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Abstract

The cupola (dome) of Santa Maria del Fiore in Florence was ingeniously constructed
by Brunelleschi using a conical bricklaying, radial-oriented toward a focus point on the
central axis. Therefore, the dome is built as a surface of revolution but with parts cut
away to leave the octagonal cluster vault form. This circular arrangement is compared
with an octagonal horizontal corbelling in models where the dome is schematized as
an assembly of rigid-blocks in frictional contact, analyzed with a Non-Smooth-Contact-
Dynamics (NSCD) approach. The high indeterminacy of the contact reactions implies
considerable difficulties in their determination, which are faced via a regularization
procedure by adding a compliance at the contact points in representation of the de-
formability of the mortar joints. Numerical experiments, performed with a custom
software, highlight the uniform flow of forces in the Brunelleschi arrangement, but evi-
dence the disturbances induced by the herringbone spirals, mainly used for construction

1



2 V. Beatini, G. Royer-Carfagni & A. Tasora

purposes, which are overloaded along the meridians and very weak in the direction of
the parallels. This is due to the vertical narrow disposal of the blocks, which increases
the stiffness in meridional direction, but diminishes the capacity of the friction-induced
forces to equilibrate the hoop stress.

Keywords: Dome, Masonry, Friction, Brunelleschi, Rigid Body Mechanics, Non-Smooth

Contact Dynamics.

1 Introduction

The vaulting of the octagonal-based cupola of the Basilica of Santa Maria del Fiore in
Florence, the masterpiece by Filippo Brunelleschi (1377-1446), started in 1420 and ended
in 1436. The works for the lantern began 10 years later, following a long debate and a
new competition won again by Brunelleschi, and were concluded in 1471 [26]. This is
still nowadays the largest masonry dome in the world and one of the most studied and
commented constructions of Christianity. It is not possible, even tentatively, to recall
the main scientific works on this superb monument (a state of the art is the book by Di
Pasquale [17]), but we limit to what reputed essential for our aim, which consists in the
discussion, albeit on a simplified model, of the ingenues methods proposed by Brunelleschi
to construct a dome without falsework following the scheme of an octagonal groin vault,
which posed serious technical challenges with respect to the cupolae of revolution. To
this aim, numerical experiments are made with a custom software implementing a Non-
Smooth-Contact-Dynamics (NSCD) approach, where the high indeterminacy of the contact
reactions is by-passed with a regularization procedure adding a compliance at the contact
points, representative of the deformability of the mortar joints.

The Cathedral works had started in 1296 developing the original project by Arnolfo di
Cambio and the base of the octagonal drum had been ready since 1314-1315 [26]. Although
nobody really knew how to construct the dome, its octagonal shape must have been defined,
because it is represented in a 1355 fresco by Andrea di Bonaiuto in the Cappellone degli
Spagnoli of the Basilica of Santa Maria Novella, and since 1367 a scale model was available
in one of the side aisles of the growing cathedral. Indeed, the dome appeared as a polygonal
groin vault that, following the medieval technique, needed to be built on a wooden armature
or falsework, also called centering1. However, taking into account that the drum was 43
m in diameter and already almost 60 m high, it was impossible in practice to provide the
timberwork [26]. Moreover, since the drum was a slender structure constructed on arches,
not strengthened by the buttresses typical of Gothic Architecture, any outward thrust from
the dome consequent to its possible meridional cracking, needed to be small.

1Leon Battista Alberti confirms that “Testudo camura atque item fornix armamentis substitutis inducatur,
necesse est” (The Groin vault and the barrel vault have to be constructed with the support of centering), De
Re Aedificatoria [1], liber III, Caput XIX.
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During the long discussion that proceeded the construction, Neri di Fioravanti (1300(?)-
1374) had proposed to decrease the curvature of the sections of the of the dome according
to the Gothic arch following the rule known in Italy as the “quinto acuto” (pointed fifth),
which consisted in dividing the diameter in five equal parts and drawing the curvature of the
arch of the dome with 4/5 of that diameter [26]. To counterbalance the outward thrust, he
also proposed to encircle the dome with stone and wooden chains. Neri also planned for the
dome the rare use of a double shell, a technique used in Islamic mosques and mausoleums,
as the one built in 1312 in Soltaniyeh (Iran), where the interior shell was designed for
structural strength, while the exterior one offered protection from climatic actions [21].

Brunelleschi had spent several years studying the monuments of ancient Rome, in par-
ticular the Pantheon, the Minerva Temple and, probably, Nero’s Domus Aurea, containing
a spherical dome resting on an octagonal base [26]. Building without falsework was pos-
sible for a dome of revolution, constructed by layering one ring on the other, but not for
a octagonal groin vault. Moreover, as the construction progressed, the plane of the joints
would have become more and more inclined with respect to the horizontal plane, so that
special countermeasures should have been required to avoid sliding of the bricks on the fresh
mortar. Brunelleschi conceived a double shell with a quinto acuto profile, as in Figure 1(a),
but with major innovative ideas.

(a) (b)

Figure 1: Geometry of the dome. a) Diagram of the “quinto acuto”, the pointed fifth
arch (www.bergbuilding.com/berg-built-blog/design-build-from-concept-to-reality); b) the
ribs and circles interconnecting the inner and outer vaults (from [35]).
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Brunelleschi was so jealous of his work that he left no plans of the dome, and looking from
the outside or the inside it is not possible to identify all the tricks of its construction, some
of which are still unrevealed even after paramount studies. Although there is no universal
agreement, it is commonly accepted that the disposition of the estimated 4 million bricks
of various shapes followed three main criteria.

• Internal coupling elements. The cupola is not composed of two separated shells but it
is a unique structure with internal lightening voids, because the shells are structurally
coupled by 24 ribs (sproni), girdered by six circles (cerchi) of strong sandstone blocks
well linked by lead-lined iron clamps [29], as schematically represented in Figure 1(b).
In particular, the first circle in contact with the drum is reinforced with long sandstone
blocks laid transversely. Big oak beams (catene di quercia) tie the ribs, which are
entirely built of gray and tan sandstone. Therefore, even if the cupola is mainly
constructed out of brick, lighter than stone and easier to form, wood, metal and stone
are used where additional stiffness and strength is needed.

• The herringbone spirals. This technique is believed to be inherited by the Etruscans
and it is documented in technical drawings dating back to the fourteenth Century [6].
As shown in Figure 2(a) for a dome of revolution, the herringbone pattern is shaped by
alternating laying bricks in a horizontal way with a vertical setting at regular intervals,
wider at the bottom and decreasing when going up, so to form large spirals travelling
across the sections of the dome [17]. Although there is no universal agreement about
the real three-dimensional disposal of the bricks [32] this arrangement, which may
unfavorably overstress the sails of the membrane forming the dome, has manly a
constructive purpose. In fact, the vertically laid bricks can stand up while being
constrained by the horizonal ones, and further constrain the horizontally laid bricks
of the successive ring against sliding on the fresh mortar. In addition, the cutting
edges of the vertically laid bricks were supposedly used by a special team in charge of
framing the orientation of the brickwork with a guiding cord or “trammel”.

