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HIGHLIGHTS 23 

• Proctor compacted, hypercompacted and extruded earth bricks were manufactured. 24 

• Earth bricks were fired at five temperatures: 280, 455, 640, 825 and 1000 °C. 25 

• Thermal treatment was quick to save energy and time. 26 

• Compressive strength, water durability and moisture buffering were investigated. 27 

• Excellent properties were achieved for hypercompacted bricks with low firing times and 28 

temperatures. 29 

ABSTRACT 30 

This paper presents an innovative method for the production of masonry bricks, which combines 31 

earth compaction and quick firing at low temperatures. Earth bricks were manufactured according 32 

to three different methods, i.e. extrusion, standard Proctor compaction and hypercompaction to 100 33 

MPa. All bricks were fired inside an electrical furnace by rising the temperature at a quick rate of 34 

about 9 °C per minute to 280, 455, 640, 825 and 1000 °C, after which the furnace was turned off 35 

and left to cool to the atmosphere with the brick inside it. These firing temperatures and times are 36 

significantly lower than those employed for the manufacture of commercial bricks, which are 37 

typically exposed to a maximum of 1100 °C for at least 10 hours (Brick Industry Association, 38 

2006). A testing campaign was performed to investigate the effect of quick firing on the porosity, 39 

strength, water durability and moisture buffering capacity of the different bricks. Quick firing of 40 

hypercompacted bricks at moderate temperatures, between 455 and 640 °C, is enough to attain very 41 

high levels of compressive strength, between 29 and 34 MPa, with a good to excellent moisture 42 

buffering capacity. These properties are better than those of commercially available bricks. The 43 

strength of hypercompacted bricks further increases to 53 MPa, a value similar to that of high-44 

strength concrete, after quick firing at 825 °C. Earth densification prior to thermal treatment 45 

therefore improves material performance while enabling a significant reduction of firing 46 

temperatures and times compared to current bricks production methods. 47 

 48 

KEYWORDS 49 

Bricks production, firing treatment, pore size distribution, compressive strength, water durability, 50 

moisture buffering capacity. 51 

 52 
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INTRODUCTION 53 

Fired earth bricks are commonly employed for the construction of masonry structures despite their 54 

relatively large energy and carbon footprints. Bricks exhibit large levels of embodied energy 55 

because of their production method which consist in subjecting extruded earth blocks to very high 56 

temperatures, up to 1100 °C, for a period between 10 and 40 hours (Brick Industry Association, 57 

2006; Zhang, 2013; Murmu and Patel, 2018). This energy-intensive thermal treatment is necessary 58 

to achieve adequate mechanical and durability characteristics for construction applications. Besides 59 

high levels of embodied energy, bricks also exhibit a limited ability to absorb/release vapour 60 

from/to the indoor environment, which reduces the hygro-thermal inertia of buildings walls and 61 

encourages electrical air conditioning of dwellings (Morton et al., 2005; Rode et al., 2005). Finally, 62 

upon demolition, fired bricks generate waste that is often disposed in landfills, thus resulting in 63 

environmental pollution and loss of land (Bossink and Brouwers, 1996). 64 

Most of the above limitations could be overcome by using raw (i.e. unfired) earth bricks, which are 65 

manufactured with relatively little energy as shown by Little and Morton (2001) and Morel et al. 66 

(2001). Raw earth also exhibits a strong tendency to adsorb vapour from humid environments and 67 

to release it into dry environments while simultaneously liberating and storing latent heat thanks to 68 

an open network of nanopores and the high specific surface of clay particles. This property 69 

increases hygro-thermal inertia and helps smoothing daily fluctuations of humidity and temperature 70 

inside buildings with a consequent improvement of occupant comfort and an associated reduction of 71 

air conditioning needs (Houben and Guillaud, 1989; Allinson and Hall, 2010; Pacheco-Torgal and 72 

Jalali, 2012; Soudani et al., 2016; Gallipoli et al., 2017; Soudani et al., 2017). Finally, raw earth is 73 

an entirely natural material which can be easily recycled or safely disposed into the environment.  74 

Despite the above advantages, raw earth is still regarded as an unviable material for mainstream 75 

construction due to relatively low levels of water durability and strength. Recent research has 76 
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however shown that “hypercompaction” of earth to very high pressures (of the order of hundreds of 77 

megapascals) can produce raw bricks with levels of strength and stiffness that are higher than those 78 

of standard fired bricks (Bruno et al., 2017; Bruno et al., 2018). This is possible thanks to a 79 

densification of the material down to a porosity of about 0.13, a value similar to that of shale rocks 80 

