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Abstract
The nonlinear Schrödinger (NLS) equation and the

Whitham modulation equations both describe slowly vary-

ing, locally periodic nonlinear wavetrains, albeit in differing

amplitude-frequency domains. In this paper, we take advan-

tage of the overlapping asymptotic regime that applies to

both the NLS and Whitham modulation descriptions in

order to develop a universal analytical description of disper-

sive shock waves (DSWs) generated in Riemann problems

for a broad class of integrable and nonintegrable nonlinear

dispersive equations. The proposed method extends DSW

fitting theory that prescribes the motion of a DSW's edges

into the DSW's interior, that is, this work reveals the DSW

structure. Our approach also provides a natural framework

in which to analyze DSW stability. We consider several rep-

resentative, physically relevant examples that illustrate the

efficacy of the developed general theory. Comparisons with

direct numerical simulations show that inclusion of higher

order terms in the NLS equation enables a remarkably accu-

rate description of the DSW structure in a broad region that

extends from the harmonic, small amplitude edge.
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1 INTRODUCTION

There has been a surge of interest recently in the subject of dispersive hydrodynamics and, in par-

ticular, dispersive shock waves (DSWs) (see Refs. 1 and 2 and references therein). This has largely

occurred thanks to the growing recognition of the fundamental nature and ubiquity of DSWs in physical

applications: from shoaling tsunami waves3–5 and internal undular bores in the ocean6–8 and

atmosphere9,10 to nonlinear diffraction patterns and optical shocks in laser beam propagation,11–15

quantum shocks in superfluids,16–19 and nonlinear spin wave propagation in magnetic thin films.20 On

the other hand, the study of DSWs has revealed a number of challenging mathematical problems in the

context of both integrable and nonintegrable nonlinear wave equations.

A DSW is an expanding, modulated nonlinear wavetrain that connects two disparate hydrodynamic

states (Figure 1). It can be viewed as a dispersive counterpart to the dissipative, classical shock. Hydro-

dynamic wave breaking singularities in dispersive media are generically resolved by DSWs. A DSW

has a distinct multiscale structure consisting of an oscillatory transition between two nonoscillatory—

for example, slowly varying or constant—states: one edge is associated with a solitary wave or soliton

(for convenience, we use the term soliton regardless of the integrability of the governing equation) that

is connected, via a slowly modulated periodic wavetrain, to a harmonic, small-amplitude wave at the

opposite edge. The relative position (left/trailing or right/leading) of the soliton and harmonic edges

determines the DSW orientation 𝑑, found in terms of the curvature of the linear dispersion relation

as 𝑑 = −sgn[𝜕𝑘𝑘𝜔0(𝑘, 𝑢0)].2,21 Here, 𝜔 = 𝜔0(𝑘, 𝑢0) is the frequency of a small amplitude wave with

wavenumber 𝑘 that propagates on the mean flow background 𝑢0. The DSW shown in Figure 1 has

𝑑 = 1 because the solitary wave is on the rightmost, leading edge. The shock structure of a DSW—an

unsteady oscillatory wavetrain—is more complex than the stationary shock structure of a viscous shock

wave. In particular, a DSW cannot be described by a traveling wave (ODE) solution of the nonlinear

wave equation.21

The rapidly oscillating structure of DSWs motivates the use of asymptotic, WKB-type, methods

for its analytic description. One such method, known as Whitham modulation theory22,23 (see also,

Ref. 24), is based on the averaging of dispersive hydrodynamic conservation laws over nonlinear

periodic wavetrains leading to a system of first-order quasilinear partial differential equations.

Whitham theory has proved particularly effective for the description of DSWs in both integrable

and nonintegrable systems. If the dispersive hydrodynamics are described by an integrable equation

such as the Korteweg–de Vries (KdV) or nonlinear Schrödinger (NLS) equation, the associated

Whitham system can be represented in a diagonal, Riemann invariant form.22,24,25 This fact enabled

Gurevich and Pitaevskii (GP)26 to construct an explicit modulation solution for a DSW generated by
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F I G U R E 1 DSW expanding oscillatory structure in convex dispersive hydrodynamics with negative dispersion
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a Riemann problem for the KdV equation. The GP construction is based on a self-similar, rarefaction

wave solution of the KdV–Whitham equations. This modulation solution describes the interior shock

structure of a DSW and reveals a monotonic change in the nonlinear wave's wavenumber, mean, and

amplitude as the DSW is spatially traversed.

For nonintegrable dispersive equations, diagonalization of the associated modulation systems in

terms of Riemann invariants is generally not possible, often presenting an insurmountable obstacle

to the explicit determination of the Whitham system's simple wave solution, although its existence

requires only strict hyperbolicity and genuine nonlinearity.68 Consequently, the analytical description

of a DSW's interior structure has so far been limited to integrable systems or a detailed analysis

of the Whitham modulation system in certain limiting regimes on a case-by-case basis.27,28 One

can, however, explicitly determine key observables associated with each DSW edge, even for

nonintegrable equations. These observables include the DSW edge speeds and their associated wave

parameters—the harmonic edge wavenumber and the soliton edge amplitude. The determination of

these observables represents the fitting of a DSW to the long-time dynamics of piecewise constant,

initial Riemann data. The DSW fitting method proposed in Ref. 29 (see also, Ref. 2) is based on a

fundamental, generic property: the Whitham modulation equations admit exact reductions to a set

of common, much simpler, analytically tractable equations in the limits of vanishing amplitude and

vanishing wavenumber, which correspond to the harmonic and soliton DSW extremes (Figure 1).

Therefore, the DSW fitting method can be viewed as a universal dispersive hydrodynamic analog to

the Rankine–Hugoniot conditions for dissipative, viscous shocks. The key advantage of the method

is that it involves neither the determination nor the analysis of the full Whitham system because the

required zero-amplitude and zero-wavenumber reductions are available directly and are ultimately

determined by the nonlinear, hyperbolic flux and the linear dispersion relation of the dispersive

hydrodynamics. The method greatly expands the scope of DSW analysis as it is not reliant on

integrability of the governing nonlinear dispersive equation via inverse scattering theory. It has been

successfully applied to many nonintegrable dispersive hydrodynamic systems. See, for example,

Refs. 28,30–37. Restrictions to the method's applicability are related to possible violations of genuine

nonlinearity (convexity) and strict hyperbolicity of the modulation system.33,34

Once the parameters of the leading and trailing edges have been determined by DSW fitting, wave

modulation in the vicinity of these edges can be, in principle, determined by expanding the full

Whitham system for small amplitudes near the harmonic edge and small wavenumbers near the soli-

ton edge.27,28 Such an asymptotic consideration, however, has a number of serious drawbacks due to

the need to derive and analyze the full modulation system. Apart from being a potentially daunting

technical task, this presents a major disadvantage to the whole procedure as it is system specific. It

would therefore be highly desirable to have a more direct, widely applicable method for the determi-

nation of the DSW structure including modulation near the harmonic and soliton edges, which would

complement and extend the existing general DSW fitting procedure.

In this paper, we develop a general method for the determination of the universal nonlinear DSW

modulation—the DSW structure—near the harmonic edge. This asymptotic modulation provides cru-

cial information about the variation of the amplitude in the DSW (ie, the envelope of the oscillatory

wavetrain) as well as other physical DSW parameters such as the wavenumber and mean flow. The mod-

ulation is universal because it is derived from the NLS equation, a universal model of weakly nonlinear,

modulated dispersive wavetrains38 (see also, Ref. 39). The present work takes advantage of the asymp-

totic overlap region in the vicinity of the DSW harmonic edge between the semiclassical, long-wave

limit of the NLS equation and the small amplitude limit of the full Whitham modulation equations. The

commonalities and differences between Whitham modulation theory and the NLS equation have been

widely discussed in the literature (see, eg, Refs. 2 and 40) but to the best of our knowledge, the overlap

regime for the applicability of the two descriptions has never been used in practice, except very recently
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in Ref. 41. While the Whitham equations describe modulations of fully nonlinear wavetrains, the NLS

description is advantageous in the weakly nonlinear regime because it incorporates higher order dis-

persive effects of the wave envelope that are not accounted for in leading order Whitham theory.

We use the parameters obtained by DSW fitting applied to the harmonic edge as input information

for a standard, small amplitude, multiple scales expansion that leads to the NLS equation for the wave's

envelope and phase. The specific information relevant to dispersive hydrodynamics consists of the NLS'

nonlinear and dispersion coefficients. The universal asymptotic modulation in a DSW is then found

as a special vacuum rarefaction simple wave solution of the NLS equation in the long-wavelength,

dispersionless limit, which is similar to the solution to the shallow water equations for the classical

dam break problem with a dry downstream bed.

We consider several representative integrable and nonintegrable examples to illustrate the efficacy of

the developed general theory. Comparisons with direct numerical simulations show that the accuracy

of the asymptotic description improves dramatically when higher order terms of the NLS equation are

taken into account in the so-called HNLS equation. The HNLS equation was first derived in the nonlin-

ear optics context,42,43 but it is a universal equation that also arises in other applications including fluid

dynamics44,45 and plasma physics.46 We observe that in all considered examples, the vacuum rarefac-

tion simple wave solution of the semiclassical, dispersionless HNLS equation provides a remarkably

accurate description of the DSW modulation, and therefore the DSW structure, in a broad vicinity of the

harmonic edge. Finally, we show that convexity of the linear dispersion relation for the original disper-

sive hydrodynamics plays a key role in the determination of DSW stability via the focusing/defocusing

character of the associated NLS equation.

