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Abstract
Objective(s)  Isothiocyanates (ITCs) are biologically active plant secondary metabolites capable of mediating various bio-
logical effects including modulation of the epigenome. Our aim was to characterize the effect of allyl isothiocyanate (AITC) 
on lysine acetylation and methylation marks as a potential epigenetic-induced anti-melanoma strategy.
Methods  Our malignant melanoma model consisted of (1) human (A375) and murine (B16-F10) malignant melanoma 
as well as of human; (2) brain (VMM1) and lymph node (Hs 294T) metastatic melanoma; (3) non-melanoma epidermoid 
carcinoma (A431) and (4) immortalized keratinocyte (HaCaT) cells subjected to AITC. Cell viability, histone deacetylases 
(HDACs) and acetyltransferases (HATs) activities were evaluated by the Alamar blue, Epigenase HDAC Activity/Inhibition 
and EpiQuik HAT Activity/Inhibition assay kits, respectively, while their expression levels together with those of lysine 
acetylation and methylation marks by western immunoblotting. Finally, apoptotic gene expression was assessed by an RT-
PCR-based gene expression profiling methodology.
Results  AITC reduces cell viability, decreases HDACs and HATs activities and causes changes in protein expression levels 
of various HDACs, HATs, and histone methyl transferases (HMTs) all of which have a profound effect on specific lysine 
acetylation and methylation marks. Moreover, AITC regulates the expression of a number of genes participating in various 
apoptotic cascades thus indicating its involvement in apoptotic induction.
Conclusions  AITC exerts a potent epigenetic effect suggesting its potential involvement as a promising epigenetic-induced 
bioactive for the treatment of malignant melanoma.

Keywords  Allyl isothiocyanate · Skin cancer · Acetyl transferases · Deacetylases · Methyl transferases · Histone 
acetylation · Histone methylation
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Introduction

Melanoma is an aggressive and highly metastatic type of 
skin cancer with significantly increasing incidence rates 
over the past few years [1, 2]. Thus, the design of new 
approaches in disease prevention and treatment is of great 
importance. To this end, consumption of cruciferous veg-
etables has been strongly associated with reduced risk of 
cancer development particularly because of their rich con-
tent in isothiocyanates (ITCs) [3]. These are compounds 
produced through hydrolysis of their precursor molecules, 
glucosinolates, by an enzyme called myrosinase which is 
activated after plant tissue disruption [4]. In general, ITCs 
are important nutraceutical agents capable of protecting 
against cancer development [5, 6] by a plurality of bio-
logical activities including modulation of detoxification 
enzymes, induction of apoptosis and cell cycle arrest and 
interaction with various signaling pathways [7–11]. With 
respect to melanoma, both in vitro and in vivo studies have 
shown that various ITCs can induce apoptosis and cell 
cycle arrest thus suppressing tumor growth [12–15]. Fur-
ther evidence also supports the involvement of ITCs in 
gene regulation by reversing cancer-associated epigenetic 
marks at both DNA and histone levels [16–21].

In general, epigenetic mechanisms such as DNA meth-
ylation and histone modifications can act in a coordinative 
and complex manner resulting in conformational changes 
to chromatin, which regulate the genetic information by 
providing access to regulatory molecules, i.e., transcrip-
tion factors, etc. [22]. More specifically, histone proteins 
can undergo various modifications in their N-terminus 
(including among others methylation and acetylation) 
that directly affect the state of chromatin structure. For 
instance, histone acetylation is regulated by the opposing 
action of two enzymes: histone deacetylases (HDACs) and 
histone acetyl transferases (HATs), while histone methyla-
tion is catalyzed by histone methyltransferases (HMTs). 
Generally, acetylation of histones leads to gene activation 
while histone methylation results in either the activation 
or suppression of genes based on the site of the specific 
modification [23–25].

