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Abstract—Face recognition is an element of many smartphone
apps, e.g. face unlocking, people tagging and games. Sparse
Representation Classification (SRC) is a state-of-the-art face
recognition algorithm, which has been shown to outperform many
classical face recognition algorithms in OpenCV. The success
of SRC is due to its use of ℓ1 optimisation, which makes
SRC robust to noise and occlusions. Since ℓ1 optimisation is
computationally intensive, SRC uses random projection matrices
to reduce the dimension of the ℓ1 problem. However, random
projection matrices do not give consistent classification accuracy.
In this paper, we propose a method to optimise the projection
matrix for ℓ1-based classification1. Our evaluations, based on
publicly available databases and real experiment, show that face
recognition based on the optimised projection matrix can be 5-
17% more accurate than its random counterpart and OpenCV
algorithms. Furthermore, the optimised projection matrix does
not have to be re-calculated even if new faces are added to the
training set. We implement the SRC with optimised projection
matrix on Android smartphones and find that the computation
of residuals in SRC is a severe bottleneck, taking up 85-90%
of the computation time. To address this problem, we propose
a method to compute the residuals approximately, which is 50
times faster but without sacrificing recognition accuracy. Lastly,
we demonstrate the feasibility of our new algorithm by the
implementation and evaluation of a new face unlocking app
and show its robustness to variation to poses, facial expressions,
lighting changes and occlusions.

Keywords—Face Recognition, Smartphones, Random Matrices,
Sparse Representation, Android, JavaCV/OpenCV, Face Unlocking

I. INTRODUCTION

Face recognition is an important research problem in com-
puter vision. With the availability of Open Source Computer
Vision (OpenCV: opencv.org) on both Android and iOS, face
recognition has also found its way into many smartphone
apps such as people tagging and mobile gaming. In fact,
we have observed more than 500 Android apps making use
of face recognition. As an example, a recent update of An-
droid includes a face unlocking app which replaces traditional
password-access control with face recognition.

There are three face recognition algorithms in OpenCV:
EigenFace [1], FisherFace [2] and LBPFace [3]. All these three
algorithms use feature extractions (where different algorithms

1Wen Hu was a visiting researcher at SICS (Swedish ICT) during the course
of this work

use different set of features) followed by the nearest neighbour-
hood classifier (NNC) to match the test image with a best fit
image in the training set. Recently, Wright, et al. [4] propose a
new face recognition classifier based on sparse representation
classification (SRC). SRC introduces a few new ideas into
the face recognition algorithms. First, SRC uses image pixels
directly which means feature selection is not required. Second,
it uses ℓ1 optimisation to make face recognition robust to
lighting changes and occulsion. SRC has been shown in [4]
to outperform NNC-based algorithms such as EigenFace and
FisherFace. However, although ℓ1 optimisation makes SRC
robust, it introduces intensive computational cost [5]. In order
to reduce the processing time while preserving the accuracy of
recognition, SRC uses random projection matrices to reduce
the dimensionality of ℓ1 minimisation. In particular, SRC
uses random Bernoulli or Gaussian matrices because of their
information preserving properties, inspired by the recent theory
of compressive sensing (CS) [6], [7]. We will refer to the SRC
algorithm based on random projection matrices as rand-SRC.

Although random projection matrices can significantly re-
duce the computation time of SRC, the classification accuracy
of rand-SRC is not consistent. In fact, accuracy of rand-SRC
can change by up to 15% depending on the random projection
matrix used. In this paper, we propose a novel strategy to
optimise the projection matrix to remove the variability in
the performance of SRC. We will refer to SRC that uses
an optimised projection matrix as opti-SRC. In addition to
providing consistent classification accuracy, opti-SRC is, re-
spectively, 9-12% and 5-17%, more accurate than rand-SRC
and the OpenCV algorithms. In other words, for a given level
of accuracy, opti-SRC requires less number of projections
compared to rand-SRC. From a smartphone point of view, this
translates to a reduced computational resource requirements
for opti-SRC. The contributions of this paper are:

• We propose a novel strategy to optimise the row
coherence of a projection matrix while preserving
low mutual coherence. The resulting combinatorial
optimisation problem has a large search space and
we propose two efficient off-line heuristics based on
greedy and tabu search. The SRC algorithm based
on the optimised projection matrix significantly out-
performs its counterpart based on random projection
matrices as well as face recognition algorithms in
OpenCV. The optimised projection matrix is also
robust in the sense that it does not have to be re-



optimised even if new faces are added to the training
set after optimisation. We also show that our optimised
projection matrix outperforms other existing methods
of optimising projection matrices [8], [9].

• We implement opti-SRC on Android platforms to
evaluate its efficiency. We find that the computation of
residuals in SRC is a severe bottleneck, taking up 85–
90% of the computation time. To address this problem,
we propose a method to compute the residuals approx-
imately. The method reduces the residual computation
time by 50-fold while maintains the classification
accuracy of opti-SRC.

• We evaluate the efficiency, in terms of computation
time and energy consumption, of opti-SRC on three
different smartphone models. We find the efficiency of
opti-SRC is comparable to the OpenCV algorithms.

The organisation of this paper is as follows. We provide a
brief introduction to SRC and matrix coherences in Section II.
In Section III, two challenges and solutions on the design
of face recognition system on smartphones are discussed.
Section IV evaluates the performance of opti-SRC using two
publicly available databases. Section V evaluates opti-SRC on
different smartphone platforms. Section VI discusses related
work and Section VII concludes the paper.

II. TECHNICAL BACKGROUND

In this section, we introduce the rand-SRC face recognition
algorithm in [4] and discuss the roles of matrix coherences in
sparse representation.