The paper is organized as follows. We begin in Section 2 with a brief outline of the necessary ele-

ments of DSW modulation theory and, in particular, the DSW fitting method for the determination of

the DSW harmonic edge in scalar dispersive hydrodynamic systems. Section 3 develops an asymptotic,

multiple scales expansion in the vicinity of the DSW harmonic edge that leads to the NLS equation. This

is used to derive the universal, first-order approximation of the DSW modulation as a vacuum rarefac-

tion simple wave solution of the long-wave, dispersionless limit of the NLS equation. We then extend

the first-order analysis by including higher order terms in the multiple scales expansions in Section 4.

This results in the HNLS equation for which we find the appropriate simple wave solution in the long-

wavelength limit. Section 5 is devoted to applications to several representative examples. The examples

include the KdV equation, the conduit equation that models the interfacial dynamics of a rising, buoy-

ant, viscous fluid within another miscible, high viscosity contrast fluid,33,47 and the Serre equations for

fully nonlinear shallow water waves.28,48,49 The latter two equations are nonintegrable. We complete

the paper with a summary and discussion of further directions in Section 6. Appendices A, B and C

detail the multiple scales derivations of the NLS and HNLS equations for the conduit equation and the

Serre system. Appendix D is devoted to a brief description of numerical methods used for simulations.

2 DISPERSIVE SHOCK WAVES: MODULATION THEORY

In this section, we outline the elements of DSW modulation theory that are necessary for developments

in subsequent sections. A detailed exposition can be found in Refs. 2 and 21.

2.1 Modulation equations and the matching regularization of the Riemann
problem
We consider scalar dispersive hydrodynamics generically described by the equation

𝑢𝑡 + 𝑓 (𝑢)𝑥 +𝐷[𝑢]𝑥 = 0, (1)
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F I G U R E 2 Contour plot of the asymptotic KdV DSW solution obtained by GP26 for 𝑢− = 1, 𝑢+ = 0

with 𝑓 ′′(𝑢) ≠ 0. The dispersive operator 𝐷 (generally integro-differential) is assumed to have the prop-

erty that Equation (1) admits the real-valued linear dispersion relation 𝜔 = 𝜔0(𝑘, 𝑢0) with long-wave

expansion

𝜔0(𝑘, 𝑢0) = 𝑓 ′(𝑢0)𝑘 + 𝜁𝑘3 + 𝑜(𝑘3), 𝑘 ≪ 1, 𝜁 ≠ 0 (2)

for small-amplitude waves proportional to 𝑒𝑖(𝑘𝑥−𝜔𝑡) and propagating on a constant (or slowly varying)

background 𝑢 = 𝑢0. We will initially assume that the dispersion relation is purely convex or concave,

so that 𝜕𝑘𝑘𝜔0 ≠ 0. Suppose that Equation (1) has a three-parameter periodic traveling wave solution

and at least two local conservation laws. These basic requirements are quite generic and are satisfied by

many dispersive hydrodynamic equations arising in applications. When the dispersive hydrodynamics

admit the above properties, we say that they are of KdV type.

We will consider the evolution of Riemann step initial data

𝑢(𝑥, 0) =

{
𝑢−, 𝑥 < 0

𝑢+, 𝑥 > 0
(3)

for Equation (1). Our consideration will be based upon the fundamental assumption that the initial step

(3) is regularized in the long-time limit by the emergence of three distinct regions in the 𝑥-𝑡 upper

half space-time plane so that the solution is given by two constant states 𝑢 = 𝑢− and 𝑢 = 𝑢+ that are

separated by an expanding DSW region (Figure 2). Within this region, the solution has an oscillatory

structure described by a modulated, locally periodic wavetrain that exhibits a solitary wave at one

edge and a vanishing amplitude linear wave at the opposite edge (recall Figure 1). This asymptotic

structure of the Riemann problem solution has been rigorously recovered for a number of integrable

equations (see, eg, Refs. 50 and 51). For nonintegrable equations such as the Serre system28 or conduit

equation,33 the existence of a modulated, periodic, single phase wave structure of a DSW is a plausible

assumption, which can be inferred from numerical simulations.

We assume that Equation (1) admits a three parameter family of periodic, traveling wave solu-

tions 𝑢(𝑥, 𝑡) = 𝑈 (𝜃), where 𝜃 = 𝑘𝑥 − 𝜔𝑡, 𝑘 being the wavenumber and 𝜔 the wave frequency, so

that 𝑈 (𝜃 + 2𝜋) = 𝑈 (𝜃). It is convenient to use the period mean 𝑢 = (2𝜋)−1 ∮ 𝑈d𝜃, the amplitude

𝑎 = 𝑢max − 𝑢min, and the wavenumber 𝑘 as a basic parameter set, that is, 𝑈 (𝜃) ≡ 𝑈 (𝜃; 𝑢, 𝑎, 𝑘); all other

physical parameters, such as the frequency 𝜔 or the mean square 𝑢2 are functions of the basic triple

(𝑢, 𝑎, 𝑘). We also assume that the solution 𝑈 (𝜃; 𝑢, 𝑎, 𝑘) has two asymptotic limits: (i) when 𝑎 → 0,

it transforms into a linear wave on the background 𝑢 = 𝑢 with the dispersion relation 𝜔 = 𝜔0(𝑘, 𝑢);
(ii) when 𝑘 → 0, it transforms into an exponentially decaying solitary wave. Examples of dispersive
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equations whose periodic solutions satisfy the above properties include KdV, modified KdV, the con-

duit equation, and others.

We now consider a solution of Equation (1) represented by the 2𝜋-periodic traveling wave with slow

(𝑥, 𝑡)-dependence of (𝑢, 𝑎, 𝑘). This slowly varying traveling wave is characterized by the generalized

phase 𝜃(𝑥, 𝑡) so that the local wavenumber and frequency are given by 𝑘 = 𝜃𝑥 and 𝜔 = −𝜃𝑡, respec-

tively. The variations of (𝑢, 𝑎, 𝑘) satisfy the Whitham modulation equations,23 which can be obtained by

applying multiple scales expansions or, equivalently, by averaging two independent conservation laws

of (1) over the periodic family and completing the system with the consistency equation 𝜃𝑥𝑡 = 𝜃𝑡𝑥 that

yields wave number conservation 𝑘𝑡 + 𝜔𝑥 = 0. The same set of modulation equations can be derived

via an averaged variational principle.52 Assuming nonvanishing Jacobians, the Whitham system can

be represented as a system of quasilinear first-order equations

⎛⎜⎜⎝
𝑢

𝑎

𝑘

⎞⎟⎟⎠
𝑡

+ A(𝑢, 𝑎, 𝑘)
⎛⎜⎜⎝
𝑢

𝑎

𝑘

⎞⎟⎟⎠
𝑥

=
⎛⎜⎜⎝
0
0
0

⎞⎟⎟⎠ , (4)

where A(𝑢, 𝑎, 𝑘) ∈ ℝ3×3 is a matrix. We initially assume hyperbolicity so that the eigenvalues 𝑉1 ≤
𝑉2 ≤ 𝑉3 of A are real and the eigenvectors {𝐫𝑗 | A𝐫𝑗 = 𝑉𝑗𝐫𝑗 , 𝑗 = 1, 2, 3} form a basis in ℝ3.

In the context of a DSW that is described by a modulated periodic wave solution, the Whitham

equations (4) are subject to free boundary (matching) conditions26,29

𝑥 = 𝑥−(𝑡) ∶ 𝑎 = 0, 𝑢 = 𝑢− , (5)

𝑥 = 𝑥+(𝑡) ∶ 𝑘 = 0, 𝑢 = 𝑢+ , (6)

thus ensuring continuity of the mean flow 𝑢 at the unknown DSW edges 𝑥 = 𝑥±(𝑡). Outside the DSW

region 𝑥−(𝑡) ≤ 𝑥 ≤ 𝑥+(𝑡), the solution is given by 𝑢 = 𝑢− for 𝑥 < 𝑥−(𝑡) and 𝑢 = 𝑢+ for 𝑥 > 𝑥+(𝑡). Here,

for specificity, we have assumed a positive DSW orientation (Figure 1) so that the harmonic edge is

trailing, 𝑥 = 𝑥−(𝑡), and the soliton edge is leading, 𝑥 = 𝑥+(𝑡). We also assume concave flux, 𝑓 ′′(𝑢) > 0,

which implies the admissibility or causality condition 𝑢− > 𝑢+ for a compressive DSW.2,21 The cases

of positive dispersion that yield either a negative DSW orientation, 𝑑 = −1, or convex flux 𝑓 ′′(𝑢) < 0
(which implies 𝑢− < 𝑢+ for compressive DSW formation) can be considered in a similar fashion.