• The radial brickwork. Quite differently from the horizonal corbelling, the bricks of the
dome, including those of the herringbone (Figure 2(b)), are all radial-oriented toward
a focus point, which is “sliding” on a central axis inside the dome, as represented in
Figure 3(a). There is not an unanimous agreement about the law according to which
the focus should climb the central axis, but certainly, the dome was raised in successive
rings [26]. If the various layers followed the radial direction of the pointed fifth arch as
in Figure 3(b), the brickwork on the top would correspond to an inclination θ = 60◦,
and the height of the focus point on the central line would be d = 3/8 r tan θ [15],
being r the radius of point-fifth arch. The rotation of such a trammel generates a
set of geometrical curves on the faceted dome surface, as shown in Figure 3(a). If
that inclination toward the interior had been fixed uniquely by a single fixed central
point at the bottom, the brickwork at the top would have been pushed to the very
uncomfortable 90◦ angle, creating serious problems during construction. The internal
coupling element provides the connection of the weaker parts.
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(a) (b)

Figure 2: The bond pattern of the masonry work. a) Herringbone bond pattern in a circular
dome (Drawing by Francesco Gurrieri, 1982). b) Internal view of the intersection of the
herringbone pattern at a corner line in Brunelleschi’s octagonal-shaped dome.

The last invention in particular implies the noteworthy property that, as schematically
indicated in Figure 3(c), the octagonal dome contains an invisible shell of revolution, that
could be raised without falsework. Here, the inner circle corresponds to the locus of the
centers of the rotating pointed-fifth arches, while C1, C2 and C3 denote the intersection
of the radii with the faceted dome surface in the middle of the sail or in proximity of
the corner ribs, at the level of Figure 3(b). Leon Battista Alberti in his “The Ten Books
of Architecture” [1], several years after the completion of the dome, gives a sense of the
technique by stating“ A polygonal groin vault can also be built without centering as long
as a spherical vault can be inserted into its thickness. But here you will have particular
occasion for ligatures to fasten the weaker parts of the outer one tightly to the strongest part
of that within2. The Brunelleschi’s cupola appears as a circular dome, but with parts cut
away from both the inside and the outside, to leave the octagonal cloister-vault form.

It is clear from the previous discussion that the major properties of the Florentine build-
ing derive from the ingenious bond pattern set up by Brunelleschi, and that any attempt
to supersede this aspect with a continuous modelling cannot but end in utter failure. Here,
we propose to consider the dome as formed by rigid blocks in unilater frictional contact.
Varying the shape and the bond pattern of the constituent blocks, our aim is to investigate
the peculiarities of Brunelleschi’s “modo di murare” (technique to wall up). Of course, it
is impossible for our calculation potential to reproduce all structural details, and therefore
a simplified model will be considered. In particular, we will not separate the dome into
the two vaults coupled by ribs and rings, but we will consider an effective shell, of the
same thickness of the inner vault. Parameters of comparison will be the shape of the vault
(circular vs. octagonal), the bond pattern (radial vs. corbelled), and the effects of the

2Alberti (De Re Aedificatoria, liber III, Caput XIX), verbatim says: “Angularem quoque testudinem
sphericam modo per eius istius crassitudinem rectam sphericam interstruas, poteris attollere nullis arma-
mentis. Sed istic nexura potissimum opus est, qua huius imbecillae partes partibus illius firmioribus arctissime
illigentur ”. Alberti, at the begging of the same chapter, defines the various types of vaults (testudines), in
particular the groin vault (spherica angularis) and the spherical vault (recta spherica).
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(a) (b) (c)

Figure 3: Geometry of the dome. a) Construction with auxiliary cones [6]; b) the circular
construction; c) the inner, hidden, dome of revolution, inscribed in the octagonal groin vault
(redrawn from the ground plan by Claudio Rossi after Lando Bartoli [6]).

1

herringbone spirals on the diffusion of the internal forces.

The frictional sliding problem for assemblies of rigid blocks is solved within the frame-
work of Non Smooth Contact Dynamics (NSCD), according to the original formulation by
J.J. Moreau [30, 31]. The blocks are considered with infinite compressive strength, subject
to set-valued force laws and complementarity constraints at each contact according to fric-
tional Coulomb’s law. This model has been implemented in a custom simulator based on
the Project Chrono C++ software library, interfaced with the Rhino CAD environment us-
ing the Grasshopper parametric design software. The major potentialities of the model and
its numerical implementation, which includes a sophisticated contact detection algorithm,
have been presented in [7]. Other authors [13, 34, 28] have instead used, as an alternative,
the LMGC90 software [19] that implements the same general model, but here we prefer to
use our own code with a customized procedure that can be tailored for the case at hand.

The Project Chrono software has been successfully employed in [9] to evidence the
role of friction on the stability of masonry domes, imagined to be composed of blocks in
dry contact, highlighting the role of the bond pattern and aspect ratio of the blocks on
their capacity of equilibrating the hoop stress. The same approach has also been used to
discuss the shear failure of single- or multi-ring arches, either isolated or with spandrels [8].
However, the problem considered now is much more complex than those considered so far,
because the model is composed of a great number of blocks in contact on planar surfaces,
so that the number and location of contact points is highly undetermined. Therefore, of



Brunelleschi’s dome. 7

paramount importance is the use of a regularization procedure in the form of a numerical
compliance, which enforces the uniqueness of the solution in terms of dual variables (contact
reactions) and can be representative of the deformation of the mortar joints between the
blocks. This technique is complementary to the introduction of a regularization term that,
as discussed at length in [8], annihilates at each time-step the shear-induced dilatation
consequent to the associative version of the frictional model used in the numerical solution.
This formulation increases the numerical efficiency, it is in agreement with experiments on
dry joints [38, 12, 11] and implies that the frictional response becomes non-associative as
the dilatations progress.

In this article we test in a very challenging and complex problem the efficiency of the
customized implementation of the NSCD approach, to demonstrate that it can be a very
powerful tool to analyze masonry works for which the bond pattern and the shape of the
bricks represent the raisons d’être of their load bearing capacity. This is why, in Section 2,
the implemented model is discussed in detail, with particular emphasis on the regulariza-
tion procedure that allows to determine the contact forces. On the other hand, the careful
numerical experiments, recorded in Section 3, undisclose aspects of the Brunelleschi master-
piece that, to our knowledge, have only been qualitatively appreciated so far. The analysis
of the flow of the contact forces and the comparison with the results for a dome of revolution
with a radial brickwork and for an octagonal groin vault with corbelled construction, have
evidenced the role of the hidden, circular dome ingeniously conceived by Brunelleschi. Of
particular interest is the discussion about the herrigbone spirals, which are stiffer than the
rest of the masonry with respect to meridional actions so to induce a strong disturbance in
the flow of stress, but are more prone to open under the effects of the hoop tensile stress.
Therefore, they represent the Achilles heel in the construction, as confirmed by the cracks
that are visible at the points where the plaster has detached.