A. Sparse Representation Classifier (SRC)

In [4], the authors formulate the face recognition as a sparse
representation problem computed via ℓ1 optimisation. The for-
mulation uses a random projection matrix for dimensionality
reduction. The steps of rand-SRC are:

(i) Dictionary and Sparse Representation To model face
recognition as a sparse representation problem, one needs to
first build a dictionary D. We assume there are K subject
classes and T training images per class. All the images used
should be scaled into the same size. Each training image con-
sists of p pixels and is vectorised into a p-dimensional column
vector. We then assemble the vectorised training images of
the ith subject in a p × T sub-dictionary Di. A p × KT
dictionary D = [D1, D2, ..., DK ] is then formed from the
K classes. Let y denotes a vectorised test image, then its
representation under the dictionary D is obtained by solving
the following linear equation with the knowledge of y and D:

y = Dθ (1)

where the unknown vector θ contains n = KT unknowns
which is equal to the number of columns in D. If the vectorised
test image y belongs to the kth class, then ideally y is
within the space spanned by the T vectors in Dk class and
independent of the other classes.If the ideal condition holds,
then the representation vector θ for y has the form:

θ = [0, 0, ..., αk,1, αk,2, .., αk,T , ..., 0, 0, .., 0]
T (2)

where ·T denotes the matrix transpose, and the non-zero
elements appear only in those positions related to the kth class
in D. If the number of classes K is large, then θ is a sparse
vector if the ideal condition holds.

(ii) Random Projections Because the dimension p of the
image vectors is huge, solving Equation (1) can be compu-
tationally expensive. A random projection matrix can be ap-
plied to improve the computational efficiency while preserving
recognition accuracy. The random projection matrix Φ in this
application is generated from a Gaussian distribution with zero
mean and unit variance [4]. Incorporating an m× p Gaussian
matrix Φ in equation (1), we have

Φy = ΦDθ. (3)

where m ≪ n makes the systems of linear equations under-
determined. Since we are looking for a sparse representation
θ, we aim to solve the following ℓ0 optimisation problem

θ̂ = argmin ‖θ‖0 subject to Φy = ΦDθ (4)

where θ̂ is the sparse representation of y under dictionary D
and ‖ · ‖0 represents the ℓ0 norm, which counts the number of

non-zero coefficients in θ̂. We remark that a basic require-
ment is that each test image must have a unique sparsest
representation under training set D; this will be discussed
further in Section II-B2. The optimisation problem (4) is NP-
hard [10], which means no known algorithms can solve the
problem within polynomial time.

(iii) ℓ1 Optimisation Inspired by the recent theory of CS,
the solution of ℓ0 optimisation in Equation (4) can be well
approximated by the following ℓ1 optimisation problem,

θopt = argmin ‖θ‖1 subject to ‖Φy − ΦDθ‖2 < ǫ (5)

where ǫ is a small positive value used to account for noise. The
solution θopt from the ℓ1 optimisation is used in the following
classification procedure.

(iv) Minimal Residual for Classification After obtaining
the coefficient vector θopt, we can determine the class of the
test vector y by using residuals. The residual for class i is:

ri = ‖y −Diθ
(i)
opt‖2 (6)

where θ
(i)
opt is a T -dimensional vector containing the T ele-

ments in θopt related to class i. Then the final classification is
determined by

î = argmin
i=1,2,...K

ri, (7)

i.e., the class having the minimal residual among all classes.

B. Random Matrices and Coherence

Though random projection matrices can significantly re-
duce the dimension of the optimisation problem, they introduce
substantial variation in classification accuracy too. Moreover,
random projection matrices are not optimal. We will show
later on that an optimised projection matrix can significantly
improve the classification accuracy of SRC. We will optimise
projection matrix using row coherence and this section pro-
vides background on matrix coherences.



1) Matrix Coherences: We consider the coherences of the
sensing matrix A, where A = ΦD, i.e. the product of the
projection matrix Φ and dictionary D.

Mutual Coherence Let ai and aj denote the ith and jth

columns of A respectively. The mutual coherence µ(A), which
is the coherence between columns, is defined as:

µ(A) = max
i<j

|aTi aj|

‖ai‖2‖aj‖2
. (8)

In words, µ(A) is the maximum absolute value of cross-
correlations between the columns of A which stays in between
0 and 1.

Row Coherence Let ãi and ãj denote the ith and jth rows
of A respectively. The row coherence is defined as:

ν(A) = max
i<j

|ãiãTj |

‖ãi‖2‖ãj‖2
, (9)

which is the maximum absolute value of cross-correlations
between the rows of the matrix A.

Mutual coherence has been well studied in literature [11],
[12], while row coherence has not attracted as much attention.
In fact, both mutual coherence and row coherence affect the
classification accuracy of SRC as discussed in Section II-B2.

2) The Importance of Coherences: A basic requirement
for SRC to work is that each test image must have a unique
sparsest representation under training set D in (4). According
to [13], the uniqueness of sparsest representation requires the
following two conditions to hold:

µ(A) ≤
c0

logn
, s ≤

c0n

logn · ‖A‖22
(10)

where µ(A) is the mutual coherence, c0 is a constant and
s is the sparsity of θ. ‖A‖2 is the 2-norm of the sensing
matrix (also known as spectral norm) which equals to the
largest singular value of A. These two conditions guarantee
that a unique sparsest representation exists with a probability
of 1−O(n−1).

The second condition of (10) can be rewritten as:

1

‖A‖22
≥

logn · s

c0n
(11)

which means a smaller spectral norm for A makes it easier to
satisfy this condition.

We now impose the standard condition that the columns of
A has unit norm. By applying the theory of tight frames [14],
the spectral norm of the m×n matrix A (which equals to the
redundancy of A) has the property:

‖A‖22 ≥ n/m (12)

where the equality holds if the rows of the matrix A are
orthogonal to each other or in other words, the row coherence
of A is zero. This inequality suggests that a way to reduce
‖A‖2 is to increase the number of projections m. Alternatively,
we can reduce ‖A‖2 by making the matrix A more orthogonal
by reducing its row coherence. This will be the approach taken
by this paper. In particular, we propose a method to minimise
the row coherence while preserving low mutual coherence.
Intuitively, a sensing matrix with a lower row coherence means

there is less overlap in the information provided by different
projections. In fact, we will show a lower row coherence leads
to better classification accuracy.

III. CHALLENGES AND PROPOSED SOLUTIONS

There are a number of challenges to produce robust and
efficient face recognition via SRC on smartphones. We will
point out the challenges and present the proposed solutions.

A. Challenge I: Random Matrices

As mentioned above, the recognition accuracy of rand-
SRC varies substantially with different random projection
matrices. To solve this challenge, we propose an approach
to optimise the projection matrix by minimising the row
coherence while preserving relatively low mutual coherence
of the sensing matrix. Moreover, opti-SRC requires a smaller
number of projections compared to rand-SRC to achieve the
same recognition accuracy. This means opti-SRC requires less
computational requirement than rand-SRC on smartphones.

