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Abstract: In a flank milling process, the tool rotation profile error induced by its radial 

dimension error, setup error, tool deflection and wear has a great influence on the 

dimensional accuracy of the machined components. In this paper, we present an 

integrated identification of tool error, prediction of machining accuracy and 

compensation methodology for tool profile error to improve the machining accuracy. 

Firstly, the tool errors are divided into static and dynamic errors based on the error 

characteristics and the corresponding error identification methods are established to 

recognize the tool error parameters. Secondly, the machining accuracy is predicted by 

a prediction model, and the tool error parameters are input into this model. Thirdly, a 

new tool error compensation method is developed and incorporated in the 

corresponding NC codes. Finally, some machining experiments have been carried out 

to validate the proposed identification-prediction-compensation methodology, and the 

results show that this methodology is effective. 

Keywords: Tool Rotation Profile Error, Error Identification, Accuracy Prediction, 

Error Compensation, Flank Milling 

 

1. Introduction 

In a flank milling process, the entire effective length of a tool is in contact with the 



workpiece and the side of the milling tool is utilized as the primary cutting surface, the 

machined surface can be described as simply a line moving in space[1]. There are many 

factors affect the machining accuracy such as tool path errors[2,3] caused by the 

geometric errors, thermal errors of machine tool and tool rotation profile error caused 

by tool run-out error[4], tool deflection[5] and tool wear[6] especially for a difficult-to-

cut material. The machining error due to machine tool inaccuracy can be easily 

identified and compensated by the ISO standards as the geometric errors of machine 

tool are static errors[3,7]. However, it is difficult to accurately deal with tool rotation 

profile error because some tool errors such as tool deflection and wear are dynamic 

changes in milling process. 

Many researchers have devoted to modeling, identification and compensation for 

various tool errors, which are crucial to improve the machined quality and precision. 

For the tool dimension error and setup error, Arizmendi[8] and Artetxe[9] considered 

the tool parallel axis offset and setting error so that the tool axis tilt between the tool 

and the spindle axis lead to run-out errors are dealt with. So Arizmendi and Krüger[10] 

established surface topography prediction models for flank milling and considered the 

influence of tool run-out variables on the topography, these models successfully 

establish the mapping relationship between tool run-out and surface accuracy. But, in 

these models, input variable contains lots of run-out parameters such as tool parallel 

axis offset, tool axis tilt angle, tilt angular position and so on, how to identify these 

parameters correctly is critical for surface prediction. Many scholars presented 

identification methods based on the distribution of the average cutting force[11-13], 

they obtained the run-out parameters from process force through experiments. For the 

tool deflection, Yuan et.al[14] believe that cutting force can easily induce tool deflection 

thus make the tool center deviates the desired trajectory and causes dimension error. So 

Yuan and Zeroudi[15] established dimension error prediction models based on the tool 

deflection in ball-end milling, they considered the tool as a cantilever beam and the 

milling force as equivalent concentrated force imposed on the working point, and the 

deflection calculation method considered the Euler Bernoulli cantilever beam equations. 

Larue[16] and Islam[5] et.al established prediction models considering the influence of 



tool deflection on flatness defects in flank milling, in these models the correct force 

model was chosen and the tool deflection was calculated. Therefore, the determination 

of the tool run-out parameters and the calculation of tool deflection require the cutting 

force model. However, it is difficult to accurately evaluate the cutting force as it is 

comparatively nonlinear on industrial tool paths[17], and takes a lot of calculation time 

in an industrial context[15].  

Tool wear is defined as the amount of loss of tool material on the contact surface 

between tool and workpiece, which directly leads to dimension error of workpiece and 

tool breakage[18]. Chinchanikar[19] and Liang[20] studied the influence of tool wear 

on machining surface, and pointed out the major challenges of these approaches are: 

measurement, modeling and simulation. For tool wear measurement methods, it can be 

divided into two types, direct and indirect measurement. Direct wear measurements are 

made using a microscope to measure tool wear at the edge of the worn tool[21], indirect 

wear measurements are made using sensors to monitor acoustic emissions, motor 

spindle speed, power consumption and force applied to the tool by workpiece[22,23]. 