In principle, HDACs de-acetylate lysine residues on 
histone tails and consequently lead to gene silencing. In 
addition, non-histone proteins are also substrates for these 
enzymes, an important aspect for their function in health 
and disease [26]. HDACs are at an equilibrium state with 
HATs (which acetylate their substrates) resulting in tran-
scriptional activation, and it’s the interplay between them 
that controls acetylation status of their substrates [27, 28]. 
However, chromatin structure regulation is even more 
complex and affected by the cross-talk between acetyla-
tion and methylation enzymes [29]. Even though there is 

enough information about ITCs’ involvement in the epige-
netic regulation of different cancers, there is only a limited 
number of studies investigating their ability to induce epi-
genetic responses in malignant melanoma cells [30, 31].

The aim of this study was to investigate the involvement 
of AITC as an epigenetic regulator capable of modulating 
specific lysine acetylation and methylation marks, on his-
tones 3 (H3) and 4 (H4) and thus potentially regulating gene 
expression which could ultimately lead to inhibition of cell 
growth in malignant melanoma.

Materials and methods

Chemicals

Allyl isothiocyanate (AITC) was obtained from Sigma-
Aldrich (St. Louis, MO, USA) dissolved in dimethyl sul-
foxide (DMSO; Sigma-Aldrich) and stored at − 20 °C. Dul-
becco modified Eagle medium (DMEM), trypsin, phosphate 
buffer saline (PBS), fetal bovine serum (FBS), l-glutamine 
and penicillin/streptomycin were obtained from Labtech 
International Ltd (East Sussex, UK). Resazurin sodium salt 
was supplied by Sigma-Aldrich. All chemicals were of ana-
lytical grade and purchased from Sigma-Aldrich, Applichem 
(Darmstadt, Germany) and Invitrogen (Carlsbad, CA, USA). 
Bovine Serum Albumin (BSA) was obtained from Biosera 
(Boussens, France). Protease and phosphatase inhibitor 
cocktails were obtained from Roche (Basel, Switzerland). 
Polyvinylidene difluoride (PVDF) membranes (0.45 and 
0.2 µm) were purchased from Millipore (Bedford, MA, 
USA).

Cell culture and exposure protocol to AITC

The A375 and A431 cell lines were purchased from Sigma-
Aldrich while the HaCaT cell line was kindly provided by 
Dr Sharon Broby (Dermal Toxicology and Effects Group; 
Centre for Radiation, Chemical and Environmental Haz-
ards; Public Health England, UK). In addition, the VMM1, 
Hs 294T and B16-F10 cell lines were obtained from LGC 
Standards (Middlesex, UK). The A375, A431, Hs 294T, 
HaCaT and B16-F10 cell lines were cultured in DMEM 
high glucose medium [10% FBS, 2 mM l-glutamine (4 mM 
l-glutamine for Hs 294T) and 1% penicillin/streptomycin]. 
Finally, the VMM1 cell line was cultured in RPMI-1640 
high glucose medium (10% FBS, 2 mM l-glutamine and 
1% penicillin/streptomycin). All cell lines were maintained 
in a humidified atmosphere at 37 °C and 5% CO2. AITC or 
vehicle was added as a single bolus concentration ranging 
between 2.5 and 50 µΜ for 24 h and 48 h.
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Determination of cell viability

All cell lines were seeded in 100 µl of the complete medium 
into 96-well plates and kept overnight in the incubator before 
they were exposed to AITC at various concentrations, for 
24 h and 48 h. Cell viability was assessed by using the 
Alamar blue assay where, in brief, resazurin sodium salt was 
dissolved in PBS (1 mg/ml final concentration) and added in 
an amount equal to 1/10 of the volume in each well. After 
4 h of incubation at 37 °C, absorbance was measured at 
570 nm using 600 nm as a reference wavelength by using a 
Tecan Spark 10M plate reader (Männedorf, Switzerland).