(porosity is the ratio between pore volume and total volume). Unfortunately, this large increase in 81 

strength and stiffness does not correspond to a similar gain of durability, especially when raw earth 82 

comes into contact with liquid water. For this reason, chemical stabilizers such as cement or lime 83 

are often added to the earth to improve mechanical characteristics (Walker and Stace, 1997; Bahar 84 

et al., 2004; Guettala et al., 2006; Jayasinghe and  Kamaladasa, 2007; Kariyawasam and Jayasinghe, 85 

2016; Khadka and Shakya, 2016; Venkatarama Reddy et al., 2016; Dao et al., 2018). Unfortunately, 86 

the addition of chemical stabilisers reduces the moisture buffering capacity and hygro-thermal 87 

inertia of the material (Liuzzi et al., 2013; McGregor et al., 2014; Arrigoni et al., 2017) while 88 

largely increasing the carbon footprint (Worrell et al., 2001). Alternative stabilisation methods are 89 

therefore necessary to improve water durability without increasing the environmental impact of raw 90 

earth. In this respect, the application of moderate heat has been considered in a small number of 91 

studies as a possible stabilisation method but never in association with a high compaction effort. 92 

Mbumbia et al. (2000) investigated the hydro-mechanical behaviour of extruded lateritic earth 93 

bricks fired at 350, 550, 750, 850 and 975 °C for 4 and 8 hours. They observed that both mechanical 94 

and durability properties improve as temperature increases while firing time has only a marginal 95 

effect. These findings were further confirmed by Karaman et al. (2006), who fired pressed earth 96 

bricks at temperatures ranging from 700 °C to 1100 °C for different times from 2 to 8 hours. They 97 

concluded that temperature plays a key role in changing the physical and mechanical properties of 98 

the bricks while firing time has little effect.  99 

The present work investigates, for the first time, a brick manufacturing method that relies on earth 100 

hypercompaction to generate very high levels of material strength followed by quick firing at low 101 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

5 

 

temperatures and times to attain good water durability. The increase of strength produced by earth 102 

hypercompaction prior to firing reduces the demands on thermal treatment, whose only purpose 103 

becomes the enhancement of water durability. This allows a very significant reduction of both firing 104 

temperatures and times respect to the values proposed by Mbumbia et al. (2000) and Karaman et al. 105 

(2006). Moreover, quick firing has the advantage of preserving a considerable part of the moisture 106 

buffering capacity of raw earth with a consequent gain of hygro-thermal inertia respect to standard 107 

fired bricks. 108 

Quick firing is accomplished by placing a raw earth brick inside an electrical furnace and rapidly 109 

increasing the temperature to a given target, after which the furnace is switched off and allowed to 110 

cool to the atmosphere with the brick inside it. As shown later, a moderate temperature, between 111 

455 °C and 640 °C, is already sufficient to ensure good levels of water durability. For 112 

hypercompacted bricks, this moderate temperature is also sufficient to generate a compressive 113 

strength of about 30 MPa, which is greater than the strength of most commercial bricks. 114 

Remarkably, if the hypercompacted bricks are quickly fired at a higher temperature of 825 °C, 115 

which is however still lower than the temperature imposed during current brick production, material 116 

strength increases to an extremely high value of 53 MPa. 117 

The results obtained in the present work therefore indicate that a faster, cleaner and less energy-118 

intensive thermo-mechanical process can be devised to improve production of masonry bricks while 119 

reducing environmental impact and increase efficiency. These preliminary results must however be 120 

supported by further investigation to quantify the ensuing energy savings and to extend the 121 

characterization of the hygro-mechanical and durability characteristics of the produced bricks. 122 

MATERIAL AND METHODS 123 

The earth used in the present work has been provided by the brickwork factory NAGEN from the 124 

region of Toulouse (South-West of France) and corresponds to a typical soil for the production of 125 
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standard fired bricks. The grain size distribution was determined by both wet sieving and 126 

sedimentation in compliance with the norms XP P94-041 (AFNOR, 1995) and NF P 94-057 127 

(AFNOR, 1992), respectively, which indicate that the material is composed by 40.8% sand, 42.9% 128 

silt and 16.3% clay. The Atterberg limits of the fine fraction (i.e. the soil fraction smaller than 400 129 

µm) were determined according to the norm NF P94-051 (AFNOR, 1993), which indicates a liquid 130 

limit of 33.0% and a plasticity index of 12.9%. These results classify the material as an inorganic 131 

clay of medium plasticity according to the Unified Soil Classification System USCS ASTM D2487-132 

11 (2011). Both grain size distribution and plasticity properties also satisfy existing 133 

recommendations for compressed earth bricks (e.g. MOPT, 1992; Houben and Guillad, 1994; 134 

