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 30 

Abstract 31 

DNA-dependent protein kinase (DNA-PK), a member of phosphatidylinositol-kinase family, is a 32 

key protein in mammalian DNA double-strand break (DSB) repair that helps to maintain 33 

genomic integrity. DNA-PK also plays a central role in immune cell development and protects 34 

telomerase during cellular aging. Epigenetic deregulation due to endogenous and exogenous 35 

factors may affect the normal function of DNA-PK, which in turn could impair DNA repair and 36 

contribute to genomic instability. Recent studies implicate a role for epigenetics in the regulation 37 

of DNA-PK expression in normal and cancer cells, which may impact cancer progression and 38 

metastasis as well as provide opportunities for treatment and use of DNA-PK as a novel cancer 39 

biomarker. In addition, several small molecules and biological agents have been recently 40 

identified that can inhibit DNA-PK function or expression, and thus hold promise for cancer 41 

treatments. This review discusses the impact of epigenetic alterations and the expression of 42 

DNA-PK in relation to the DNA repair mechanisms with a focus on its differential levels in 43 

normal and cancer cells. 44 

 45 

Keywords: DNA-PK, Genomic stability, DNA repair, DNA damage, Epigenetic alternations, 46 

Cancer  47 
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Abbreviations 50 

53BP1 (P53-Binding Protein 1) 51 

Acetylation (Ac) 52 

ALC1 (Amplified in Liver Cancer 1) 53 

Ataxia Telangiectasia Mutated (ATM) 54 

Base excision repair (BER) 55 

Casein kinase II (CK2) 56 

C-terminal domain (CTD) 57 

DNA methyltransferase (DNMT) 58 

DNA-damage response (DDR) 59 

DNA-dependent protein kinase (DNA-PK), 60 

Dose Reduction Factor (DRF) 61 

Double-strand breaks (DSBs) 62 

FAT binding domain (FATC) 63 

FKBP12-rapamycin-associated protein (FAT) 64 

Heterochromatin protein 1β (HP1β) 65 

Histone acetyltransferase (HAT) 66 

Histone deacetylase (HDAC) 67 

Homologous recombination (HR),  68 

Hypoxia inducible factor (HIF-1) 69 

Interferon Regulatory Factor-3 (IRF-3) 70 

Ionizing radiation (IR) 71 

Leucine Rich Region (LRR) 72 

ligase IV (Lig4) 73 

Matrix metalloproteinase (MMPs) 74 

Microhomology-mediated end joining (MMEJ) 75 

Non-homologous end joining (NHEJ) 76 

Non-small cell lung cancers (NSCLC) 77 
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Nuclear localization signal (NLS) 78 

Nucleotide Excision Repair (NER) 79 

Phosphatidyl inositol-3 kinase (PI3K) 80 

Poly-ADP ribose polymerase 1 (PARP1) 81 

Reactive oxygen species (ROS) 82 

Severe Combined Immunodeficiency (SCID) 83 

Suberoylanilide hydroxamic acid (SAHA) 84 

Transactivation/transformation-domain-associated protein (TRRAP) 85 

Transcription Coupled Repair (TCR) 86 

Trichostatin A (TSA) 87 

Ultraviolet radiations (UVR) 88 

X-ray cross complementation group 4 protein (XRCC4) 89 

XRCC4-like factor (XLF) 90 

 91 

 92 

1. Introduction 93 

 DNA replication and cell division are biological processes inherent in all prokaryotic and 94 

eukaryotic cells. In metazoans, errors in DNA replication caused by endogenous and exogenous 95 

factors, are common and result in thousands of DNA lesions each day [1]. In addition, normal 96 

cellular metabolism generates metabolic intermediates and by-products such as reactive oxygen 97 

species (ROS) and reactive nitrogen compounds that can induce DNA breaks. For the cells, these 98 

processes often “collide” when DNA replication machinery encounters ROS-damaged DNA 99 

bases or single-strand DNA breaks, which can be converted to DNA double-strand breaks 100 

(DSBs) during replication fork collapse [2]. Cellular processes such as meiotic recombination [3] 101 

or cleavage of genes during immunoglobulin gene rearrangement can also give rise to DSBs [4]. 102 

Exposure to environmental DNA damaging agents such as ultraviolet radiations (UVR) and other 103 
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chemical or genotoxic agents are also an important cause of DNA lesions, and DNA DSBs are 104 

perhaps the most lethal kind of damage that a cell could encounter. DNA DSBs when not 105 

repaired or managed properly threaten genomic stability and can result in the development of 106 

cancers [5–7]. Cells have developed an array of mechanisms to combat the threats posed by 107 

different kinds of DNA damage. These mechanisms collectively called the DNA-damage 108 

response (DDR), detects DNA lesions, signal their presence and promote their repair [8,9]. In 109 

this review, we will primarily focus on the DDR as it pertains to DNA DSB repair. 110 

 When DNA DSBs trigger the DDR, a series of cellular responses converge on a 111 

fundamental binary decision: a) the activation of cell cycle checkpoints to facilitate DNA repair 112 

or b) activation of apoptosis when the degree of DNA damage passes a threshold from which the 113 

cell cannot recover and/or for which loss of the cell can be tolerated by cell replacement [7]. The 114 

cells are equipped with three distinct DNA repair pathways to combat the DSBs: homologous 115 

recombination (HR), non-homologous end joining (NHEJ), or microhomology-mediated end 116 

joining (MMEJ; also referred to as Alternative-NHEJ or Alt-NHEJ) [10–12]. HR is an error-free 117 

process that uses sister chromatids as templates for DNA repair and is mediated by RAD51. This 118 

is the predominant repair pathway during development and in the S and G2 phases of the cell 119 

cycle, and has the longest sequence homology requirement [13]. As the name suggests, MMEJ 120 

requires only a 5-25 bp microhomologous sequence to align the broken strands before joining the 121 

ends, and although active throughout the cell cycle is most prominent during S/G2 [14]. The 122 

requirement for the small stretch of microhomology results in deletions and induces 123 

chromosomal abnormalities and rearrangements [15]. NHEJ is responsible for the repair of the 124 

majority of the DSBs in G1 and G0 phase of the cell cycle. Unlike HR and MMEJ, NHEJ does 125 

not require any homologous sequence for DNA repair and is highly error prone [16]. The NHEJ 126 
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pathway is mediated by an enzyme complex called DNA-dependent protein kinase (DNA-PK) 127 

[17,18].  128 

 129 

2. DNA-PK Structure and Function  130 

Identified as individual components during the early 1980’s, DNA-PK is a nuclear serine 131 

/threonine kinase, consisting of a catalytic subunit called DNA-PKcs and a regulatory 132 

heterodimer Ku (Ku70/Ku80). The initially recognized roles for DNA-PKcs (originally termed 133 

p350) involved phosphorylation and transcriptional activation of SP-1, p53, and hsp90 [11,19]. 134 

The Ku subunits were known to bind double strand DNA, but their function remained unknown 135 

for many years. Isolation of these two factors together led to the discovery of DNA-PK 136 

holoenzyme and its function in DNA repair pathways [11,20]. With the nuclear polypeptides 137 

reaching up to 4127 amino acids, DNA-PKcs is the largest kinase subunit, which depends 138 

entirely on DNA binding for its activity [20,21]. Studies of the amino acid sequence of DNA-139 