2 The Non-Smooth-Contact-Dynamics (NSCD) model

The NSCD formulation is typically used to describe the dynamic interaction of a large
number of rigid bodies, especially of spherical shape, in frictional unilateral contact. A
classical application is in the simulation of bodies impinging on layers of granular materials,
while the specialization of this technique to the case of complex masonry-like construction
is yet to be fully appreciated, since it presents challenging problems. First of all, the
blocks are usually defined by planar surfaces, so that the location of the contact points
is highly undetermined. Secondly, since some of the blocks may be non-convex, standard
contact-detection algorithms cannot be readily applied. Most of all, since here we mainly
perform static analyses (displacements and velocities are small), it is important to realize
the advantages and drawbacks of the method and propose efficient regularization procedures
that can also serve to model the deformability of the mortar joints. After recalling the main
features of the NSCD model, for which we mainly refer to previous work [7], we will focus
on these aspects.
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2.1 The dynamical problem and its numerical implementation

The NSCD approach relaxes some limiting assumptions of ordinary differential equations,
leading to a problem of measure differential inclusions (MDI) [31, 30]. The non-smooth
nature of the problem stems from the fact that contact forces are assumed as set-valued
force laws [36], and by accepting discontinuities in speeds as a consequence of hard contacts.

With respect to an inertial reference system, let xj ∈ R3 represent the position of the
center of mass of the j−th block, ρj ∈ H1 its rotation expressed as a unit-quaternion,
ẋj ∈ R3 its velocity and ωj ∈ R3 the angular velocity, respectively. The state of the system
at time t is represented by generalized configuration coordinates q = {xT1 ,xT2 , ...}T and by
the generalized velocities v = {ẋT1 ,ωT1 , ẋT2 ,ωT2 , ...}T ∈ Rnv . In the MDI context, speeds
v(t) are functions of Bounded Variation [2] in order to accommodate impulsive events in
hard contacts, and positions q(t) are absolutely continuous functions with respect to the
Lebesgue measure of time.

We define the set GA of contact constraints between pairs of shapes through a signed dis-
tance function so that the non-interpenetration condition for the i−th contact is Φi(q) ≥ 0.
The set GA is updated during the simulation by the collision detection engine, which adds,
removes or updates contacts at each time step. At the i−th contact point of each block
a local contact coordinate system is defined by a normal unit vector and two mutually or-
thogonal tangent vectors. The i−th relative velocity ui = {un,i, uu,i, uv,i}T is the difference
between the instantaneous velocity of the near particles of the blocks at hand, expressed
in the contact coordinate system. This is related with generalized velocities as ui = DT

i v,
with matrices Di ∈ Rnv×3. The i−th contact force, expressed in the contact coordinate
system, is γ̂i = {γ̂n,i, γ̂u,i, γ̂v,i}T . This corresponds to a generalized contact force Diγ̂i.

Using the the De Saxcé bipotential [36] on active contacts (with Φi = 0), the three-
dimensional Coulomb-Amontons frictional contact model can be expressed as a Cone Com-
plementarity Problem (CCP)3. Introducing the second order Lorentz cones

Υi =
{
γ̂n,i, γ̂u,i, γ̂v,i | µγ̂n,i ≥

√
γ̂2u,i + γ̂2v,i

}
⊂ R3 , (3)

and their dual cones Υ∗i = {yi| 〈yi,x〉 ≥ 0, ∀x ∈ Υi} , the condition that enforces the
Coulomb-Amontons contact model is the CCP defined as

γ̂i ∈ Υi ⊥ ūi ∈ Υ∗i , ∀i ∈ {GA,Φi = 0} , (4)

3The dual cone K∗ of the cone K is a convex cone expressed as

K∗ = {y ∈ Rn : 〈y,x〉 ≥ 0 ∀x ∈ K} . (1)

A Cone Complementarity Problem CCP(A, b,Υ) is the problem of finding a x that satisfies

Ax− b ∈ Υ∗, x ∈ Υ, 〈Ax− b,x〉 = 0, (2)

where Υ is a (convex) cone. One can also use the notation Ax− b ∈ Υ∗⊥x ∈ Υ. The CCP is equivalent to
a Variational Inequality problem.
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where we have defined

γ̂i =


γ̂n,i
γ̂u,i
γ̂v,i

 , ūi =


un,i
uu,i
uv,i

+


µ
√
u2u,i + u2v,i

0
0

 = ui + ũi . (5)

The CCP above satisfies at once the requirement that contact forces reside in the
Coulomb friction cone if in sticking state, and that the sliding velocity is opposite to the
tangential contact force if sliding. At the same time, it implies also that no interpenetration
can happen in case of contact, as the Signorini complementarity condition expressed at the
speed level [7, 8].

Let now f(q,v, t) denote the generalized forces, including gravitational forces, external
applied forces, gyroscopic forces. The block-diagonal mass matrix M contains all the masses
and inertia tensors of the rigid bodies. The equilibrium condition for all the blocks is the
MDI problem defined as

M
dv

dt
= f(q,v, t) +

∑
i∈GA

Diγ̂i(t) , (6)

γ̂i ∈ Υi ⊥ ūi ∈ Υ∗i ∀i ∈ {GA|Φi = 0} . (7)

A practical approach to perform the time integration is based on a discretization of (6)-
(7) at the speed level. The unknowns are the jumps in discontinuous velocities (v(l+1)−v(l))
over a time step h and reaction impulses γi =

∫ t+h
t dγi(dt). The signed Radon measure

dγi can be decomposed as dγi = γ̂i(t)dt+ ξi, where γ̂i(t) ∈ L1 is the absolutely continuous
part with respect to the Lebesgue measures dt, while the atomic measures ξi generates
instantaneous changes in velocity.

Of paramount importance in this formulation is the introduction of a stabilization term

bi at each i−th contact point, which modifies the relative velocity ū
(l+1)
i as

ū
(l+1)
i = ū

(l+1)
i + bi , with bi = {Φi/h, 0, 0} . (8)

This takes care of correcting interpenetration constraints caused by numerical integration
errors [24, 4], but it has other major implications that will be discussed later on. In con-
clusion, the time stepping scheme, to be solved at each time step, is of the form

γi ∈ Υi ⊥ ū(l+1)
i ∈ Υ∗i , (9)

M (l)(v(l+1) − v(l)) = hf(q(l),v(l), t(l)) +
∑
i∈GA

Diγi , (10)

q(l+1) = Θ(q(l),v(l+1)) , (11)
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where, in (11), the Θ map performs the incremental update of coordinates. For positions it

simply means x
(l+1)
i = x

(l)
i +hẋ

(l)
i , whereas a Lie exponential is used for updating rotations.

These conditions solve the general dynamical problem, but the same formulation can
be used for static analysis as a special case. A static analysis can be achieved with a single
solution of the CCP with arbitrary h and with v(l) = 0, a highly non-linear complementarity
problem whose solution gives v(l+1) and contact forces hγ. Unstable configurations would
correspond to non-zero v(l). We remark that, in the context of finite precision as happens on
most computer implementations, the solution of the CCP would give anyway a non-zero v(l)

even if the configuration is stable, hence a tolerance εs would be needed. When approaching
unstable configurations, the definition of a proper tolerance can be questionable, so we
prefer to perform full dynamic analysis, with a duration of 4 s, even for the assessment of
the stability.