CRATerre–EAG, 1998; AFNOR, 2001) as discussed by Bruno (2016). Material mineralogy was 135 

investigated by means of X-ray diffractometry using an AXIS Nova X-Ray photoelectron 136 

spectroscopy (Kratos Analytica). Results from this test showed that the earth used in the present 137 

work is mainly composed of quartz, illite and calcite (Figure 1). 138 

 139 

Figure 1. X-Ray spectrum of the base earth. 140 
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Raw earth bricks were manufactured according to three different methods, namely extrusion, 141 

standard Proctor compaction and hypercompaction. Both Proctor compacted and hypercompacted 142 

bricks had dimensions of 200 x 100 x 50 mm3, while extruded bricks had slightly larger dimensions 143 

of 220 x 110 x 50 mm3. This small variation was the consequence of the different sizes of the screw 144 

press ejector of the extruded bricks and the compaction mould of Proctor and hypercompacted 145 

bricks. A brief description of the three manufacturing processes is given below: 146 

• Extrusion. Extruded bricks were manufactured by the brickwork factory NAGEN according 147 

to the same process used for standard bricks. The dry earth was passed through a grinder and 148 

sieved to remove grains larger than 1 mm. The sieved earth was subsequently mixed with an 149 

optimum water content of about 18% and conveyed to a screw extruder with a rectangular 150 

ejector section of 110 x 50 mm2. Finally, the extruded strip was cut into individual bricks 151 

with length of 220 mm.  152 

• Standard Proctor compaction. The dry earth was mixed at the optimum water content of 153 

13.5%, which had been previously determined by standard Proctor compaction of samples at 154 

different water contents (AFNOR, 1999). The moist earth was stored inside two plastic bags 155 

for at least 24 hours to ensure the equalisation of pore water pressures. The equalised earth 156 

was subsequently placed inside a stiff rectangular mould, with a horizontal cross section of 157 

200 x 100 mm2, and statically compacted to a target height of 50 mm by a piston with a 158 

displacement rate of 0.1 mm/s. The amount of earth placed inside the mould was calculated 159 

to attain a dry density of 1860 kg/m3, which corresponds to the Proctor optimum. 160 

• Hypercompaction. The dry earth was mixed at the optimum water content of 5.2%, which 161 

had been previously determined by static compaction to 100 MPa of samples at different 162 

water contents (Bruno, 2016). The moist earth was stored inside two plastic bags for 24 163 

hours to ensure equalisation before being compacted to 100 MPa with a rate of 0.17 MPa/s, 164 

which resulted in a very dense material with an average porosity of 0.13. The earth was 165 
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“double compacted” by two pistons acting at the top and bottom of a “floating mould” with 166 

a horizontal cross section of 200 x 100 mm2. The floating mould was supported by internal 167 

friction with the lateral surface of the brick. Double compaction is preferable to single 168 

compaction because it reduces frictional effects on the lateral brick surface and therefore 169 

increases the uniformity of stress and porosity inside the material. Double compaction could, 170 

however, only be employed for hypercompacted bricks because, for Proctor compacted 171 

bricks, the applied pressure was too low to generate enough lateral friction to support the 172 

weight of the floating mould. Further details about the hypercompaction procedure can be 173 

found in Bruno (2016).  174 

After manufacturing, all bricks were equalised to the laboratory atmosphere, corresponding to a 175 

temperature of about 25 °C and a relative humidity of about 40%, for a minimum of one week and 176 

until a constant mass was attained. During this time, the water content of the bricks reduced 177 

significantly attaining a stable value of about 3%. After equalisation, a set of bricks was kept inside 178 

the laboratory while another set was prepared for the subsequent firing stage by drying for 24 hours 179 

at 105 °C followed by 12 hours at 200 °C. This additional drying was necessary to avoid that the 180 

material exploded when fired at higher temperatures due to the expansion of entrapped vapour. 181 

Bricks were then fired inside an electrical furnace at five different temperatures of 280, 455, 640, 182 

825 and 1000 °C. In all cases, the temperature was increased with an approximately constant rate of 183 

9 °C per minute, which was the fastest rate allowed by the furnace. Once the target temperature was 184 

reached, the furnace was turned off and left to cool overnight with the brick inside it. Figure 2 185 

shows the variation of temperature with time during both heating and cooling stages.  186 