1) Optimising Row Coherence in Finite Space: From the
discussion in Section II-B2, a good sensing matrix requires
both low row coherence and mutual coherence. A naı̈ve method
is to minimise the row coherence alone. While such a method
can reduce row coherence, it can at the same time increase
the mutual coherence significantly, which is undesirable. To
address this problem, we propose an optimisation approach in
a finite feasible space to minimise the row coherence of the
sensing matrix while preserving a low mutual coherence.

It is well understood that random sampling strategies,
such as projection matrices Φ generated through either i.i.d.
Gaussian or Bernoulli distributions, produce sensing matrices
with relatively low mutual coherence [15].

Let us assume we have a finite (but still very large) set Ω
of projection matrices stemming from either a random Gaus-
sian or Bernoulli distribution. We know that any projection
matrix Φ stemming from the set Ω will result in a sensing
matrix A which with high probability has relatively low mutual
coherence. Furthermore, we know from Equation (9) that
the row coherence of A can be minimised by choosing the
sampling matrix Φ that minimises

argmin
Φ

ν(ΦD) subject to Φ ⊆ Ω . (13)

The strength of this strategy lies in its ability to directly
reduce the row coherence of A while with high probability
maintaining a relatively low mutual coherence. The high
probability guarantees that the sensing matrix A will have
low mutual coherence stems from the fact that Ω is finite.
For example, if Ω contained the infinite set of all possible
projection matrices drawn from a Gaussian distribution then
there clearly exists (but is extremely unlikely when drawn
from a random distribution) a sensing matrix that has zero
row coherence, but unity mutual coherence. Since the objective
in Equation (13) is searching for the Φ with the lowest row
coherence of the sensing matrix in the infinite set, it would
inevitably choose this projection matrix which would result in
a sensing matrix A that has the high mutual coherence.

By constraining Ω to a finite set of randomly generated
projection matrices one then guarantees with overwhelmingly



high probability that all projection matrices in the set will
produce a sensing matrix with relatively low mutual coherence.
It is clear that this probabilistic guarantee on the mutual
coherence is a function of the size of the finite set Ω. It is
also clear that since the set Ω is finite and random the set is
not convex making the objective in Equation (13) non-convex.
Further, the search space for this combinatorial optimisation
problem is enormous (even though Ω is finite) and is in fact
substantially complex in computation. We remark that there is
another reason why we restrict ourselves to find the optimal
projection matrix within the set of Bernoulli or Gaussian
matrices, rather than the set of all matrices. This will be
discussed in Section III-B.

2) Efficient Solutions: Because the optimisation prob-
lem (13) is NP-hard. We propose two efficient algorithms
based on: (i) greedy, and (ii) tabu search to minimise the
objective although neither strategy is guaranteed of finding the
global minima.

For both strategies we explored the role of the set size Ω
versus performance of recognition accuracy. We found that the
larger the chosen set the better the recognition accuracy so in
all our experiments we chose the largest finite set Ω possible
for a tractable solution. This result is not entirely unexpected
due to the strong probabilistic guarantees of a random sampling
forming sensing matrices with good mutual and row coherence.

Algorithm 1 Greedy Projection Matrix Optimisation

1: Input: Search space Sn, Dictionary D, the number of rows
of the projection matrix m.

2: Initialisation: traverse the search space to find two row

vectors φ̂1 and φ̂2 such that their coherence is minimal,

Φ̂ = {φ̂1, φ̂2}, Sn = Sn\{φ̂1, φ̂2}, i = 2
3: while i ≤ m do
4: φ̃j = argmin

φ̂j∈S
max

φ̂k∈Φ̂ |(φ̂jD)T (φ̂kD)|

5: //φ̂j and φ̂k are two rows from S and Φ̂ respectively

6: Φ̂ = Φ̂
⋃
{φ̃j}

7: Sn = Sn\{φ̃j}
8: i++
9: end while

10: Output: optimised projection matrix formed by the m
vectors in Φ̂

Greedy Algorithm (Algorithm 1) The greedy algorithm
starts with searching for two rows with the minimal coherence
(Line 2). This is achieved by traversing the whole search space.
The search space Sn in Line 1 is a large finite set of projection
vectors randomly generated from Gaussian distributions. In the
subsequent iterations, it chooses the vector from the remaining
vectors that minimises the maximum row coherence between
this vector and the ones already chosen (Lines 4–7). When the
desired number of vectors is reached (Line 3), the iteration is
terminated. The chosen vectors then form the projection matrix
(Line 10).

Tabu Search Algorithm (Algorithm 2) The solution of the
greedy algorithm is known to converge to a local optimum
which heavily depends on the starting point. This local opti-
mum could be significantly different from the global optimum.
To address this problem, we propose another algorithm based
on tabu search [16] to find an improved and robust solution.

Algorithm 2 Tabu Search Projection Matrix Optimisation

1: Input: Dictionary D, search space Sn and number of rows
of the projection matrix m.

2: Initialisation: allocate four empty lists: Lin, Lout, L̄ and

L̂, stop criteria StabilityLimit = 500, BestCov = Inf,
i = 0

3: while i < StabilityLimit do
4: CurrentCov = Inf, j = 0
5: Randomly choose m vectors to form P̂m, record the

indices list of P̂m as L̂ (L̂ ∩ Lout = ∅, L̂ ∩ Lin = Lin).
The lists are first-in-first-out;

6: while j < m do

7: P̂m−1 = P̂m\{P̂m{j}}
8: Sn−m+1 = Sn\P̂m−1

9: Covj = minsd∈Sn−m+1
max

pk∈P̂m−1
|(pkD)T sdD|

10: //sd and sk are rows from Sn−m+1 and P̂m−1 respectively.

11: if Covj < CurrentCov then

12: CurrentCov=Covj , PotentialObj=P̂m{j}
13: Store indices of current solution P̂m in L̄
14: end if
15: j++
16: end while
17: if CurrentCov > BestCov then
18: BestCov = CurrentCov; BestList = L̄
19: Clear Lout, push PotentialObj in Lin

20: i = 0
21: else
22: Push P̂m in Lout

23: i++
24: end if
25: end while
26: Outputs: The indices list of the optimised projection matrix

in BestList chosen from the search space Sn

Tabu search is metaheuristic algorithm for combinatorial op-
timisation problems. It enhances the performance of the local
search algorithm by exploring the unreached area of the greedy
algorithms. The computation complexity of tabu search is
O(n2) [17] which means it can be solved in polynomial time.