2.2 Solution and regularization of the problem

The main computational bottleneck of the time stepping scheme is the computation of
unknown impulses γ from the CCP of (9). For its practical implementation, we intro-
duce system-level matrices and vectors D = [D1 | ... | DnA ], γ = [γ1 | ... | γnA ],
ū = [ū1 | ... |ūnA ], b = [b1 | ... |bnA ], and the Cartesian product of all friction cones
Υ = ×i∈GAΥi, Υ∗ = ×i∈GAΥ∗i , where nA denotes the number of contacts. Also, for com-
pactness we write k̃(l) = M (l)v(l) + hft(q

(l),v(l), t(l)). Finally, having defined the Delassus

operator N = DTM (l)−1D and the vector r = DTM (l)−1k̃ + b, we can rewrite (9) as a
non-linear second-order CCP in the form

γ ∈ Υ ⊥
(
ū = Nγ + r + ũ(v(l+1))

)
∈ Υ∗ . (12)

A first difficulty in solving (12) is the presence of the non-linear ũ(v(l+1)) term. It
has been shown [5] that under the assumption of small time steps and/or small sliding
speeds, such term can be dropped in order to obtain an easier convex problem, with affine
ū = Nγ + r . After such a convexification, the CCP can be cast as a quadratic program
with cone constraints, a class of optimization problems for which we can use an efficient
solver. To this end we developed a variant of the non-monotone Spectral Projected Gradi-
ent method with non-monotone Grippo-Lampariello-Lucidi line search [10], adding diagonal
preconditioning and a fall-back strategy to ensure monotone convergence in truncated it-
erations. We experienced that in most scenarios this method converges faster than fixed
point iterative solvers usually adopted in earlier NSCD algorithms [23].

A drawback of the convexification is that the Coulomb friction model becomes associa-
tive as a dilatation is generated during sliding motion. However, such a dilatation does not
increase indefinitely, because of the stabilization term b defined in (8). This implies that

during sliding motion the gap tends to hµ
√
u2u,i + u2v,i and, as such, it becomes irrelevant
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for small time steps or small sliding speeds like in the original non-associative Coulomb
model [3, 5]. A detailed discussion of this effect is recorded in [8].

A second difficulty emerges from the fact that existence and uniqueness of the solution
to the CCP problem holds in the static regime only under special circumstances [7]. It is
sufficient to take the counter-example of a rigid tripod stacked on top of a plane, at rest, for
which there are infinitely many solutions for the tangential reactions at the three contact
point, provided that they cancel out in horizontal direction. Adding further contact points
between two rigid bodies leads to even more over-constrained problems. Although multiple
solutions for contact reactions (dual variables) might correspond to an unique solution in
terms of speeds (primal variables), hence not causing issues in plotting trajectories, this
remains a problem if one desires to visualize the flow of forces inside in a masonry work.
For instance, at each time step the CCP solver may converge to a different solution in
terms of dual variables even if the blocks show little or no motion, which triggers a noisy
display of contact forces that seems to cycle between different solution sets. In addition,
over-constrained problems, like those considered later on, are very sensitive to the initial
boundary conditions.

For the reasons above, we introduce a regularization in the form of a numerical com-
pliance in contacts. In [37] we introduced the stiffness matrices Ki, at each i-th contact,
with kn,i, ku,i, kv,i values on the diagonal; we arranged them in a single system-level block-
diagonal matrix K and demonstrated that the only modification required to the original
NSCD time stepping is the introduction of a block diagonal E matrix in the Delassus
operator, i.e.,

N = DTM (l)−1D − E , (13)

with E = − 1
h2
K−1. One can see that for k → ∞, this model converges to the original

scheme. Although our method aims at using large time steps h for high computational
performance, in passing we note that for h ↓ 0 the method tends to an explicit integrator

where the DTM (l)−1D part becomes less and less relevant. If damping is required too,
we can add a stiffness-proportional damping Ri = αKi at each i-th contact, leading to
E = − 1

h(h+α)K
−1. In such a case, anyway, also the bi terms of (8) shall be modified,

becoming bi = { 1
h+αΦi, 0, 0}. Tuning a proper damping value can be useful for simulation

involving seismic scenarios, but in our case, that is addressing a static problem, the damping
can be neglected; moreover, the time stepping itself already introduces a numerical damping
which grows with the size of the time step, as in a first order implicit integrator.

However, one can see from (8) that bi contains a term that is proportional to 1
h , and

this can be a problem for simulations using small time steps together with small (or zero)
compliance. In such cases, the algorithm tends to cancel possible penetrations in a single
step, thus giving residual outbound speeds at the next time step. Such artefact can affect
the numerical stability of simulations, because stacked objects tend to bounce instead of
settle. In order to control this numerical issue, we introduce an optional numerical tolerance
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εu that enforces and upper limit on the speed of recovery of penetrations. Then, the bi terms
become, in the various cases,

bi =

{
max

(
1

h
Φi, εu

)
, 0, 0

}
rigid or compliance , (14)

bi =

{
max

(
1

(h+ α)
Φi, εu

)
, 0, 0

}
compliance and damping . (15)

The εu contribution can be interpreted as an additional numerical damping in contacts,
which is automatically triggered only when needed.

A consequence of having introduced E is that the N matrix, which was originally
positive-semidefinite because of the high rank-deficiency of D, becomes a positive-definite
matrix. Thanks to this, we get the uniqueness of the solution for the dual variables, so that
the solver converges stably to the same solution in terms of dual variable at each timestep.
This is different from a penalty approach because it still fits in the variational formalism
for non-smooth set-valued forces and, hence, the time integration algorithm retains a good
stability even when taking large time steps.

This compliance is a departure from the original idea of perfectly rigid blocks, but it can
be exploited to model the deformability of the mortar joints between the stone or masonry
blocks. As noted in [25], one may want to apply physical compliance values that match the
stiffness of the real materials. However, we will show that a precise evaluation of this effect
is not crucial, because the distribution and value of the contact forces is almost insensitive to
the assumed value of the compliance, at least in a certain significant range. Extremely small
values, even without physical meaning, will make N positive-definite anyway, providing
uniqueness of γ solutions. In general our numerical experiments have demonstrated that
lower compliance parameters lead to faster convergence of the iterative solver.

2.3 Collision pipeline

Masonry structures contain thousands of blocks, some of them not even convex; this calls
for advanced collision detection algorithms [27]. Computing the set GA of contact points for
all possible pairs of shapes would lead to an algorithm with O(n2) complexity class. Because
of this, our collision pipeline is split in two phases: a fast broad phase, which sorts out only
those pairs of blocks whose bounding box is overlapping, and a successive narrow phase,
which focuses on those pairs, by refining one or more contact points between them. For
the broad phase filtering we use a bounding volume hierarchy based on a dynamic tree of
Axis Aligned Bounding Boxes as implemented in [16]. The narrow phase stage operates on
the pairs of blocks being selected by the previous broad phase. The implemented method
relies upon the Gilbert-Johnson-Keerthi (GJK) algorithm [20], that returns a couple of
nearest points between a pair of convex shapes. The GJK algorithm is fast and operates
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on whatever kind of convex surface (boxes, faceted polytopes, cylinders, etc.), but there are
three issues to be addressed.