Exposure protocols to decitabine, panobinostat 
and anacardic acid

A375 cells were exposed to three different combination pro-
tocols involving AITC and either decitabine, panobinostat 
or anacardic acid. Each of the experimental exposure condi-
tions were as follows: (1) co-treatment of AITC with either 
of the inhibitors over 48 h (Protocol 1); (2) pre-treatment 
with either of the inhibitors for 24 h followed by co-treat-
ment with AITC and either inhibitor for an additional 48 h 
(Protocol 2) and (3) pre-treatment with either of the inhibi-
tors for 24 h followed by treatment with AITC only for 48 h 
(Protocol 3). Decitabine and panobinostat were purchased 
from Selleckchem (Houston, TX, USA) while anacardic 
acid from Abcam (Cambridge, UK). Decitabine was used 
at 1–50 µM, panobinostat at 2.5–100 nM and anacardic acid 
at 5–150 µM concentration ranges. Stock solutions were pre-
pared in DMSO at 20 mM (decitabine and panobinostat) 
and 25 mM (anacardic acid), respectively, and were stored 
at − 20 °C.

Preparation of cell lysates and protein 
determination

A375 cells were plated in 100-mm dishes and cultured 
overnight at 37 °C. Next day, cells were treated with 10 µΜ 
of AITC for 48 h and then trypsinized, collected in micro-
centrifuge tubes and washed twice with PBS. Nuclear and 
cytosolic lysates were obtained using the NE-PER Nuclear 
and Cytoplasmic Extraction Kit from Thermo Scientific 
(Waltham, MA, USA). Total histone extracts were obtained 
using the EpiQuik Total Histone Extraction Kit from Epi-
gentek (Farmingdale, NY, USA). Protein content was deter-
mined by utilizing the BCA protein assay kit from Thermo 
Scientific (Waltham, MA, USA). All extraction and assay 
kits were used according to the manufacturer’s protocols. 
Protein extracts were stored at − 20 or − 80 °C (for estima-
tion of HDAC/HAT activities) until usage.

Determination of HDAC and HAT activities

The Epigenase HDAC Activity/Inhibition Direct Assay kit 
and the EpiQuik HAT Activity/Inhibition Assay kit were 
purchased from Epigentek (Farmingdale, NY, USA) and 
were used for the determination of total HDAC and HAT 
activity levels according to the manufacturer’s protocol. For 
HDAC determination, nuclear cell lysates were prepared and 
10 µg of extracts were incubated with an acetylated sub-
strate for 90 min at 37 °C. Similarly, for HAT determina-
tion, 10 µg of nuclear extracts were incubated with a histone 
substrate for 60 min at 37 °C. Optical density values were 
monitored at 450 nm with an optional reference wavelength 
of 655 nm using a Tecan Spark 10M plate reader (Männe-
dorf, Switzerland).

Western immunoblotting

Forty micrograms (40 µg) of cytoplasmic, 20 µg of nuclear 
and 15 µg of histone protein extracts were separated by SDS-
polyacrylamide gels and transferred electrophoretically onto 
PVDF membranes (either 0.45 or 0.2 µm) using the mini-gel 
tank and mini-blot modules from Invitrogen (Carlsbad, CA, 
USA), respectively. The blots were then blocked in 5% non-
fat milk powder in TBST buffer (50 mM Tris–HCl, 150 mM 
NaCl at pH 7.6 and 0.1% Tween-20) for 2 h at room temper-
ature. After blocking, membranes were washed three times 
with TBST and incubated overnight at 4 °C, under agita-
tion, with the appropriate primary antibody and according 
to the manufacturer’s protocol. Next day, membranes were 
incubated with the appropriate horseradish peroxidase-con-
jugated secondary antibody (mouse or rabbit at 1:1000) for 
1 h at room temperature, under agitation, after being washed 
three times with TBST. After incubation with the secondary 
antibody, membranes were washed three times with TBST 
and labeled protein bands were detected by utilizing the 
SuperSignal West Pico PLUS Chemiluminescent Substrate 
from Thermo Scientific (Waltham, MA, USA) according to 
the manufacturer’s protocol. Protein bands were visualized 
with the use of the G:BOX Chemi XX6/XX9 gel imaging 
system (Syngene, Cambridge, UK).