PKcs have identified DNA-PK to be a member of phosphatidyl inositol-3 kinase (PI3K) like 140 

kinase (PIKKs), but other than protein kinase activity, no lipid kinase activity has been reported 141 

for DNA-PKcs [22,23]. The regulatory subunit of DNA-PK, called Ku, is a heterodimeric 142 

protein with two tightly associated subunits Ku70 and Ku80, which forms a ring like structure 143 

through which DNA can pass. The abundant expression of DNA-PK in the nucleus allows it to 144 

rapidly identify and bind to DNA DSBs and initiating its repair mechanisms [24]. 145 

 Structurally, DNA-PKcs consists of a DNA binding domain, a Ku binding domain, a 146 

Leucine Rich Region (LRR), FKBP12-rapamycin-associated protein (FAT), Ataxia 147 

Telangiectasia Mutated (ATM), transactivation/transformation-domain-associated protein 148 

(TRRAP), C terminal of FAT binding domain (FATC) and two phosphorylation clusters; PQR 149 
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and ABCDE. Ku heterodimer consists of a conserved von Willebrand-like domain (vWA), DNA 150 

heterodimerization core domain, SAP domain, nuclear localization signal (NLS) and a widely 151 

conserved C-terminal domain (CTD). Ku subunits have a high affinity for DNA fragments 152 

(higher affinity for DSBs than for single strand breaks) and DNA-PKcs affinity to DNA 153 

increases to ~100 folds in the presence of Ku subunits. For efficient binding and subsequent 154 

activation of DNA-PKcs, an interaction between the C-terminal 12 residues of Ku80 with DNA-155 

PKcs is necessary [24,25]. Once activated, DNA-PKcs initiates a series of phosphorylation/auto 156 

phosphorylation events that are required primarily for cell cycle checkpoint signaling and DNA 157 

repair [26]. However, studies have shown that DNA-PKcs can also phosphorylate peptide 158 

substrates that are not bound to the DNA, suggesting that the DNA itself can induce a 159 

conformational change in the DNA-PKcs to activate its phosphorylation activity [27,28].  160 

 161 

2.1. Role of DNA-PK in NHEJ DSB repair  162 

 The core protein complexes of NHEJ are the Ku subunits (Ku70/Ku80), DNA-PKcs, 163 

DNA ligase IV (Lig4), its cofactor the X-ray cross complementation group 4 protein (XRCC4) 164 

and the nuclease Artemis [29]. The process of NHEJ starts with the recognition and binding of 165 

the broken DNA ends by the ring-shaped Ku70 and Ku80 subunits [30,31]. This recruits 166 

monomeric DNA-PKcs through its interactions with Ku and DNA on both sides. Together with 167 

the Ku subunits, DNA-PKcs form the heterodimer DNA-PK. Following this, the DNA-PKcs 168 

dimerizes and interacts across the DNA termini and forms a synaptic complex [32]. DNA-PKcs 169 

recruitment facilitates the translocation of the Ku heterodimer into the DNA duplex and allows 170 

DNA-PKcs to serve as a tether for broken DNA ends [33]. It is also proposed that DNA-PKcs 171 

protect the DNA from exonucleolytic degradation and aligns the broken ends of DNA. In this 172 



8 
 

regard, DNA-PKcs act as a scaffold protein and aids in the localization of repair proteins to the 173 

site of DNA damage. DNA binding activates the kinase activity of DNA-PKcs and 174 

phosphorylates and alters the activity of other proteins that mediate NHEJ, including Ku70, 175 

Ku80, Artemis, XRCC4, and Lig4 [30]. Ligation of DNA ends is mediated by Lig4 with 176 

XRCC4. An additional factor, Cernunnos/XRCC4-like factor (XLF), has also been identified as 177 

a binding partner of the Lig4-XRCC4 complex and is necessary for efficient ligation by NHEJ 178 

[34]. Activated DNA-PKcs also phosphorylates Ser139 on histone variant H2AX (γ-H2AX), 179 

which is a well-known marker for DNA DSBs that recruits repair factors to the damaged site and 180 

coordinates the signaling cascades required for efficient repair [35,36]. DNA-PK activation and 181 

its activity are modulated by the DNA to which it binds. The 5’ end of the DNA activates the 182 

kinase while the 3’ end anneals the DNA termini across the break [37]. Mutation studies of the 183 

Ku subunits and DNA-PKcs have shown that the Ku80/DNA-PKcs interactions are necessary for 184 

DNA-PK activity and are not specific to any structural region of the Ku80 C-terminus. 185 

Moreover, each structural region within the Ku80 C-terminus is necessary for the activation of 186 

the kinase activity. It was also observed that the structural features of the substrate like DNA 187 

length, DNA overhangs, orientation and sequence of the overhangs, influence Ku80/DNA-PKcs 188 

interaction and DNA-PK activation [38].  189 

     <Fig. 1.> 190 

 DNA-PK’s kinase activity is requisite for its role in NHEJ [39]. Although a significant 191 

number of DNA-PK target proteins have been identified (including Ku70, Ku80, Artemis, 192 

XRCC4, XLF, H2AX and DNA Lig4), it is now considered that the phosphorylation of these by 193 

DNA-PK is not required for successful NHEJ [40–42]. A recent study has shown that DNA-PK 194 

mediated phosphorylation facilitates DNA polymerase λ (pol λ)-mediated gap filling DNA 195 
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synthesis during NHEJ [43]. The most important target site of DNA-PK phosphorylation is the  196 

catalytic subunit of DNA-PK itself [44–46]. DNA-PK autophosphorylation is essential for 197 

regulation of end processing, enzyme inactivation, and complex dissociation. The 198 

autophosphorylation of two clusters of residues, ABCDE (residues 2609-2647) and PQR 199 

(residues 2023-2056) regulates DNA end access for subsequent processing and ligation [47–49]. 200 

Mutational studies have shown that phosphorylation within ABCDE opens the ends for 201 

processing, while phosphorylation within the PQR cluster was shown to have an inhibitory effect 202 

on end processing [44,50]. These phosphorylation events point towards a mechanism by which 203 

DNA-PK protects the DNA ends and allows processing only when it is needed. DNA-PKcs 204 

autophosphorylation also results in the loss of kinase activity leading to the dissociation of DNA-205 

PKcs from the Ku-DNA complex. Both the ABCDE and PQR regions seem to be necessary for 206 

DNA-PKcs dissociation [50]. 207 

 Despite NHEJ being the prevalent mechanism of DNA repair in G1, NHEJ and HR are in 208 

direct competition in S/G2 of the cell cycle, as evidenced by continued expression of NHEJ 209 

factors throughout the cell cycle [51]. This suggests that a mechanism exists that facilitates HR 210 

even if DNA-PK is recruited to the DSB first. One suggestion is that NHEJ and HR may be 211 

regulated in part by autophosphorylation of DNA-PK.  DNA-PKcs autophosphorylation at the T, 212 

J, and K (JK cluster, Thr946, and Ser1004), does not affect end processing, and protects certain 213 