The first problem comes from the fact that the GJK algorithm assumes shapes to be
separated, but the time integration might not be able to prevent slight interpenetration
between some blocks. To overcome this issue, as shown in Figure 4(a) we regularize the
original shapes as sphere-swept surfaces, i.e., smaller shapes with rounded corners with
radius εm, and then the GJK algorithm is run on the smaller, shrunk shapes. This idea
significantly enhances the robustness of the collision pipeline. Referring to Figure 4(b),
when the nearest contact points P ′A and P ′B are found between the shrunk shapes, we offset
them along the normal by a quantity εm, to obtain PA and PB, that are sent to the GA
set. In this way, the multibody solver operates on PA and PB, rather than on P ′A and
P ′B. In other words, we accept penetrations with negative distance up to 2εm between PA
and PB, while P ′A and P ′B are still separated with positive distance. The pre-processing
of the original shapes of the blocks to generate the inset shrunk shapes is done with the
algorithm suggested in [33]. A side effect of this workaround is that original sharp edges
behave as rounded by a fillet of radius εm; however this is not a real problem for blocks
used in architectural construction, which never present perfectly sharp corners.

A second difficulty is represented by the fact that most contacts are degenerate cases
where two faces are coplanar as in 4(c). This indeterminacy is here solved by running the
GJK algorithm multiple times with small perturbations on object rotations, thus obtaining
candidate contacts in multiple positions. Then, an heuristic collision filtering step discards
unnecessary contacts by keeping only a limited set of them, namely those that maximize the
contact patch. The introduced perturbations may raise a disturbance in the flow of contact
forces, which are enhanced by the fact that the problem is highly non-linear. In particular
the solution in terms of contact forces may slightly deviate from the perfect symmetry
expected from geometry and applied loads. However, the disturbance is limited and, in
case, it may be representative of the inevitable construction tolerances for a real case.

A third issue comes from fact that in a complex stereotomy there are blocks that are
non-convex, whereas the GJK algorithm operates on convex shapes only. This difficulty is
bypassed by performing a convex decomposition of concave shapes into multiple polytopes
during a pre-processing phase. This done, the GJK algorithm can operate on the single
(convex) sub-blocks contained in a single rigid body. A drawback of this approach is that the
amount of generated contacts between pairs of concave shapes can be quite high; moreover
such amount depends on the level of detail used in performing the convex decomposition of
concave blocks. In fact, different decomposition algorithms can produce different amounts
of contacts even for the same shapes. This can be an issue when using regularization in
contacts, as the overall compliance of the mating will depend on the number of contacts
created between the two surfaces, for the same stiffness values kn,i, ku,i, kv,i assigned to
single contacts. To avoid this indeterminacy we performed the convex decomposition with
an ad-hoc algorithm that generates uniform radial slices of non-convex blocks like those of
Figure 4(d), which are typical for a domed structure.
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Figure 4: Treatment of the blocks in contact. a) Collision shapes and tolerances; b) Ro-
bust handling of small penetrations using sphere-swept surfaces; c) Multiple contact points
between coplanar facets; d) Convex decomposition of a concave block into multiple convex
polytopes via radial slicing.

3 Numerical experiments

After having defined the general layout of the model, we consider various arrangements of
the brickwork, differing in the shape of the vault (circular vs. octagonal), the bond pattern
(radial vs. planar), and the possible presence of the herringbone spirals.

3.1 Geometry and material properties

For an estimated weight of about 37000 tons, the cupola with (without) the lantern is 116
m (91 m) high, while the internal (external) diameter is about 45 m (54 m) at the drum
level at 54 m height. The proposed model is relatively simple, since we do not consider the
coupled double-shell and we limit to analyze the response of one shell of effective constant
thickness equal to 2.2 m, whose inner surface coincides with the intradox of the real dome
and follows therefore the characteristic profile of the quinto acuto. The number of blocks is
constant at each ring so that their width varies with the height: apart some blocks slightly
(∼ 1/4) smaller or larger than the others in order to avoid collinear vertical joints, the
average size of the blocks is b× s× h = 4.5× 2.2× 1 m3 at the base, and 1× 2.2× 1 m3 at
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the top. In general, the bricks are laid in radial direction, following the conical construction
already anticipated in Figure 3. In particular, the contact layers along the parallels at each
ring are obtained by rotating the radius of the quinto acuto arch at that level around the
central axis of the dome, so that the locus of the centers is the inner circle drawn with light
continuous line in Figure 3(c). The various models are composed of approximately 1300
blocks in unilateral frictional contact.

This construction is repeated also for the herringbone spirals, giving rise to a quite
complex bond pattern. In the real dome, the number of herringbones is ten for each sail,
i.e., they are posed at a distance of about 1.8 m one from the other in proximity of the base,
but here we simplify this geometry by considering just one herringbone per sail, consistently
with the assumed size of the blocks. Horizontal sections of the dome at 14.5 m and 22.5 m
over the impost, are reported in Figures 5(a) and 5(b), respectively. From this it is evident
that, although the dome is composed by a single layer of bricks, the conical construction
and in particular the inclination of the bed joints at each ring (Figure 3) is such that a
horizontal radial segment may intercept more than one block. Remarkably, these sections
highlight the “hidden” circular dome referred to in Figure 3(c). Vertical Sections of the
dome at the two stages of constructions at 14.5 m and 22.5 m are reported in Figures 5(c)
and 5(d). It should be noted here that most blocks result to be non-convex, so that the
special algorithm for contact detection described in Section 2.3 needs to be applied.

The specific weight of the material is set equal to 18 kN/m3, and the friction coefficient
is kept fixed to µ = 0.4 in all the numerical experiments. An important material parameter,
which is associated with the compliance of the mortar joints, is represented by the diagonal
matrix E of eq. (13), whose terms are all set equal to 10−8 m/N to define the normal and
tangential compliance at each contact point. Taking into account the order of magnitude
of the reaction contact forces at the single point and the weight of the dome, this implies
a displacement associated with the compliance of the order of 15 − 20 mm for the blocks
at the base of the dome. Such a value should be associated with the deformation of all the
mortar joints of the assembly of bricks that each block of the model ideally represents. The
bricks of the real dome have sizes varying from b×s×h = 34×17×5 cm3 to 44×22×5 cm3

[14], so that the constituent rigid bodies of the model are indeed macroblocks equivalent to
assemblies of about 2000 bricks. This simplification is crucial for the numerical handling of
the problem, but it follows that each macroblock, approximately 1 m high, contains about
20 horizontal mortar joints: the assumed compliance is associated with a settlement of the
order of 1 mm for each mortar layer in the most stressed regions.

Certainly the “percolation” of contact forces in the brickwork may be affected by the
assumed discretization. Although a detailed analysis of this aspect goes beyond the scope
of the article, aiming at a qualitative comparison of different-in-type bond patterns for the
dome, we have preliminarily studied the response of a single wall under uniaxial compression.
In particular, we have considered a 12 m × 6 m wall (thickness = 1 m), under the action of
the self weight (density of the blocks equal to 1800 kg/m3) and of a uniformly distributed
load at the top, equal in total to ten times the weight of the whole wall. This represents
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(a) (b)

(c) (d)

Figure 5: Construction of the model. a-b) Horizontal sections of the complete model at 14.5
m and 22.5 m over the impost. c-d) Sections of the partial model at two different levels of
construction (14.5 m and 22.5 m over the impost).

a theoretical case where the blocks are almost uniformly compressed. Three different bond
patterns have been considered, composed of blocks with the same aspect ratio (4:1) but
different size (large: 6 m × 1.5 m; medium: 1.2 m × 0.3 m; small : 0.24 ×m 0.06 m).
The width of the wall is maintained equal to 1 m in all the cases, in order to evidence the
effects of the in-plane discretization. Various numerical experiments have been conducted
for different values of the compliance matrix E of (13), varying in the range from 10−12

m/N to 10−8 m/N.