Tabu search algorithm utilises memory structures by defin-
ing the neighborhood of the current solution and two tabu lists.
The size of the neighbourhood can be as large as the size of
the search space. It can be tuned according to the processing
capability of the devices. The tabu lists store the specific atoms.
In our case, one tabu list stores the row indices which can not
be visited for a specific number of iterations and the other list
stores the row indices that cannot be removed from the solution
for another number of iterations. The number of iterations are
determined by the size of the tabu lists. The tabu lists should
be large enough to avoid cycles and we tuned them as half of
the size of search space and the solution respectively. Details
of the algorithm are shown in Algorithm 2.

This algorithm aims to pick m feasible rows (to form the
projection matrix) in the search space to minimise the row
coherence of the sensing matrix. Lines 1-2 represent the initial
setup which specifies some parameters and creates two empty
tabu lists. The proper algorithm starts in Line 3 by randomly
choosing m rows in the search space satisfying the constraints



of the tabu lists. This loop will continue searching for an
optimal solution until the solution has not been updated by
a number of StabilityLimit iterations. During the inner loop
presented in Lines 6-16, it updates one of the rows in the
chosen matrix by one row in the defined neighbourhood to find
the local minimum (this is called Intensification stage). When
the new minimum is larger than the one found previously,
the algorithm explores the unreached area in the next itera-
tion in Diversification stage (Lines 17-23); otherwise, when
Aspiration Level condition (Line 17) is satisfied, it will reset
the status of the algorithm (counter of the iteration, tabu
list). The algorithm will terminate when the minimum has
not been updated by a number of StabilityLimit (in Line 3)
iterations. StabilityLimit should be large enough to guarantee
the robustness of the algorithm. During the search progress,
the algorithm will not search the recently reached area due to
constraints of the tabu lists. By these approaches, tabu search
can avoid converging to a local minimum by exhaustively
searching the new area.

With the greedy algorithm or tabu search algorithm, we
can obtain an optimised projection matrix. We replace the
random matrix used in SRC approach with the optimised
matrix to improve the performance of recognition accuracy.
To distinguish SRC with different matrices, we call original
SRC as rand-SRC and our approach as opti-SRC.

B. Challenge II: Residual Calculation

The SRC in [4] was designed to solve the face recognition
problem assuming abundant computing power is available.
However, if the algorithm is to be implemented on embedded
systems (e.g., smartphones), we will need to optimise the
computations in SRC to improve its efficiency. Our evalu-
ation of SRC on various smartphone platforms shows that
the computation of residuals in Equation (6) is a severe
bottleneck, accounting for 85–90% of SRC’s running time.
The computation of residual ri in Equation (6) is of the order
O(p+pT ) where in particular p is the number of pixels in the
training image, which is generally a large number. Instead of
computing the exact ri using (6), we propose to compute an
approximate ri by making use of the Johnson-Lindenstrauss
(J-L) Lemma [18]. Let Φ be the m × p (with m ≪ p)
projection matrix used in the ℓ1 optimisation, which is either
Gaussian or Bernoulli distributed, the J-L Lemma provides an
approximation of the residual by:

‖y −Dθ
(i)
opt‖2 ≈ ‖Φy − ΦDθ

(i)
opt‖2. (14)

Since both Φy and ΦD are used in the ℓ1 optimisation
problem (5), they have already been computed. Also, both of
them have m rows, so the computation on the right-hand side
of (14) has a complexity of O(m+mT ), which is much lower
because m ≪ p. We will refer to the computation of residuals
using the right-hand side of (14) as compressed residuals.

Note that the validity of the J-L Lemma requires that the
projection matrix is either Gaussian or Bernoulli distributed.
This is another reason why we have restricted the optimisation
problem in Section III-A1 to search for a Gaussian or Bernoulli
projection matrix.

The classification is then carried out using the compressed
residuals after they have been computed. Our experiments

show that the recognition accuracy of using compressed
residuals is exactly the same as that of using full residual
calculations when sufficient number of projections are used.

IV. PERFORMANCE EVALUATION ON PUBLICLY

AVAILABLE DATABASES

A. Goals, Metrics and Methodology

The aim of this section is to evaluate the classification
accuracy of opti-SRC, and compare it with rand-SRC as well
as three face recognition algorithms in OpenCV: EigenFace,
FisherFace and LBPFace. The comparison makes use of
two publicly available databases: the Extended Yale database
B [19] and the AT&T database [20]. Both databases are
popular choices [4], [21] to evaluate the recognition accuracy
of face recognition algorithms.

For fair comparison between different algorithms, a com-
mon parameter m is used as the number of projections in
the two SRC-based algorithms as well as the number of
features in the three algorithms in OpenCV. For the SRC-based
algorithms, projections play the same role as features.

For opti-SRC, compressed residuals (14) are used. The
classification results for using full residual calculations (6)
is identical to that of using compressed residuals and are
therefore not shown.

We compare opti-SRC against two existing methods for
optimising projection matrix. We also investigate the tolerance
of opti-SRC to training set changes. The evaluation in this
section is carried out on a computer. Experimental results on
smartphones will be presented in the next section.

In this paper, we use the percentage of correct recognition
as the performance metric (same as [4]) for the recognition
evaluation, which is simply the number of true recognitions
over the total number of tests. We express the recognition
accuracy of different methods under different number of pro-
jections/ features and plot the recognition accuracy curves of
different face recognition methods.

B. Extended Yale Database B

The Extended Yale Database B (Ext-YaleB) contains K =
38 subjects under 9 poses and 64 illumination conditions.
We choose the first T = 32 images from each subject as
the training images and the following 10 images forms the
test set. We remark that our choice of training images from
each subject is different from [4], where 32 images were
chosen randomly from each subject. Because the images are
sorted by the time that they are captured, our choice is more
consistent with the face recognition practice on smartphones
where training images are added well before the test images.
We have reproduced the results in [4] and observed that their
choice tends to produce a better recognition accuracy because
it distributes more similar face images into the training and
test sets (empirically, images of one subject taken on temporal
contiguity share more information. They are more likely to be
classified into the same class).