DSBs from NHEJ and promotes HR [52]. However, what mediates the autophosphorylation at 214 

the JK cluster is not known. Both the abundance of DNA-PKcs/Ku throughout the cell cycle and 215 

the higher rate of Ku recruitment to DSB sites over RAD51 recruitment, may also explain  in 216 

part how NHEJ is preferred over HR  [53,54] and it has been suggested that NHEJ is the default 217 

pathway for DSB repair, and that HR may be triggered only when NHEJ fails [55]. However, 218 
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this is a highly over-simplified model of the complex mechanisms controlling DNA repair 219 

pathway choice. These mechanisms are reviewed in detail elsewhere [56,57] and include cell 220 

cycle control of HR via CDK activity and the Cullin ligases [58–62], topics that are beyond the 221 

scope of this review.  222 

 With regard to alternative pathways of end joining, Ku is known to repress MMEJ [63], 223 

and DNA-PK activity is required for this suppression [40,64]. In addition, the poly-ADP ribose 224 

polymerase 1 (PARP1) can directly compete with DNA-PK and the Ku heterodimer for DNA 225 

end-binding to promote MMEJ [65]. Although not discussed here in detail, DNA-PK can also 226 

play a role in none-DSB repair pathways including repair of single-strand breaks and base 227 

excision repair (BER) of oxidized DNA bases [66–69].  228 

 229 

2.2. Role of DNA-PK in telomere maintenance and immunity 230 

The functions of DNA-PK in the cells are not limited to DNA repair mechanism(s) but 231 

include telomere maintenance, transcriptional and translational regulation of innate immunity. 232 

[11,20,70,71]. DNA-PKcs plays a crucial role in the protection of the telomeres and telomere 233 

capping. Ample expression of DNA-PKcs and Ku subunits in the telomere region coincides with 234 

this notion. It has therefore been speculated that the presence of DNA-PKcs at the telomere 235 

serves to protect the chromosome ends from nuclease activity. In agreement with this, studies 236 

conducted in mice deficient in both telomerase and DNA-PKcs showed a significantly higher 237 

rate of telomere shortening in comparison to telomerase knockout mice suggesting that DNA-238 

PKcs also prevent shortening of the telomeres and hence can play a critical role in aging 239 

[10,20,72]. Being a core component of the NHEJ pathway, DNA-PK plays a major role in the 240 

generation of B-cells and T-cells by V(D)J recombination, where the non-specificity of the 241 
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pathway results in the production of wide range of immunological cells. The process is essential 242 

for the normal immunological functions of the body, and any alterations could result in the 243 

Severe Combined Immunodeficiency (SCID) phenotype or other immune-deficient diseases. 244 

Recent studies have shown the involvement of DNA-PK in viral infection-mediated innate 245 

immunity, where DNA-PK acts as a nucleic acid sensor, binding to cytoplasmic DNA’s and 246 

activating Interferon Regulatory Factor-3 (IRF-3)-mediated transcriptional activation of various 247 

cytokines and chemokines [70,71].  248 

 Because of the importance of DNA-PK in the development of immune cells, inactivating 249 

mutations to DNA-PKcs often present with a SCID or radiosensitive SCID (RS-SCID) 250 

phenotype. These phenotypes are augmented if there is a defect in additional components of the 251 

NHEJ pathway [73]. SCID mice with defective DNA-PKcs function showed defects in V(D)J 252 

recombination, developed thymic T-cell lymphoma and also showed telomere fusions or shorter 253 

telomeres, but were viable and lived beyond one year of age [10]. However, spontaneous DNA-254 

PKc mutations in specific strains of horses and dogs did not survive more than a few months of 255 

age and died due to infections [74,75]. Even though SCID patients with a mutant DNA-PKc 256 

were not reported until recently, mutations in other components of NHEJ pathway have been 257 

reported and showed similar phenotypes as in the mice models.  In 2009, van der Berg and 258 

colleagues identified the first human RS-SCID patient, with an L3062R missense mutation in the 259 

DNA-PKcs FAT domain. The mutation led to deficient Artemis activation and resulted in 260 

reduced B and T cells in peripheral blood, but did not affect the kinase activity or its auto 261 

phosphorylation. Mouse models with mutations in Ku subunits also result in overlapping 262 

phenotypes including RS-SCID, growth defects, etc., but no spontaneous mutations or cases have 263 

been reported for the same [75,76].  264 
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3. Differential expression of DNA-PK in normal and cancer cells 265 

 DNA-PK is widely expressed in all mammalian cells, with primates showing up to 50 266 

fold more expression compared to other mammals [77]. Cultured human cells also express DNA-267 

PK abundantly, and there exist conflicting reports on DNA-PK being differentially expressed in 268 

different human tissues [21,78]. A study led by Moll et.al. in various normal human tissues, 269 

reported a higher expression of DNA-PK in meiotic/actively dividing cells (neural cells and 270 

reproductive tissues), while epithelial cells from different tissues (colon, kidney, pancreas, 271 

endometrium, prostate, testis, brain, nerve ganglia and skin) showed a moderate expression 272 

profile. Some tissues, such as resting breast and liver, showed low or no expression at all [78]. 273 

However, a similar study by Sakata and group reported the expression of DNA-PKcs and Ku in 274 

the liver and resting breast tissues as well and attributed these differences to the different 275 

antibodies used and the number of samples tested [79]. The RNA expression of components of 276 

DNA-PKcs did not show any drastic difference between the tissues analyzed, other than the 277 

RNA expression of Ku subunits being 2-4 fold higher than that of DNA-PKcs [78]. Terminally 278 

differentiated cells do not replicate their DNA and therefore are less likely to undergo any 279 

damages due to replication. They still undergo transcription and need to maintain their genetic 280 

integrity. Interestingly, these cells contain other repairing pathways such as Nucleotide Excision 281 

Repair (NER), or Transcription Coupled Repair (TCR) and do not undergo NHEJ, in which 282 

DNA-PK is essential [80]. While the earlier belief was that DNA DSB repair is down regulated 283 

in certain differentiated cells, recent studies on differentiated adipocytes and astrocytes showed 284 

an up regulation of DNA DSB repair with an increased expression of DNA-PK components 285 

[81,82].   286 

<Fig. 2.> 287 
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 Genomic instability caused by DNA damage and exacerbated by defects in the DDR is a 288 

ubiquitous feature of cancer cells and the aberrant response to DNA damage is a major driver of 289 

cancer progression as well as a determinant of a tumor’s response to therapy [1,83–85]. 290 

Differential expression of DNA-PK in clinical samples of tumors strongly implicates 291 

dysregulation of DNA-PK levels in cancer development. Elevated expression of DNA-PK is 292 

observed in esophageal cancers and colorectal cancers compared to the normal mucosal cells 293 

surrounding the tumor [86]. Clinicopathological studies have identified elevated expression of 294 

DNA-PKcs in colorectal cancers, which correlated with the clinical stage of the disease, 295 

lymphatic invasion, and distant metastasis, making it a potential biomarker for clinical 296 

assessment of pathogenesis and prognosis [87]. DNA-PKcs over expression is also observed in 297 

nasopharyngeal carcinoma and was associated with poor overall survival rate compared to 298 

patients with lower expression of DNA-PKcs. However, some studies have shown no significant 299 

correlation between DNA-PKcs expression and clinical outcome of nasopharyngeal carcinoma 300 

[88]. Another study reported a loss of DNA-PKcs expression in ~22% (63 out of 279) of gastric 301 

cancers [89]. Intra-tumoral heterogeneity complicates accurate quantifications of DNA-PK 302 

expression in cancer cells. However, these studies implicate a crucial role for DNA-PKcs in the 303 

cancers of the gastrointestinal system. Non-small cell lung cancers (NSCLC) also exhibit a 304 

significant up regulation of DNA-PK expression which is also correlated with the differentiation 305 

degree of the disease, but was not associated with metastasis [90,91]. In glioma patients, the 306 

median survival rate of patients with high DNA-PK level was longer than that of patients with 307 

low DNA-PKcs. Recently it was reported that DNA-PK is involved in melanoma tumor 308 

progression and metastasis by regulating tumor angiogenesis, migration, and invasion. 309 

