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Abstract 

In the present article, an effort is made to analyse the coupled global dynamics of nanoscale 

fluid-conveying tubes. The influences of geometric nonlinearity are captured through the 

nonlinear Euler-Bernoulli strain relation of beams. Moreover, the size influences related to 

the nanoscale tube are captured via developing a nonlocal strain gradient model of beams. 

The Beskok-Karniadakis theory is also used for capturing the size influences related to the 

nanofluid. In addition to size influences, Coriolis acceleration effects together with the 

influences of the centrifugal acceleration are taken into account. Hamilton’s principle gives 

two coupled equations of motions, which are discretised utilising Galerkin’s technique. A time 

integration scheme is used for extracting the global dynamic characteristics of the nanotube 

containing nanofluid flow. The non-dimensional critical speed associated with buckling is also 

determined. It is found that the nanofluid speed plays a crucial role in the global dynamics in 

both the subcritical and supercritical regimes. 
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1. Introduction 

Many fluid-conveying ultrasmall systems with a variety of applications, especially in 

medicine, have recently been introduced [1, 2]. For instance, it has been shown that 

circulating tumour cells can be isolated from blood flow using a spiral microfluidics-based 

device [1]. In a fluid-conveying ultrasmall system, solid parts constantly interact with the fluid 

ones; the mechanical responses of the whole system are affected by these interactions. 

Predicting solid-fluid interactions is the key to better modelling and understanding of fluid-

conveying systems at ultrasmall levels.   

Since the mechanical response of ultrasmall systems is size-dependent [3-15], scale-free 

formulations based on the classical theory of elasticity are not reliable [16-37]. To develop a 

formulation capturing size influences, a few modified elasticity theories have been proposed 

to date [38-46]. The nonlocal strain gradient theory (NSGT) and the nonlocal elasticity theory 

(NET) are famous modified theories for nanoscale systems. The latter is utilised in this analysis 

for size influences.  

The continuum-based analysis of fluid-conveying ultrasmall systems has attracted much 

attention in recent years. The most relevant continuum-based studies on these systems are 

discussed in the following. In one early investigation, a classical continuum-based analysis was 

conducted by Reddy et al. [47] for studying the free vibrations of single-walled carbon 

nanotubes (SWCNTs) containing nanofluid flow. Lee and Chang [48] scrutinised the vibrations 

of a fluid-conveying nanosystem using a SWCNT surrounded by an elastic medium. Moreover, 

Wang [49] extracted the dynamic characteristics of a double-walled carbon nanotube 

(DWCNT) conveying nanofluid incorporating nonlocal influences. Rafiei et al. [50] proposed a 

continuum-based formulation so as to explore the vibration of non-uniform nanotubes 



containing nanofluid flow. Zhen and Fang [51] analysed the frequency response of nanoscale 

tubes conveying fluid via developing a nonlinear nonlocal model of elasticity; they modelled 

the size influences via help of one scale parameter. Rashidi et al. [52] examined the linear 

vibration of nanoscale tubes containing nanofluid flow; they took into account the size 

influence related to the fluid part. In another continuum-based analysis, Soltani et al. [53] 

studied the mechanical behaviours of nanofluid-conveying SWCNTs taking into account the 

influence of a surrounding viscoelastic medium. In another article, the influences of being 

geometrically curved along the longitudinal direction on the vibration response of nanotubes 

containing nanofluid flow are studied [54]. Li et al. [55] conducted a linear analysis based on 

the NSGT to extract the critical speeds of small-scale pipes containing nanofluid flow. In 

addition, a nonlinear NSGT-based model was proposed in the literature for studying the 

frequency response of nanoscale tubes conveying nanofluid [56]. Khosravian and Rafii-Tabar 

[57] also used the theory of Timoshenko beams for studying the motion of a multi-walled 

carbon nanotube (MWCNT) containing nanofluid flow. Hosseini and Sadeghi-Goughari [58] 

scrutinised the effects of a magnetic field along the axial direction on the mechanics of 

nanoscale tubes containing fluid flow. Similar continuum-based investigations have reported 

the mechanics of nanofluid-conveying piezoelectric nanotubes [59], boron nitride nanotubes 

[60] and functionally graded nanotubes [61].  

Compared to linear vibration analysis and nonlinear frequency response analysis, few 

continuum-based analyses have reported the chaotic motions of nanotubes containing 

nanofluid flow [62]. However, to the best of our knowledge, size influences on the chaotic 

motions of nanofluid-conveying nanotubes have not been investigated yet. In this analysis, a 

nonlinear NSGT-based model of nanobeams is developed for capturing the geometric 

nonlinearity as well as the size influences related to the nanotube itself. The Beskok-



Karniadakis theory is employed to take into account size influences related to the nanofluid. 