However, direct measurements are complex or time-consuming and requires the 

stoppage of the machine tool to measure tool wear. Thus, Zhang[24] proposed a new 

approach based on shape mapping to acquire tool wear for ball end milling tool, the 

method does not require the stoppage of machine tool, then established an off-line tool 

wear prediction model[18] for assessing the degree of wear. For tool wear modeling, 

the process parameters, cutting time, and wear position constitute the input factors and 

tool wear is the output parameter for the model. Palanisamy[25] and Saini[26] 

developed models using regression and response surface methodology (RSM) 

techniques respectively with variable process parameters. However, these methods 

have defects of accuracy, in order to improve the prediction accuracy, Salimiasl[27] 

developed model using artificial neural network(ANN) techniques. Zhang[28] 

established tool wear estimation models using the least squares support vector 

machines(LS-SVM) and Kalman filter(KF) techniques respectively with variable 

process parameters, cutting time, and wear position. So, these methods such as ANN 

and SVM are more mature and have better prediction effect. For estimation of the effect 



of tool wear on machining quality, Zhang[6] presented a surface topography model and 

an on-line simulation method of surface topography considering tool wear based on the 

tool wear identification[24] and modeling[18], this method can effectively evaluate the 

effect of tool wear on ball-end milling operation.  

Other authors proposed some compensation methods specifically for tool deflection, 

Smaoui[29] and Biermann[30] developed compensation methods based on mirror 

correction to compensate tool deflection error, the methods modified the NC programs 

and required no reconstruction in CAM systems. Based on these results, Zeroudi[15] 

and Ma[31] et.al proposed compensation methods to compensate tool deflection error 

in five-axis ball-end milling by modifying tool tip and tool axis orientation, these 

methods are carried out by iterative operations, until the error is lower than prescribed 

tolerance criterion. However, there is lack of effective compensation analysis for the 

other tool errors. 

In some machining situation especially for difficult-to-cut material in flank milling, 

the tool radial dimension error, setup error, tool deflection and wear are always 

happening at the same time. However, few people simultaneously consider these four 

kinds of tool errors to predict machining accuracy and compensate errors. The tool wear 

will lead to a reduction in the tool radius and the increase of the cutting force, thus 

affecting the tool deflection, which will in return affect the tool wear[32]. Therefore, 

tool wear and tool deflection have coupling effects, it is difficult to describe this 

approach accurately in a mathematical way, and some numerical approach is difficult 

to use in an industrial context as the complexity of data programming[15]. 

In this paper, an identification-prediction-compensation methodology that contains 

the four kinds of tool errors is presented in a flank milling process. First of all, an 

identification method based on cutting experiments is proposed to recognize the tool 

error parameters. Then a new prediction model based on a pre-existing prediction 

model[33] is established to predict the machining accuracy, in which the tool error 

parameters are taken into account. At last, the tool error is compensated using a 

compensation method by correcting the NC codes. The identification method is based 

on the cutting experiments, so this method does not require complex theoretical 



calculation. These four kinds of tool errors can be considered simultaneously in the 

prediction of machining accuracy and tool error compensation, so the prediction 

accuracy and machined quality can be improved. 

The structure of this paper is as follows. Section 2 analyses the methodological and 

tool errors. Section 3 introduces the identification method for tool static error and 

dynamic error. Section 4 introduces the prediction model for machining accuracy. 

Section 5 describes the compensation method for tool errors. Section 6 evaluates the 

methods with some machining experiment tests. Finally, the conclusions are drawn in 

section 7. 

2. Methodological and tool error analysis 

The operation of the above three steps is as follows: First, for the identification of 

tool error parameters, we can directly (1) measure the tool static error parameters before 

machining, (2) obtain the dynamic error values by trial cutting in various machining 

situations using the identification method, and (3) set up an error database to further 

establish a dynamic error estimation model to calculate the predicted values in 

subsequent processing. Second, import the tool error predicted values into the 

prediction model of machining accuracy to realize the accuracy prediction. Finally, 

based on the above work, an error compensation method is established by modifying 

tool tip position based on mirror correction and iterative principle. 