The hydrodynamic scaling invariance 𝑥 → 𝑎𝑥, 𝑡 → 𝑎𝑡 of both the modulation equations (4) and

initial conditions (3), together with hyperbolicity, necessitates a self-similar, simple wave modulation

solution. To satisfy the matching conditions (5), the modulation solution must be a 2-wave rarefaction

curve2,29 given by

𝑉2(𝑢, 𝑎, 𝑘) = 𝑥∕𝑡, 𝐼1(𝑢, 𝑎, 𝑘) = 0, 𝐼2(𝑢, 𝑎, 𝑘) = 0, (7)

where 𝐼1,2 are integrals of the Whitham system (4) on the solution curve. The integrals are parametrized

by the Riemann data 𝑢±, that is, 𝐼1(𝑢−, 0, 𝑘−) = 0 and 𝐼2(𝑢+, 𝑎+, 0) = 0 determine the trailing edge

harmonic wavenumber 𝑘− and the leading edge soliton amplitude 𝑎+. For the KdV equation solution,

Equation (7) was found explicitly by GP26 in terms of Riemann invariants that are available for the

KdV–Whitham system owing to its complete integrability;25 in fact, Whitham was able to determine

the Riemann invariants explicitly via an involved, direct calculation22 (see also, Refs. 24 and 53). The

DSW edge speeds 𝑠± are constant and follow from the modulation solution (7) in the 𝑎 → 0 (harmonic,

trailing edge) and 𝑘 → 0 (soliton, leading edge) limits by evaluating the linear group velocity and
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soliton phase velocity, respectively. The (𝑥, 𝑡)-contour plot of the GP solution to the Riemann problem

for the KdV equation 𝑢𝑡 + 𝑢𝑢𝑥 + 𝑢𝑥𝑥𝑥 = 0 illustrates the described modulation theory setting in

Figure 2.

The above outlined construction of the DSW modulation solution for scalar equations (1) can be

extended to systems describing bidirectional dispersive hydrodynamics, for example, the Serre shallow

water equations, the generalized NLS equation, and other systems. See, for example, Refs. 28, 29, 34,

and 54.

2.2 The determination of the harmonic edge: DSW fitting
Modulation systems (4) obtained by averaging dispersive hydrodynamic equations (1) exhibit an impor-

tant general property: they admit exact reductions to lower order quasilinear systems in the harmonic

(𝑎 → 0) and soliton (𝑘 → 0) limits (recall that these two limits correspond to special wave regimes

realized at the DSW edges2,27,29). Importantly, these exact reductions are often available explicitly,

without the necessity to derive the full modulation system. Another fundamental fact is that in the

Riemann problem, the DSW edges are characteristics when the modulation system (4) is hyperbolic.

As a result, the speeds 𝑠± of the harmonic and soliton edges can be obtained from the analysis of the

reduced modulation systems. The corresponding technique proposed in Ref. 29 is sometimes referred

to as the DSW fitting method.

Determining the harmonic edge via the DSW fitting method is particularly simple. Indeed, the har-

monic reduction (𝑎 = 0) of the modulation system (4) can be shown to be universally represented in

the physically transparent form

𝑢𝑡 + 𝑓 (𝑢)𝑥 = 0, 𝑘𝑡 + [𝜔0(𝑘, 𝑢)]𝑥 = 0. (8)

Then, the DSW harmonic edge speed coincides with the linear group velocity for the edge parameters

𝑢 = 𝑢−, 𝑘 = 𝑘−:

𝑠− = 𝜕𝑘𝜔0(𝑘−, 𝑢−) where 𝑘− = 𝐾(𝑢−), (9)

𝐾(𝑢) being the harmonic edge wavenumber locus function, which is determined as follows. Let the

value 𝑢 = 𝑢+ at the DSW soliton edge be fixed. Then, the function 𝐾(𝑢) is found from the ODE

𝑑𝐾

𝑑𝑢
=

[
𝜕𝑢𝜔0

𝑓 ′(𝑢) − 𝜕𝑘𝜔0

]
𝑘=𝐾

, 𝐾(𝑢+) = 0. (10)

The ODE (10) follows by integrating the differential associated with the group velocity characteristic

of Equation (8) on the DSW harmonic edge. It specifies a relation between admissible values of 𝑘 and

𝑢 along this edge. The boundary condition in (10) follows from the GP matching conditions (5) (see

Refs. 2 and 29 for details).

The determination of the soliton edge is analogous, although it involves some nontrivial change of

variables which we do not describe here (see Refs. 2 and 29). The extension of scalar DSW fitting to

bidirectional, Eulerian dispersive hydrodynamic systems has been developed in Refs. 29 and 34. The

DSW fitting procedure is subject to certain admissibility conditions derived from the requirement of

monotonicity for the relevant real characteristic velocity along the integral curve (7), that is, the mod-

ulation system must be genuinely nonlinear and strictly hyperbolic along the entire integral curve.33,34

Therefore, the DSW fitting construction is not reliant upon the integrability of the dispersive hydro-

dynamic evolution equation (1), it only requires strict hyperbolicity and genuine nonlinearity of the

modulation system (4).
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3 SMALL AMPLITUDE DSW REGIME AND THE NLS
EQUATION

We will be interested in the region of a DSW adjacent to the harmonic edge 𝑥 = 𝑠−𝑡, where the oscil-

lation amplitude 𝑎 is relatively small. One can, in principle, expand the Whitham equations (4) in

powers of 𝑎 for 𝑎 ≪ 1 and solve them by seeking a solution in powers of the amplitude, subject to

the matching condition (5) at 𝑥 = 𝑠−𝑡. This programme has been to some extent realized in Refs. 27

and 28 for several nonintegrable dispersive hydrodynamic systems, including the equations for ion-

acoustic and magneto-acoustic waves in collisionless plasma and the Serre equations for fully nonlin-

ear dispersive shallow water waves. In all cases, the full modulation system (4) (or its bi-directional

generalization) was derived, and then reduced to an abstract, model Whitham system for 𝑎 and 𝑘 (see

Ref. 23, ch. 16.15) involving an effective nonlinear frequency correction 𝜔2(𝑘, 𝑢−)𝑎2 to the linear dis-

persion relation 𝜔0(𝑘, 𝑢−). As a result, the first-order DSW modulation near the harmonic edge was

determined, including the linear growth of the amplitude with distance. This approach, however, has

a major drawback, due to its reliance on the full modulation system in each case, while only the small

amplitude expansion is actually used.

Here, instead of deriving the full modulation system and making subsequent small amplitude expan-

sions, we perform an appropriate small amplitude expansion directly on the original system and then

derive modulation equations for weakly nonlinear, periodic (Stokes) waves.23 Slow modulations of

almost monochromatic Stokes waves for a broad class of nonlinear dispersive systems are known to

be described by the NLS or its higher order versions.38,55,56 Consequently, both Whitham modulation

theory and an NLS description can be used in the inner vicinity of the DSW harmonic edge. Moreover,

because a DSW is described by a rarefaction wave solution of the Whitham equations, the counter-

part NLS description will reduce to finding a simple wave solution to the dispersionless limit of the

corresponding NLS equation or one of its higher order versions.

It is instructive to start with an outline of the standard derivation of the NLS equation. See, for exam-

ple, Ref. 55 for examples and further details. Let 𝜀 be a small parameter characterizing the wave ampli-

tude. We seek the solution of the dispersive hydrodynamic equation (1) in the form of an asymptotic

expansion about the constant 𝑢0 for a nearly monochromatic wave with the dominant carrier wavenum-

ber 𝑘

𝑢 = 𝑢0 + 𝜀𝑢1 + 𝜀2𝑢2 + 𝜀3𝑢3 +… , (11)

where

𝑢1 = 𝐴(𝑋, 𝑇1, 𝑇2)𝑒𝑖(𝑘𝑥−𝜔𝑡) + c.c., 𝑋 = 𝜀𝑥, 𝑇1 = 𝜀𝑡, 𝑇2 = 𝜀2𝑡.

Substituting expansion (11) into Equation (1) and collecting terms in powers of 𝜀, we obtain the linear

dispersion relation 𝜔 = 𝜔0(𝑘, 𝑢0) at the first order. To eliminate secular terms at 𝑂(𝜀2), we require that

the complex wave envelope moves with the group velocity

𝐴𝑇1
+ 𝜕𝑘𝜔0𝐴𝑋 = 0. (12)

The NLS equation arises as the condition for removal of secular terms at 𝑂(𝜀3) and has the form

𝑖𝐴𝑇2
+ 𝛽𝐴𝑋𝑋 + 𝛾|𝐴|2𝐴 = 0, (13)
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where 𝛽(𝑘, 𝑢0) =
1
2𝜕𝑘𝑘𝜔0. We also obtain the variation of the mean 𝑢 − 𝑢0 ∼ 𝜀2𝑏1(𝑘, 𝑢0)|𝐴|2 as a by-

product of the 𝑂(𝜀3) calculation. Here, the factors 𝑏1 and 𝛾 have no general expressions.

Although the above outlined derivation is standard, it can be quite laborious, especially for systems.

The difficult part of the derivation is the determination of the nonlinear coefficient 𝛾(𝑘, 𝑢0), but this

computation can be readily performed with the aid of a symbolic algebra package such as Mathematica.