Applying Hamilton’s principle as a derivation scheme, the equations of motions along each 

direction are derived, leading to two coupled nonlinear differential equations. Utilising 

Galerkin’s procedure and a time-integration-based solver, the coupled equations are 

simultaneously solved. The effects of external loads and nanofluid speed on the both 

subcritical and supercritical chaotic responses for the scale-dependent coupled motion of 

nanoscale tubes containing nanofluid flow are analysed and discussed.        

 

2. A coupled NSGT-based model for chaos in fluid-conveying nanotubes 

Employing the NSGT, a coupled nonlinear model of nanobeams is developed for 

investigating chaos in a nanotube of average diameter d and length L containing nanofluid 

flow (see Fig. 1). It is assumed that the nanotube has a constant cross-sectional area (A), 

constant elasticity modulus (E), and constant Poisson’s ratio (v) (i.e. a uniform homogeneous 

nanotube). A harmonic load of amplitude F(x) and frequency   is exerted on the nanotube 

(i.e.    cos t F x ) in the z direction. The mechanical strain is expressed as 

   ,xx xx xxe z            (1) 

where 
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Here the displacement components of the mid-plane along the x and z axes are indicated by 

u and w, respectively. According to the NSGT, there three types of mechanical stresses: (1) 

zeroth-order nonlocal stress ( (0)
xx ), (2) first-order nonlocal stress ( (1)

xx ), and (3) total 



mechanical stress ( ( )t
xx ). These stresses are related to the corresponding force and couple 

resultants as 
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Let us assume that the scale parameters associated with the stress nonlocality and strain 

gradients are, respectively, indicated by   0n ne  and   g g  in which 0e , n  and g  

represent the calibration constant, internal characteristic length and strain gradient constant, 

respectively. The constitutive equation is given by 

             ( ) 2 2 ( ) 2 2 2 2 ,t t
xx n xx xx g xx xx g xxEe E e zE zE      (4) 

where 2  is the Laplacian operator. Indicating the tube inertia moment by I and using Eq. (4), 

the corresponding force and couple resultants are as  
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The variation of the elastic energy (Uel) is given by 
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where  
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xx xx xx           (8) 



Here   is the gradient operator. In addition, for the total kinetic energy ( enK ) of the whole 

nanosystem, one can obtain 
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where mnt, mnf and U indicate the nanotube mass per length, nanofluid mass per length and 

the nanofluid speed, respectively; BK  denotes a correction factor related to the nanofluid 

speed. The size influences associated with the fluid part are incorporated into the formulation 

through this factor. Using Beskok-Karniadakis theory, one finally obtains the speed correction 

factor as  
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where Kn denotes the Knudsen number;   and   are two coefficients given by   1  and 

  0.7 , respectively; moreover, the coefficient   is related to the Knudsen number as 
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in which  1 64 15a , 2 4a  and 3 0.4a . The external work ( )extW  is formulated as  

      0 cos d .
L

extW t F x w x         (12) 

Substituting Eqs. (7), (9) and (12) into the work/energy principle described by 
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the equations of motions are derived as  
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Eqs. (5) and (6) are used together with Eqs. (14) and (15), resulting in the following equations 

of motions in terms of u and w 
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Let us define a set of non-dimensional parameters as follows 
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where oR  is the nanotube outer radius. Employing Eq. (18) and assuming a constant forcing 

amplitude, the non-dimensional coupled motion equations are derived as 
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To discretise Eqs. (19) and (20), the following expressions are utilised  
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where  jr t ,   ( )u
j x ,  jq t  and   ( )w

j x  represent the axial generalised coordinates, axial 

trial functions, transverse generalised coordinates and transverse trial functions, respectively. 

Substituting Eq. (21) into Eqs. (19) and (20) and using Galerkin’s technique, one derives  
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Equations (22) and (23) gives a number of ordinary differential equations, which are solved 

via a time-integration-based solver.     

 

3. Numerical results  

The nanosystem mechanical properties are assumed as E=610 MPa and v=0.3. 

Furthermore, the nanosystem geometric properties are assumed as h=70.0 nm, Ro =230.0 nm 

and L/dout =20. The non-dimensional values of the nanosystem are as BK =1.10, m =0.4780, 

 =20.0,  = 4312.8662,   0.04g and   0.08n . In numerical calculations, a damping ratio 

of 0.005 is utilised. Ten degrees of freedom (DOF) are considered for each displacement 

component, resulting in a system of 20 DOF. 