Tool error analysis 

The radial dimension error, setup error, tool deflection and wear are the main factors 

to affect the tool rotation profile error, thus affect the shape of tool-workpiece contact 

line as shown in Fig. 1. 
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(d) Illustration of tool wear 

Fig. 1 Illustration of tool errors 

The ideal envelope formed by tool rotation should be a cylinder with a radius R, as 

shown in Fig. 1 (a). The tool dimension error is generated in tool manufacturing or 

grinding process, the tool setup error caused by misalignment of the tool rotation axis 

and the spindle rotation axis can result in a cone-shaped revolving body formed by tool 

axis with an angle between the tool axis and the spindle axis. Therefore, the actual 

radius of section in actual tool revolving body along tool axis is constantly changing 

caused by the dimension error and setup error, as shown in Fig. 1 (b). Tool deflection 

leads to cutting edge far away from the ideal edge, so it is equivalent to the reduction 

of tool rotation radius, shown in Fig. 1 (c). Tool wear is defined as the change of tool 

shape from its original shape during machining process, which will also lead to a 

reduction in tool rotation radius, as shown in Fig. 1 (d).  

For the above four kinds of tool errors, radial dimension error and setup error are 

constants that do not change with time and not affected by cutting condition, so these 

errors can be defined as static error. While tool deflection and wear are related to 

machining condition and change with cutting time, meanwhile, tool deflection and wear 

are equivalent to the dynamic reduction of tool rotation radius at different positions 

with time. So, we don’t need to separate them in measurement rather than take these 

two kinds of errors as a synthesized-tool dynamic error, this dynamic error results in 

the reduction of the tool rotation radius whereby leading to undercut. Reference 



to[4,5,6,8,32,34], the classification of tool errors as shown in Table 1. 

Table 1 Tool errors classification 

Tool errors Influence factors 
Change 

characteristics 

Static 

error 

Dimension error 
Not affect by machining condition 

Do not change with 

cutting time Setup error 

Dynamic 

error 

Tool wear 
Tool-workpiece material property, tool 

geometry and machining parameters 

Significant change 

with cutting time 

Tool deflection 
Cutting force, tool geometry and 

machining parameters 

Change with 

cutting time 

3. Tool error parameters identification 

There is a mapping relationship between the tool rotation radius and the normal 

machining error[14] in a plane machining, as shown in Fig. 2. Therefore, a new 

identification method based on shape mapping is proposed to obtain tool errors by 

cutting plane experiments. In the experiments, tool cuts straight along the X axis of the 

machine tool, other errors such as machine tool errors and control system errors have 

little influence, and only tool errors have great influence on the normal machining error. 

However, the normal machining error measured is the reflective result from the 

comprehensive tool errors including static and dynamic errors. It is necessary to 

separate the static and dynamic error parameters in order to establish the dynamic error 

estimation model. Therefore, firstly, we can directly measure the static error before 

machining, and then deduce the influence of static error on the normal machining error 

of measurement, so as to get the dynamic error parameters.  

3.1. Static error parameters identification with direct measurement on 

tool 

Tool errors lead to the rotation radius change along tool axis, as shown in Fig. 1. A 

radius measuring coordinate system ROZ is established, discretizing the cutting edges 

in the Z direction, so a series of measuring points iT   (i=1,2……,m) are selected to 

measure the tool rotation radius and the corresponding radius are i
R  . The distance 

between two adjacent measuring points is d, where m=int(LT/d), and LT is the effective 

length of cutting edge. The ideal radius for the ideal measuring points Ti is R. So the 



tool radius i
R only considering the influence of tool static error can be expressed as:  

i iR R R     ( 1 ) 

Where
iR represents the tool rotation radius error at i

T  ,if
iR R  ,then

iR >0; else
iR

<0. 