The evaluation in [22] shows that face recognition can
tolerate some degree of resolution reduction. We scale the
images from the original size of 192 × 168 to 96 × 84 (i.e.,



4 times reduction), which does not affect the recognition
accuracy. (We also try to reduce the resolution by 16 times,
but the accuracy decreases significantly). This setting gives an
dictionary D of size 8, 064× 1, 216. We choose to reduce the
image resoultion because of two considerations: first, the high
resolution of the image will introduce intensive computation
especially for the ℓ1 solver; second, the resolution of the
embedded cameras varies among the smartphones, a face
recognition system using low resolution images can be readily
used on different smartphones.
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Fig. 1: YaleB: comparison of row coherence of the sensing
matrices

1) Coherence Analysis: We compare the row coherence of
the sensing matrix ΦD where Φ comes from minimising (13)
or is randomly generated. We vary the number of projections
from 10 to 100. For each number of projection, we find an
optimised Φ using greedy algorithm with the search domain
Ω consisting of Gaussian distributed vectors and compute the
row coherence of the sensing matrix using the optimised Φ.
We repeat the process with tabu search. We also generate
30 random Gaussian matrices, and calculate the mean and
standard deviation of their row coherence for the corresponding
sensing matrices. The results are plotted in Figure 1. The x-
axis is the number of projections from 10 to 100 and the
y-axis is the row coherence of the sensing matrix. Figure 1
shows that tabu search provides sensing matrices with the
smallest row coherence. Our proposed greedy and tabu search
algorithms can reduce the row coherence of the sensing matrix
by up to 4 times when the number of projections is 10 and
tabu search performs better than greedy search. Moreover, our
algorithms can provide more consistent row coherence while
the random approach shows a large variance (error bars in
the figure). We have also calculated the mutual coherence
of the sensing matrix with the optimised projection matrix.
The result in Figure 2 shows that our optimisation approach
will not increase the mutual coherence (actually it reduces the
mutual coherence a bit). Note that for face recognition, D is
a dictionary consisting of face image vectors as its columns.
The faces in the same class can be very similar to each other.
So the mutual coherence can be high (over 0.99 in random
selection approach). The large row coherence in Figure 1 arises
for a similar reason: images have high spatial coherence. The
adjacent pixels tend to have similar pixel values which lead to
high row coherence.
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Fig. 2: YaleB: comparison of mutual coherence of the sensing
matrices

2) Recognition Accuracy: To prove our strategy on min-
imising the coherence of the sensing matrix gives good face
recognition accuracy, we compare opti-SRC (with optimised
projection matrix from greedy and tabu search respectively),
rand-SRC and three algorithms from OpenCV. The results from
the rand-SRC are represented by the average and standard
deviation over 30 independent trials where a different random
projection matrix is used in each trial. In Figure 3, the x-axis
represents the number of features/projections ranging from 20
to 200 and the y-axis is the recognition accuracy. The results
show that opti-SRC with projection matrix from tabu and
greedy search algorithms improves the recognition accuracy by
up to 12% compared with the best of the other algorithms, and
opti-SRC with projection matrix from tabu search performs
better than that from greedy search. The results give strong
evidence that our strategy of minimising the row coherence of
the sensing matrix delivers a face recognition algorithm with
consistently high accuracy. From a different point of view, for
a given accuracy, opti-SRC needs less projections than rand-
SRC; this translates to less computation resource requirement
for opti-SRC.
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Fig. 3: YaleB: comparison of face recognition accuracy of
different methods

3) Stability to Training Set Evolvement: For many face
recognition applications, new classes are constantly added to
the training set. This means the dictionary D evolves constantly



over time. Since the projection matrix Φ is optimised for a
given dictionary D (see Equation (13)), we investigate whether
it is necessary to re-optimise Φ if new classes are added to the
dictionary.

For this evaluation, we begin with an initial training set
containing 16 classes. We use tabu search to obtain an opti-
mised projection matrix based on the initial dictionary. We then
add training classes to the dictionary: 4 classes at a time until
36 classes and then 2 additional classes are added to reach 38
classes. We consider two different strategies. The first strategy,
which we call opti-SRC-fixed, uses the optimised projection
obtained from the initial dictionary with 16 classes even when
the dictionary evolves. The second strategy, called opti-SRC-
adaptive, re-optimises the projection matrix each time new
classes are added to the dictionary. The number of projections
is kept at 100.
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Figure 4 compares the classification accuracy of opti-SRC-
adaptive, opti-SRC-fixed and rand-SRC. It is not surprising
that opti-SRC-adaptive gives the best performance while rand-
SRC is the worst. The interesting observation is that opti-SRC-
fixed gives fairly stable performance in spite of the increase
in number of classes. In fact, the performance of opti-SRC-
fixed and opti-SRC-adaptive differs by at most 3%. Moreover,
part of the degradation in the performance of opti-SRC-fixed
is due to the use of the same number of projections as
the number of classes increases. This is a very encouraging
result which shows that re-optimisation of projection matrix
is only required occasionally. Note that there is performance
improvement when the number of classes increases from 16 to
20. One explanation is the newly added test images bear some
similarity to those in the dictionary.

4) Comparison with Other Projection Matrix Optimisation
Approaches: The idea of computing a projection matrix that
is optimally designed for a certain signal class is not new.
Elad [9], and Duarte-Carvajalino and Sapiro [8] recently
proposed strategies for learning projection matrix directly from
a dictionary to improve the performance of signal recovery in
CS. The algorithm in [9] aims to find a projection matrix Φ to
reduce the mutual coherence of the sensing matrix A = ΦD
while that in [8] finds a Φ so that ATA is close to the
identity matrix. There is another work on designing projection
matrix with orthogonal rows. However, the “orthoprojectors”
proposed in [23] aim to make the rows of projection matrix

orthogonal. They do not take the dictionary into account.
Therefore, we only compare with the approaches in [9] and [8].
For this comparison, we use the optimised projection matrices
from these two algorithms for face recognition; note that
residual calculations use (6) because it is not known whether
these optimised projection matrices satisfy the J-L Lemma.
The comparison is against opti-SRC based on tabu search and
rand-SRC. The results are shown in Figure 5, which shows
that the optimised projection matrix from [9] and [8] cannot
improve the recognition accuracy. It is probably because the
requirements on Φ for signal recovery and classification are
different.
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C. AT&T Face Database

AT&T (ATT) database is another commonly used database
for evaluating face recognition algorithms. There are 40 sub-
jects in the database and each subject contributes 10 face
images. The database contains various lighting conditions,
facial expression (open/closed eyes, smiling/neutral) and eye
wear (glasses/no glasses). The size of each image is 92× 112.

