, *53*, 16331-16344.

(16) Li, Z.; Huang, Y.; Zhang, S.; Chen, W.; Kuang, Z.; Ao, D.; Liu, W.; Fu, Y. A Fast Response & Recovery H<sub>2</sub>S Gas Sensor Based on Alpha-Fe<sub>2</sub>O<sub>3</sub> Nanoparticles with ppb Level Detection Limit. *J. Hazard. Mater.* **2015**, *300*, 167-174.

(17) Sun, P.; Wang, C.; Zhou, X.; Cheng, P.; Shimanoe, K.; Lu, G.; Yamazoe, N. Cu-Doped Alpha-Fe<sub>2</sub>O<sub>3</sub> Hierarchical Microcubes: Synthesis and Gas Sensing Properties. *Sens. Actuators, B.* **2014**, *193*, 616-622.

(18) Kim Do, H.; Shim, Y.-S.; Jeon, J.-M.; Jeon Hu, Y.; Park Sung, S.; Kim, Y.-W.; Rim, J.-S.; Lee, J.-H.; Jang Ho, W. Vertically Ordered Hematite Nanotube Array as an Ultrasensitive and Rapid Response Acetone Sensor. *ACS Appl. Mater. Interfaces.* **2014**, *6*, 14779-14784.

(19) Yang, T.; Du, L.; Zhai, C.; Li, Z.; Zhao, Q.; Luo, Y.; Xing, D.; Zhang, M. Ultrafast Response and Recovery Trimethylamine Sensor Based on Alpha-Fe<sub>2</sub>O<sub>3</sub> Snowflake-Like Hierarchical Architectures. *J. Alloys Compd.* **2017**, *718*, 396-404.

(20) Li, Y.; Zhao, H.; Ban, H.; Yang, M. Composites of Fe<sub>2</sub>O<sub>3</sub> Nanosheets with Polyaniline: Preparation, Gas Sensing Properties and Sensing Mechanism. *Sens. Actuators, B.* **2017**, *245*, 34-43.

(21) Li, Z.; Lin, Z.; Wang, N.; Huang, Y.; Wang, J.; Liu, W.; Fu, Y.; Wang, Z. Facile Synthesis of Alpha-Fe<sub>2</sub>O<sub>3</sub> Micro-Ellipsoids by Surfactant-Free Hydrothermal Method for Sub-Ppm Level H<sub>2</sub>S Detection. *Mater. Des.* **2016**, *110*, 532-539.

(22) Gou, X.; Wang, G.; Kong, X.; Wexler, D.; Horvat, J.; Yang, J.; Park, J. Flutelike Porous Hematite Nanorods and Branched Nanostructures: Synthesis, Characterisation and Application for Gas-Sensing. *Chem. - Eur. J.* **2008**, *14*, 5996-6002.

(23) Sun, P.; Du, S.; Yang, T.; Li, X.; Liu, F.; Liang, X.; Gao, Y.; Sun, Y.; Lu, G. Controlled Synthesis of Hierarchical Sn-Doped Alpha-Fe<sub>2</sub>O<sub>3</sub> with Novel Sheaf-Like Architectures and Their Gas Sensing Properties. *RSC Adv.* **2013**, *3*, 7112-7118.

(24) Shi, G.; Zhang, K.; Zhou, S.; Zhang, Q. Template-Free Synthesis and Gas-Sensing Properties of Hierarchical Alpha-Fe<sub>2</sub>O<sub>3</sub> Hollow Urchin-Like Spheres. *Mater. Lett.* **2013**, *107*, 228-230.

(25) Hao, Q.; Li, L.; Yin, X.; Liu, S.; Li, Q.; Wang, T. Anomalous Conductivity-Type Transition Sensing Behaviors of N-Type Porous Alpha-Fe<sub>2</sub>O<sub>3</sub> Nanostructures toward H<sub>2</sub>S. *Mater. Sci. Eng., B.* **2011**, *176*, 600-605.

(26) Tian, K.; Wang, X.-X.; Yu, Z.-Y.; Li, H.-Y.; Guo, X. Hierarchical and Hollow Fe<sub>2</sub>O<sub>3</sub> Nanoboxes Derived from Metal-Organic Frameworks with Excellent Sensitivity to H<sub>2</sub>S. *ACS Appl. Mater. Interfaces.* **2017**, *9*, 29669-29676.