See Appendix B for an outline of the calculations for the Serre system. In fact, 𝛾 is precisely the sought

for nonlinear frequency correction 𝜔2(𝑘, 𝑢) mentioned earlier that is obtained in a weakly nonlinear

analysis of the Whitham equations. Equations for 𝐴𝑇1
and 𝐴𝑇2

can be combined into a single equation

for the unscaled envelope 𝐴̃(𝑥, 𝑡) defined by

𝐴̃(𝑥, 𝑡) = 𝜀𝐴(𝜖𝑥, 𝜖𝑡, 𝜖2𝑡). (14)

Hence, one has the following substitution rules:

𝐴̃𝑥 = 𝜀2𝐴𝑋, 𝐴̃𝑡 = 𝜀2𝐴𝑇1
+ 𝜀3𝐴𝑇2

, |𝐴̃|2 = 𝜀2|𝐴|2 . (15)

The envelope of the wave packet 𝑢 = 𝑢0 + 𝐴̃(𝑥, 𝑡)𝑒𝑖(𝑘𝑥−𝜔0𝑡) + c.c. is then governed by the equation:

𝑖𝐴̃𝑡 + 𝑖𝜕𝑘𝜔0𝐴̃𝑥 + 𝛽𝐴̃𝑥𝑥 + 𝛾|𝐴̃|2𝐴̃ = 0 . (16)

The sign of the product 𝛽𝛾 determines the NLS type: if 𝛽𝛾 > 0, the equation is attractive or focusing and

describes the envelope of a modulationally unstable wave while for 𝛽𝛾 < 0, it is repulsive or defocusing

and describes the envelope of a modulationally stable wave.

To apply the NLS equation to the description of the DSW harmonic edge vicinity, we assume

in (11):

𝑢0 = 𝑢−, 𝑘 = 𝑘−, 𝜀𝑢1 = 𝐴̃(𝜒, 𝑡) exp[𝑖(𝑘−𝑥 − 𝜔0(𝑘−, 𝑢−)𝑡)] + c.c.,

where 𝜒 = 𝑥 − 𝜕𝑘𝜔0(𝑘−, 𝑢−) 𝑡 = 𝑥 − 𝑠−𝑡. The DSW-NLS equation for 𝐴̃ is then

𝑖𝐴̃𝑡 + 𝛽(𝑘−, 𝑢−)𝐴̃𝜒𝜒 + 𝛾(𝑘−, 𝑢−)|𝐴̃|2𝐴̃ = 0, (17)

where the dependence of 𝑘− on the Riemann data 𝑢± is obtained by DSW fitting.

We introduce the Madelung transformation 𝐴̃ =
√
𝜌𝑒𝑖𝜙, 𝑣 = 𝜙𝜒 to cast the NLS equation (17) in

dispersive-hydrodynamic form

𝜌𝑡 + 2𝛽(𝜌𝑣)𝜒 = 0, 𝑣𝑡 + 2𝛽𝑣𝑣𝜒 − 𝛾𝜌𝜒 − 𝛽(
√
𝜌
𝜒𝜒

∕
√
𝜌)𝜒 = 0, (18)

where 𝑣 ∼ 𝑘 − 𝑘−, and
√
𝜌 = |𝐴̃| ∼ 𝑎∕4 in the DSW context (we recall that 𝑎 = 𝑢max − 𝑢min). The

DSW modulation solution is a rarefaction curve of the Whitham equation, thus the relevant NLS solu-

tion must also be a rarefaction wave described by the long-wave, dispersionless limit. Neglecting the

dispersive term in (18), we obtain

𝜌𝑡 + 2𝛽(𝜌𝑣)𝜒 = 0, 𝑣𝑡 + 2𝛽𝑣𝑣𝜒 − 𝛾𝜌𝜒 = 0. (19)

The characteristic velocities are 𝛽𝑣 ±
√
−2𝛽𝛾𝜌, thus the system is hyperbolic if 𝛽𝛾 < 0 and elliptic

if 𝛽𝛾 > 0, consistent with the defocusing and focusing character of the NLS equation (13), respectively.

We assume for now that 𝛽𝛾 < 0, so that the system (19) is equivalent to the shallow water equations.
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We now need to specify boundary conditions for the dispersionless NLS equation (19) at the DSW

harmonic edge. This is done using the GP matching conditions (5) and the DSW fitting data. In the

original modulation variables, we have from (5)

𝑥 = 𝑠−𝑡 ∶ 𝑎 = 0, 𝑘 = 𝑘−. (20)

Note that, unlike the free boundary in (5), the boundary in (20) is known from DSW fitting. Translating

(20) into the variables of (19), we arrive at a boundary value problem for the vacuum rarefaction wave

𝜒 = 0, 𝑡 > 0 ∶ 𝜌 = 0, 𝑣 = 0. (21)

We are now looking for a self-similar rarefaction wave solution of the shallow water equations (19)

subject to the boundary conditions (21). There are two such nontrivial solutions—the fast and slow

waves. The correct one is chosen by the admissibility condition that the wavenumber decreases mono-

tonically as the DSW is traversed from the harmonic to the soliton edge, that is, 𝑑𝑘∕𝑑𝑎 < 0 or, equiv-

alently, 𝑑𝑣∕𝑑𝜌 < 0. Then, the required solution of (19) is given by

√
𝜌 = 1

3
√
−2𝛽𝛾

||||𝜒𝑡 |||| ; 𝑣 = 1
3𝛽

𝜒

𝑡
. (22)

Using the dispersionless NLS solution (22) and the expansions (11), we recover the leading order

behaviors of the amplitude 𝑎 and the wavenumber 𝑘 near the DSW harmonic edge in terms of the

dispersion and nonlinearity coefficients 𝛽 and 𝛾 of the associated NLS equation (17)

𝑎 ∼ 4
3

1√
−2𝛽𝛾

|𝑥∕𝑡 − 𝑠−|, 𝑘 − 𝑘− ∼ 1
3𝛽

(
𝑥∕𝑡 − 𝑠−

)
. (23)

We also recover the variation of the mean:

𝑢 − 𝑢− ∼ 𝑏1(𝑘−, 𝑢−) 𝜌 ∝
(
𝑥∕𝑡 − 𝑠−

)2
. (24)

Equation (23) is the universal description of the DSW envelope (with “martini-glass” shape2,57) near

the harmonic edge for systems with convex dispersion (𝛽 ≠ 0).

Solution (23) is valid when 𝛽𝛾 < 0, which is the hyperbolicity condition for the dispersionless NLS

system (19) and can be interpreted as a necessary condition for DSW modulational stability. For non-

convex dispersion relations, the sign of 𝛽 can change and the system may exhibit an unstable behavior

described by the focusing NLS equation where 𝛽𝛾 > 0. An example of such behavior has been recently

reported in Refs. 33 and 41, where it was shown that nonconvexity of the linear dispersion relation for

the conduit equation implies an elliptic regime for the associated Whitham equations in a certain region

of parameter phase space. This gives rise to modulationally unstable dynamics near the DSW harmonic

edge that can be described by the focusing NLS equation in the small amplitude regime.

For systems with nonconvex dispersion, the study of DSW behavior near the zero dispersion point

𝛽 = 0 necessitates inclusion of higher order terms in the associated NLS equation. It turns out that the

inclusion of such terms is beneficial even outside the nonconvex, zero-dispersion regime, as we now

demonstrate.
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4 HIGHER ORDER NLS APPROXIMATION

We can include higher order nonlinear/dispersive effects in the asymptotic expansion (11) by introduc-

ing a third, slower time scale 𝑇3 = 𝜀3𝑡 and assuming 𝑢1 = 𝐴(𝑋, 𝑇1, 𝑇2, 𝑇3)𝑒𝑖(𝑘𝑥−𝜔𝑡) + c.c. The cancel-

lation of secular terms at 𝑂(𝜀4) then gives

𝐴𝑇3
+ 𝛿𝐴𝑋𝑋𝑋 + 𝜆|𝐴|2𝐴𝑋 + 𝜇𝐴2𝐴∗

𝑋
= 0 ,

where 𝛿(𝑘, 𝑢0) = −𝜕𝑘𝑘𝑘𝜔0∕6 and 𝐴∗ is the complex conjugate of 𝐴. Once again, the laborious part

of the computation consists of finding the coefficients 𝜆(𝑘, 𝑢0) and 𝜇(𝑘, 𝑢0). Written in the moving

reference frame (𝜒, 𝑡) (cf. Appendix A for the derivation of the unscaled equation), where 𝜒 = 𝑥 −
𝜕𝑘𝜔0(𝑘, 𝑢0)𝑡 (recall Equation (17)), the resulting equation is the higher order NLS, or HNLS, equation

𝑖𝐴̃𝑡 + 𝛽𝐴̃𝜒𝜒 + 𝛾|𝐴̃|2𝐴̃ + 𝑖𝛿𝐴̃𝜒𝜒𝜒 + 𝑖𝜆|𝐴̃|2𝐴̃𝜒 + 𝑖𝜇𝐴̃2𝐴̃∗
𝜒 = 0, (25)

initially derived as an improvement to the standard NLS equation for signal propagation in optical

fibers;43 it also arises in geophysical fluid dynamics44 and other areas. See Ref. 45 and references

therein. In the context of the description of a DSW, we set 𝑢0 = 𝑢− and 𝑘 = 𝑘−(𝑢−, 𝑢+) from DSW

fitting in the coefficients 𝛽, 𝛾 , 𝛿, 𝜆, 𝜇.