We use the first half of the images of each subject as
training and the rest as test. Therefore, the training set D is
a matrix of size 10, 304× 200. The evaluations conducted for
this database is the same as those in Section IV-B.

1) Coherence Analysis: For coherence analysis, we com-
pare the performance of the two algorithms (tabu and greedy
search) on reducing the row coherence of the sensing matrix
with the ATT database. The results are shown in Figure 6
which demonstrate that both algorithms reduce the row coher-
ence dramatically.

2) Performance Evaluation: Figure 7 compares the recog-
nition accuracy of opti-SRC (greedy and tabu search), rand-
SRC and three algorithms from OpenCV. Our proposed ap-
proach achieves consistently better recognition accuracy. The
improvement is up to 9% compared with the second best
algorithm.

3) Stability to Training Set Evolvement: We also check the
stability of our approach to the evolvement of training set using
the ATT database. As shown in Figure 8, when the number of
classes is growing from 16 to 40, the performance of opti-
SRC-fixed is comparable to opti-SRC-adaptive, while both of
these algorithms perform much better than rand-SRC.
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Fig. 7: ATT: comparison of face recognition accuracy of
different methods

D. Conclusions of this Section

From the results of this section, we can conclude that 1)
opti-SRC has significantly better recognition accuracy com-
pared with the state-of-the-art face recognition algorithms; 2)
the optimised projection matrix can tolerate the evolvement
of the training set which makes it more convenient to use on
smartphones; 3) projection matrix derived from tabu search
provides consistently better recognition accuracy than greedy
search. Therefore we apply tabu search in our experiments on
smartphone to optimise the projection matrix.

V. EXPERIMENT ON SMARTPHONES

A. Experiment Description

The aim of this section is to evaluate the classification
accuracy of opti-SRC, and compare it with rand-SRC as well
as the OpenCV algorithms on the smartphones. Ten subjects,
7 males and 3 females, with different skin tones are recruited
for the experiment. 2 We take 40 photos of each subject in
random poses, lighting conditions and expressions. We then

2Ethical approval for carrying out this experiment has been granted by the
University New South Wales (Reference Number 08/2013/72) and CSIRO
(Reference number 083/13)
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use the Android OS face-detection API to automatically crop
the face region of the images to a size of 92×56 and store them
on the phones’ memory. The resolution of the face images is
much lower than that of the embedded cameras on off-the-
shell smartphones. We will refer to this database as Private
database.

We implement opti-SRC on the Android platform. The ℓ1
minimisation uses the ℓ1-homotopy solver [24] because it is
much more efficient than linear programming: complexity of
O(s3 + smn) (where s is the sparsity of the solution, with
s ≪ n) versus O(n3).

In this section, we present experimental results on com-
putation time and resource consumption (Section V-D), and
recognition accuracy (Section V-E) of opti-SRC and OpenCV
algorithms on the chosen smartphone platforms. We have also
designed a group face unlocking app (Section V-F) with the
opti-SRC and compared it against the Android built-in face
unlocking app on under various different conditions to test its
robustness.

B. Platforms

Fig. 9: Android smartphones used in the experiment; from left
to right: Samsung Galaxy S3, Google Nexus 4 and HTC OneX

In order to demonstrate the feasibility of opti-SRC, we
implement it on three different popular smartphones: Samsung
Galaxy S3, Google Nexus 4, and HTC OneX (shown in



Figure 9). The specifications of these smartphones relating to
the application are shown in Table I.

TABLE I: Smartphones specifications relating to the face
recognition application

Galaxy S3 Nexus 4 HTC OneX

CPU Quad 1.4 GHz Quad 1.5 GHz Quad 1.5 GHz

Storage 16 GB 8 GB 16 GB

RAM 1GB 2 GB 1GB

Screen 4.7 inches 4.7 inches 4.7 inches

Battery 2, 100 mAh 2, 100 mAh 1, 800 mAh

Android OS v4.0.4 v4.2.2 v4.1.1

C. Preliminary experiments
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Fig. 10: Face recognition accuracy comparison under different
number of projections/features with private database

1) Number of Projections: We conduct an experiment using
Private database A on a computer to choose a suitable number
of projections/features for the face recognition algorithms. This
experiment is conducted in the same way as those in Section IV
where we study the effect of the number of projections on the
recognition accuracy. We randomly pick 20 images from each
subject to form the training set (we call this Private-Training)
and the rest of the images form the test set. Therefore, the
dictionary is a matrix of size 5, 152 × 200. The results are
shown in Figure 10. We again find that opti-SRC outperforms
the other algorithms significantly. The recognition accuracy of
all the algorithms levels off after 100 projections. We therefore
choose to use 100 projections for further experiments on the
smartphones. The size of the projection matrix is 100×5, 152.

2) Compressed Residual: According to challenge II in
Section III-B, the computation of residuals using the full-size
image vectors as in equation (6) is computationally intensive
(complexity of O(p + pT ) where p = 5152 is the size
of the image) and we propose to approximate the residual
calculations by equation (14) (complexity of O(m + mT )
where m = 100 is the number of projections). We measure the
computation time (per test image classified) of both methods of
residual calculations on the smartphones and show the results
in Table II. We see that, by using compressed residuals, the
computation time is reduced by a factor of 45–50 times. This
is consistent with the complexity expressions which predict a
p

m
≈ 52 times reduction.

Table III shows that the computation time of opti-SRC
without the residual calculation component (i.e. face detection
and ℓ1 minimisation components only) is 200–350ms for the
three platforms. If the original method of residual calculations
is used, then it will take up 85-90% of the computation time,
which is a severe bottleneck. By using compressed residuals,
the total classification time per image is reduced by about 6
times.

TABLE II: Time for original/compressed residual calculations
per face classification

Galaxy S3 Nexus 4 HTC OneX

Compressed Residual 42 ms 33 ms 43 ms

Original Residual 1, 923 ms 1, 926 ms 2, 105 ms

D. Resource Consumption on Smartphones

Table III shows the resource consumption (running time
and energy consumption) of opti-SRC on different smart-
phones. The running time is obtained from the console of
Eclipse development environment and the energy consumption
is evaluated using the PowerTutor (powertutor.org) app on
Android.