Secretomic analysis revealed that DNA-PK regulates the secretion of several metastases 310 
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associated proteins involved in tumor microenvironment modification, further indicating its 311 

crucial pro-metastatic role [92].  312 

<Table 1> 313 

Interestingly, in lymphoblastic cell lines, in spite of a higher RNA expression, DNA-314 

PKcs level is reduced compared to normal cells, indicating a post-transcriptional, proteasome-315 

dependent regulation of DNA-PKcs [93]. Despite the elevated DNA-PK level observed in many 316 

tumors, the attenuated DNA-PK level has also been reported in several studies. In peripheral 317 

blood lymphocytes of cancer patients, there was an inverse correlation between the DNA-PK 318 

activity and disease progression [94]. Attenuated and reduced level of DNA-PK is also observed 319 

in certain breast, cervical and lung cancers [95]. Somatic mutation in DNA-PK is also closely 320 

associated with tumor pathogenesis. A mutation in the critical threonine residue (Thr2609) is 321 

essential for the catalytic activity of DNA-PK, as observed in breast and pancreatic cancers. 322 

Single nucleotide polymorphism analysis has identified a mutation in a non-coding intron (6721 323 

G to T) of DNA-PK, to be associated with bladder cancer and hepatocellular carcinoma [96]. 324 

These findings suggest a complex and intricate regulation of DNA-PK during tumor progression 325 

and its dual role in DNA damage and pro-tumorigenic survival pathways. 326 

 327 

4. Epigenetic alternations and genomic instability 328 

 DNA in eukaryotic cells is packaged into chromatin, which protects the DNA from 329 

damage but hides any occurring damage to DNA repair enzymes. To overcome this physical 330 

barrier, major alterations including post-transitional histone modifications and ATP-dependent 331 

chromatin remodeling factors are required in order to facilitate the accessibility of the DNA 332 

lesions to repair proteins [97–99].  333 
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By the term ‘epigenetic alterations’ we refer to reversible and heritable changes in gene 334 

function which are not caused by modifications in the underlying DNA sequence. These involve 335 

DNA methylation and multiple types of histone modifications such as various 336 

acetylations/deacetylations, methylations, etc. Moreover, extensive studies on microRNAs 337 

(miRNAs) have revealed their ability to target many genes post-transcriptionally, thus having an 338 

impact on gene expression [100–102]. Although the implication of these alterations in a plethora 339 

of cellular processes (e.g. cell differentiation, gene expression, imprinting, X chromosome 340 

inactivation, etc.) is fundamental for maintaining normal function, there is accumulating 341 

evidence that these changes are also associated with the pathophysiology underlining various 342 

human diseases including cancer [103–105]. Several studies have demonstrated the interaction 343 

between DNA-PK and epigenetic alterations during DNA repair mechanisms [36,106]. DNA 344 

DSBs initiate the phosphorylation of histone H2AX protein at the conserved serine residue 345 

(Ser139) in C terminus to generate γ-H2AX. This phosphorylation event is important for stable 346 

association of repair factors at DNA damage sites and is essential for maintaining genomic 347 

stability [107,108]. Moreover, the phosphorylation of H2AX by DNA-PK is stimulated by 348 

histone acetyltransferase (HAT), which act mainly on the N-terminal tails of H3 and H4, by 349 

inducing conformational changes of nucleosomes [109]. Interestingly, it has been shown that 350 

DNA-PKcs contain a bromodomain (BRD)-like module which is able to bind to H2AX acetyl-351 

lysine 5 (K5ac) as well as to promote the phosphorylation of H2AX at Ser139. Radioresistant 352 

tumor cells often show increased levels of DNA-PKcs activation while treatment with JQ1, a 353 

Kac antagonist to the bromodomain module, led to re-sensitizing the cells to radiation [110]. 354 

Furthermore, DNA-PK may indirectly modulate the levels of γ-H2AX after genotoxic damage 355 

through activation of Akt that in turn inhibits GSK3β, as inhibition of GSK3β signaling appears 356 
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to inhibit the dephosphorylation of γ-H2AX to a similar extent as the chemical inhibition of 357 

PP2A [36]; a known γ-H2AX phosphatase [111].  358 

DNA-PK is also implicated in the epigenetic regulation of DNA repair. For example, 359 

DNA-PK can affect the activity of HAT hGCN5 during DNA repair. A study by Barlev et al. 360 

[106] reported that DNA-PK represses the activity of the bromodomain (BrD)-containing protein 361 

hGCN5 at several levels. At the first level, Ku70/80 may sequester hGCN5 in non-functional 362 

complexes through binding to its BrD. Second, DNA-PKcs interacts with Ku and phosphorylates 363 

hGNC5, resulting in the inhibition of HAT activity. However, more studies are required to 364 

investigate the role of DNA-PK in modulating hGCN5 activity [106]. MOF is another HAT 365 

protein that specifically acetylates histone H4 at lysine 16 (H4K16ac) position. Depletion of 366 

MOF resulted in a reduced level of H4K16ac, which correlates with the defective DDR process. 367 

This results in delayed accumulation of DNA-PK post-irradiation and decreases the association 368 

of MOF with DNA by preventing chromatin alterations that are essential for efficient DNA 369 

repair [99]. Tip60 is a HAT protein that has a crucial role in activation of DNA-PKcs kinase 370 

activity. This has been proved through silencing Tip60 expression blocking the 371 

autophosphorylation of DNA-PKcs. Furthermore, the association of DNA-PKcs with HAT 372 

increases its the activity by 5-fold in response to bleomycin treatment [112]. ATP-dependent 373 

chromatin remodeling factors are another type of alterations that affect the function of DNA-PK. 374 

One study showed that the chromatin remodeling factor, Amplified in Liver Cancer 1 (ALC1) 375 

binds to DNA-PK and catalyzes nucleosome sliding through its interaction with poly (ADP-376 

ribose) protein [113]. In addition, SIRT6, another chromatin regulatory factor, was found to play 377 

a critical role in the global deacetylation of Histone H3 Lysine 9 and is capable of stabilizing 378 

DNA-PKcs to chromatin at DNA DSB sites [114].  379 
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<Fig. 3.> 380 

Histone methylation is another abundant post-translational modification that is implicated 381 

in the DDR process. The indirect interplay between DNA-PK and histone methylation in 382 

response to DNA damage was demonstrated by Jiang et al. [115]. DNA-PK phosphorylates a 383 

metabolic enzyme fumarase, at Thr236 following ionizing radiation. The phospho-fumarase 384 

interacts with H2A.Z, a H2A variant, at DSB regions and result in generation of fumarate which 385 

inhibits KDM2B histone demethylase activity that are responsible for H3K9me3 demethylation. 386 

This inhibition promotes the accumulation of DNA-PK at DSB for NHEJ-DNA repair by 387 

enhancing demethylation of H3 at Lys 36 position. However, Young et al. showed that DNA-PK 388 

is not required for the recruitment of KDM4B to sites of DNA damage induced by laser micro-389 

irradiation [116]. The decrease in the level of H3K9 methylation is important for DNA repair by 390 

inducing chromatin relaxation [117]. Furthermore, a recent study showed that inhibition of 391 