After firing, bricks were again equalised to the laboratory atmosphere (temperature of 25 °C and 187 

relative humidity of 40%) until a constant mass was recorded and, in any case, for not less than two 188 

weeks. Figure 3 shows both the dry density and the corresponding porosity (in bracket) of the bricks 189 

fired at different temperatures. The temperature of 25 °C refers to the unfired bricks, which were 190 
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simply equalised to the laboratory atmosphere without any thermal treatment. The dry density, and 191 

hence the porosity of the material, were calculated from the mass, volume and water content of the 192 

bricks measured after equalisation. In particular, water content was determined by drying at 105 °C 193 

for 24 hours three small fragments of about 50 grams each taken at different heights of the failed 194 

bricks after mechanical testing. This procedure relies on the assumption that only negligible 195 

changes in water content occur during mechanical testing. 196 

As expected, hypercompacted bricks exhibit a higher dry density than Proctor and extruded bricks 197 

due to their large compaction pressure. Inspection of Figure 3 also indicates that, for all brick types, 198 

dry density decreases as firing temperature grows, especially beyond 455 °C. This result is in 199 

contradiction with previous studies (e.g. Karaman et al., 2006) where dry density increased 200 

monotonically with growing firing temperatures, which is explained by the quick temperature ramp 201 

imposed to bricks in the present work. Quick firing, combined with the high quartz content of the 202 

base earth (Figure 1), promotes a rapid vitrification of the brick surface (Cultrone et al., 2004). This 203 

impermeable skin then causes the formation of internal “sacks” of carbon dioxide and water vapour 204 

with a consequent increase of porosity. Instead, in earlier studies by Karaman et al. (2006) and 205 

Mbumbia et al. (2000), a very slow heating rate of only 1°C per minute was applied, which 206 

prevented the rapid formation of a vitrified skin and therefore facilitated the evacuation of carbon 207 

dioxide and water vapour from the brick core during firing. Note that carbon dioxide and water 208 

vapour are typically generated by the burn off of carbonaceous organic matter and the 209 

dihydroxylation of structured water at temperatures higher than 550 °C (Karaman, 2006; Baccour et 210 

al., 2009). 211 

Quickly fired bricks were then tested to measure compressive strength, water durability and 212 

moisture buffering capacity. Mercury intrusion porosimetry tests were also undertaken to analyse 213 

the influence of quick firing on material fabric. 214 
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 215 

Figure 2. Quick thermal treatment: variation of firing temperature with time. 216 

 217 

 218 

Figure 3. Dry density and porosity (in brackets) of unfired (25 °C) and quickly fired (280, 455, 640, 219 

825, 1000 °C) bricks. 220 

. 221 
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TESTING PROCEDURES AND TECHNIQUES 222 

This section presents the laboratory procedures for performing mercury intrusion porosimetry 223 

(MIP) tests, compressive strength tests, immersion tests and moisture buffering tests while the 224 

corresponding results are discussed in the next section. 225 

Mercury intrusion porosimetry test 226 

To help interpretation of the macroscopic material properties, MIP tests were carried out on small 227 

specimens (about 2 cm3) taken from the brick core. MIP is a laboratory technique that allows 228 

investigation of the microstructure of porous media by measuring pore size distribution, density and 229 

specific surface. These microstructural characteristics strongly affect the macroscopic behaviour 230 

and, in particular, the strength, water durability and moisture buffering capacity of the material.  231 

Prior to MIP tests, the specimens were equalised for about one week inside a climatic chamber at a 232 

temperature of 25 °C and a relative humidity of 62% to avoid any fabric difference caused by 233 

potentially different environmental conditions. After equalisation, the specimens were freeze-dried 234 

to remove all free water from the porous network. This procedure consisted in instantaneously 235 

freezing the specimens by dipping them in liquid nitrogen at a temperature of -196 °C until 236 

termination of boiling. Instantaneous freezing produces the transformation of pore water into 237 

amorphous ice with a negligible increase in volume, thus avoiding disturbance to the material fabric 238 

(Romero et al., 1999; Nowamooz and Masrouri, 2010; Sasanian and Newson, 2013). Frozen 239 

specimens were then exposed to vacuum at a temperature of -50 °C for at least two days to 240 

sublimate the pore ice.  241 

The freeze-dried specimens were introduced into a penetrometer, which was then inserted inside the 242 

low pressure (compressed air) chamber of a Micromeritics AutoPore IV mercury porosimeter. A 243 

vacuum corresponding to an absolute pressure of 50 µmHg was applied for 5 minutes to evacuate 244 

air and residual moisture from the porous network. Afterwards, mercury was intruded inside the 245 
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pores with diameters from 105 nm to 104 nm by increasing the mercury pressure from 10 kPa to 200 246 

kPa (low-pressure stage). The penetrometer was then transferred to the high pressure (compressed 247 

oil) chamber where the mercury pressure was further increased to 200 MPa to detect the smallest 248 

pores down to 10 nm. 249 

Compressive strength test 250 

Compressive strength tests were conducted by using a displacement-controlled Zwick/Roell Amsler 251 