Reference[33] pointed out that the radius i
R can be measured by laser tool measuring 

system, when measuring, the tool is mounted on the spindle and rotates with it, then 

tool moves downward along Z axis with a distance of d, a few seconds to stay and the 

rotation radius can be measured. 

3.2. Dynamic error parameters identification with indirect measurement 

on machined surface 

There is a mapping relationship between the dynamic error and the normal machining 

error in a plane machining especially using difficult-to-cut materials, as shown in Fig. 

2. Therefore, the tool dynamic error can be indirectly identified by measuring the 

normal machining error on machined surface. 
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Fig. 2 Mapping relationship between the dynamic error and the normal machining error 

 A normal plane An perpendicular to the tool feed direction (X direction) is defined at 

a certain time t in machining process, thus the normal machining error can reflect the 

tool dynamic error in An. 

In An, point Ti on ideal contact line L and the corresponding point
iT  on actual contact 



line L  are selected as to explain the identification process. As tool dynamic error 

changes with cutting time,  i t  refers to the tool dynamic error at time t 

corresponding to
iT   ,  iy t  refers to the normal machining error along Y axis at

iT 

which can be measured by the coordinate measuring machine (CMM), iR refers to tool 

static error which is a constant had been obtained, thus the dynamic error  i t can be 

obtained by Eq.( 2 ):     

   i i it R y t     ( 2 ) 

 The determination of time variables is very important, the tool moves keeping the 

fixed feed Vf, so the cutting time tj (j=1,2,……,k) corresponds to the cutting length Lj, 

and can be expressed as /j j ft L V . Therefore, the dynamic error at each cutting time 

can be obtained as long as the machining errors at each position is measured by CMM, 

as shown in Fig. 3. 
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Fig. 3 Measurement of normal machining error for measuring points on machined Surface 

In order to acquire the dynamic error at different axial positions of the tool, several 

measuring points are set along the cutting edge at each measuring place Lj. The distance 

between two adjacent measuring points is d, thus the height Z which is a distance 

calculated from the tool tip for each axial measuring point can be expressed as Z=i·d. 

Therefore, the dynamic error  ,i jt Z  at
iT  can be expressed as: 

     , / ,i j i i j ft Z R i d y L V i d       ( 3 ) 

For the defined tool geometry and machining material, the tool dynamic error is 

affected by machining parameters (axial cutting depth ap, feed rate Vf, spindle speed n 



and radial cutting depth ae). Therefore, we can set up an error database by trial cutting 

in various machining situations, and then establish an estimation model to calculate the 

predicted values in subsequent processing. The dynamic error estimation model is a 

non-linear relation model expressed as  , , , , ,p f ea n V a t Z , the input factors include 

ap, Vf, n, ae, cutting time t and cutting edge position Z, dynamic error  is an output 

factor. In order to better express the nonlinear relation of input and output variables, the 

GA-BP neural network algorithm[35] is used to establish the estimation model.  

The three-layer BP neural network is used in network training, the input layer of BP 

contains 6 neurons (represent ap, Vf, n, ae, t, Z), output layer contains 1 neuron 

(represents  ), the linear transfer function is used as the transfer function of input and 

output layers, the hidden layer contains 4 neurons, the sigmoid tangent function is used 

as the transfer function of hidden layer, as shown in Fig. 4. The learning ratio is set as 

0.05, and the performance error is set as 0.0001. The connection initial weights and 

thresholds of BP can be optimized by Genetic Algorithm (GA), as shown in Fig. 5. 
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Fig. 4 The structure of BP neural network Fig. 5 The flow chart of GA-BP model 

The population scale of GA is set as 50, the evolutional generation is set as 100, the 

crossover probability is set as 0.5, the mutation probability is set as 0.01, the fitness 

function  f x      (  and   are the predicted and desired output). 

In this paper, the orthogonal experiment method is used to obtain the dynamic error 



under the various machining parameters, and the experiment results are used to train 

the GA-BP algorithm for establishing the dynamic error estimation model, Section 6.1 

gives details. 