Similar to the previous section, we cast the HNLS equation (25) in dispersive hydrodynamic form

using the Madelung transform 𝐴̃ =
√
𝜌𝑒𝑖 ∫ 𝑣 𝑑𝜒 . Upon neglecting dispersive terms, we obtain the fol-

lowing quasilinear system for long waves

𝜌𝑡 +
(
2𝛽𝜌𝑣 − 3𝛿𝜌𝑣2 + (𝜆 + 𝜇)𝜌2∕2

)
𝜒
= 0, 𝑣𝑡 +

(
𝛽𝑣2 − 𝛿𝑣3 − 𝛾𝜌 + (𝜆 − 𝜇)𝜌𝑣

)
𝜒
= 0. (26)

As expected, the system (26) is equivalent to the shallow water equations (19) when 𝛿 = 𝜆 = 𝜇 = 0.

In the context of DSWs, the dispersionless limit (26) of the HNLS equation should be considered

with the same vacuum rarefaction conditions (21) augmented by the DSW admissibility inequality

𝑑𝑣∕𝑑𝜌 < 0.

Before we proceed with the integration of system (26), let us briefly discuss its structure. The char-

acteristic velocities are

𝑉±(𝜌, 𝑣) = 𝜆𝜌 + 2𝛽𝑣 − 3𝛿𝑣2 ± 𝜌
√
𝐷(𝜌, 𝑣), 𝐷(𝜌, 𝑣) = 𝜇2 − 2(𝛽 − 3𝛿𝑣)(𝛾 − (𝜆 − 𝜇)𝑣)∕𝜌. (27)

and the associated right eigenvectors are

𝐑± =
(
−𝜇𝜌 ± 𝜌

√
𝐷(𝜌, 𝑣), 𝛾 − (𝜆 − 𝜇)𝑣

)𝑇
, (28)

implying that the system (26) is hyperbolic in the region (𝜌, 𝑣) where 𝜌 > 0, the discriminant is positive

𝐷 > 0, and 𝛾 ≠ (𝜆 − 𝜇)𝑣 so that 𝐑± are independent. In the small amplitude regime (𝜌, |𝑣| ≪ 1), we

recover the standard hyperbolicity condition 𝛽𝛾 < 0 because 𝛽, 𝛾 ≠ 0. Consequently, the DSW modu-

lation near the harmonic edge is determined by the similarity solution of (26),

𝑉𝑑(𝜌, 𝑣(𝜌)) =
𝜒

𝑡
, (29)
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where 𝑑 = −sgn 𝛽 is the DSW orientation and the dependence 𝑣(𝜌) is determined by the rarefaction

curve

𝑑𝑣

𝑑𝜌
+

𝜇 − 𝑑
√
𝐷(𝜌, 𝑣)

2(𝛽 − 3𝛿𝑣)
= 0, 𝑣(0) = 0. (30)

As a by-product of the multiscale expansion to order 𝑂(𝜀4), we obtain a higher order correction to

the mean value (recall (24)) described by the new expression

𝑢 − 𝑢− ∼ 𝜌(𝑏1 + 𝑏2𝑣), (31)

where 𝑏1 has been obtained at the previous order (𝑂(𝜀3)), and 𝑏2 is determined as a by-product of the

𝑂(𝜀4) computation.

An exact analytical solution of the simple wave ODE (30) is generally not available, thus one can

resort to numerical solution. However, because Equations (29) and (30) can formally be applied only

to the small-amplitude vicinity of the DSW harmonic edge—that is, when 𝜌 and 𝑣 are small—we seek

a series solution near 𝜒 = 0. The asymptotic solution of (29) and (30) in the form of a series in powers

of 𝜒∕𝑡 yields general expressions for the approximate DSW amplitude and wavenumber modulations

𝑎 = 4
3
√
−2𝛽𝛾

||||𝜒𝑡 |||| + sgn 𝛽
4(2𝛾𝛿∕𝛽 + 𝜆 − 𝜇)

9(−2𝛽𝛾)3∕2
(𝜒

𝑡

)2
+ 𝑂

[(𝜒

𝑡

)3
]
,

𝑘 = 𝑘− + 1
3𝛽

𝜒

𝑡
+

7𝛿 + 𝛽𝜆∕𝛾
36𝛽3

(𝜒

𝑡

)2
+ 𝑂

[(𝜒

𝑡

)3
]
. (32)

As expected, the first-order terms in (32) agree with the NLS result (23).

We note that it is implicit in the expansions (32) that |𝛽(𝑘−, 𝑢−)| = 𝑂(1), which is the case for

dispersive hydrodynamic equations with a convex dispersion relation. For systems with nonconvex

dispersion such as the Benjamin–Bona–Mahony equation58 or the conduit equation,33,47 the behavior

near the zero-dispersion point, 𝛽(𝑘−, 𝑢−) = 0 captured by the HNLS equation (25) requires a separate

consideration, which is beyond the scope of the present paper.

For convex dispersive hydrodynamics, the second-order approximation (32) formally delivers the

same accuracy of the DSW harmonic edge vicinity as the HNLS equation (25) itself. However, compar-

isons with results of direct numerical simulations of the Riemann problem for the example dispersive

hydrodynamic equations in the next section show that the simple wave solution (29) and (30) of the full

dispersionless HNLS (26) is more accurate than the expansion (32). Remarkably, the accuracy holds

over a significant portion of the DSW, where the amplitude is not small and the HNLS description, let

alone the expansions (32), is not expected to be applicable.

5 NLS DESCRIPTION OF DISPERSIVE SHOCK WAVES:
EXAMPLES

We now demonstrate the effectiveness of the developed general approach by applying it to several spe-

cific dispersive hydrodynamic equations and comparing the results with direct numerical simulations

of the corresponding Riemann problems.
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5.1 Korteweg–de Vries equation
As a first example, we consider the KdV equation

𝑢𝑡 + 𝑢𝑢𝑥 + 𝑢𝑥𝑥𝑥 = 0 (33)

with Riemann initial data (3). The aim here is to compare the results of the developed asymptotic

approach with the known GP modulation solution.26

The KdV linear dispersion relation is

𝜔0(𝑘, 𝑢0) = 𝑢0𝑘 − 𝑘3. (34)

The multiple scales asymptotic expansion of (33) leading to the NLS equation for KdV weakly nonlin-

ear wavepackets is standard and can be found in the literature, see, for example, Refs. 55 and 59. The

coefficients in (13) and (24) are

𝛽 = −3𝑘, 𝛾 = 1
6𝑘

, 𝑏1 = − 1
3𝑘2

. (35)

We also derive the coefficients of the HNLS equation (25) and the associated higher order correction

of the mean value (31)59

𝛿 = 1, 𝜆 = − 1
3𝑘2

, 𝜇 = − 1
2𝑘2

, 𝑏2 =
2
3𝑘3

. (36)

The trailing edge wavenumber is readily obtained from DSW fitting (see Ref. 29 and section 2.2).

Solving the ODE (10), we obtain 𝑘− = 𝐾(𝑢−) in the form

𝑘− =
√

2
3
Δ with Δ = 𝑢− − 𝑢+ , (37)

which yields the harmonic edge velocity

𝑠− = 𝜕𝑘𝜔0(𝑘−, 𝑢−) = 𝑢− − 2Δ . (38)

Substituting (36) and (37) into (31) and (32), we obtain the second-order expansions

𝑎 = 4
3
𝜒

𝑡
− 1

27Δ

(𝜒

𝑡

)2
+ 𝑂

[(𝜒

𝑡

)3
]
, (39)

𝑘 =
√

2Δ
3

− 1
3
√
6Δ

𝜒

𝑡
− 13

216
√
6Δ3∕2

(𝜒

𝑡

)2
+ 𝑂

[(𝜒

𝑡

)3
]
, (40)

𝑢 = 𝑢− − 1
18Δ

(𝜒

𝑡

)2
− 5

324Δ2

(𝜒

𝑡

)3
+ 𝑂

[(𝜒

𝑡

)4
]
, (41)

which agree with the corresponding expansions of the exact GP solution.26

The comparison between the exact simple wave solution (29) and (30) of the dispersionless HNLS

equation (26) with coefficients (35) and (39), the asymptotic expansion (39)–(41), and the direct numer-

ical solution of the KdV Riemann problem is displayed in Figure 3.
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F I G U R E 3 Amplitude, wavenumber, and mean field profiles for the KdV Riemann problem with 𝑢− = 1 and

𝑢+ = 0. Comparison between direct numerical simulations at 𝑡 = 500 (blue pluses), the NLS/HNLS asymptotic

descriptions given by (i) expansions (39)–(41) with the first-order (NLS) approximation (dashed red line) and the

second-order (HNLS) approximation (dash-dotted black line) and (ii) the exact simple wave solution equations (29) and

(30) of the dispersionless HNLS equation (solid green line). The horizontal black dashed lines correspond to the values

of the corresponding fields in the harmonic limit: 𝑎 = 0, 𝑘 = 𝑘−, and 𝑢 = 𝑢−

The numerical method used in the simulations is detailed in Appendix D. Although the NLS descrip-

tion is formally limited to the small-amplitude regime in the vicinity of the DSW harmonic edge, the

KdV DSW amplitude is almost linear for 𝑥∕𝑡 ∈ [𝑠−, 𝑠+], thus the term linear in 𝑥∕𝑡 in (39) fits almost

the entire DSW with good accuracy. It is not the case for the wavenumber and the mean flow: good

agreement between numerics and the first-order (NLS) approximation is observed only in the vicin-

ity of the trailing edge, but the second-order expansions (40) and (41) exhibit better agreement with

the direct KdV numerics over a broader 𝑥∕𝑡 interval. The agreement further improves when the full

solution (29) and (30) of the dispersionless HNLS equation is used where all modulation parameters

fit almost the entire DSW with good accuracy, with the exception of some vicinity of the leading edge,

where 𝑘 → 0 and 𝑢 → 𝑢+ logarithmically in 𝜒∕𝑡,26 behavior that cannot be captured by the expansions

(40) and (41).