HB250 press with a capacity of 250 kN. Bricks were loaded along the longest dimension with a 252 

constant displacement rate of 0.001 mm/s (Figure 4). This set-up corresponds to a sample 253 

slenderness ratio (i.e. the ratio between the side parallel to the loading direction and the smallest 254 

side of the perpendicular cross section) of 4.4 for the extruded bricks and 4 for the Proctor 255 

compacted and hypercompacted bricks. In general, a slenderness ratio bigger than 2 is sufficient to 256 

eliminate the effect of spurious confinement owed to end-friction between the brick faces and the 257 

press plates. The slightly different slenderness ratio of extruded and compacted bricks should 258 

therefore have a negligible effect on the measured strength. End-friction confinement was further 259 

reduced by applying Teflon spray on the top and bottom press plates before placing them in contact 260 

with the brick extremities and starting the test. 261 
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 262 

Figure 4. Compressive strength test set-up. 263 

 264 

Water immersion test 265 

Water durability was assessed by means of immersion tests in agreement with the norm DIN 18945 266 

(2013). These tests consist in submerging the brick in water for ten minutes and measuring the 267 

corresponding mass loss. Prior to immersion, all bricks were equalised to the laboratory atmosphere 268 

(temperature of 25 °C and relative humidity of 40%) until a constant mass was achieved and, in any 269 

case, for not less than two weeks. After immersion, the bricks were again equalised to the 270 

laboratory atmosphere to allow evaporation of adsorbed water and subsequently weighted to 271 

determine the mass loss. 272 
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Moisture buffering capacity test 273 

A last set of tests was performed to investigate the moisture buffering capacity of the bricks 274 

according the norm ISO 24353 (2008). These tests consisted in exposing the bricks to relative 275 

humidity cycles inside the climatic chamber CLIMATS (Type EX2221-HA) while simultaneously 276 

recording their mass change using a scale with a resolution of 0.01 grams. Prior to the test, the brick 277 

surface was sealed with aluminium tape except for one of the two largest faces, which was left 278 

exposed to the atmosphere of the climatic chamber. The exposed area was therefore 200 x 100 mm2 279 

for Proctor compacted and hypercompacted bricks and 220 x 110 mm2 for extruded bricks.  280 

At the beginning of the test, the bricks were equalised at the lower humidity level of 53% until a 281 

constant mass was attained and, in any case, for not less than two weeks. Five relative humidity 282 

cycles were then carried out at a constant temperature of 23 °C between the two relative humidity 283 

levels of 75% and 53%, with each level maintained for 12 hours. This was sufficient to achieve 284 

steady state conditions corresponding to the attainment of a “stable cycle” where moisture uptake at 285 

the higher humidity of 75% is identical to moisture release at the lower humidity of 53%. In all tests 286 

performed in the present work, the last three cycles were classified as stable cycles. 287 

Results from the above test are typically presented in terms of a single parameter, the Moisture 288 

Buffering Value (MBV), which is the average mass change ∆m (in grams) over the last three stable 289 

cycles divided by the exposed sample surface, S (in m2) and the difference between the imposed 290 

humidity levels, ∆%RH (in %): 291 

 MBV =	
∆�

�		∆%
�
 (1) 

RESULTS AND DISCUSSION 292 

This section discusses the results from the above tests comparing microstructure, strength, water 293 

durability and moisture buffering characteristics of the different brick types. 294 
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Mercury intrusion porosimetry test results 295 

Figure 5 shows the pore size distribution of hypercompacted bricks quickly fired at different 296 

temperatures. Note that the unfired material corresponds to the temperature of 25 °C, which is the 297 

ambient temperature during equalisation to the laboratory atmosphere. Inspection of Figure 5 298 

indicates that the pore size distribution remains virtually unchanged when the firing temperature 299 

increases from ambient conditions to 455 °C. However, above 455 °C, the pores larger than 100 nm 300 

increase while those below 100 nm tend to progressively disappear. This is reflected by a growth of 301 

the characteristic pore size to 250 nm and 1000 nm at the two temperatures of 825 °C and 1000 °C, 302 

respectively. This augmentation of the coarsest pore fraction is caused by the burn off of 303 

carbonaceous organic matter and the dihydroxylation of structured water above 550 °C, with the 304 

consequent formation of sacks of carbon dioxide and water vapour inside the material (Karaman et 305 

al., 2006; Baccour et al., 2009; Mahmoudi et al., 2017). This phenomenon is facilitated by the rapid 306 

vitrification of the brick surface during quick firing, which creates an impermeable skin impeding 307 

evacuation of gases from the brick core. 308 

The progressive disappearance of the finest pores at higher firing temperatures has an important 309 

impact on the moisture buffering capacity of the material, which is directly related to the amount of 310 

pores with sizes of the order of nanometers. This partly explains why firing at higher temperatures 311 

entails a progressive loss of the hygro-thermal inertia of the material (McGregor et al., 2016), as 312 

shown later in the paper.  313 
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 314 