RNA extraction and determination of apoptotic 
gene profiling by RT‑PCR‑based microarrays

A375 cells were plated in 100-mm dishes, cultured over-
night, exposed to either 10 µM AITC (treatment) or 0.1% 
DMSO (control) for 48 h, collected via trypsinization and 
then washed twice with cold PBS. Total RNA was extracted 
using the TRIzol reagent according to the manufacturer’s 
protocol (Invitrogen, Waltham, MA, USA). Quality and 
concentration of RNA were assessed by agarose gel elec-
trophoresis and spectrophotometric analysis, respectively. 
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Complimentary DNA (cDNA) was synthesized by using 
the SuperScript VILO cDNA synthesis kit (Invitrogen) 
according to the manufacturer’s protocol. Quantitative PCR 
(qPCR) was carried out by utilizing the TaqMan Array 
Human Apoptosis 96-well plates (Applied Biosystems, 
Carlsbad, CA, USA). TaqMan Universal master mix (2×) 
was added to an equal amount of diluted cDNA (5–50 ng per 
well in RNAase-free water) with 10 µl of the total mixture 
being added into each well. Real-time PCR (RT-PCR) was 
performed on a StepOne Plus RT-PCR instrument (Applied 
Biosystems, Carlsbad, CA, USA), whereas gene expression 
data were analyzed by the ΔΔCt method. Differences in 
apoptotic gene expression were indicated as fold change by 
using the DataAssist v3.01 software.

Statistical analysis

In all sets of experiments, data were expressed as mean val-
ues ± SEM and comparisons were made between control and 
exposure (treatment) groups. Calculations were performed 
by using the Microsoft Office Excel 2016 software. Means 
were compared by one-way analysis of variance (one-way 
ANOVA) with Tukey’s test for multiple comparisons for via-
bility assays and paired t test for HDAC/HAT activity assays 
and western immunoblotting densitometric data. SPSS v.22 
software was used for statistical tests. A value of p < 0.05 
was considered statistically significant.

Results

AITC suppresses cell viability in A375, Hs 294T 
and B16‑F10 but not in VMM1, A431 and HaCaT cells

To investigate the anti-melanoma effect of AITC, we uti-
lized a malignant melanoma model consisting of human 
(A375) and murine (B16-F10) malignant melanoma cells 
as well as of human brain (VMM1) and lymph node (Hs 
294T) metastatic melanoma cells in addition to non-mel-
anoma epidermoid carcinoma (A431) and immortalized 
keratinocyte (HaCaT) cells, subjected to a range of AITC 
concentrations (2.5–50 µM) for 24 h and 48 h. Overall, 
it was shown that AITC reduced the viability of A375, 
Hs 294T and B16-F10 cells in a concentration- and time-
dependent manner (Fig. 1a, e, f) compared to HaCaT, 
A431 and VMM1 cells (Fig. 1b–d). More specifically, in 
A375 cells, AITC decreased viability at 10 µM onwards 
as it did with Hs 294T and B16-F10 cells, respectively. 
On the contrary, at the same experimental conditions, the 
viability levels for HaCaT, A431 and VMM1 cells were 
minimally affected as they were shown to be more resist-
ant. Based on the cytotoxicity profile of each cell line, a 
concentration of 10 µM over 48 h of exposure was chosen 

as optimum experimental conditions. Moreover, the use 
of A375 cell line was chosen in all experiments described 
herein on the basis of being the most sensitive one to the 
effects of AITC. Finally, the EC50 values for all cell lines 
were calculated (for both 24 and 48 h of AITC exposure) 
confirming that A375, Hs294T and B16-F10 cells were 
more sensitive to the cytotoxic effect of AITC compared 
to HaCaT, A431 and VNM1 ones (Fig. 1g).