In all the considered cases, the contact forces were found to be homogenously distributed,
as expected due to symmetry of the problem. Concerning the gross stiffness of the wall,
associated with the displacement of the top row of blocks, this was certainly affected by
the value of the compliance, but showed a mild dependence on the discretization, at least
for the large and medium blocks (the small-size blocks showed numerical instabilities due
to the huge number of contacts for low compliances). It should be recalled that the as-
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sumed compliance acts at the level of each single contact point and, therefore, there are
clearly two contrasting effects. On the one hand, an increase of the number of horizontal
layers increases the number of compliances in series and, consequently, the deformability of
the whole wall. On the other hand, an increase of the number of bricks forming each row
increases the number of contact points on the horizontal interfaces: the increase of the num-
ber of compliances in parallel augments the stiffness of the wall. The considered numerical
experiments indicate that the aforementioned two effects approximately compensate one
another, at least for the large and middle size discretization, since the aspect ratio of the
blocks is maintained fixed. In fact, the order of magnitude of the in-plane deformation of
the wall is only mildly affected by the size of the blocks, being proportional to the assumed
compliance of the contacts. Since the static state of the dome is basically governed by the
gross stiffness of the constituent masonry walls, we believe that the results we obtain, albeit
the discretization is coarse, are consistent at the qualitative level, so to render meaningful
the comparison among different bond patters formed by blocks with similar shape and size.

In all the simulations, we never consider the effects of external environmental actions,
likewise wind or thermal variations, supposing that the dead weight is the main load. The
base of the dome is in contact with the horizonal plane with the same friction coefficient
used for the inter-block interaction. This is equivalent to assume that the drum is not
deformable, a hypothesis that is hardly verified in the real case. On the one hand, in the
model we neglect that the first rings of the cupola are made with strong stone reinforced
with blocks laid transversally, as well as the presence of the big oak beams, which act
as confining ties equilibrating part of the hoop stress while reducing the outward radial
displacement at the base [32]. Consideration of all these effects goes well beyond the scope
of the present article, which is limited to a theoretical discussion of the effects of the shape
and bond pattern on structural stability.

3.2 Polygonal vaults

In order to initiate the analysis, consider first octagonal vaults without the herringbone
spirals, where the blocks are arranged in two different manners, either maintaining planar
the bed joints of each ring composing the eight sails (planar construction) or following
the scheme of Figures 5 (circular construction). Of course, in the planar construction
non-convex blocks of particular shape need to be used to form the ribs at the intersection
between adjacent sails, otherwise they would not be connected one another4. Figures 6(a)
and 6(b), evidence, at three section levels, the contact forces between adjacent rings for the

4This is one of the first interpretations of the construction method used by Brunelleschi [35], not confirmed
by successive studies. The particular bricks that were supposed to be used in proximity of the ribs were
referred to as “mattoni a libro aperto” (open-book bricks), due to the shape that could be inferred, albeit
tentatively, by observing a few spots in the interior of the dome, like that of Figure 2(b), where the brickwork
is not hidden by the plaster. Later studies have confirmed that what is observed are sections of rectangular-
parallelepiped shaped bricks with a dihedral angle formed by two planes intersecting on a line not parallel
to any of the edges of the block.
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planar and the circular construction, respectively.

(a) (b)

Figure 6: Contact forces at three different levels for a octagonal vault. a) Planar construc-
tion. b) Circular construction.

In the most general case, a spatial system of forces is equipollent to a wrench, i.e., a
force applied along a prescribed line and a couple whose moment vector is parallel to that.
We have thus calculated the wrench that is equipollent to the contact forces exerted on
each block by the underlying ring, and we have found that the corresponding couple is in
general negligible. The length of segments reported in Figures 6 is proportional, according
to the annexed measurement scale, to the force of the contact wrench. What should be
noticed is that there is a considerable fluctuation of the contact forces especially at the
base of the dome, which is mainly due to the highly non linear character of the problem
and to the fact that most of the contacts are degenerate cases of the type of Figure 4(c).
Therefore, as discussed in Section 2.2, the GJK algorithm is run multiple times with small
perturbations, which on the one hand affect the regularity of the theoretical solutions, but on
the other hand may be an index of the sensitivity to construction defects. In any case, albeit
tentatively, from the comparison of the results in the planar and circular constructions, one
can notice that the contact resultants appear more evenly distributed in the latter case,
even if a certain concentration around the ribs of the vaults is appreciable. The fact that
the forces in Figure 6(b) appear slightly higher than in Figure 6(a) is due to the fact that,
being the stereotomy different, the dome is slightly thicker in the circular construction than
in the planar construction.

Figures 7(a) and 7(b) are representative of the thrust lines for the planar construction
along meridians that are located either in the middle of the sail or in proximity of the
corner rib, respectively. Such curves are obtained by considering the envelope of the lines
of the force resultants between adjacent blocks. The auxiliary graphs labelled with “r”
represent, in the reference scale, the norm of the force resultant as a function of the height
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of the considered ring, whereas the “v” graphs indicate the vertical component only, which
is of interest to check a posteriori that global equilibrium is satisfied. The other auxiliary
graphs in the pictures report the length, in meters, that is associated with the corresponding
couple of the wrench, defined as the ratio between the moment of the couple and the force
resultant. It is clear from the graphs of the second type that such lengths are in general
very limited, of the order of a few centimeters, apart from the blocks at the top of the dome
where they may locally reach a value of 0.4 m. This is probably due to the interaction with
the weight of the lantern (set equal to 2 % of the weight of the whole dome), and the fact
that at those blocks the forces of the wrench are small.

In all cases, the thrust lines remain limited inside the dome contours. The resultant of
the contact forces is in practice almost linearly distributed along the height of the dome in
the middle of the sail, as per Figure 7(a), whereas Figure 7(b) indicates a marked overloading
of the rib in proximity of the base of the dome.

(a) (b)

Figure 7: Meridian thrust line in the octagonal vault with planar construction, with quan-
titative indication of the contact wrenches. a) Middle of the sail. b) Corner rib.

Figures 8(a) and 8(b) are the counterparts of the figures discussed above for the circular
construction. Again, one can verify that the couples associated with the wrenches remain
quite small. What should be noticed now is that the rib is in general more stressed than
the middle of the sail, but in both cases the norm of the contact forces is in practice a linear
function of the height of the dome.

In conclusion, the circular construction provides a contact flow that is slightly more
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(a) (b)

Figure 8: Meridian thrust line in the octagonal vault with circular construction, with quan-
titative indication of the contact wrenches. a) Middle of the sail. b) Corner rib.

evenly distributed than in the planar construction, but in general the ribs are more stressed
than the middle of the sails. By insight, we may interpret the multiple use of the GJK
algorithm with small imperfections, to solve the indeterminacy of multiple contact points
between coplanar facets as per Figure 4(c) of Section 2.3, as an indication of possible
imperfections in the block bond-pattern. Therefore, we might also conjecturally claim that
the circular arrangement is less sensitive to construction tolerances.