(27) Huang, Y.; Chen, W.; Zhang, S.; Kuang, Z.; Ao, D.; Alkurd Nooraldeen, R.; Zhou, W.; Liu, W.; Shen, W.; Li, Z. A High Performance Hydrogen Sulfide Gas Sensor Based on Porous Alpha-Fe<sub>2</sub>O<sub>3</sub> Operates at Room-Temperature. *Appl. Surf. Sci.* **2015**, *351*, 1025-1033.

(28) Balouria, V.; Kumar, A.; Samanta, S.; Singh, A.; Debnath, A. K.; Mahajan, A.; Bedi, R. K.; Aswal, D. K.; Gupta, S. K. Nano-Crystalline Fe<sub>2</sub>O<sub>3</sub> Thin Films for ppm Level Detection of H<sub>2</sub>S. *Sens. Actuators, B.* **2013**, *181*, 471-478.

(29) Ma, J.; Mei, L.; Chen, Y.; Li, Q.; Wang, T.; Xu, Z.; Duan, X.; Zheng, W. Alpha-Fe<sub>2</sub>O<sub>3</sub> Nanochains: Ammonium Acetate-Based Ionothermal Synthesis and Ultrasensitive Sensors for Low-Ppm-Level H<sub>2</sub>S Gas. *Nanoscale*. **2013**, *5*, 895-898.

(30) Zhang, H.-J.; Meng, F.-N.; Liu, L.-Z.; Chen, Y.-J. Convenient Route for Synthesis of Alpha-Fe<sub>2</sub>O<sub>3</sub> and Sensors for H<sub>2</sub>S Gas. *J. Alloys Compd.* **2019**, *774*, 1181-1188.

(31) Balouria, V.; Ramgir Niranjan, S.; Singh, A.; Debnath, A. K.; Mahajan, A.; Bedi, R. K.; Aswal, D. K.; Gupta, S. K. Enhanced H<sub>2</sub>S Sensing Characteristics of Au Modified Fe<sub>2</sub>O<sub>3</sub> Thin Films. *Sens. Actuators, B.* 2015, *219*, 125-132.

(32) Wang, Y.; Wang, Y.; Cao, J.; Kong, F.; Xia, H.; Zhang, J.; Zhu, B.; Wang, S.; Wu, S. Low-Temperature H<sub>2</sub>S Sensors Based on Ag-Doped Alpha-Fe<sub>2</sub>O<sub>3</sub> Nanoparticles. *Sens. Actuators, B.* **2008**, *131*, 183-189.

(33) Wang, Y.; Wang, S.; Zhao, Y.; Zhu, B.; Kong, F.; Wang, D.; Wu, S.; Huang, W.; Zhang, S. H<sub>2</sub>S Sensing Characteristics of Pt-Doped Alpha-Fe<sub>2</sub>O<sub>3</sub> Thick Film Sensors. *Sens. Actuators, B.* **2007**, *125*, 79-84.

(34) Yin, L.; Chen, D.; Feng, M.; Ge, L.; Yang, D.; Song, Z.; Fan, B.; Zhang, R.; Shao, G. Hierarchical Fe<sub>2</sub>O<sub>3</sub>@WO<sub>3</sub> Nanostructures with Ultrahigh Specific Surface Areas: Microwave-Assisted Synthesis and Enhanced H<sub>2</sub>S-Sensing Performance. *RSC Adv.* **2015**, *5*, 328-337.

(35) Li, F.; Chen, Y.; Ma, J.  $Fe^{3+}$  Facilitating the Response of NiO Towards H<sub>2</sub>S. *RSC Adv.* **2014**, *4*, 14201-14205.

(36) Peng, W.; Zhu, C.; Zhu, S.; Yao, F.; Li, Y.; Zhang, D. Biomimetic Fabrication of Alpha-Fe<sub>2</sub>O<sub>3</sub> with Hierarchical Structures as H<sub>2</sub>S Sensor. *J. Mater. Sci.* **2013**, *48*, 4336-4344.

(37) Guo, L.; Kou, X.; Ding, M.; Wang, C.; Dong, L.; Zhang, H.; Feng, C.; Sun, Y.; Gao, Y.; Sun, P.; Lu, G. Reduced Graphene Oxide/Alpha-Fe<sub>2</sub>O<sub>3</sub> Composite Nanofibers for Application in Gas Sensors. *Sens. Actuators, B.* **2017**, *244*, 233-242.