We should make an important comment regarding the comparison of the numerically computed

DSW oscillations near the harmonic edge with the results of modulation theory. We can see from

Figure 3, left panel, that there is some deviation of the envelope profile near the trailing edge from

linear behavior 𝑎 ∝ (𝑥∕𝑡 − 𝑠−) that is predicted by modulation theory. In particular, the amplitude of

the oscillations is not exactly zero for 𝑥∕𝑡 ≤ 𝑠−. This discrepancy between the DSW modulation solu-

tion and the exact oscillation behavior is known, having been studied for the KdV equation in detail in

Ref. 60, where it was shown that the envelope amplitude difference between the numerical KdV solu-

tion and the modulation theory solution in the region 𝑥∕𝑡 < 𝑠− decreases roughly as 𝑡−1∕3, likely due

to higher order dispersive effects that are not captured by the long-wave approximation utilized here.

However, modulation theory typically provides a very satisfactory prediction of the amplitude growth

near the DSW harmonic edge even for relatively moderate times.

5.2 Conduit equation
We now consider the conduit equation

𝑢𝑡 + 2𝑢𝑢𝑥 −
[
𝑢2

(
𝑢𝑡∕𝑢

)
𝑥

]
𝑥
= 0 , (42)

a nonintegrable example that gives rise to unstable behavior not found in the KdV equation. This

equation approximately models the evolution of the cylindrical interface, with cross-sectional area 𝑢
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F I G U R E 4 Conduit DSW stability determined by the value of 𝑢+∕𝑢−. (A) Stable DSW with 𝑢+ = 1, 𝑢− = 2 so

that 𝑢+∕𝑢− = 1∕2 > 5∕32; (B) Unstable, imploded DSW with 𝑢+ = 0.15, 𝑢− = 2 so that 𝑢+∕𝑢− < 5∕32

at time 𝑡 and vertical spatial coordinate 𝑥, separating a light, viscous fluid rising buoyantly through a

heavier, more viscous, miscible fluid at small Reynolds numbers.33,47

Equation (42) has convex hyperbolic flux 𝑓 (𝑢) = 𝑢2 and linear dispersion relation

𝜔 = 𝜔0(𝑘, 𝑢0) =
2𝑢0𝑘

1 + 𝑢0𝑘
2 , (43)

which is nonconvex as 𝜕𝑘𝑘𝜔0 can change sign.

The coefficients of the NLS equation (13) and the associated mean for Stokes waves of the conduit

equation were derived in Ref. 41 and are

𝛽 = −
2𝑢20𝑘

(
3 − 𝑢0𝑘

2)(
1 + 𝑢0𝑘

2
)3 , 𝛾 =

3 + 5𝑢0𝑘2 + 8𝑢20𝑘
4

𝑢20𝑘
(
9 + 12𝑢0𝑘2 + 3𝑢20𝑘

4
) , 𝑏1 = −

(
1 + 𝑢0𝑘

2) (1 − 3𝑢0𝑘2
)

𝑢20𝑘
2
(
3 + 𝑢0𝑘

2
) . (44)

We see that, while the nonlinearity coefficient 𝛾 is always positive, the dispersion coefficient 𝛽 (and

therefore the parameter 𝛽𝛾) can change sign, thus the parameter space (𝑘, 𝑢0) of conduit Stokes waves

is split into two domains—which correspond to the defocusing and focusing NLS regimes—that are

separated by the line 𝑘 =
√
3∕𝑢0 . In the context of DSWs, the line 𝑘−(𝑢−, 𝑢+) =

√
3∕𝑢− in the 𝑢−-𝑢+

phase plane of Riemann data (3) separates the regimes of DSW harmonic edge stability and instability.

Here,

𝑘− = 1
2

√√√√ 1
𝑢+

− 4
𝑢−

+

√
1
𝑢+

(
1
𝑢+

+ 8
𝑢−

)
(45)

is the conduit DSW harmonic edge wavenumber obtained from DSW fitting.33 The condition 𝑘− <√
3∕𝑢− or, equivalently, 𝑢+∕𝑢− > 5∕32 ≈ 0.156 is the DSW fitting admissibility condition whose vio-

lation was associated in Ref. 33 with a gradient catastrophe for the wavenumber and a subsequent

DSW implosion—the formation of a two-phase region near the trailing edge. Within the NLS descrip-

tion of DSW modulations developed here, the above admissibility condition is naturally interpreted as a

conduit DSW modulational stability condition. The plots of DSWs for stable and unstable regimes are

presented in Figures 4(A) and (B), respectively.

We now compare the predictions of the (H)NLS analysis for the conduit DSW modulation with direct

numerical simulations within the admissible range of Riemann data with 𝑢+∕𝑢− > 5∕32 that produces a

stable DSW. Within this region, 𝛽 < 0, thus the DSW orientation 𝑑 = +1, and the harmonic edge is the

trailing one, see Figure 4. The coefficients 𝛿, 𝜆, 𝜇 in the conduit-HNLS equation (25) and the coefficient
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F I G U R E 5 Amplitude, wavenumber, and mean field profiles for the conduit Riemann problem with

(𝑢−, 𝑢+) = (2, 1) at 𝑡 = 500 (blue pluses), the NLS/HNLS asymptotic descriptions given by (i) expansions (32) with the

first-order (NLS) approximation (dashed red line) and the second-order (HNLS) approximation (dash-dotted black line)

and (ii) the exact simple wave solution equations (29) and (30) of the dispersionless HNLS equation with

coefficients (44) and (A.6) (solid green line). The horizontal black dashed lines correspond to the values of the

corresponding fields in the harmonic limit: 𝑎 = 0, 𝑘 = 𝑘− ≃ 0.56 and 𝑢 = 𝑢− = 2

𝑏2 in the second-order expansions of the mean flow 𝑢 are derived using symbolic computations in

Mathematica as presented in Appendix A (see formulae (A.6)).

The comparisons between the dispersionless HNLS vacuum rarefaction simple wave solution (29)

and (30) with coefficients (44) and (A.6), its asymptotic expansions (23) and (32), and the numerical

solution of the Riemann problem for the conduit equation are shown in Figure 5. As in the previous

cases, the full simple wave solution exhibits very good agreement with the direct numerical solution

over a broad DSW region, while the first- and second-order approximations work satisfactorily only in

a relatively narrow vicinity of the harmonic edge.

5.3 Serre equations
The presentation until now has emphasized scalar dispersive hydrodynamic equations in the form (1).

Our methodology, however, can be applied to systems of dispersive hydrodynamic equations. As an

example, we now consider the Serre system modeling fully nonlinear shallow water waves48,49

𝜂𝑡 + (𝜂𝑢)𝑥 = 0,

𝑢𝑡 + 𝑢𝑢𝑥 + 𝜂𝑥 = 1
𝜂

(
𝜂3

3
[
𝑢𝑥𝑡 + 𝑢𝑢𝑥𝑥 − (𝑢𝑥)2

])
𝑥

. (46)

We defer technical calculations to Appendices B and C. Here, 𝜂 is the total depth of the fluid and

𝑢 is the depth averaged horizontal velocity. The linear dispersion relation of (46) for small amplitude

waves propagating on the background (𝜂0, 𝑢0) has the form

𝜔 = 𝜔±
0 (𝑘, 𝑢0, 𝜂0) = 𝑘

⎛⎜⎜⎝𝑢0 ±
√

𝜂0

1 + 𝜂20𝑘
2∕3

⎞⎟⎟⎠ . (47)

We assume Riemann initial data for (46)

𝜂(𝑥, 0) =
{
𝜂− 𝑥 < 0
𝜂+ 𝑥 > 0 , 𝑢(𝑥, 0) =

{
𝑢− 𝑥 < 0
𝑢+ 𝑥 > 0 (48)
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subject to an additional constraint (a 2-wave rarefaction curve)

𝑢+ − 2𝜂1∕2+ = 𝑢− − 2𝜂1∕2− (49)

that ensures a simple wave, 2-DSW resolution of (48) corresponding to the fast “+” mode in the disper-

sion relation (47).2,28 Due to scaling and Galilean symmetries of (46), we can assume 𝜂+ = 1, 𝑢+ = 0.