3.3 Circular domes

The purpose here is to isolate the effects of the herringbone pattern. To do so, reference
is made to the axial symmetric case of a circular dome, of course layered according to the
circular construction. Figure 9(a) evidences the force resultants of the contact wrenches
exerted on each block by the ring below, proportioned according to the side scale. Despite
the geometric and load symmetry of the problem, we can notice that the contact reactions
are not evenly distributed as one would have expected. This may be due to numerical errors,
but we have verified that by varying the compliance of the mortar joints through the diagonal
matrix E of (13) within the range 2 · 10−8 ÷ 2 · 10−10 m/N, similar results are obtained.
This may be again explained with reference to the degenerate nature of the contacts, which
are all of the type of Figure 4(c), and the consequent perturbation introduced by the
multiple running of the the GJK algorithm. Figure 9(b) reports similar pictures when
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the herringbone spirals are inserted. It is clear that these produce a disturbance in the
flow of forces. In particular, the contact resultant appear higher below the herringbone
arrangement, which thus plays a role somehow equivalent to a stress concentrator.

(a) (b)

Figure 9: Contact forces at different levels for a circular dome. a) Uniform bond pattern.
b) With herringbone spirals.

Figures 10(a) and 10(b) represent the meridian line of thrust without the herringbone or
with the herringbone, respectively, which are again well contained within the dome profile.
We can notice from the auxiliary graphs of Figure 10(a) that in the pure circular dome
the couples of the wrench are extremely limited, and the resultants are evenly distributed
and follow a pseudo-linear dependence with the height of the dome. The great disturbance
introduced by the herringbone spiral is evident by the comparison with Figure 10(b). The
resultant of the contact forces is a wiggly function of the height of the considered parallel.
It should be mentioned that the width of one standard block is three times the base of
the blocks composing the herringbone, so that in this graphs we consider the resultant on
three blocks when the herringbone spiral transverses the meridian. A more precise analysis
of this graph indicates that the norm of the resultants of the contact wrenches is high in
proximity of the herringbone. The second graph indicates that the lengths associated with
the couple of the wrenches remains again well below 0.2 m, but the trend is not smooth in
proximity of the herringbone.

This analysis confirms the irregular flow of forces that derives from the presence of the
herringbone spirals. This effect is due to the compliances of the contact joints via the
diagonal matrix E of (13): being the blocks rigid, this is the only source of deformation.
When the blocks are laid vertically, the number of contacts that are encountered while
travelling along a meridian is less than when the blocks are laid horizontally, and this is why,
with respect to meridional membrane forces, the regions with the herringbone appear stiffer
than the others. For a deeper discussion, Figure 11(a) reports the layout of a vertical wall
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(a) (b)

Figure 10: Meridian thrust line in the circular dome, with quantitative indication of the
contact wrenches. a) Uniform bond pattern. b) With herringbone spirals.

with a herringbone diagonal, loaded by its own weight and by a uniformly distributed load
on the top equal to 35% of the weight of the whole wall (block size b×s×h = 4×2.4×1 m3).
How the forces are distributed inside the wall is evidenced in Figure 11(b), which reports
the contact reactions transmitted to each block by the portion underneath at four different
heights. In proximity of the herringbone, the segment represent the resultant of the forces
of the three blocks that, together, have the same width of the blocks laid horizontally.

It is clear that at the top of the walls the herringbone attracts less load than the rest of
the wall, but the opposite is true at the lower layers. This is again attributed to the different
vertical stiffness offered by the various columns by which the wall may be imagined to be
formed, consequent to the number of compliant joints that are encountered on vertical lines.
At the top of the wall, the distributed load that is carried by the vertically laid bricks is
small, because small is the loaded surface. Going inside the wall, the stress diffuses and
the stiffer parts carry the major load. It has been recognized by many authors [17] that
the herringbone represents a disturbance in the flow of stresses, but usually it has been
considered as a soft part. Here our conclusion is the opposite: the herringbone, being
stiffer, becomes overstressed.
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(a) (b)

Figure 11: Vertical wall with a herringbone diagonal under dead weight and uniformly
distributed load (35% of the weight of the whole wall). a) Layout. b) Contact forces at
various horizonal levels.

3.4 The Brunelleschi dome model

The model that is representative of the bond pattern used by Brunelleschi is the combination
of the octagonal vault with circular construction of Figure 5(b) with the herringbone pattern
of Figure 9(b). The force resultant of the contact wrenches are indicated at three different
levels in Figure 12(a). We can notice that, as in the case of an octagonal vault, the ribs are
overloaded with respect to the center of the sails, and that in general the herringbone acts
as a stress concentrator. Therefore, it is not surprising that the cracks that are visible in the
interior of the dome, one of which is represented in Figure 12(b), are mainly in proximity
of the herringbone spirals. This fact has been also noticed in the scaled physical model
constructed by Di Pasquale with micro-bricks, as mentioned in [17].

Figures 13(a) and 13(b) report the thrust line in the middle of the sails and in proximity
of the ribs, respectively. Here we can again appreciate the disturbance introduced by the
herrigbone, because the trend of the norm of the contact forces as a function of the height is
quite irregular and jumps where the herringbone spiral transverses the meridian, resulting
very similar to that of Figure 10(b) for the circular dome. The graphs of the lengths indicate
again that the couple of the wrench remains limited, but it is more irregular than in the
circular dome. Comparisons of the pictures referring to the middle of the sail and the rib,
demonstrate that the latter is overloaded with respect to the former, a finding which is in
agreement with what already discussed for octagonal vaults in Section 3.2.

The dome model does not collapse under self weight. The characterization of the poten-
tial kinematic mechanisms of failure under vertical loading cannot be conduced similarly to
what is usually done for arches, i.e., by gradually increasing the concentrated forces that ac-
company the self weight [7]. In fact, either the vertical concentrated forces that are applied
to a dome are very small, or particular geometries and/or additional reinforcing elements
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(a) (b)

Figure 12: Contact forces for the Brunelleschi dome model. a) Horizontal cuts at three
different levels. b) Photograph from the interior of the dome, evidencing the fractures in
proximity of the herringbone spirals

.

are explicitly conceived to take care of them. On the other hand, since the frictional shear
forces are a linear function of the normal forces, a theoretical increase of the weight per
unit volume of the dome does not produce modifications in the equilibrium state under the
hypothesis of rigid blocks with infinite strength, even if a slight difference may appear due
to the implemented compliance at the contact joints, as indicated in Section 2.2. Therefore,
in order to evidence the possible collapse mechanisms, the friction coefficient has been grad-
ually reduced from the value µ = 0.4, used in all the previous simulations, so to facilitate
the sliding of the blocks.