Exposure to AITC is not associated with DNA 
methylation levels in human malignant melanoma 
(A375) cells

In this set of experiments, we aimed to investigate if the 
observed AITC-induced decline in viability levels of A375 
cells was associated with an elevation in DNA methyla-
tion status. For this reason, we utilized decitabine (a DNA 
methyltransferase inhibitor) at a range of concentrations 
(1–50 µM) under all three of the above-mentioned experi-
mental protocols. According to our results, co-treatment 
of decitabine with AITC (under experimental conditions 
of protocol 2) led to a further reduction in viability levels 
when compared to AITC alone. The other two protocols did 
not cause a significant change in cell viability (Fig. 2a–c). 
In conclusion, it is evident that AITC-induced reduction in 
cell viability cannot be linked to an increased DNA methyla-
tion status as the co-treatment protocol did not reverse the 
cytotoxic effect of AITC in A375 cells.

AITC reduces specific HDAC and HAT protein 
expression levels and diminishes specific histone 
H4 lysine acetylation marks in human malignant 
melanoma (A375) cells

Protein expression levels of various HDACs (e.g., 1, 2, 4, 
6, and phospho HDAC 4/5/7) and HATs (e.g., CBP, Acetyl 
CBP/p300, PCAF, and GCN5L2) were evaluated in nuclear 
cell lysates (data not shown). Our results showed that expo-
sure to AITC significantly decreased protein expression 
levels of HDAC6, HDAC4, CBP and acetyl CBP/p300 only 
(Fig. 3a). Then, we focused on the acetylation patterns of 
specific lysine residues on the tails of both H3 and H4. To 
this end, total histone extracts of AITC-exposed A375 cells 
were utilized for the determination of the acetylation pro-
file of H4 on lysines (K) 5, 8, and 12 as well as of H3 on 
lysines (K) 9, 27, 14, and 18 (data not shown). Diminished 
expression levels of H4K5Ac, H4K8Ac, and H4K12Ac only 
were observed when compared to control cells (Fig. 3b). 
Finally, when total nuclear HDAC and HAT activity levels 
were evaluated, no statistically significant changes occurred 
between A375-exposed vs control cells (Fig. 3c).
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Exposure to panobinostat and anacardic 
acid influences the effect of AITC exposure 
on the expression levels of acetylated H4 on specific 
lysine residues K5, K8 and K12

In an attempt to further investigate if the observed reduc-
tion on histone acetylation status depends on decreased 

activity of HATs, rather than of HDACs, we utilized either 
panobinostat (an HDAC inhibitor) or anacardic acid (a HAT 
inhibitor) under the three above-mentioned exposure proto-
cols, in A375 cells. Our data revealed that all three protocols 
utilizing panobinostat (2.5–10 nM) showed no significant 
changes on viability of A375 cells when compared to AITC 
alone. Furthermore, panobinostat was shown to be cytotoxic 

Fig. 1   AITC-induced cytotoxicity in an in vitro model of malignant 
melanoma. The experimental model consisted of human: a malignant 
melanoma (A375); b keratinocyte (HaCaT); c non-melanoma epider-
moid carcinoma (A431); d brain metastatic melanoma (VMM1) and 
e lymph node metastatic melanoma (Hs 294T) as well as f murine 
malignant melanoma (B16-F10) cells exposed to a single bolus con-

centration of AITC (2.5–50µΜ) at 24 and 48 h of exposure; g EC50 
values were estimated for all cell lines at each exposure time point 
to AITC. Data are expressed as means ± SEM and are representa-
tive of three independent experiments. Statistical significance was 
set at *p < 0.05, **p < 0.01, ***p < 0.001 relative to corresponding 
(DMSO) controls. Finally, “ND” denotes “not determined”
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at 10 nM onwards (Fig. 4ai–iii). On the other hand, utiliza-
tion of anacardic acid resulted in increased viability when 
compared to AITC alone [under all three experimental pro-
tocols (5–50 µM)] while at 50µΜ onwards there was also 
significant cytotoxicity observed (Fig. 4bi–iii). Moreover, 
we determined specific alterations in acetylation levels of 
H4 following inhibition of HDACs or HATs by means of 
western immunoblotting. More specifically, a combination 
of AITC (10µΜ) with panobinostat (10 nM) (under protocol 
2) led to an increase in the acetylation status of H4K5, H4K8 
and H4K12. On the contrary, co-exposure of A375 cells with 
AITC (10 µΜ) and anacardic acid (50 µΜ) (under protocol 
2) abrogated the effect of AITC on the de-acetylation status 
of H4K5, H4K8 and H4K12 (Fig. 4c).