While the Serre system (46) is not integrable, it satisfies the prerequisites of the DSW fitting method

except for the loss of genuine nonlinearity in a certain parameter regime, discussed further below. The

corresponding analysis has been carried out in Ref. 28, demonstrating excellent agreement with direct

numerical simulations. An implicit expression for the harmonic (trailing) edge wavenumber 𝑘− of a

2-DSW as a function of the Riemann data (48), obtained in Ref. 28 by integrating a bi-directional

generalization of the ODE (10), has the form√
𝛼Δ −

(4 − 𝛼

3

)21∕10 (1 + 𝛼

2

)2∕5
= 0,

where 𝛼 =

(
2 + 𝑠−√

Δ
− 2

)1∕3

. (50)

Here, Δ = 𝜂−∕𝜂+ and 𝑠− = 𝜕𝑘𝜔
+
0 (𝑘−, 𝑢−, 𝜂−). The result (50) is valid as long as 𝜕𝑠−∕𝜕𝜂− < 0 (DSW

fitting admissibility34) leading to the condition Δ < Δ𝑐 ≈ 1.43.28 When Δ = Δ𝑐 , the Whitham modu-

lation system loses genuine nonlinearity at harmonic trailing edge.

The multiple scales asymptotic expansions for the Serre equations (46) that lead to the NLS equa-

tion (13) are carried out in Appendix B. In these expansions, the envelopes of the small amplitude

oscillations of 𝜂(𝑥, 𝑡) and 𝑢(𝑥, 𝑡) are proportional to each other:(
𝜂(𝑥, 𝑡)
𝑢(𝑥, 𝑡)

)
=

(
𝜂0
𝑢0

)
+

[(
𝐴̃(𝑥, 𝑡)
𝐵̃(𝑥, 𝑡)

)
𝑒𝑖[𝑘𝑥−𝜔

+
0 (𝑘,𝜂0,𝑢0)𝑡] + c.c.

]
,

where 𝐵̃(𝑥, 𝑡) = 𝐴̃(𝑥, 𝑡)∕
√

𝜂0 + 𝜂30𝑘
2∕3. (51)

The coefficients of the NLS equation (13) for the envelope 𝐴̃(𝑥, 𝑡) are found to be:

𝛽 = −
𝜂
3∕2
0 𝜅

2(1 + 𝜅2∕3)5∕2
, 𝛾 = 243 + 297𝜅2 + 42𝜅4 + 𝜅6 + 𝜅8

4𝜂5∕20 𝜅(27 + 9𝜅2 + 𝜅4)(1 + 𝜅2∕3)3∕2
,

𝑏1,𝜂 = − (9 − 𝜅2)(3 + 𝜅2)3

𝜂0𝜅
2(27 + 9𝜅2 + 𝜅4)

, 𝑏1,𝑢 = − (3 + 2𝜅2)(27 + 6𝜅2 + 𝜅4)
𝜂
3∕2
0 𝜅2

√
1 + 𝜅2∕3(27 + 9𝜅2 + 𝜅4)

, (52)

where 𝜅 = 𝜂0𝑘. Here, 𝑏1,𝜂 , 𝑏1,𝑢 are the coefficients in the mean flow expansions 𝜂 = 𝜂0 + 𝑏1,𝜂𝜌 and

𝑢 = 𝑢0 + 𝑏1,𝑢𝜌. The NLS equation for the component 𝐵̃ is obtained by combining the NLS equation

for 𝐴̃ and the proportionality relation (51).

Going to 𝑂(𝜀4), we obtain the coefficients 𝛿, 𝜆, 𝜇 in the HNLS equation (25), as well as the coef-

ficients 𝑏2,𝜂 , 𝑏2,𝑢 in the second-order expansions of the mean flow 𝜂, 𝑢 in terms of 𝑘, 𝑢0, 𝜂0. These are

presented in Appendix C (see formulae (C.5) and (C.6)). In this higher order description, the envelopes

𝐴̃ and 𝐵̃ are no longer proportional to each other, and the coefficient 𝜇 in the HNLS equation has to

be derived separately for each component.
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F I G U R E 6 Amplitude, wavenumber, and mean field profiles for the Serre system Riemann problem with

(𝜂−, 𝜂+) = (1.4, 1) and (𝑢−, 𝑢+) = (2
√
𝜂− − 2, 0); the amplitudes for the components 𝜂 and 𝑢 are denoted by 𝑎𝜂 and 𝑎𝑢,

respectively. Comparison between direct numerical simulations at 𝑡 = 800 (blue pluses), the NLS/HNLS asymptotic

descriptions given by (i) expansions (32) with the first-order (NLS) approximation (dashed red line) and the

second-order (HNLS) approximation (dash-dotted black line) and (ii) the exact simple wave solution equations (29) and

(30) of the dispersionless HNLS equation with coefficients (52), (C.5), and (C.6) (solid green line). The horizontal

black dashed lines correspond to the values of the corresponding fields in the harmonic limit: 𝑎𝜂 = 0, 𝑎𝑢 = 0,

𝑘 = 𝑘− ≃ 1.34, 𝜂 = 𝜂− = 1.4 and 𝑢 = 𝑢− ≃ 0.37

To apply the HNLS equation to the description of the vicinity of the Serre DSW harmonic edge,

we set 𝑢0 = 𝑢−, 𝜂0 = 𝜂−, 𝑘 = 𝑘−, where the dependence of 𝑘− on the Riemann data (48) is obtained

numerically from the implicit equation (50).

The comparison between the simple wave solution (29) and (30) with parameters given by (52),

(C.5), and (C.6), and the numerical solution of the Riemann problem for the Serre equations is displayed

in Figure 6. Also shown are the curves corresponding to the first-order (23) and second-order (32)

approximations of the full solution (29) and (30). The comparisons are made for the depth and velocity

amplitudes 𝑎𝜂 and 𝑎𝑢 in the DSW, the wavenumber 𝑘, the mean depth 𝜂, and the mean velocity 𝑢. We

can see that the full simple wave solution (29) and (30) of the dispersionless HNLS equation provides

a more accurate description of the DSW modulation than the first- and second-order approximations.

Similar to the KdV case, the full simple wave solution of the dispersionless HNLS equation provides

a good approximation of the nonlinear wave modulation over a significant portion of the DSW, well

beyond the formal applicability of the small amplitude (H)NLS approximation. On the other hand, we

can see that, in contrast to the KdV case, the second-order approximation (32) develops quite strong

deviation from the actual modulation for moderate values of (𝑥∕𝑡 − 𝑠−).
A final comment on the comparison concerns the already discussed generic discrepancy between

the simple wave modulation DSW solution and direct numerical solution of the Riemann problem in

the vicinity of the harmonic edge (see the discussion at the end of Section 5.1). This discrepancy is

more pronounced for the Serre equations than for the KdV equation although the overall agreement

with the dispersionless HNLS solution is still quite good.

We note in conclusion that the (H)NLS description of 1-DSWs is completely analogous to the

2-DSW description, with condition (49) replaced by the rarefaction curve for a 1-wave and using

the “−” mode in the dispersion relation (47). Combined with known rarefaction wave solutions for
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the classical shallow water equations and the bi-directional DSW fitting construction,29,34,54 the the-

ory developed here gives the DSW structure for the full Serre equation Riemann problem.

6 CONCLUSION AND DISCUSSION

In this work, we have developed an efficient, universal approach for the analytical description of the

interior structure of a DSW that extends the previously developed DSW fitting method29 for the DSW

edge speeds. The key element of the extension is the realization that the DSW modulation described

by an expansion fan solution of the Whitham modulation equations can be universally approximated,

in the vicinity of the weakly nonlinear harmonic edge, by a special vacuum rarefaction solution of

the shallow water equations. The connection between the original dispersive hydrodynamics and the

approximating shallow water system occurs via a long-wave, dispersionless limit of the NLS equation

for weakly nonlinear, narrow-band Stokes waves, whose parameters are determined by DSW fitting

when the NLS equation is of defocusing type. The NLS type (defocusing or focusing) determines

DSW stability properties. The developed approach is particularly attractive for applications as it allows

one to avoid a potentially complex, full Whitham modulation analysis of DSWs in favor of the more

straighforward and standard NLS theory.

The efficacy of the developed approach is demonstrated by several representative examples including

the KdV equation, the Serre shallow water equations, and the viscous fluid conduit equation, the latter

two systems being nonintegrable. In all considered cases, it is shown that the inclusion of higher order

terms in the NLS equation dramatically improves agreement between the approximate modulation

solution and the numerical solution of the original dispersive Riemann problem. The proposed method

has broad implications for DSW analysis in nonintegrable systems, where exact methods based on

inverse scattering theory are not available. One interesting perspective is to use the NLS approximation

for the analytical description of multiphase modulations that are symptomatic of DSW implosions

(see Ref. 33 and Section 5.2 of this paper). In this context, the description will necessarily depend

upon dispersive terms in the NLS equation, which do not play a role in the classical expansion fan

DSW solutions considered in the present paper. Further, the improved DSW description in Section 4,

based on the higher order NLS equation, provides a general mathematical framework for DSW analysis

in systems with nonconvex dispersion, which are currently under active investigation.61,62 We also

envisage intriguing connections with the multisymplectic theory of universal dispersive deformations

of the Whitham equations near coalescing characteristics, precisely the configuration that occurs at the

DSW harmonic edge; see Refs. 63 and 64 and references therein.