DNA-PK resulted in elevated histone methyltransferase activity of EZH2 thereby suggesting that 392 

its phosphorylation by DNA-PK causes decreased EZH2 methyltransferase activity [118]. 393 

Moreover, in another report, heterochromatin protein 1β (HP1β) was shown to interact with 394 

DNA-PKcs with the resulting binding being dependent on the methylation status of three specific 395 

lysine residues namely Lys1150, Lys2746 and Lys3248. Finally, replacement of lysine with 396 

arginine caused the improper function of DNA-PKcs, in the DDR, and consequently led to 397 

hypersensitivity to radiation [119]. DNA-PK was also found to be involved in histone 398 

ubiquitination of H2AX and H2A that are essential for further recruitment of repair proteins such 399 

as ATM, 53BP1 and BRCA1. DNA-PK has shown to promote H2AX and H2A 400 

monoubiquitination in response to DSBs induced by camptothecin, which causes transcription-401 

blocking Top1cc, in WI38 fibroblast cells [120].  402 
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Another epigenetic marker which affects chromatin structure and genome stability is 403 

methylation of cytosine residues by DNA methyltransferase (DNMT). Despite of the interplay 404 

between DNA-PK and different histone modifications, the interaction between DNA-PK and 405 

DNA methylation is still not well understood. Indeed, DNMT1 was found to be involved in 406 

modulating DDR in DNA-methylation-independent manner by its recruitment to DSBs [121]. Ha 407 

et al. reported that DNA-PK is not involved in the recruitment of DNMT1 and it was primarily 408 

dependent on its interaction with ATR effector kinase CHK1 [122]. Furthermore, another group 409 

has shown that glioblastoma and lung carcinoma cells treated with DNMT inhibitors were more 410 

sensitive to radiation due to impairment of DDR [123]. In particular, DNA-PK-deficient 411 

glioblastoma cells were preferentially more sensitive to Zebularine (a DNMTs inhibitor) thus 412 

implying its potential interaction with epigenetic mechanisms [124].  413 

Apart from DNA methylation and histone modifications, miRNAs have also been 414 

considered to act epigenetically to regulate gene expression. miRNAs are small, single-stranded 415 

RNAs which are firstly transcribed into their primary form (pri-miRNA), then are processed into 416 

a precursor form in the nucleus (pre-miRNA) and finally are exported to the cytoplasm where 417 

they are processed by the RNAse III endonuclease Dicer  into mature miRNAs [125,126]. There 418 

is evidence that a single miRNA may have more than hundred mRNA targets while an individual 419 

mRNA may be targeted by multiple miRNAs [127]. Findings from a recent report demonstrated 420 

that miR-488-3p was capable of sensitizing malignant melanoma cells to cisplatin treatment by 421 

targeting transcripts synthesized from PRKDC (the gene encoding DNA-PKcs) thus leading to a 422 

decline in its protein expression levels [128]. In addition, miR-21 was shown to provoke an 423 

increase in the activity of DNA-PKcs by targeting GSK3B, thus stimulating an increase in DSBs 424 

repair leading to radioresistance observed in various tumor cell lines [129]. Furthermore, 425 
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overexpression of miR-101 in lung and brain cancer cell lines was found to reduce the protein 426 

levels of DNA-PKcs, while increasing their sensitivity to radiation [130]. In another study, miR-427 

101 sensitized pancreatic tumor cells to the effect(s) of gemcitabine while it also promoted 428 

apoptosis by down-regulating DNA-PKcs [131]. Reduced protein levels of DNA-PK were also 429 

observed in lung cancer cell lines following transfection with miR-101, hence causing 430 

radiosensitization [132]. Furthermore, miR-136 overexpression was associated with a decrease in 431 

the expression levels of DNA-PK in ovarian tumor cells [133]. On contrast, overexpression of 432 

miR-1323 was found to increase the protein levels of DNA-PKcs in primary lung cell lines, 433 

whereas silencing of miR-1323 in radioresistant lung tumor cells was followed by a decline in 434 

the protein content of DNA-PK [134].  435 

Histone deacetylase (HDAC) inhibitors have been recorded as novel anticancer drugs and 436 

were found to cause an accumulation of DNA damage by suppressing the expression of DNA 437 

repair genes including DNA-PKcs [135]. Suberoylanilide hydroxamic acid (SAHA), a HDAC 438 

class I and II inhibitor, has been reported to downregulate the expression DNA-PK in human 439 

prostate carcinoma and glioma cells [136]. The treatment with Trichostatin A (TSA) 440 

radiosensitizes NSCLC cells by decreasing the expression level of Ku70, Ku80, and DNA-PKcs, 441 

leading to the inhibition of DNA repair capability [137]. Moreover, HAT inhibitors have been 442 

reported to sensitize the cancer cells towards radiotherapy and chemotherapy [138]. CBP and 443 

P200 are HAT proteins that were recruited to DSBs and cause acetylation of specific lysine 444 

within histone H3 and H4. The inhibition of CBP and P200 in lung cancer cells using inhibitors 445 

or small interfering RNA lead to the suppression of NHEJ by preventing the histone acetylation 446 

at damage sites and thereby suppressing the recruitment of Ku70 and Ku80 to DSBs [139]. These 447 

examples further indicated the role of epigenetic alterations in the function and regulation of 448 
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DNA-PK during DNA repair mechanism and the effect of DNA-PK on the proteins that are 449 

involved in these regulations.  450 

 451 

5.  Aberrant expression of DNA-PK 452 

 Altered expression of DNA-PK contributes to cancer development, progression and 453 

metastasis by regulating a plethora of canonical pro-survival signaling pathways. Apart from the 454 

critical role of DNA-PK in DDR, it can transcriptionally regulate specific pro-tumorigenic 455 

pathways including genomic stability, hypoxia, metabolism and inflammatory responses. DNA-456 

PK regulate the transcription of several genes (c-Myc, c-Jun, and p53) promoting tumor cell 457 

survival and proliferation. One study reported the interaction of DNA-PKcs with Akt which 458 

induces autophosphorylation of DNA-PKcs and promotes its kinase activity and recruitment at 459 

broken DNA ends [140]. Positive regulation by survival factors may affect the genomic 460 

rearrangement as it is reported that increased survival may alter the genomic stability [141]. 461 

DNA-PKcs was also shown to be regulated by casein kinase II (CK2), a kinase associated with 462 

enhanced cell cycle progression. Inhibition of CK2 in human glioblastoma cell lines (M059K 463 

and T98G) shown decreased phosphorylation of Akt kinases that were earlier reported to 464 

associate with DNA-PKcs [142]. Recently, DNA-PKcs has been shown to interact with the 465 

transcription factor SNAI1 (also referred to as snail), in response to DNA damage and promote 466 

cancer cell migration. The snail is a zinc finger protein belonging to the family of transcription 467 

factors that repress E-cadherin and thereby regulates epithelial to mesenchymal transition. DNA-468 

PKcs activated by ionizing radiation (IR) was shown to phosphorylate Snail at Ser100 residue 469 

leading to Snail stabilization [143]. Phosphorylation of Snail at this residue negatively regulates 470 