(38) Jin, W. X.; Ma, S. Y.; Tie, Z. Z.; Jiang, X. H.; Li, W. Q.; Luo, J.; Xu, X. L.; Wang, T. T. Hydrothermal Synthesis of Monodisperse Porous Cube, Cake and Spheroid-Like Alpha-Fe<sub>2</sub>O<sub>3</sub> Particles and Their High Gas-Sensing Properties. *Sens. Actuators, B.* **2015**, *220*, 243-254.

(39) Ghosh, S.; Adak, D.; Bhattacharyya, R.; Mukherjeee, N. ZnO/Gamma-Fe<sub>2</sub>O<sub>3</sub> Charge Transfer Interface toward Highly Selective H<sub>2</sub>S Sensing at a Low Operating Temperature of 30 Degrees C. *Acs Sensors.* **2017**, *2*, 1831-1838.

(40) Zou, C. W.; Wang, J.; Xie, W. Synthesis and Enhanced NO<sub>2</sub> Gas Sensing Properties of ZnO Nanorods/TiO<sub>2</sub> Nanoparticles Heterojunction Composites. *J. Colloid Interface Sci.* **2016**, *478*, 22-28.

(41) Gao, X.; Sun, Y.; Zhu, C.; Li, C.; Ouyang, Q.; Chen, Y. Highly Sensitive and Selective H<sub>2</sub>S Sensor Based on Porous ZnFe<sub>2</sub>O<sub>4</sub> Nanosheets. *Sens. Actuators, B.* **2017**, *246*, 662-672.

(42) Liu, Z.; Fan, T.; Zhang, D.; Gong, X.; Xu, J. Hierarchically Porous ZnO with High Sensitivity and Selectivity to H<sub>2</sub>S Derived from Biotemplates. *Sens. Actuators, B.* **2009**, *136*, 499-509.

(43) Shewale, P. S.; Agawane, G. L.; Shin, S. W.; Moholkar, A. V.; Lee, J. Y.; Kim, J. H.; Uplane, M. D. Thickness Dependent H<sub>2</sub>S Sensing Properties of Nanocrystalline ZnO Thin Films Derived by Advanced Spray Pyrolysis. *Sens. Actuators, B.* **2013**, *177*, 695-702.

(44) Bulemo Peresi, M.; Cho, H.-J.; Kim, N.-H.; Kim, I.-D. Mesoporous SnO<sub>2</sub> Nanotubes Via Electrospinning-Etching Route: Highly Sensitive and Selective Detection of H<sub>2</sub>S Molecule. *ACS Appl. Mater. Interfaces.* **2017**, *9*, 26304-26313.

(45) Pham Long, Q.; Nguyen Duc, C.; Tran Thai, H.; Hoang Thai, L.; Chu Manh, H.; Dang Thi Thanh, L.; Nguyen Van, H. Simple Post-Synthesis of Mesoporous P-Type Co<sub>3</sub>O<sub>4</sub> Nanochains for Enhanced H<sub>2</sub>S Gas Sensing Performance. *Sens. Actuators, B.* **2018**, *270*, 158-166.

(46) Ramgir Niranjan, S.; Datta, N.; Kumar, S.; Kailasaganapathi, S.; Patil, U. V.; Karmakar, N.; Kaur, M.; Debnath, A. K.; Kothari, D. C.; Aswal, D. K.; Gupta, S. K. Effect of Fe Modification on H<sub>2</sub>S Sensing Properties of Rheotaxially Grown and Thermally Oxidized SnO<sub>2</sub> Thin Films. *Mater. Chem. Phys.* **2015**, *156*, 227-237.

(47) Bai, S.; Chen, C.; Zhang, D.; Luo, R.; Li, D.; Chen, A.; Liu, C.-C. Intrinsic Characteristic and Mechanism in Enhancing H<sub>2</sub>S Sensing of Cd-Doped Alpha-MoO<sub>3</sub> Nanobelts. *Sens. Actuators, B.* **2014**, *204*, 754-762.

(48) Hosseini, Z. S.; Zad A, I.; Mortezaali, A. Room Temperature H<sub>2</sub>S Gas Sensor Based on Rather Aligned ZnO Nanorods with Flower-Like Structures. *Sens. Actuators, B.* **2015**, *207*, 865-871.