Numerical experiments have shown that for µ ≥ 0.15 the blocks do not exhibit appre-
ciable movements. Sliding and collapse become evident when µ = 0.1, and this is the case
to which Figures 14 refer to. In the simulations the dead load is instantaneously applied at
the time t = 0, which is a very drastic assumption that does not consider that the dome is
very slowly loaded during its construction. However, on the one hand, the detailed analysis
of the static states at various construction phases goes beyond the scope of the present
article; on the other hand, the simulations now presented, where the friction coefficient is
unrealistically decreased until sliding occurs, are purely theoretical, and for sure a very low
friction would be the most critical when the dome is not completely vaulted. Finally, recall
that the kinematic theorem of limit analysis [22] indicates that the limit load multiplier
does not depend upon the eigenstress states that are possibly present on the structure, such
as those consequent to a gradual construction. Albeit tentatively, this conclusion may be
applied also to the case at hand for which the theorems of limit analysis are not rigorously
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(a) (b)

Figure 13: Meridian thrust line in the Brunelleschi dome model, with quantitative indication
of the contact wrenches. a) Middle of the sail. b) Corner rib.

applicable because, as indicated in Section 2.2 and discussed at length in [9], the solution
relies upon an associative frictional model but only at the time-step level, whereas the
dilatation effects are annihilated at the successive steps5.

Figure 14(a) represents the situation at t = 1 s. What is evident is that the cracks open
in the lower part of the dome, where the hoop stress is tensile, and they are particularly
concentrated at the herringbone spirals. This is confirmed by Figure 14(b) corresponding
to t = 2 s, which shows that sliding is very limited where the blocks are laid according to
the long axis, whereas the vertical blocks represent a real wound in the structural texture.
Collapse starts when sliding overcomes the width of the horizontal joints of the blocks
forming the herringbone spirals: eventually, at t = 2.5 s, a vertical gap is present between
the upper surface of the herringbone shown in Figure 14(c), and the overlying part of the
dome, so that the latter part is no longer supported from below and falls down. The final
stage of the collapse, represented in Figure 14(d) at t = 3 s, confirms the complete collapse
of the herringbone spirals, accompanied by the rotation of the blocks and their falling apart.

The fact that the herringbones represent a very weak point with respect to the capacity
of the dome to withstand tensile hoop stresses, is in agreement with the conclusions set forth
in [9], where the tensile strength of the horizontal layers is taken into account. Usually, this

5As observed by Drucker [18], if normality fails the classical theorems of limit analysis are no longer valid
for frictional sliding. Normality condition is preserved in the case of associative friction.
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(a) (b)

(c) (d)

Figure 14: Collapse of the Brunelleschi model with friction coefficient µ = 0.1 at different
times t: a) t = 1 s, b) t = 2 s, c) t = 2.5 s, d) t = 3 s.

is done by assuming a moderate tensile strength of the bulk material, but this seems to result
more in a facilitation of the numerical analysis than in an improvement of the accuracy of
the response. In [9], the resistance to horizontal tensile forces is attributed to the mortar
layers, and depends on the vertical pressure in the way specified by Coulomb friction law.
With this assumption, the aspect ratio of the blocks that form the structure becomes of
paramount importance for the determination of the collapse mechanism, because the thinner
the blocks, the higher is the force per unit meridian-length that is needed to provoke sliding,
and vice versa.

The numerical experiments recorded here, and in particular the discussion of Figure
11, indicate that the bricks forming the herringbone act as stress concentrators for the
meridional contact forces. Likewise, as evident in Figure 9(b), this provokes that the contact
forces diminish in those horizontal blocks adjacent to the vertical blocks, which consequently
become prone to sliding. But the most important aspect to consider is that the possibility
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of equilibrating the hoop stress depends upon the aspect ratio of the blocks: the highest
strength capacity in the direction of the parallels is obtained when the blocks are large
and thin. This fact has been fully confirmed by the numerical experiments reported in
[9], and here it is once more evident, because the blocks laid vertically are more prone to
sliding than the blocks laid horizontally. This is why the herringbone, where the bricks are
laid vertically, represents a real wound in the dome surface, whose negative effect is only
partially mitigated by the spiral pattern. Indeed, if the herringbone were vertical, following
the direction of a meridian, the dome could be easily split by a moderate tensile stress
demand along the parallels.

4 Conclusions

In masonry constructions the bond pattern of the constituent bricks is of paramount im-
portance, because it determines structural stiffness and load beating capacity. This aspect
can be considered with a Non-Smooth-Contact-Dynamics (NSCD) approach, that here has
been implemented in a custom simulator interfaced with a parametric design software so to
generate complex meshes and visualize contact forces. When dealing with complex geome-
tries, the challenging problem is the high indeterminacy of the contact reactions, consequent
from the hypothesis of rigidity of the constituent blocks. This difficulty is bypassed with
the robust handling of a regularization procedure, which consists in the introduction of a
numerical compliance at each contact point. Such a compliance can model the deformabil-
ity of the mortar joints, but its precise evaluation is not crucial, because the location and
size of the contact reactions does not sensibly depend upon the value of the compliance, at
least in a certain significant range. The numerical solution poses further difficulties, because
the bond pattern is in general characterized by non-convex blocks and degenerated (highly
undetermined) contacts between coplanar facets, which require a careful implementation of
contact detection algorithms.

Numerical experiments have been presented for the very challenging case represented
by the cupola of Santa Maria del Fiore in Florence, characterized by a conical layering of
the bricks that defines a dome of revolution hidden in the octagonal shape. The structural
differences between the ingenious construction adopted by Brunelleschi, on the one hand,
and pure domes of revolutions and octagonal groin vaults with horizontal corbelling, on the
other hand, have been highlighted in simplified, though representative, model problems,
solved with our NSCD custom software. In general, the Brunelleschi arrangement provides
a regular flow of the meridian stresses and does not overload the ribs with respect to the
middle of the sails, as in octagonal groin vaults. In any case, the herringbone spirals,
inserted presumably for construction purposes, represent a heavy disturbance.

The model predicts that, with respect to the distribution of meridian stresses, the her-
ringbone is more stressed than the neighboring parts because, taking into account that the
deformability is concentrated at the contact points via the introduced regularizing compli-



28 V. Beatini, G. Royer-Carfagni & A. Tasora

ance, the herringbone is stiffer since a less number of horizontal joints is encountered when
the meridian passes though it. On the other hand, the herringbone has very limited capacity
of equilibrating the hoop stresses because, as already discussed in [9] from a more general
point of view, the frictional shear forces acting at the horizontal joints are small. This is the
consequence of the fact the brickwork at the herringbone is vertical narrow, whereas it is
horizontal in the neighboring parts. Numerical experiments, in which the friction coefficient
has been gradually reduced, demonstrate that collapse is indeed associated with the shear
sliding of the bricks right at the herringbone spirals.

Far from being complete and exhaustive, nevertheless this study confirms, with reference
to one of the most famous and well-known masterpieces of the Italian Renaissance, the im-
portance of the bond pattern of the masonry in complex spatial arrangements, and that the
NSCD approach represents a powerful tool to analyze its structural implications. Further
studies for the Florentine monument, which will necessitate an additional custom develop-
ment of the NSCD simulator, will consider Brunelleschi’s technique of “building without
centering”, taking into account that during the construction the mortar of the last-laid ring
is fresh and, consequently, the associated friction coefficient is much smaller than in the dry
joints. In this condition, certainly the herringbone will play the decisive role in preventing
the sliding of the bricks.
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