DNA-PKcs kinase activity leading to inhibition of DNA damage repair resulting in genomic 471 
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rearrangement and instability. Snail overexpression also contributes to survival after DNA 472 

damage, a phenomenon not seen in cells lacking DNA-PK [144]. Findings from a recent report 473 

also outlined the role of DNA-PKcs as a transcriptional modulator by stimulating tumor 474 

progression and metastasis in prostate carcinoma [145]. Furthermore, DNA-PK is activated by 475 

mild hypoxic conditions by auto phosphorylation at Ser 2056 by a mechanism independent of 476 

DNA repair pathway and positively regulates hypoxia inducible factor (HIF-1) thereby activating 477 

several pro-tumorigenic genes [146]. RPA70, another protein involved in hypoxic response and 478 

DNA repair in cancer cells is also indirectly regulated by DNA-PK. The interaction between 479 

RPA70 and TP53 under normal conditions is disrupted by hypoxia induced DNA-PK by 480 

phosphorylating TP53, resulting in the release of RPA70, which mediates apoptotic resistance in 481 

cancer [147–149]. The interaction between DNA-PK and TP53 following cellular stress is 482 

complicated with conflicting results generated from in-vitro and in vivo studies [150]. 483 

 DNA-PK specifically activates TP53 by phosphorylation. However, how this regulates 484 

TP53-mediated signaling that links to DNA damage response and cell cycle arrest/apoptosis, 485 

needs further in depth analysis [1,148]. p21WAF1/CIP1 also known as cyclin dependent kinase 486 

inhibitor 1 or CDK-interacting protein 1, is a key target gene in p53-mediated cell fate after 487 

DNA damage. Following DNA damage, DNA-PKcs is recruited to the p21 promoter where it 488 

forms a complex with p53 protein leading to cell death. Inhibition of DNA-PKcs with its 489 

pharmacological inhibitor, NU-7026 blocked its interaction with p53 and restored p21 490 

transcription equivalent to undamaged levels and significantly reduced cell death following the 491 

pro-death stimulation. No such effects were observed on inhibiting ATM or ATM and Rad3-492 

related (ATR) proteins, the other members of the PI3KK family, suggesting that DNA-PKcs 493 

negatively regulates p21 gene expression by modulating p53 binding at CDKN1A promoter.  494 
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It has been shown that reduced expression of DNA-PKcs correlates with in-efficient 495 

DNA damage induced repair response and increased radiosensitivity in mice [151]. Conversely, 496 

residual tumor cells in cervical cancers, which were resistant to radiation treatment, had a higher 497 

expression of DNA-PKcs showing a positive correlation between radioresistance and elevated 498 

DNA-PK level [152]. Down regulation of DNA-PKcs has also been found to positively 499 

correlated with chemosensitization in human cervical carcinoma and a radiosensitive phenotype 500 

in lymphoblastic cell lines [93,153]. Similarly, prostate cancer patients with elevated expression 501 

of DNA-PKcs in tumors, respond less to standard radiation therapy [154]. DNA-PK is also 502 

implicated in cetuximab (EGFR specific antibody) induced radiosensitization in lung and breast 503 

cancer cell lines, by immobilizing the complex of EGFR- DNA-PK in the cytoplasm and 504 

blocking EGFR transport into the nucleus [155]. A recent study, however, showed that patients 505 

with high levels of CD44 and DNA-PK had better overall survival rate and sensitized 506 

mesenchymal subtypes of glioblastoma to radiotherapy and temozolomide [156].  507 

Differential secretomic studies have revealed that DNA-PKcs is directly involved in 508 

regulating tumor microenvironment by controlling the secretion of several proteins involved in 509 

tumor microenvironment modulation, like matrix metalloproteinase (MMPs) and gene products 510 

of at least 44 metastasis-associated genes. In tumors where DNA-PK was inhibited, there was a 511 

delay in tumor proliferation, mainly due to inhibition of MMPs. Furthermore, DNA-PK is also 512 

involved in regulating neo-angiogenesis in primary tumors. A low level of DNA-PK is 513 

associated with a delay in angiogenesis initiation, with a reduced potential to proliferate and 514 

metastasize [92]. Pre-clinical studies with dual inhibition of mammalian target of rapamycin 515 

(mTOR) kinase and DNA-PK has been shown to induce cytotoxicity and blocks cell survival 516 

pathways in chronic lymphocytic leukemia [157,158]. Although DNA-PKcs primary function 517 
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may be to signal and repair DNA DSBs incurred due to different stress or physiological 518 

parameters, its association with different transcription factors or other signaling molecules 519 

involved in cell death or cell survival, contributes to its role in safeguarding the genome. 520 

 521 

6. Chemical and biological inhibitors of DNA-PK  522 

 The most successful approach to inhibit DNA-PK is by small molecules that target the 523 

ATP-binding site of the kinase domain. Various investigations have revealed that a specific 524 

group of compounds (Fig. 4) can inhibit DNA-PK activity effectively [159,160]. The first 525 

identified inhibitor, wortmannin, obtained from the fungus Penicillium funiculosum, is a general 526 

competitive inhibitor of PI-3 kinase with an IC50 value of 16 nM [161]. Wortmannin exhibits its 527 

inhibitory nature by irreversible alkylation of Lysine 802 residue at the active site of DNA-PKc’s 528 

that is essential for phosphate transfer reaction. Wortmannin was identified as an effective 529 

radiosensitizer in a variety of normal and cancer cells with a Dose Reduction Factor (DRF) for 530 

IR at 10% survival (between 1.4 and 3). Being a DNA-PK inhibitor, wortmannin plays a 531 

significant role in inhibiting p53 phosphorylation and acetylation. Lin et al. have shown that p53 532 

phosphorylation induced by benzo[a]pyrene on HepG2 cells suppress and accumulates p53 533 

acetylation, which was moderately affected when treated with 20 μM wortmannin [162].  534 

Moreover, wortmannin has a vital role in the inhibition of histone modification. In ACC-LC-91 535 

lung cancer cells, the histone H3 acetylation and histone H3K4 methylation induced by HDAC1 536 

was found to be inhibited and regulated by wortmannin [163]. Further, the treatment in MCF7 537 

cells with this inhibitor proves to be effective in preventing the formation of phosphorylated 538 

histones following DNA damage [164]. Despite all these interesting features, lack of specificity, 539 

poor solubility and non-specific toxicity has limit its clinical applications [10]. 540 
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<Fig. 4.> 541 

 LY294002, a morpholine derivative of natural flavonoid quercetin, is another competitive 542 

DNA-PK inhibitor that binds irreversibly to the kinase domain of DNA-PK with an IC50 value 543 

of 1.4 μM producing a DRF at 10% survival with IR of 1.5 to 1.8. Even though LY204002 has 544 

generated interesting in vivo results as a radiosensitizing agent, rapid metabolic clearance, high 545 

in vivo toxicity, lack of specificity and poor stability prohibits its clinical use in humans [10,165]. 546 

However, LY294002 has been proved as a productive lead molecule for a series of compounds 547 

with favorable properties. Those compounds which are synthesized using LY294002 as a lead 548 

compound have improved specificity with regards to DNA-PK inhibition. Among these, 549 

NU7026 is considered as one of the most potent and selective small molecules with 70-fold more 550 

selectivity towards DNA-PK, compared to other PI-3Ks. NU7026 exhibited an inhibition of 551 

various targets with an IC50 value of 0.23 μM against DNA-PK, 13 μM against PI3Ks, and > 552 