TABLE III: Resource consumption of opti-SRC on different
smartphones

Galaxy S3 Nexus 4 HTC OneX

Face Detection (ms) 100 70 97

ℓ1 (ms) 240 136 247

Residual (ms) 42 33 43

Total (ms) 382 239 387

Display Energy (mJ) 1, 500 1, 040 1, 300

CPU Energy (mJ) 175 139 246

In terms of processing speed, Table III shows that the SRC
component (ℓ1 minimisation + compressed residual calcula-
tion) is the dominant factor of time consumption which is about
3 times of the face detection component. Therefore, the use of
compressed residual can drastically reduce the total processing
time. Another noticeable result is that most of the energy is
consumed by the display which is inevitable for visualisation
of the applications. The CPU only takes 10-15% of the total
energy consumption.

To provide a benchmark for comparison, we also im-
plement the OpenCV based face recognition applications on
the smartphones. Because the original OpenCV library was
coded in C++, we use the Java Native Interface (JavaCV-v0.6)
which is based on OpenCV-v2.4.6. The average processing
time for detecting and recognising one face is shown in
Table IV. ℓ1 minimisation is known to be computational
intensive. However, with the power of dimensionality reduction
and compressed residual, opti-SRC achieves the same order

TABLE IV: Speed of face detection and recognition with
feature based recognition methods in OpenCV

Galaxy S3 Nexus 4 HTC OneX

EigenFace (total) 177 ms 143 ms 161 ms

FisherFace (total) 221 ms 159 ms 186 ms

LBPFace (total) 268 ms 220 ms 257 ms



of speed as the algorithms in OpenCV, which are known
to be fast. It means that our algorithm is quite efficient for
face recognition. Note that our ℓ1-homotopy implementation
uses Java which is known to be less efficient than C++. The
speed of classification can be further improved with C++
implementation but it is out of the scope of this paper.

E. Recognition Accuracy on Smartphones

In this section, we evaluate the recognition accuracy of
opti-SRC, rand-SRC and OpenCV algorithms using a new test
set. This new test set has 400 photos, 40 from each subject.
(Note the 400 photos from this new test set are different from
those in the Private database. These photos are taken at two
different locations with lighting conditions: bright (above 100
lux) and dark (below 50 lux) respectively. The luminance
can be measured by using the light sensor embedded on
the smartphones. Twenty photos are taken for each lighting
condition per subject. These 20 photos come from 20 different
(expression, pose) pairs where expression is neutral, happy, sad
or neutral with glasses; and pose is front, up, down, left or right
as shown in Figure 11. All the photos are manually labelled by
their lighting condition, expression and pose. This new test set
presents a rich variety of situations to test the face recognition
algorithms. Also, there is mobility when the experiments were
conducted. During the experiments the subjects walk around
in the lab and take pictures freely.

Fig. 11: Face samples of different poses

For this evaluation, the training set is Private-Training
used in Section V-C1. Note that there are only 20 images
per subject in the training set, but there are 40 images per
subject in the test set. Therefore, the test set presents a
much richer variations than the training set. The number of
projections/features remains as 100.

TABLE V: The recognition accuracy of opti-SRC under dif-
ferent subsets of the test set.

Neutral Happy Sad Glasses Dark Bright Total

92% 89% 89% 90% 85% 95% 90%

Table V shows the recognition accuracy of opti-SRC using
different subsets of the test set. For example, the accuracy
under Happy means we take the 100 photos (= 10 subjects ×
2 lighting conditions × 5 poses) in the test set with the label

Happy and test whether opti-SRC can recognise the subject in
the photo correctly. For the accuracies under Dark and Bright,
200 test photos are used in each subset. From the results we
can see that, opti-SRC is more sensitive to the change of
expressions than the small occlusion (wearing glasses). This
is reasonable because the change of expressions is related to
much larger area of face than the small occlusion. Another
observation is that the well-lighted environment can improve
the recognition accuracy (about 10% improvement).

For the methods in OpenCV and rand-SRC, the classifica-
tion accuracy of EigenFace, FisherFace, LBPFace and rand-
SRC is only 81- 82% which is significantly lower than those
of opti-SRC (90%).

F. Group Face Unlocking

Face unlocking is a built-in security feature in the recent
Android OS release. It uses face, rather than password, for
unlocking the smartphone. Here we design a new face unlock-
ing app for smartphones based on opti-SRC. Different from the
built-in face unlocking function, our app considers the situation
that the smartphones can be shared by a small group of users.
We call our app group face unlocking.

1) Resistance to Intruders: Because a security system
should have ”zero” tolerance to intruders, we include a cri-
terion to validate the recognition results so that intruders are
rejected. In our experiments, we choose 3 subjects as the “true”
persons in the group unlocking apps and consider the other 7
subjects as intruders. There are K = 3 training classes where
each class corresponds to a subject in the group.

We apply opti-SRC as before and compute the compressed
residual for each class. Let rcj be the compressed residual of
class j. If a person, say person 1, in the group is presented for
recognition, we expect the residual rc1 is much lower than rc2
and rc3. We can define the confidence of recognition as:

confidence = (
1

K

K∑

j=1

rcj − min
j=1,...,K

rcj)/
1

K

K∑

j=1

rcj (15)

The confidence is in the range [0, 1] and should be close to 1
if a subject in the group is presented for recognition. On the
other hand, if it is an intruder, the confidence should be close
to 0.

The unlocking algorithm will first use opti-SRC to perform
a recognition. After that, a confidence level is calculated
and a person will be considered to be an intruder if the
confidence level is lower than a pre-defined threshold. The
threshold can be tuned according to the security level of the
application. There is a trade-off between the security level
and the recognition of true users: a higher threshold makes
the system more resistant to intruders but true users are also
more likely to be rejected. We use a threshold of 0.16 in the
following experiment so that no false positives (an intruder is
recognised as user) are shown with the test of the 7 intruders.