Figure 5. Pore size distributions of hypercompacted unfired (25 °C) and quickly fired (280, 455, 315 

640, 825, 1000 °C) bricks. 316 

 317 

Additional MIP tests were performed on Proctor compacted and extruded bricks quickly fired at 318 

455 °C to investigate the effect of the manufacturing method on the microstructural characteristics. 319 

The temperature of 455 °C was selected because, as shown later, this was the lowest temperature at 320 

which all bricks, regardless of manufacturing method, exhibit good water durability together with 321 

an excellent capacity to buffer moisture. Figure 6 compares the pore size distribution of extruded, 322 

Proctor compacted and hypercompacted bricks quickly fired at 455 °C. Differences are evident for 323 

the largest pore fraction with diameters bigger than 100 nm while, below 100 nm, the pore size 324 

distribution becomes similar for all bricks. The ability of the material to store/release vapour is 325 

governed by the finest voids, so the similarity of pore size distributions below 100 nm produces 326 

comparable levels of moisture buffering capacity for all bricks, as shown later in the paper.  327 
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Extruded bricks exhibit a homogenous pore size distribution with a well-defined peak at 500 nm. 328 

On the contrary, Proctor compacted and hypercompacted bricks show a heterogeneous porous 329 

network with the consistent presence of different pore diameters. This is partly because, in the case 330 

of extruded bricks, the base earth was ground and passed through a 1 mm sieve, which produces 331 

greater homogeneity of particle sizes compared to Proctor compacted and hypercompacted bricks. 332 

This more homogeneous pore size distribution, together with the fact that extrusion at high water 333 

content orients clay platelets along the direction of squeezing, results in better sealing of the outer 334 

surface.  335 

 336 

Figure 6. Pore size distributions of Proctor compacted, hypercompacted  337 

and extruded bricks quickly fired at 455 °C. 338 

Compressive strength test results 339 

Figure 7 presents the results from compressive strength tests and shows that hypercompacted bricks 340 

exhibit significantly higher strength than Proctor compacted and extruded bricks at all firing 341 
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temperatures, which is consistent with their greater density (Figure 3). For hypercompacted bricks, 342 

quick firing at a relatively low temperature of 455 °C is already enough to attain a very high 343 

strength of 29.1 MPa, which is better than current recommendations for masonry buildings exposed 344 

to severe weathering (ASTM C62-13a, 2013). The strength of hypercompacted bricks increases 345 

even further to 53.1 MPa, a value typical of top performing materials such as high-strength 346 

concretes, after quick firing at 825 °C.  347 

Inspection of Figure 7 also indicates that, regardless of the manufacturing method, strength 348 

increases as firing temperature rises from 25 °C to 825 °C but then decreases as temperature further 349 

grows to 1000 °C. This is in contradiction with previous studies (Karaman et al., 2006; Mbumbia 350 

and de Wilmars, 2002) where strength always increased with growing temperature. Comparison of 351 

Figures 3 and 7 also indicates that, contrary to unfired earth, strength does not always increase with 352 

growing density. These apparently surprising observations are explained by the occurrence of 353 

distinct counteracting mechanisms during firing. The first mechanism consists in the almost 354 

simultaneous occurrence, at temperatures above 550 °C, of carbonaceous organics burn off and 355 

mineral dihydroxylation with the consequent bonding of alumina and silica particles that augments 356 

material strength (West and Gray, 1958). This increase of strength is however counteracted by a 357 

second mechanism, which is typical of quick firing and consists in the rapid vitrification of the 358 

brick surface impeding evacuation of carbon dioxide and water vapour from the inner material. This 359 

promotes the formation of large pores with a consequent reduction of density and strength at higher 360 

temperatures (Karaman et al., 2006; Baccour et al., 2009). Finally, an increase in temperature above 361 

950 °C induces the transformation of illite  (Figure 1) into less stable spinel (MgOAl2O3) and 362 

hercynite (FeOAl2O3) (Jordan et al., 1999 and Aras, 2004), which also contributes to the drop of 363 

strength at 1000 °C. 364 
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 365 

Figure 7. Unconfined compressive strength of unfired (25 °C) and quickly fired (280, 455, 640, 825, 366 