4. Machining accuracy prediction  

According to the identification results of the tool errors, the machining accuracy can 

be predicted. In the early work, we proposed a prediction model[33] considering the 

influence of geometric error of machine tool and workpiece locating error. The tool 

contact points between the tool profile and workpiece play predominant roles in 

generating the milled surfaces[36], and these points can be calculated by the pre-

existing prediction model. On this basis, we continue to introduce the tool error 

parameters to establish a new prediction model. 
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Fig. 6 Illustration of flank milling 

As shown in Fig. 6, according to the pre-existing model, the actual tool location

 
T

, ,
x y z

p p p   P  , tool orientation  
T

, ,
w x y z

v v v   V  , normal unit vector  
T
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P px py pz

n n n   n  , 

and tangent vector  
T

, ,
p px py pz

e e e   e  in workpiece coordinate system corresponding to 

the actual tool location point P  in the CL-File can be calculated considering the 

influence of tool path errors. On this basis, we established a new model to calculate a 

serious of tool contact points i
T  for P through input the tool static and dynamic error 

parameters.  

As shown in Fig. 1 and Fig. 2, the rotation radius corresponding to each tool contact 

point will deviate from the ideal value as the effect of tool errors, which will lead to the 



tool contact points on the contact lines deviate from the ideal position. When cutting 

hard materials, both the static and dynamic errors have an effect on the tool rotation 

radius. Although the static error is fixed while the dynamic error varies with time, but 

the influence from both is independent, thus their influence can be superimposed. 

Therefore, the rotation radius
_i aR corresponding to i

T can be expressed by Eq.( 4 ): 

 _ , , , , ,i a i i p f eR R a n V a t Z    ( 4 ) 

Where i
R represents the radius affected by static error,  represents the dynamic error 

values calculated by GA-BP estimation model.  

In actual machining process, the machining parameters ap, Vf, n, ae are generally 

fixed in a whole or local machining area, so dynamic error in a certain cutting height Z 

varies with time t, it is critical to introduce the cutting time t to the estimation model 

correctly. The cutting time tp corresponding to tool location point P can be determined 

by the tool trajectory (NC code). Assuming that the tool is processed from the starting 

point P0 with a fixed feed rate Vf, thus the time tp can be expressed as: 

 0 1 1 2 1 /p i ft P P PP P P V   L  ( 5 ) 

Where PiPj represents the distance from point Pi to point Pj, the coordinates of Pi and 

feed rate Vf can be obtained from the NC code. 

Therefore, the 6 input factors to the GA-BP estimation model can be acquired, and 

the dynamic error i
 at i

T can be calculated, Fig. 7 gives the detail. 
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Fig. 7 Calculation flow of tool dynamic error for tool contact points in machining process  

The coordinates of actual tool contact points i
T corresponding to P can be calculated 

by Eq.( 6 ): 

_

_

_
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             

T  ( 6 ) 

According to the above calculation process, a series of tool contact points 

corresponding to each tool location point can be calculated. At last, the tool contact 

points on the finial machined surface can be obtained by the prediction method, then 

the normal machining error also can be calculated according to these points[15], which 

providing a reference for tool errors compensation. 

5. Tool errors compensation 

According to the results of identification and machining accuracy prediction, tool 

errors can be compensated. Usually, the influence of tool dynamic error is greater than 

static error when machining hard materials. Therefore, the tool error is equivalent to the 

reduction of the tool radius, thus leads to undercut, so the compensation of tool error is 

adjusting the position of tool in the normal direction so as to correct the rotation radius 

thus reduce the machining error. Compensation is implemented by modifying the NC 

code, but the adjustment of the tool tip does not involve the adjustment of the tool axis 

orientation. However, the tool error is highly nonlinear change in the direction of axial 

depth, so three compensation methods are assumed, as shown in Fig. 8. 
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The tool rotation radius error
iR can be expressed as