100 μM for ATM or ATR. This compound enhanced the cytotoxicity of other chemotherapeutic 553 

drugs like idarubicin, daunorubicin, doxorubicin, etoposide, and amsacrine [165]. Rapid 554 

absorption is possible due to the mono hydroxylation of the second position of the morpholino 555 

group, resulting in an opened ring structure. Wang et al. showed that it is efficient in blocking 556 

DNA-PK activation induced by cisplatin without bringing any alteration to histone H4 557 

expression [166]. NU7441 is another molecule based on the LY294002 backbone with improved 558 

potency having an IC50 value of 0.3 μM for DNA-PK and 7.0 μM for PI3K proteins [167,168].  559 

 Other structurally distinct compounds found to inhibit DNA-PK are OK1035 [168] and 560 

SU11752 [169]. Both compounds lack the required potency for further development studies. 561 

Vanillin is a phenolic aldehyde obtained from certain species of vanilla pods also inhibit DNA-562 

PK activity [170]. The structural simplicity of vanillin makes it an attractive lead molecule for a 563 
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lead optimization campaign. Two methoxybenzaldehyde derivatives of vanillin, 2-nitro and 3-564 

iodo, were found to have improved DNA-PK inhibitory properties than vanillin [171,172]. This 565 

may be due to the electron withdrawing nature of –NO2 which increases the reactivity of 566 

aldehyde group towards the amino group of the protein, and this mechanism was not observed in 567 

3-iodo substituted compounds [169]. Anti-cancer agent NK314 [98], is an inhibitor of both 568 

topoisomerase IIα and DNA-PK. Other compounds found to have inhibitory property against 569 

DNA-PK are PI103, PP121, KU-0060648, and CC-115 [98,157,171,173,174]. Among these, 570 

PI103 is a potent ATP-competitive DNA-PK inhibitor. PP121 inhibits DNA-PK with an IC50 571 

value of 60 nM, while KU-0060648 is a dual inhibitor of DNA-PK, PI3Kα, PI3Kβ and PI3Kδ 572 

with an IC50 value of 8.6 nM, 4 nM, 0.5 nM and 0.1 nM, respectively. The differences in 573 

selectivity of these compounds are due to the structural differences and similarity that exists 574 

within the active site of DNA-PK [174]. While many small molecule inhibitors have been 575 

developed to target DNA-PK, there is a need to screen for new classes of compounds that can 576 

selectively inhibit DNA-PK’s activity and/or expression in cancerous cells to improve caner 577 

treatments with therapeutic agents that induce DNA DSBs, such as radiotherapy. 578 

The majority of research so far has been carried out using small organic/synthetic 579 

compounds as DNA-PK inhibitors. A shift in focus to nucleotide and antibody based inhibitors 580 

have shown higher efficacy in DNA-PK inhibition. The two primary obstacles faced by small 581 

organic compounds, such as poor solubility and/or short serum half-lives, would need to be 582 

overcome to facilitate clinical utilization [175]. One such nucleotide is GRN163L, a 13-mer 583 

oligonucleotide which inhibits the phosphorylation of DNA-PK and increases γ-H2AX 584 

phosphorylation in chronic lymphocytic leukemia (CLL) lymphocytes in response to treatment 585 

with fludarabine, a nucleotide analog [176]. A similar effect has been reported by an antibody 586 
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based inhibitor, Folate-ScFv 18-2, where it caused radiosensitization in human KB oral 587 

carcinoma and NCI-H292 lung cancer cells [177]. Further, a study by Kim et al. in the breast 588 

cancer cell lines NCI and MDA-MB-231 has shown how peptides can be effective in DNA-PK 589 

inhibition. A targeting peptide (HNI-38) containing c-terminus of Ku-80, inhibited the activity of 590 

DNA-PK up to 50% by interfering with the interaction between DNA-PKcs and Ku complex 591 

thereby lowering the resistance of the cells to IR [178]. 592 

The strategy of using small interfering RNA (siRNA) oligonucleotide is an alternative 593 

strategy to suppress DNA-PK activity in cells. A study by An et al., showed that knocking down 594 

DNA-PK expression with siRNAs targeting the DNA-PKcs catalytic motif resulted in increased 595 

radiosensitization in HeLa cells. It was demonstrated that DNA-PK silencing by siRNA could 596 

also lead to the downregulation of the activity and expression of the c-myc protein [179] which is 597 

a driving oncogene essential for the progression of the cell cycle [180]. The knockdown of DNA-598 

PKcs using siRNA in low passage human fibroblasts showed that radiation-induced interphase 599 

chromosome breaks were repaired at a reduced rate and there was an increase in the yield of 600 

acentric chromosome fragments in addition to an increased radiosensitivity [181]. Research by 601 

Collis et al. using prostate cancer cell lines DU145 and PC3, showed that transient transfection 602 

with plasmids encoding DNAS-PK-targeting siRNA, rendered them hyper-sensitive to IR [182]. 603 

In addition to siRNA approaches, antisense oligonucleotides (2′-O-methoxyethyl/uniform 604 

phosphorothioate chimeric antisense oligonucleotides or ASOs) can also be used to specifically 605 

target DNA-PK expression. Using DNA-PK-targeting antisense oligonucleotides caused an 606 

increase in cell death in human glioma cell lines (M059K) after treatment with ionizing 607 

radiation, bleomycin, and etoposide [183]. In addition to sensitize the cells to IR, ASOs can also 608 

induce autophagy. Human malignant glioma M059K, U373-MG, and T98G cells treated with 609 
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ASOs targeting DNA-PK, were sensitized to low doses or IR by inducing autophagy [184]. 610 

Introduction of ASOs targeting Ku70 to human lung squamous cell carcinoma resulted in an 611 

increased sensitivity to cytotoxic agents such as bleomycin, methyl methanesulfonate and to IR. 612 

This study achieved a partial reduction of DNA end binding activity by KU by partially reducing 613 

Ku 70 protein expression [185]. Taken together, DNA-PK is an important cancer therapeutic 614 

target that can be inhibited both functionally by small molecule inhibitors, peptides and 615 

antibodies as well as by suppressing its expression via siRNA and ASO approaches.  616 

7. Conclusions and future directions 617 

 Conventional cancer therapy including radiotherapy and chemotherapy depends on 618 

inducing DNA lesions, some of which are repaired by DNA-PK-dependent pathways. Therefore, 619 

the function and expression of DNA-PK has a significant impact on therapy outcome in different 620 

ways. First, DNA-PK expression can be utilized as a biomarker for predicting prognosis and 621 

response to cancer treatments. However, the heterogeneity of DNA-PK expression in different 622 

types of tumors and within the same tumor makes it difficult to employ DNA-PK as a biomarker 623 

in clinical settings. In addition, the DNA-PK function is pleiotropic, and loss or gain of DNA-PK 624 

may impact both cell signaling pathways (e.g., Akt/G3Kb) and gene transcription via both direct 625 

interaction with transcription factors and via epigenetic mechanisms. Thus, how DNA-PK 626 

expression regulates tumor response to radiotherapy and chemotherapy is likely complex and 627 

will require further study to allow this kinase to be effectively used as a biomarker for treatment 628 

response. Second, chemicals and biologicals that target DNA-PK may greatly improve the 629 

outcome of cancer therapy. To fully realize the clinical utility of DNA-PK targeting in cancer 630 

therapy, further refinement and development of approaches targeting the function and/or 631 

expression of DNA-PK are of critical importance. Future studies should, therefore, aim at the 632 
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development of more specific inhibitors and on finding ways to ensure the differential inhibition 633 

of DNA-PK using a broad range of cancer cells. In the new era of research, epigenetics may well 634 

address these challenges. 635 
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Table 1. Differential expression levels of DNA-PK in normal and cancer cells 