AITC inhibits protein expression levels of HMTs 
in addition to specific histone H3 lysine methylation 
marks in human malignant melanoma (A375) cells

Western blotting on nuclear cell lysates against G9a/
EHMT2, RBBP5, ASH2L, SET 8, and SET 7–9 HMTs 
were utilized (data not shown). Of those, only the expres-
sion levels of SET7-9 were significantly diminished in 
A375-treated cells (Fig. 5a). Next, we determined the 
effect of AITC on the di- and tri-methylation levels of 
lysines 4, 9, 27, 36 and 79 on histone H3 (data not shown). 
Overall, it was shown that exposure to AITC significantly 
reduced the tri-methylation levels of H3K4me3 only 
(Fig. 5b).

Fig. 2   The effect of AITC on DNA methylation status in human 
malignant melanoma (A375) cells. A375 cells were exposed to 
AITC (10  µM) and decitabine under three experimental protocols 
(described in “Materials and methods”): a Protocol 1; b Protocol 2 

and c Protocol 3. Data are expressed as means ± SEM and are rep-
resentative of three independent experiments. Statistical significance 
was set at *p < 0.05, **p < 0.01, ***p < 0.001 relative to correspond-
ing controls
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Fig. 3   The effect of AITC on histone acetylation, deacetylation and 
specific H4 lysine acetylation marks in human malignant melanoma 
(A375) cells. A375 cells were exposed to 10 µM of AITC for 48 h. 
Western immunoblotting was used, in nuclear and histone extracts, 
in order to assess the expression levels of a HDACs 4 and 6 as well 
as those of HATs including CBP and Acetyl-CBP/p300; b the acety-
lation status of H4K5, H4K8 and H4K12. c Enzymatic activities of 

HDAC and HAT were evaluated using the Epigenase HDAC Activ-
ity/Inhibition Direct assay kit and the EpiQuik HAT Activity/Inhibi-
tion Assay Kit, respectively. In all experiments, data were normalized 
to the corresponding untreated control (Ctrl) and are representative 
of three independent experiments. Statistical significance was set at 
*p < 0.05, **p < 0.01, ***p < 0.001 relative to corresponding controls
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AITC induces a differential apoptotic response 
in human malignant melanoma (A375) cells

In order to examine if the cytotoxic effect of AITC was asso-
ciated with alterations in apoptotic gene expression, we uti-
lized a genomic approach based on an RT-PCR microarray 
gene expression profiling methodology. According to our 
data, there were differences in the induction of various apop-
totic genes as a response to AITC exposure in A375 cells. 
More specifically, intrinsic (e.g., BAK1, CASP9), extrinsic 
(e.g., FAS, FASLG) and p53-dependent (MDM2) apoptotic 
genes were shown to be up-regulated. In addition, other 
apoptotic genes were also shown to be either up-regulated 
(e.g., F2RL3, IL2, IL6, PRKCB) or down-regulated (e.g., 
EGFR) as well (Table 1).