_i i aR R R    . Fig. 8(a) shows 

an uncompensated milled workpiece. Fig. 8(b) represents the case when
minR is chosen 

as the compensation reference. Fig. 8(c) represents the case when
maxR is chosen as the 

compensation reference. Fig. 8(d) represents the case when the average value

1

1 n

i

i

R R
n 

     is chosen as the compensation reference. It can be observed that 

workpiece after compensation has varying amount of “under-cut” and “over-cut” for all 

cases. In order to reduce the influence of tool errors, R is chosen as the compensation 

reference in this work. Therefore, the offset distance along normal direction for tool is

R , as shown in Fig. 9. 
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Fig. 9 Illustration of tool error compensation 

However, the offset distance is not equal to the prediction error, because the change 

of the tool position will change the radial cutting depth ae, and finally a new tool error 

value will be formed. It is necessary to carry out iterative operation, until the machining 



error is lower than prescribed tolerance criterion for the machined surface. Take the 

location point P on Lp as an example, assume the coordinates of P is Pw=（px，py，pz）

T, the overall procedures of tool path modification are shown in Fig. 9 and summarized 

as follows: 

(1) The nominal strategy has to be programmed in CAM software to generate the CL-

File. 

(2) This file is treated by the accuracy prediction model, and the tool dynamic error 

evolution is obtained all along the tool trajectory, so the radius error
_1iR

corresponding to tool contact points
iT  for P can be calculated. 

(3) The mean error
1 _1

1

1 n

i

i

R R
n 

    is obtained. 

(4) Offset the tool to a distance
1R  in the opposite direction of the normal vector

 
T

, ,p px py pzn n nn  ,thus point P move to PE, and PPE=
1R  . Therefore, the 

coordinates of the compensated tool location point PE can be calculated by Eq.( 7 ). 

1

1

1

Ex x px

E Ey y py

Ez z pz

P p R n

P p R n

P p R n

    
         

        

P  ( 7 ) 

(5) The radial cutting depth ae becomes ae+PPE after the tool moves, replacing the 

adjusted machining parameters into the dynamic error estimation model to 

calculate the new error
_ 2iR  and the machining error can be calculated by 

prediction model. 

(6) If the machining error is lower than prescribed tolerance criterion, the compensated 

tool position is determined. Otherwise, the process returns to step (3), repeating the 

procedure iteratively till tolerance criterion is satisfied.  

According to the above process, the tool errors compensation can be realized by 

adjusting tool position for each tool location point.  

In summary, the flow of identification-prediction-compensation methods for tool 

errors is shown in Fig. 10. 
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Fig. 10 Flow chart of the identification-prediction-compensation methods 

6. Experimental validation 

6.1. Experiment for tool error parameters identification 

The identification method can be validated by carrying out a series of plane milling 

experiments, and a single factor experiment and an orthogonal experiment are set up. 

(1) Single factor experiment 

The plane machining experiment were performed on a machine center DMG-60, the 

cutting conditions are shown in Table 2, the cutting tool shown in Fig. 11.  

Table 2 Cutting conditions for experiments 

Tool ∅16*40*92*16 high speed steel 

Workpiece material Stainless steel 

Blank size 255 mm× 255 mm× 20 mm 

Machining parameters ap=14 mm, ae=1 mm, Vf=27 mm/min, n=270 r/min 

Machining mode Plane machining 



  

Fig. 11 Cutting tool for experiments 
Fig. 12 The distribution of measuring points 

on machined plane 

Static error measurement 

After installation, the tool rotates with the spindle, the distance between two adjacent 

measuring points is d=2 mm, then the rotation radius corresponding to 6 measuring 

points was measured by a Renishaw laser tool measuring system (model NC4). 

Therefore, the static errors corresponding to these measuring points as shown in Table 

3. 