Tissue/cell types DNA-PK 
expression 
levels 

                 Specificity 

 

References 

Normal cells 

Neural cells High expression Brain cortex and autonomous nervous 
system 

[78] 

Reproductive 
tissues 

High expression 

 

Moderate 
expression 

Testis 

 

Ovary and prostate 

[78] 

Epithelial cells Moderate 
expression 

Colon, pancreas and kidney [78] 

Breast tissues High expression 

Less to no 
expression 

Lactating breast tissues 

Resting breast tissues 

[78] 

Cancer Cells 

Esophageal cancer Differential 
expression 

Difficulty in prediction of radio or 
chemo-sensitivity of tumour 

 

[86] 

Colorectal 
carcinoma 

High expression Potential biomarker for clinical 
assessment of pathogenesis and 
prognosis of carcinoma 

 

[87] 

Gastric cancer Low expression Poor patient survival 

 

[89] 

Glioma High expression Better response to radiotherapy and 
chemotherapy 

 

[92] 

Cervical cancer High expression Resistant to radiation treatment 

 

[152] 

Prostate cancer High expression Reduced response to standard radiation 
therapy 

[186] 



44 
 

 

 

 

 

 

 

 

 

 

Human renal cell 
carcinoma 

Over expression Target for renal cell carcinoma 
intervention 

 

[187] 

B-cell chronic 
lymphocytic 
leukemia 

High expression Short survival and chemo- resistance [188] 

Non small lung 
cancer 

High expression Radio-resistance [189] 

Nasopharyngeal 
caricnoma 

High expression Poor survival [190] 
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Figure legends 

 

Fig. 1. DNA-PK in NHEJ mechanism. The process of NHEJ starts with the recognition and 

binding of Ku70/80 sub-units to broken DNA ends which function as docking sites for other 

proteins including DNA-PKcs. DNA-PKcs recruitment to Ku70/80 complex dimerizes to form a 

synaptic complex which acts as scaffold proteins for localization of other repair proteins to the 

damaged site of DNA. Autophosphorylation of DNA-PK at ABCDE region opens the DNA ends 

for further processing by Artemis protein which was recruited and activated by DNA-PK. DNA-

PK also recruits and mediates the phosphorylation of DNA polymerase λ for gap filling during 

DNA synthesis. Upon autophosphorylation of DNA-PK at PQR region along with ABCDE 

protein, leads to dissociation of DNA-PKcs from the Ku-DNA complex. As an end process, 

Lig4-XRCC4 complex mediates efficient DNA ligation with the help of cernunnos/XRCC4-like 

factor (XLF) and repairs the DNA DSBs successfully.     

 

Fig. 2 The role of DNA-PK in normal cells (A) and cancer cells (B).  

A. Normal cells. DNA-PK is essential for maintaining genomic stability by regulating DNA 

repair, chromosome segregation, and telomere capping. (i) DNA-PK is a critical component of 

NHEJ pathway that is required for repairing damaged DNA and for generation of B and T cells 

by V(D)J recombination along with other proteins including Artemis, XRCC4, and Lig4. (ii) In 

mitosis, phosphorylated DNA-PKcs colocalizes with polo-like kinase 1 (PLK1) at the 

centrosomes and kinetochores, for proper chromosome segregation with an accumulation of 

midbody for controlling cytokinesis. (iii) During telomere capping, heterogeneous 

ribonucleoprotein A1 (hnRNP-A1) gets phosphorylated by DNA-PKcs and promotes the 

replication protein A (RPA) to protect telomeres 1 (POT1), by switching telomeric 3’ single-
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strands to form a cap over newly replicated telomeres. (iv) DNA-PK also plays an important role 

in B/T cell generation and viral infection-mediated innate immunity. DNA-PK functions as a 

pattern recognition receptor to activate innate immunity. It binds to cytoplasmic DNA and 

activates IFN regulatory factor 3 (IRF-3)-dependent innate immune response to trigger 

transcription of type I interferons (IFN). 

B. Cancer cells. In cancer cells, increased expression of DNA-PK regulates specific pro-

tumorigenic pathways including genomic instability, hypoxia, metabolism and inflammatory 

responses. (i) DNA-PK is directly involved in the transcriptional regulation of c-Myc, c-Jun and 

p53, leading to tumor cell survival and proliferation. Under hypoxic conditions, DNA-PK is 

activated independent of DNA repair pathway and regulates HIFα, thereby activating various 

pro-tumorigenic genes. (ii) DNA-PK contributes to EMT, an essential step in tumor metastasis, 

by regulating zinc finger transcription factor snail. (iii) DNA-PK also maintains the tumor 

microenvironment by controlling the secretion of several proteins like MMP-8.-9, SERPINA3 

etc. (iv) Moreover, DNA-PKcs regulates mitotic spindle organization via the Chk2–BRCA1 

signaling pathway and the loss of DNA-PKcs will prevent the activation of Chk2–BRCA1 

signaling pathway, leading to chromosomal instability. 

 

Fig. 3. Interplay between DNA-PK and epigenetic modifications. DNA DSBs caused by 

ionizing radiation or camptothecin initiates the phosphorylation of histone H2AX protein to 

generate γ-H2AX that can initiate histone modifications. DNA-PK can be affected by the 

function of different histone modifiers, such as acetyl transferase (HAT), MOF and Tip60 during 

DNA repair process. MOF specifically acetylates histone H4 at lysine 16 that are involved in 

chromatin modification, to induce accumulation of DNA-PK at the damaged site, whereas Tip60 
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induces the activation of DNA-PKcs kinase activity. The indirect interplay between histone 

demethylase and DNA-PK were also found to be involved in DDR process. DNA-PK indirectly 

inhibits the histone demethylase activity of KDM2B by recruiting its accumulation at damaged 

site. This inhibition by the phosphorylated fumarase by DNA-PK, interacts with H2A.Z at DSB 

regions and results in local generation of fumarate to inhibit KDM2B. DNA-PK is also involved 

in histone ubiquitination by promoting H2AX and H2A monoubiquitination which are essential 

for the recruitment of ATM and 53BP1. The modulation in nucleosome packaging with DNA in 

response to DSBs can also be induced by DNA-PK by its interaction with ATP-dependent 

chromatin remodeling factors such as ALC1, to catalyze nucleosome sliding through its 

interaction with PARP. These major alterations including post-transitional histone modifications 

and ATP-dependent chromatin remodeling factors facilitate the entry of repair proteins to the 

damage lesions and activate NHEJ/HR repair mechanisms.  

 

Fig. 4. Various small molecules as DNA PK inhibitors. Wortmannin (1), LY294002 (2), 

NU7026 (3), NU7441 (4), OK1035 (5), SU11752 (6), Vanillin (7) & derivatives; 2-nitro (8) and 

3-iodo (9), NK314 (10), PI103 (11), PP121 (12), KU-0060648 (13), CC-115 (14).    
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FIGURE 1 
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FIGURE 2A 
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FIGURE 3 
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FIGURE 4 

 