The non-dimensional critical speed associated with buckling is 5.2214. The coupled 

bifurcation response is first plotted in Fig. 2 for U = 5.05, highlighting the subcritical response 

of the nanosystem. Different motion types are seen in this figure. The coupled motion is 



periodic for 0 < F1 < 9 while a period-3 coupled motion is seen for 9   F1   9.5. Then a region 

of periodic motion is observed followed by some other types of motions. In particular, a 

number of quasiperiodic motions are found for 40 < F1 < 50. For clarification purposes, more 

details about the nanosystem motion at F1= 20.0 and F1= 42.7 are also given in Figs. 3 and 4, 

respectively. At F1= 20.0, the nanotube experiences a periodic motion while it displays a 

quasiperiodic motion at F1= 42.7.  

Figure 5 depicts the coupled bifurcation of the nanotube containing nanofluid flow of 

non-dimensional speed U =5.10 (i.e. a bit higher nanofluid speed) for both w and u. Comparing 

Figs. 2 and 5 reveals that the coupled bifurcation response is greatly dependent on the 

nanofluid speed. For example, the coupled motion is periodic at F1= 5.5 for U = 5.05 while it 

is a period-3 type at this forcing amplitude for U =5.10. Figure 6 is plotted to give more details 

about the coupled motion of the nanosystem described in Fig. 5 at F1= 25. It is concluded that 

the nanoscale tube containing nanofluid flow displays a period-3 coupled motion at this 

forcing amplitude.  

A further increase in the speed of the nanofluid flow results in a completely different 

bifurcation response, as shown in Fig. 7. This indicates the significance of the nanofluid speed 

in the bifurcation response of nanoscale tubes containing nanofluid flow. There is noticeable 

chaos in the coupled motion, especially for specific values of the forcing amplitude between 

F1= 30 and F1= 50. With increasing nanofluid speed from U = 5.15 to U = 5.20, the chaos in the 

coupled motion significantly spreads over a wider range of the forcing amplitude. This means 

that just before the critical point in the subcritical regime, the nanofluid speed plays a crucial 

role in the coupled chaotic response. Figures 9 and 10, respectively, indicate the details of the 

coupled motions of the nanotube containing nanofluid flow, which is described in Fig. 8, at 



F1= 25 and F1= 38. From these figures, it is seen that the nanosystem experiences periodic and 

chaotic motions at F1= 25 and F1= 38, respectively.  

Similar to the subcritical regime, the influences of the nanofluid speed together with the 

forcing amplitude on the bifurcation response of the nanotube containing nanofluid flow are 

also scrutinised in the supercritical one. The coupled bifurcation response of the nanosystem 

is first plotted in Fig. 11 for U = 5.25. It is found that the coupled motion is highly chaotic a bit 

beyond the critical point. Figure 12 gives more details about the chaotic motion of the 

nanoscale tube at F1= 46.        

Figure 13 illustrates the influence of a slight increase in the nanofluid speed on the 

coupled bifurcation of the nanotube containing nanofluid flow (U = 5.30). Comparing this 

figure with the previous bifurcation response plotted in Fig. 11 reveals that the interval of F1 

in which the nanotube experiences a chaotic motion decreases when the nanofluid speed is 

increased in the supercritical regime. However, significant chaos is still observed in the 

coupled bifurcation response (see Fig. 14). Furthermore, Fig. 15 illustrates the coupled 

bifurcation of the nanotube containing nanofluid flow of U= 5.40 for both w and u, indicating 

a further reduction in the interval of F1 in which chaos happens.  

 

 

 

 

 

 



4. Conclusions  

The chaotic motions of nanofluid-conveying nanoscale tubes have been investigated via 

developing a nonlinear NSGT-based model of nanobeams. The geometric nonlinearity and 

size influence related to the nanotube were captured employing the nonlinear strain relation 

and the NSGT, respectively. Furthermore, the size influence related to the nanofluid was 

taken into account employing the Beskok-Karniadakis theory. Applying Hamilton’s principle 

led to two coupled nonlinear differential equations for the nanosystem. The coupled 

equations were simultaneously solved by utilising a time-integration-based solver as well as 

Galerkin’s procedure.  