1000 °C) bricks. 367 

Water immersion test results 368 

A preliminary assessment of water durability was performed by means of immersion tests as 369 

prescribed by the norm DIN 18945 (2013). Figure 8 shows the results from these tests in terms of 370 

material loss measured after water immersion of Proctor compacted, hypercompacted and extruded 371 

bricks quickly fired at different temperatures. Inspection of Figure 8 indicates that, at temperatures 372 

smaller or equal to 455 °C, extruded bricks are more durable than Proctor compacted and 373 

hypercompacted bricks due to their stronger fabric orientation, which seals the surface and reduces 374 

water infiltration. These differences however disappear at temperatures greater than 455 °C, when 375 

all bricks exhibit negligible mass loss regardless of the manufacturing method. This indicates that a 376 

good water durability might be achieved by firing at significantly lower temperatures and for 377 

considerably shorter times compared to current bricks production. Further durability tests, based on 378 

complementary experimental protocols, are however necessary to corroborate this conclusion. 379 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

20 

 

 380 

Figure 8. Mass loss after immersion of unfired (25 °C) and quickly fired (280, 455, 640, 825, 1000 381 

°C) bricks. 382 

Moisture buffering capacity test results 383 

One of the most advantageous properties of raw earth walls is the high hygro-thermal inertia and 384 

consequent ability of buffering fluctuations of indoor humidity and temperature. This property 385 

originates from the open nanoporous network and high specific surface of the material, which 386 

favours the adsorption/release of water vapour together with the simultaneous liberation/storage of 387 

latent heat (McGregor et al., 2016). In this respect, the MIP tests presented earlier in this section 388 

have shown that the process of quick firing can produce a significant change of pore size 389 

distribution, which can in turn influence the moisture buffering capacity of the material. 390 

To further investigate this aspect, moisture buffering tests were performed according to the 391 

experimental procedures described in the previous section. The Moisture Buffering Values (MBV) 392 

of Proctor compacted, hypercompacted and extruded bricks, quickly fired at different temperatures, 393 

are plotted in Figure 9 together with the classification proposed by Rode et al. (2005). Note that this 394 
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classification is based on an asymmetric humidity cycle of 16h and 8h between 33% and 75%, 395 

which is slightly different from the testing procedure adopted in the present work. 396 

Inspection of Figure 9 indicates that Proctor compacted bricks exhibit slightly higher moisture 397 

buffering capacity compared to hypercompacted and extruded bricks at all firing temperatures. This 398 

is justified by the larger porosity of Proctor compacted bricks, which facilitates the exchange of 399 

water vapour with the surrounding atmosphere. 400 

Inspection of Figure 9 also indicates that the moisture buffering capacity drastically reduces, for all 401 

manufacturing methods, as firing temperature increases. This is due to both the progressive 402 

vitrification of the brick surface, which reduces the permeability to vapour, and the progressive 403 

disappearance of the finest pore fraction, i.e. the fraction smaller than 100 nm, as discussed earlier 404 

in the paper (Figure 5). This result is also in agreement with previous works (Mbumbia et al. 2000; 405 

Karaman et al., 2006), which observed a progressive reduction of the material capacity to adsorb 406 

water vapour with increasing firing temperature. Figure 9 also shows that, at the highest 407 

temperature of 1000 °C, the moisture buffering capacity of the material becomes almost negligible. 408 

This indicates that the innate ability of raw earth to buffer moisture almost disappears as the firing 409 

temperature approaches the levels imposed during the manufacture of commercial bricks. 410 
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 411 

Figure 9. Moisture Buffering Value (MBV) of unfired (25 °C) and quickly fired (280, 455, 640, 825, 412 

1000 °C) bricks. 413 

Evaluation of proposed manufacturing method 414 

The above results indicate that hypercompacted bricks, quickly fired at a moderate temperature in 415 

the range 455 °C - 640 °C, provide the best balance between energy consumption and material 416 

properties such as compressive strength (Figure 7), water durability (Figure 8) and moisture 417 

buffering capacity (Figure 9).  418 

Table 1 compares the strength, mass loss and moisture buffering value of hypercompacted bricks, 419 

quickly fired at 455 °C, with the corresponding values of standard commercial bricks taken from 420 

the literature (Brick Industry Association, 2006; Rode et al., 2005). Table 1 also compares the 421 

corresponding firing temperatures and times to highlight the advantages of quickly fired 422 

hypercompacted bricks in terms of energy costs and production speed. Note that firing time has a 423 

different meaning for hypercompacted and standard bricks. In the former case, it indicates the time 424 
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to attain the desired temperature target while, in the latter case, it indicates the time during which 425 

the maximum temperature is maintained. 426 

Inspection of Table 1 shows that quickly fired hypercompacted bricks exhibit better compressive 427 

strength and moisture buffering capacity than standard bricks. Remarkably, this improvement is 428 

attained with lower firing temperatures and times, which also allows a saving of energy, time and 429 

carbon emissions. Only water durability is marginally worse for the quickly fired hypercompacted 430 

bricks compared to standard ones. 431 

Table 1. Comparison between standard fired bricks and quickly fired hypercompacted bricks 