Discussion

The potential of ITCs to prevent melanogenesis has been 
documented in a number of in vitro [12, 13, 32–37] and 
in vivo [14, 15, 38–41] studies. Overall, our results showed 
that exposure to AITC (2.5–50 µM) reduced viability in 
human A375 and Hs 294T as well as murine B16-F10 mela-
noma cells in a concentration- and time-dependent manner. 
In particular, AITC significantly reduced viability of these 
cells (at 10 µM onwards) while human VMM1, A431 and 
HaCaT cells remained relatively resistant. Moreover, of all 
these cell lines, only A375 cells appeared to be the most sen-
sitive to the effect of AITC thereby providing the rationale 
for their subsequent use. To this end, it was apparent that 
AITC was capable of modulating the apoptotic response by 
mediating the differential expression of a number of genes 
representative of various apoptotic cascades (e.g., intrinsic, 
extrinsic, p53-dependent apoptosis, etc.) upon exposure to 
A375 cells.

In the context of regulating gene expression, both acetyla-
tion and methylation of histone proteins have been known as 
important modulators primarily through changes in chroma-
tin structure. Specifically, regarding melanoma pathogenesis, 

overexpression of class I and II HDACs has been associated 
with the disease progression and drug resistance [42–45]. 
On the other hand, ITCs have recently been reported as 
potent HDAC inhibitors thus disrupting the ratio of HAT/
HDAC in a manner capable of inducing cell death in various 
cancers [46–48]. Furthermore, inhibition of these enzymes 
has been associated with modulation in the expression of 
genes involved in tumor suppressor mechanisms including 
those of Nrf-2-dependent-detoxification of xenobiotics, cell 
cycle inhibition and apoptosis-induced cancer cell death [17, 
18, 21, 49, 50]. Among the genes reported to be regulated by 
HDAC inhibitors, the re-activation of p21WAF1/Cip1 resulting 
in cell cycle inhibition and apoptosis is the most common 
one [50–54]. In this study, our data revealed a reduction in 
protein expression levels of HDACs 4 and 6 but without a 
significant decrease in total HDAC activity. Similarly, there 
was a reduction in protein expression levels of CBP and 
acetyl CBP/p300 but also without an accompanied decrease 
in the activity levels of HATs, upon AITC exposure. To this 
end, work by others has shown that inhibition of CBP/p300 
promotes cell cycle arrest and cellular senescence, deregu-
lates DNA/damage response and induces apoptosis in mela-
noma cells [55–57]. Such findings suggest that AITC could 
act as a potent HAT inhibitor capable of suppressing mela-
noma cell proliferation. In addition, we evaluated the histone 
acetylation status on specific lysine residues, at both H3 and 
H4 N-terminus, and we observed a dramatic decrease on the 
acetylation levels of lysines 5 (H4K5Ac), 8 (H4K8Ac) and 
12 (H4K12Ac) on histone H4. Of these, H4K8 and H4K5 
are known to be target sites for the action of CBP/p300 as 
this HAT is being known to preferentially acetylate these 
particular lysine residues [58]. In comparison, there were 
no significant changes associated with the acetylation levels 
of lysines 9 (H3K9Ac), 14 (H3K14Ac), 18 (H3K18Ac), and 
27 (H3K27Ac) of histone H3 upon exposure to AITC (data 
not shown). Our data, also revealed that combined exposure 
of AITC with panobinostat (known as an HDAC inhibitor 
[59–61]) increases the acetylation status of H4K5, H4K8 and 
H4K12 which, in turn, suggests that inhibition of HDACs 
could lead to a higher turnover of HATs (perhaps as a com-
pensation mechanism) leading to higher acetylation levels 
in these lysine residues. Furthermore, co-exposure of AITC 
with anacardic acid (known as a HAT inhibitor [62–64]) 
abrogates the effect of AITC on the de-acetylation status of 
H4K5, H4K8 and H4K12, and, in such case, it restores the 
acetylation status of these lysine residues back to their con-
trol levels. Finally, it is worth mentioning that inhibition of 
total DNA methylation by decitabine [65, 66] did not show 
any impact in the context of rescuing A375 cells from the 
observed AITC-induced cytotoxicity suggesting that such 
cytotoxicity is not linked to increased DNA methylation.