In addition to periodic and period-3 coupled motions, the nanotube experiences a 

number of quasiperiodic motions in the subcritical regime for specific values of nanofluid 

speed and forcing amplitude. There is noticeable chaos in the coupled motion of the nanotube 

containing nanofluid flow near the critical point corresponding to buckling. In the subcritical 

regime, as the nanofluid speed increases, chaos in the coupled motion spreads over a wider 

range of the forcing amplitude. It was also found that a bit beyond the critical point, the 

coupled motions of the nanosystem are highly chaotic. However, in the supercritical regime, 

as the nanofluid speed increases, the interval of the forcing amplitude in which the 

nanosystem experiences a chaotic response reduces. 
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Fig. 1. A nanotube of average diameter d and length L containing fluid flow.  
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Figure 2: Coupled bifurcation response of the nanoscale tube containing nanofluid flow of speed U = 5.05 for (a) 
w(x=0.50) and (b) u(x=0.65); ω1= 4.5217 and ω/ω1=1.0. 
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Figure 3: More details about the nanosystem motion (described in Fig. 2) at F1=20.0: (a) w(x=0.5) versus time, 
(b) u(x=0.65) versus time, (c) dw/dt(x=0.5) versus transverse displacement, (d) du/dt(x=0.65) versus axial 
displacement, (e) FFT for w(x=0.5), and (f) FFT for u(x=0.65). 
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Figure 4: More details about the nanosystem motion (described in Fig. 2) at F1=42.7: (a) w(x=0.5) versus time, 
(b) u(x=0.65) versus time, (c) dw/dt(x=0.5) versus transverse displacement, (d) du/dt(x=0.65) versus axial 
displacement, (e) Poincaré map for w(x=0.5), and (f) Poincaré map for u(x=0.65). 
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Figure 5: Coupled bifurcation response of the nanoscale tube containing nanofluid flow of speed U = 5.10 for (a) 
w(x=0.50) and (b) u(x=0.65); ω1= 3.7896 and ω/ω1=1.0. 
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Figure 6: More details about the nanosystem motion (described in Fig. 5) at F1=25.0: (a) w(x=0.5) versus time, 
(b) u(x=0.65) versus time, (c) dw/dt(x=0.5) versus transverse displacement, (d) du/dt(x=0.65) versus axial 
displacement, (e) Poincaré map for w(x=0.5), and (f) Poincaré map for u(x=0.65). 
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Figure 7: Coupled bifurcation response of the nanoscale tube containing nanofluid flow of speed U = 5.15 for (a) 
w(x=0.50) and (b) u(x=0.65); ω1= 2.8935 and ω/ω1=1.0. 
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Figure 8: Coupled bifurcation response of the nanoscale tube containing nanofluid flow of speed U = 5.20 for (a) 
w(x=0.50) and (b) u(x=0.65); ω1= 1.5772 and ω/ω1=1.0. 
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Figure 9: More details about the nanosystem motion (described in Fig. 8) at F1=25.0: (a) w(x=0.5) versus time, 
(b) u(x=0.65) versus time, (c) dw/dt(x=0.5) versus transverse displacement, and (d) du/dt(x=0.65) versus axial 
displacement. 
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Figure 10: More details about the nanosystem motion (described in Fig. 8) at F1=38.0: (a) w(x=0.5) versus time, 
(b) u(x=0.65) versus time, (c) dw/dt(x=0.5) versus transverse displacement, and (d) du/dt(x=0.65) versus axial 
displacement. 
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Figure 11: Coupled bifurcation response of the nanoscale tube containing nanofluid flow of speed U = 5.25 for 
(a) w(x=0.50) and (b) u(x=0.65); ω1= 2.5663 and ω/ω1=1.0. 
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Figure 12: More details about the nanosystem motion (described in Fig. 11) at F1=46.0: (a) w(x=0.5) versus time, 
(b) u(x=0.65) versus time, (c) FFT for w(x=0.5), and (d) FFT for u(x=0.65). 
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Figure 13: Coupled bifurcation response of the nanoscale tube containing nanofluid flow of speed U = 5.30 for 
(a) w(x=0.50) and (b) u(x=0.65); ω1= 4.2434 and ω/ω1=1.0. 
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Figure 14: More details about the nanosystem motion (described in Fig. 13) at F1=42.0: (a) dw/dt(x=0.5) versus 
transverse displacement, (b) du/dt(x=0.65) versus axial displacement, (c) Poincaré map for w(x=0.5), and (d) 
Poincaré map for u(x=0.65). 
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Figure 15: Coupled bifurcation response of the nanoscale tube containing nanofluid flow of speed U = 5.40 for 
(a) w(x=0.50) and (b) u(x=0.65); ω1= 6.3597 and ω/ω1=1.0. 

 

 