             Table 3 Measurement results of tool static error                 unit: mm 

Measuring point i 

（direction along the tool tip to hilt） 
Z 

Direct measurement 

radius 
Tool static error

iR  

1 3 8.024 0.024 

2 5 8.021 0.021 

3 7 8.013 0.013 

4 9 8.012 0.012 

5 11 8.010 0.010 

6 13 8.009 0.009 

Dynamic error identification 

A plane was machined use stainless steel, the normal machining error values of 150 

points (6 lines*25 column) on the plane were measured by CMM, and the distance 

d=2 mm, as shown in Fig. 12. The measurement results of normal machining error are 

shown in Fig. 14, and the identification results of dynamic error are shown in Fig. 15. 

 



Fig. 13 Machining and measuring process of experiment 
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Fig. 14 Measurement results of machining error Fig. 15 Identification results of dynamic 

error 

The shape change of contact line between the tool and the workpiece can be 

constructed by the dynamic error values for measuring points, as shown in Fig. 16. 
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Fig. 16 Shape change of contact line in machining 

From Fig. 15 and Fig. 16, we can see that the shape of contact line is constantly 

changing and approaching the tool axis as the dynamic error increases with time. 

Meanwhile, there is a phenomenon that the radius variation rate in different depth is 

different, and the greater the depth is, the greater the dynamic error. That is because the 

greater the depth is, the greater the cutting force, and the more serious the tool wear and 

deflection are. 

(2) Multi-factor orthogonal experiment 

In order to acquire the train data to establish the GA-BP estimation model 

 , , , , ,p f ea n V a t Z  , the multi-factor orthogonal method is selected to design 

machining experiments, the orthogonal array L16(4
4) for variables ap, Vf, n, ae (variables 



t and Z are reflected in measurement) has been used to construct 16 sets of experiments. 

The designed orthogonal experiment parameters are shown as Table 4. 

Table 4 Orthogonal experiment parameters 

Experiment number ap (mm) n(rad/min) Vf(mm/min) ae(mm) 

1 10 2900 600 1 

2 10 3200 800 1.3 

3 10 3500 1000 1.6 

4 10 3800 1200 1.9 

5 13 2900 800 1.6 

6 13 3200 600 1.9 

7 13 3500 1200 1 

8 13 3800 1000 1.3 

9 16 2900 1000 1.9 

10 16 3200 1200 1.6 

11 16 3500 600 1.3 

12 16 3800 800 1 

13 19 2900 1200 1.3 

14 19 3200 1000 1 

15 19 3500 800 1.9 

16 19 3800 600 1.6 

The dynamic error values in each experiment can be attained by the identification 

method and then the dynamic error GA-BP estimation model can be established 

according to these data. The prediction results of the GA-BP evaluation model are 

shown as shown in Fig. 17. 
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Fig. 17 Comparison of predicted values and measured values for GA-BP estimation model 

From Fig. 17, the proposed GA-BP model can predict tool dynamic error with 

maximum error on an average of 4μm compared with the actual tool error. Therefore, 

the GA-BP estimation model can be used to predict the tool dynamic error. 



6.2. Experimental for prediction and compensation 

In order to verify the effectiveness of the prediction and compensation method, a 

cutting test was conducted by cutting a workpiece like the letter S, as shown in Fig. 18. 

Stainless steel is selected as work material, the tool path and is shown in Fig. 19. 
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Fig. 18 The machined part Fig. 19 Tool path of the experiment part 

The distribution of ideal and actual tool contact points on the swept surface can be 

calculated respectively by the prediction model. Part of the tool contact points 

distributed is shown in Fig. 20.  
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Fig. 20 The distribution of ideal and actual tool contact points on swept surface 

According to the ideal and actual tool contact points, the normal machining error can 

be calculated to evaluate the accuracy of the machined surface[18]. The normal 

machining error of 15 points is shown in Fig. 21. 
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Fig. 21 Comparison of prediction and 

measured values for normal machining error 

Fig. 22 Error comparison between the two 

groups of predicted values 

In order to verify the effects of tool errors on machining accuracy, three groups of 

prediction results were calculated in the theoretical calculation. The first group is the 

prediction values calculated by the new model that considers tool static and dynamic 

errors (as No.2 curve shown in Fig. 21), the second group is the prediction values 

calculated by the new model that considers tool static error (as No.3 curve shown in 

Fig. 21), the third group is the prediction values that without considering the tool errors 

calculated by the pre-existing prediction model (as No.4 curve shown in Fig. 21). The 

normal machining error was measured by CMM on the machined surface (as No.1 

curve shown in Fig. 21). The average errors, average relative errors and root mean 

square errors of the predicted values are shown in Fig. 22. 