On another note, the extent of histone methylation 
(mono-, di-, and tri-) has also been shown to influence 

Fig. 4   The effect of panobinostat and anacardic acid on histone acet-
ylation, deacetylation and specific H4 lysine acetylation marks in 
human malignant melanoma (A375) cells. A375 cells were exposed 
to AITC (10  µM) and either panobinostat (a) or anacardic acid (b) 
under three experimental protocols (described in “Materials and 
methods”): ai, bi Protocol 1, aii, bii Protocol 2 and aiii, biii Protocol 
3. Data are expressed as means ± SEM and are representative of three 
independent experiments. Statistical significance was set at *p < 0.05, 
**p < 0.01, ***p < 0.001 relative to corresponding controls; c A375 
cells were co-exposed to AITC (10  µΜ) and either panobinostat 
(10  nM) or anacardic acid (50  µΜ) under Protocol 2 (described in 
“Materials and methods”). Western immunoblotting was used, in 
histone extracts, in order to assess the expression levels of AcH4K5, 
AcH4K8 and AcH4K12

◂
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the extent of acetylation on H3. It is noteworthy that we 
have observed SET7-9 to be downregulated in this study. 
This histone methyltransferase (HMT) enzyme is known 
to catalyze the mono-methylation of H3K4 and is also 
associated with the methylation of non-histone proteins 
including p53. The role of this HMT in carcinogenesis is 
controversial as some studies report its tumor suppressor 
function [67, 68] while others associate its activity with 
increased proliferation [69]. Overall, among all di- and 
tri-methylated lysines on histone H3 that we examined 
(K36me2/me3, K4me2/me3, K79me2/me3, K27me2/me3 

and K9me2/me3), it was observed that only the expres-
sion levels of H3K4me3  were significantly reduced upon 
exposure to AITC. Specifically, this is an epigenetic modi-
fication capable of regulating gene expression by means 
of activating the transcriptional process. Although one of 
the least abundant histone modifications, it is used as an 
epigenetic mark in order to identify active gene promoters 
[70, 71].

To conclude, we have shown a significant involvement 
of AITC in regulating the epigenetic response by modulat-
ing specific lysine acetylation(s) and/or methylation(s) on 
histone proteins H3 and H4 as well as the expression of 
enzymes capable of catalyzing such epigenetic modifica-
tions (Fig. 6). In principle, such a response can impact 
on  transcriptional activation and/or repression and con-
sequently alter the outcome of gene expression. To our 
knowledge, this is the first report documenting a detailed 
characterization of the interaction of AITC with the epi-
genome, in human malignant melanoma, a finding that 
highlights the importance of dietary interventions in regu-
lating the epigenome as a result of their action against 
various types of cancer.
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Fig. 5   The effect of AITC on histone methylation status and specific 
H4 lysine methylation marks in human malignant melanoma (A375) 
cells. A375 cells were exposed to AITC (10 µM) for 48 h. Western 
immunoblotting was used, in nuclear and histone extracts, in order to 
assess the expression levels of a SET7-9 and b tri-methylation status 
of lysine (K)4 on histone H3

Table 1   Apoptotic gene 
expression in A375 cells 
exposed to AITC (10 µM) over 
48 h

Data are expressed as fold 
increase in comparison to con-
trol and analyzed by the ΔΔCt 
method. Observed differences 
were expressed as fold changes 
in gene expression by using the 
DataAssist v3.01 software. (↑) 
denotes up-regulation, whereas 
(↓) down-regulation. Data 
shown are mean values from 
two independent experiments

Gene AITC

BAK1 ↑ 3.2
CASP9 ↑ 1.7
EGFR ↓ 0.4
F2RL3 ↑ 15.1
FAS ↑ 1.9
FASLG ↑ 4.0
IL2 ↑ 3.2
IL6 ↑ 3.3
MDM2 ↑ 3.9
PRKCB ↑ 3.0

Fig. 6   General scheme of the AITC-induced epigenetic response in 
human malignant melanoma (A375) cells
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