(49) Zhang, B.; Li, M.; Song, Z.; Kan, H.; Yu, H.; Liu, Q.; Zhang, G.; Liu, H. Sensitive H<sub>2</sub>S Gas Sensors Employing Colloidal Zinc Oxide Quantum Dots. *Sens. Actuators, B.* **2017**, *249*, 558-563.

(50) Kim, S.-J.; Na Chan, W.; Hwang, I.-S.; Lee, J.-H. One-Pot Hydrothermal Synthesis of CuO-ZnO Composite Hollow Spheres for Selective H<sub>2</sub>S Detection. *Sens. Actuators, B.* **2012**, *168*, 83-89.

(51) Choi, S.-J.; Lee, I.; Jang, B.-H.; Youn, D.-Y.; Ryu, W.-H.; Park Chong, O.; Kim, I.-D. Selective Diagnosis of Diabetes Using Pt-Functionalized WO<sub>3</sub> Hemitube Networks as a Sensing Layer of Acetone in Exhaled Breath. *Anal. Chem.* **2013**, *85*, 1792-1796.

(52) Steinhauer, S.; Brunet, E.; Maier, T.; Mutinati, G. C.; Koeck, A. Suspended CuO Nanowires for Ppb Level H<sub>2</sub>S Sensing in Dry and Humid Atmosphere. *Sens. Actuators, B.* **2013**, *186*, 550-556.

(53) Li, Z.; Wang, J.; Wang, N.; Yan, S.; Liu, W.; Fu Yong, Q.; Wang, Z. Hydrothermal Synthesis of Hierarchically Flower-Like CuO Nanostructures with Porous Nanosheets for Excellent H<sub>2</sub>S Sensing. *J.* 

Alloys Compd. 2017, 725, 1136-1143.

(54) Ayesh Ahmad, I.; Abu-Hani Ayah, F. S.; Mahmoud Saleh, T.; Haik, Y. Selective H<sub>2</sub>S Sensor Based on CuO Nanoparticles Embedded in Organic Membranes. *Sens. Actuators, B.* **2016**, *231*, 593-600.

(55) Kim, H.; Jin, C.; Park, S.; Kim, S.; Lee, C. H<sub>2</sub>S Gas Sensing Properties of Bare and Pd-Functionalized CuO Nanorods. *Sens. Actuators, B.* **2012**, *161*, 594-599.

(56) Zhang, S.; Zhang, P.; Wang, Y.; Ma, Y.; Zhong, J.; Sun, X. Facile Fabrication of a Well-Ordered Porous Cu-Doped SnO<sub>2</sub> Thin Film for H<sub>2</sub>S Sensing. *ACS Appl. Mater. Interfaces.* 2014, *6*, 14975-14980.
(57) Jagadale Tushar, C.; Prasad, V.; Ramgir Niranjan, S.; Prajapat, C.; Patil Uday, V.; Debnath, A.; Aswal, D. K.; Gupta, S. K. Greatly Enhanced H<sub>2</sub>S Sensitivity Using Defect-Rich Titanium Oxide Films. *RSC Adv.* 2015, *5*, 93081-93088.

(58) Wang, Y.; Qu, F.; Liu, J.; Wang, Y.; Zhou, J.; Ruan, S. Enhanced H<sub>2</sub>S Sensing Characteristics of CuO-NiO Core-Shell Microspheres Sensors. *Sens. Actuators, B.* **2015**, *209*, 515-523.

(59) Guo, W.; Feng, Q.; Tao, Y.; Zheng, L.; Han, Z.; Ma, J. Systematic Investigation on the Gas-Sensing Performance of TiO<sub>2</sub> Nanoplate Sensors for Enhanced Detection on Toxic Gases. *Mater. Res. Bull.* **2016**, *73*, 302-307.

(60) Balouria, V.; Samanta, S.; Singh, A.; Debnath, A. K.; Mahajan, A.; Bedi, R. K.; Aswal, D. K.; Gupta, S. K. Chemiresistive Gas Sensing Properties of Nanocrystalline Co<sub>3</sub>O<sub>4</sub> Thin Films. *Sens. Actuators, B.* 2013, *176*, 38-45.

(61) Cai, J.; Goliney, I.; Philpott, M. R. Semiconductor-Metal Transition of Pyrite FeS<sub>2</sub> under High Pressure by Full-Potential Linearized-Augmented Plane Wave Calculations. *J. Phys.: Condens. Matter.* **2006**, *18*, 9151-9160.



#### **Table of Contents**