2) Robustness to variations: In this part, we evaluate the
recognition accuracy of our group unlocking app under many
different conditions to test its robustness. This is important
because a good face unlocking app needs to recognise the
right user under different facial expressions and environment



variations. We compare our group unlocking based on opti-
SRC against the built-in face unlocking app under different
variations, including lighting, distance, occlusion, expression
and poses. During the evaluation, we carefully control the
factors so that only one type of variation is present at a time.
Unlike most of the Android OS, the built-in face unlocking is
closed source, therefore we cannot use exactly the same face
image to compare these two apps. Instead, we have to capture
2 images for each test and make these 2 images as similar as
possible. We again use 20 face images for each class as the
training set for opti-SRC and we train the face unlocking with
the default conditions mentioned below.

Lighting Variation: The capability of recognition under
different lighting conditions is the key for the face unlocking
app because the users will use the app under different envi-
ronment. The robustness to the lighting changes is evaluated
in 5 locations with different illumination intensity which are
around 5 lux, 20 lux, 100 lux, 200 lux and 800 lux respectively
during the experiments. The default lighting illuminance under
which the face unlocking is trained is around 100 lux.

Distance variation: The users may stand at different dis-
tances from the camera when they are being recognised. We
gradually change the distance from 20–60 cm to evaluate the
robustness to the distance changes. The default distance is
around 40 cm.

Occlusion: We test the face unlocking apps for the different
ratio of occlusions. The users wear either normal prescription
glasses, headphones or large black sunglasses during the test.
The faces in the training set do not contain any occlusions.

Expression Variation: Expression is another common vari-
ation when the face images are taken. The expressions of
neutral, happy and sad are used during the test. The default
expression is neutral.

Pose Variation: Pose changes should be addressed because
direction of the faces to the camera cannot be always strictly
frontal. To compare the robustness of the face unlocking apps
to the variation of the pose, the users gradually change their
pose of face from front to two directions (up, down) until the
false recognition appears (the angles to the gravity direction
can be measured with built-in sensor in smartphones). The
front pose is used as default pose.

The evaluation results are shown in Table VI. The pose
change limit is demonstrated by angles to the gravity direc-
tion. It is the largest angles that the face unlocking apps
can recognise the users correctly. (We are not able to do
experiments for the left and right poses because they cannot be
directly measured. However, our experience shows that opti-
SRC can tolerate larger pose angles in right and left directions.)
The check/cross markers (X/×) represent the face unlocking
app recognises the face of users correctly/wrongly under the
corresponding variance (true positive/false negative).

The results shown in Table VI demonstrate that our group
unlocking app is more robust than the built-in app for lighting
and pose changes and the two face unlocking apps achieve the
same results on the expression, distance and occlusion changes.

TABLE VI: The comparison of our approach and build-in face
unlocking apps on different variance conditions

lighting 5 lux 20 lux 100 lux 200 lux 800 lux

built-in x X X X x

opti-SRC X X X X x

distances 20 cm 30 cm 40 cm 40 cm 60cm

built-in X X X X X

opti-SRC X X X X X

occlusions none headphone glasses sunglasses

built-in X X X x

opti-SRC X X X x

expressions neutral happy sad

built-in X X X

opti-SRC X X X

poses up down

built-in 17◦ 40◦

opti-SRC 20◦ 36◦

VI. RELATED WORK

With the fast development of smartphone technologies,
applications of smartphones in sensing and embedded systems
are becoming more popular. For example, in [25], the smart-
phone is used as a sensing system to measure the heart rate of
people during workout while listening to the music. Another
sensing system is used to monitor the expenditure of calories
during activities [26]. Because the sensors are embedded on
the earphones or smartphones, they do not introduce extra
accessories during sensing. These mobile systems can provide
useful information for people in realtime with little overhead.

There are also many other utilities of smartphones. For
instance, with the power of mobility, smartphones are used
as the data mules in [27]. By the implementation of mobile-
phone-based data muling system, the smartphones can be used
to monitor remote sensor networks. The effect of muling on
energy consumption is also studied in the paper. The study
on energy consumption and efficiency of mobile systems are
important because the limitation of power supply and proces-
sors performance. [28] studies the balancing of energy, latency
and accuracy on smartphones and [29] presents analytical and
empirical characterisations of imaging sensors in embedded
cameras in order to optimise their energy consumption. Other
examples of smartphone utilties include security and authenti-
cation [30], [31], visualisation [32] and localisation [33].

Random matrices are often used to reduce the dimension-
ality of the problem while preserving the accuracy of the
applications. They have been applied to speed up background
subtraction on embedded system [34] and cross-correlation
computation in sensor networks [35]. In [5], SRC is used
for acoustic classification and a column reduction procedure is
proposed to reduce the dimension of ℓ1 minimisation. Note that
column reduction in [5] is complementary to the techniques
of projection matrix optimisation and compressed resi-duals
proposed in this paper; all three can be applied to improve the
performance of SRC. Other application of random projection
matrix is to enable efficient moisture data collection in sensor
networks [36] and privacy preservation of voice data [30].

Other related work include face recognition algorithms [3],
[2], [1], [4] and projection matrix optimisation methods [9],
[8]. We have already discussed them in the main text.



VII. CONCLUSIONS AND FUTURE WORK

In this paper, we address the challenges of performing
face recognition accurately and efficiently on smartphones
by designing a new face recognition algorithm called opti-
SRC. A key idea behind opti-SRC is a novel strategy to
optimise the projection matrix so that the resulting sensing
matrix has both low row and mutual coherence. We show
that opti-SRC is 5-17% more accurate the the state-of-the-art
face recognition algorithms. The use of optimised projection
matrix means that opti-SRC can achieve the same recognition
accuracy using a lower dimension projection matrix. This
translates to a lower computation requirement on smartphones.
In addition, we propose the use of compressed residuals in
order to significantly reduce the computational time of opti-
SRC on resource constrained smartphones. We compare the
running time of opti-SRC against OpenCV algorithms on three
smartphone platforms and find they have comparable running
time.

Considering the inconvinience of offline optmisation, we
may invesigate the choice of offloading the optimisation task
to a cloud or do it locally. Offloading the task to the cloud can
always be a potential choice for mobile systems. However, it is
known that transmission consumes lots of energy. Also, if the
smartphones cannot access to Wifi, it has to use 3G to offload
the task. The energy consumption and delay will increase
signicantly when the signal strength is low. A lot of careful
investigations need to be done on the resouce consumption
when we introduce cloud in this system.
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