The pre-existing prediction model only considers the tool path errors caused by the 

geometric error of machine tool and workpiece locating error, while the new prediction 

model added the four kinds of tool errors based on the pre-existing model. Thus, the 

new model can simultaneously consider the influence of tool path error and the tool 

rotation profile error on surface machining accuracy. From Fig. 21 and Fig. 22, it is 

found that the values of No.2 are closest to No.1, and the average error, average relative 

error and mean square root error of predicted values in No.2 are less than No.3. It also 

found that the errors of No.3 are less than No.4, which indicates that the tool errors have 

certain influence on the machining accuracy; the new model has higher prediction 

accuracy by comparing with the prediction values of pre-existing model. 

According to the iterative compensation method for tool errors, the position of each 



tool location point was adjusted and the compensated NC code was acquired. The 

cutting test was carried out under two conditions: (1) without tool errors compensation 

and (2) with tool errors compensation. After machining, both machined parts were 

inspected for machining error by CMM. The comparative results are shown in Fig. 23. 
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Fig. 23 The machining error of workpieces without/with compensation 

Comparing the machining error measurement results of the two tested workpieces, it 

is found that machining accuracy has been improved about 35%~55%. Therefore, tool 

errors compensation method is effective.  

7. Conclusions 

This paper proposed an identification-prediction-compensation methodology for tool 

profile error caused by the tool radial dimension error, setup error, tool deflection and 

wear in flank milling process.  

(1) Firstly, the tool profile error was divided into static error (radial dimension error 

and setup error) and dynamic error (tool deflection and wear) according to the 

characteristics of these errors. A new identification method for static and dynamic 

errors was established, the method was based on plane cutting experiments to 

recognize the tool error parameters, which does not require complex theoretical 

calculation. Then a tool dynamic error estimation model was established by the 

GA-BP neural network algorithm, which can describe the relationship between 

cutting situation and dynamic error, providing estimated error values for precision 

prediction. 

(2) Secondly, a new prediction model considering the influence of tool errors was 

established based on a pre-existing prediction model, the static error parameters 



and the dynamic error values acquired by GA-BP estimation model were 

introduced in the prediction model. Then the tool contact points along the tool 

trajectory were calculated to generate the machined surface, and the machining 

error were also calculated by these points. Some dedicated experimental tests have 

been carried out to verify the effectiveness of the identification and prediction 

methods. 

(3) Finally, a compensation method was proposed to reduce the influence of tool errors, 

the method was based on the iterative evaluation and carried out by modifying the 

tool path. Then the effectiveness of the compensation method was verified through 

a comparative experiment. 
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Appendix 1 

Notation 

R   ideal radius of tool 

ROZ   radius measuring coordinate system 

iT   (i=1,2……,n)   actual tool contact points 

iR    series radius of tool rotation profile 

Ti   ideal tool contact points 

d   distance between the measuring points 

m   the number of measuring points 

LT   the effective length of cutting edge 

An   normal plane 

L    ideal contact line 

L    actual contact line 

y    the normal machining error 

R    the tool rotation radius error 

t      cutting time 

    tool dynamic error 

Lj   machining length 

Vf   feed rate 

Z   cutting height  



ap   axial cutting depth 

n    spindle speed 

ae    radial cutting depth 

P    actual tool location point 

w
V    actual tool orientation in WCS 

p
n    normal vector at P  

p
e     actual tangent vector 

P     ideal tool location point 

     angle of between tool axis and spindle axis 

Pw    ideal tool location point in WCS 