 
Compressive 

strength (MPa) 
Mass loss 

(%) 
MBV   

(g/m2 %RH) 
Firing time 

(h) 
Firing 

temperature (°C) 

Standard fired 
bricks 

27.0 0 0.2 Between  
10 and 40 

1100 

Hypercompacted 
bricks 

29.1 2 2.6 0.67 455 

Variation (%) +7.8  - +1200  Between 
-93 and -98 

-59 

 432 

CONCLUSIONS 433 

This paper has presented an innovative and energy-efficient thermo-mechanical process for the 434 

manufacture of masonry bricks. The proposed process combines “hypercompaction” of raw earth at 435 

a large pressure of 100 MPa with quick firing at low temperatures and times. The process relies on 436 

the hypercompaction of raw earth, to generate high levels of material strength, and on subsequent 437 

quick firing, to achieve good water durability. A series of laboratory tests was performed to assess 438 

the pore fabric, compressive strength, water durability and moisture buffering capacity of 439 

hypercompacted bricks quickly fired at five different temperatures of 280, 455, 640, 825 and 1000 440 

°C. For comparison, the same properties were also measured on conventional extruded bricks and 441 
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Proctor compacted bricks subjected to the same thermal treatment. The main outcomes of the 442 

research can be summarised as follows: 443 

• Material strength depends markedly on the manufacturing method with hypercompacted 444 

bricks exhibiting the highest strength at all firing temperatures followed by extruded bricks 445 

and finally Proctor compacted bricks. This result indicates a direct link between earth 446 

densification prior to firing and material strength.  447 

• The highest strength is always attained at the intermediate firing temperature of 825 °C, 448 

rather than at the highest one of 1000 °C. This is a consequence of the fast thermal ramp that 449 

is imposed to the earth during quick firing. The highest strength is equal to 6.7 MPa for 450 

Proctor compacted bricks, 19.3 MPa for extruded bricks and 53.1 MPa for hypercompacted 451 

bricks. This last value is comparable to that of top performing construction materials such as 452 

high-strength concretes. 453 

• Mass loss during water immersion decreases with increasing firing temperatures and 454 

becomes negligible above 455 °C for all manufacturing methods. This indicates that 455 

adequate water durability can be achieved with significantly lower firing temperatures and 456 

times than those adopted during current brick production. 457 

• Moisture buffering capacity reduces with growing firing temperature in a similar fashion for 458 

all manufacturing methods. In particular, bricks fired at a temperature of 1000 °C (i.e. a 459 

temperature similar to that imposed during production of commercial bricks) exhibit almost 460 

no ability to exchange vapour with the surrounding environment.  461 

• Based on the above results, quick firing of hypercompacted bricks at relatively low 462 

temperatures, between 455 °C and 640 °C, provides the best balance between manufacturing 463 

energy and material properties (strength, water durability and moisture buffering capacity). 464 

At a temperature of 455 °C, hypercompacted bricks exhibit a strength a 29.1 MPa, a value 465 

greater than that recommended by masonry construction guidelines (ASTM C62-13a, 2013). 466 
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They also exhibit excellent moisture buffering capacity and almost no mass loss after water 467 

immersion.  468 

• Quick firing of hypercompacted bricks at temperatures lower than 455 °C produces 469 

negligible changes of pore size distribution with respect to unfired bricks. Above this 470 

temperature, however, the material exhibits a progressive augmentation of the coarse pore 471 

fraction (i.e. larger than 100 nm) accompanied by a decrease of the fine pore fraction (i.e. 472 

smaller than 100 nm). Given that the material ability to store water vapour is directly linked 473 

to the extent of the nanoporous network, this observation explains the decrease of moisture 474 

buffering capacity with growing firing temperature. 475 

• Extruded bricks present the most uniform porous network with a characteristic size of 500 476 

nm. On the contrary, Proctor compacted and hypercompacted bricks exhibit a relatively 477 

heterogeneous porous network with a continuous range of different pore sizes. 478 

The above preliminary results suggest that brickwork factories have the opportunity to improve 479 

production quality while significantly reducing manufacturing time, energy consumption and 480 

environmental impact. Additional experimental evidence is however necessary to validate the 481 

proposed thermo-mechanical brick production process before implementing it at the industrial scale. 482 
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