Probably, the most appealing extension of the developed harmonic edge DSW structure theory would

be to find its counterpart in the vicinity of the DSW soliton edge (utilizing small 𝑘 asymptotics), and

to construct a universal, matched, uniformly valid asymptotic solution for the entire DSW modulation.
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APPENDIX A: DERIVATION OF THE HNLS EQUATION FOR THE
CONDUIT EQUATION

The derivation of the HNLS equation for KdV (33) is detailed in Ref. 59 and we simply repeat in

this section the main steps of the derivation which are applicable to the conduit equation (42). In order

to derive the HNLS equation (25), we look for the solution of (42) in the form

𝑢 = 𝑢0 + 𝜀𝑢1 + 𝜀2𝑢2 + 𝜀3𝑢3 +… (A.1)

https://doi.org/10.1111/sapm.12247
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with

𝑢1 = 𝐴(𝑋, 𝑇1, 𝑇2, 𝑇3)𝑒𝑖(𝑘𝑥−𝜔𝑡) + 𝑐.𝑐, 𝑋 = 𝜀𝑥, 𝑇1 = 𝜀𝑡, 𝑇2 = 𝜀2𝑡, 𝑇3 = 𝜀3𝑡.

The cancellation of the secular terms at 𝑂(𝜀2) and 𝑂(𝜀3) in the expansion in 𝜀 gives Equations (12)

and (13), respectively, and the cancellation of the secular term at 𝑂(𝜀4) gives

𝐴𝑇3
+ 𝛿𝐴𝑋𝑋𝑋 + 𝜆|𝐴̃|2𝐴𝑋 + 𝜇𝐴2𝐴∗

𝑋
= 0. (A.2)

As a by-product of the 𝑂(𝜀4) expansion, we also obtain a higher order correction of the mean 𝑢 which

reads:

𝑢 − 𝑢0 ≃ 𝜀2𝑏1|𝐴|2 + 𝜀3𝑏2𝑖(𝐴𝐴∗
𝑋
− 𝐴∗𝐴𝑋). (A.3)

We define the unscaled envelope 𝐴̃(𝑥, 𝑡) by:

𝐴̃(𝑥, 𝑡) = 𝜀𝐴(𝜀𝑥, 𝜀𝑡, 𝜀2𝑡, 𝜀3𝑡), (A.4)

implying the new substitution rule (cf. Equation (15)):

𝐴̃𝑡 = 𝜀2𝐴𝑇1
+ 𝜀3𝐴𝑇2

+ 𝜀4𝐴𝑇3
. (A.5)

Combining Equations (12), (13), and (A.2) with the substitution rule (A.5), we obtain the HNLS equa-

tion (25) for the unscaled envelope 𝐴̃(𝑥, 𝑡).
Applying the above algorithm to the conduit equation (42), we find the coefficients of the HNLS

equation (25) to be:

𝛿 =
2𝑢20

(
1 − 6𝑢0𝑘2 + 𝑢20𝑘

4)
(1 + 𝑢0𝑘

2)4
,

𝜆 =
2
(
−9 + 9𝑢0𝑘2 + 21𝑢20𝑘

4 + 23𝑢30𝑘
6 + 8𝑢40𝑘

8)
3𝑢20𝑘

2
(
3 + 4𝑢0𝑘2 + 𝑢20𝑘

4
)2 ,

𝜇 =
−27 + 24𝑢0𝑘2 + 55𝑢20𝑘

4 + 8𝑢30𝑘
6

3𝑢20𝑘
2(1 + 𝑢0𝑘

2)(3 + 𝑢0𝑘
2)2

, (A.6)

𝑏2 =
2(3 + 2𝑢0𝑘2 + 7𝑢20𝑘

4)

𝑢20𝑘
3(3 + 𝑢0𝑘

2)2
.

APPENDIX B: DERIVATION OF THE NLS EQUATION FOR THE SERRE
SYSTEM

We detail in this Appendix the multiple scales expansions for the Serre equations (46) leading to

the NLS equation (13). Although the derivation of the NLS equation for systems is standard (see, eg,

Ref. 65), the computation can be rather cumbersome because of the vectorial nature of the system;

this difficulty can be overcome using symbolic computations, as we have done in this case (we used
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Mathematica). Similar to the multiple scales asymptotic expansions for scalar equations, we look for

the solution in the form

Ξ =
(
𝜂

𝑢

)
=

(
𝜂0
𝑢0

)
+ 𝜀Ξ1 + 𝜀2Ξ2 + 𝜀3Ξ3 +… (B.1)

with

Ξ1 = Ψ(𝑋, 𝑇1, 𝑇2)𝑒𝑖(𝑘𝑥−𝜔𝑡) + 𝑐.𝑐, 𝑋 = 𝜀𝑥, 𝑇1 = 𝜀𝑡, 𝑇2 = 𝜀2𝑡,

where Ψ ∈ ℂ2 is a complex two-component vector. Substituting (B.1) into the Serre system (46) and

collecting the 𝑂(𝜀) terms, we get

𝑀(𝑖𝑘,−𝑖𝜔)Ψ = 0, (B.2)

where

𝑀(𝑖𝑘,−𝑖𝜔) =
(
𝑖(𝑢0𝑘 − 𝜔) 𝑖𝜂0𝑘

𝑖𝑘 𝑖(1 + 𝜂20𝑘
2∕3)(𝑢0𝑘 − 𝜔)

)
. (B.3)

The null space of (B.3) is not empty if

𝜔 = 𝜔±
0 (𝑘, 𝑢0, 𝜂0) = 𝑘

⎛⎜⎜⎝𝑢0 ±
√

𝜂0

1 + 𝜂20𝑘
2∕3

⎞⎟⎟⎠ . (B.4)

Equation (B.4) is nothing but the linear dispersion relation (47) of the Serre system. The 2-DSW devel-

oping in the Riemann problem (46), (48), and (49) corresponds to the fast “+” mode (cf. Section 5.3

and Refs. 2 and 28), thus we assume in the following that 𝜔 = 𝜔+
0 (𝑘, 𝜂0, 𝑢0). Hence, Equation (B.2)

yields the nontrivial solution:

Ψ = Ψ+
0 (𝑋, 𝑇1, 𝑇2) =

(
1

1∕
√
𝜂0(1 + 𝜅2∕3)

)
𝐴(𝑋, 𝑇1, 𝑇2), (B.5)

where 𝜅 = 𝜂0𝑘 is a convenient parameter and 𝐴(𝑋, 𝑇1, 𝑇2) is a scalar. The kernel of 𝑀𝑇 is spanned by

{𝐿+
0 , 𝐿

−
0 } where

𝐿±
0 =

(
±
√

1 + 𝜅2∕3,
√
𝜂0

)𝑇

. (B.6)

Assuming that Ψ is given by (B.5) and 𝜔 = 𝜔+
0 (𝑘, 𝜂0, 𝑢0), the second order of the asymptotic expansion

reads

𝑀(𝜕𝑥, 𝜕𝑡)Ξ2 = 𝐶1𝑒
𝑖(𝑘𝑥−𝜔+

0 𝑡) + 𝐶2𝑒
2𝑖(𝑘𝑥−𝜔+

0 𝑡) + c.c., (B.7)
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where we drop the dependences of the dispersion relation 𝜔+
0 by convenience. The vectors 𝐶1 and 𝐶2

are given by:

𝐶1 = −

⎛⎜⎜⎜⎜⎝
𝐴𝑇1

+
(
𝑢0 +

√
𝜂0

1 + 𝜅2∕3

)
𝐴𝑋√

1 + 𝜅2∕3
𝜂0

𝐴𝑇1
+

(
𝑢0

√
𝜂0

1 + 𝜅2∕3
+ 3 − 𝜅2

3 + 𝜅2

)
𝐴𝑋

⎞⎟⎟⎟⎟⎠
,

and

𝐶2 = −

⎛⎜⎜⎜⎜⎝
2𝑖𝜅

𝜂
3∕2
0

√
1 + 𝜅2∕3

𝐴2

𝑖𝜅(3 − 5𝜅2)
𝜂20(3 + 𝜅2)

𝐴2

⎞⎟⎟⎟⎟⎠
.

Because det𝑀(𝑖𝑘,−𝑖𝜔+
0 ) = 0, a compatibility condition is necessary to solve Equation (B.7) (cf.

for instance, Ref. 65), thus we impose the orthogonality requirement 𝐿+
0 ⋅ 𝐶1 = 0. This condition is

satisfied if the wave packet propagates with the group velocity 𝜕𝑘𝜔
+
0 (𝑘, 𝜂0, 𝑢0):

𝐴𝑇1
+ 𝜕𝑘𝜔

+
0 (𝑘, 𝜂0, 𝑢0)𝐴𝑋 = 0. (B.8)

Providing that (B.8) is respected, one solution of (B.7) is:

Ξ2 =
(
𝑄

𝑅

)
+
⎡⎢⎢⎣
⎛⎜⎜⎝

0
𝑖
√
3𝜂0𝜅

(3 + 𝜅2)3∕2

⎞⎟⎟⎠𝐴𝑋𝑒𝑖(𝑘𝑥−𝜔
+
0 𝑡) + c.c.

⎤⎥⎥⎦
+

⎡⎢⎢⎢⎢⎣
⎛⎜⎜⎜⎜⎝

3 + 𝜅2

2𝜂0𝜅2

3 − 𝜅2

2𝜂3∕20 𝜅2
√
1 + 𝜅2∕3

⎞⎟⎟⎟⎟⎠
𝐴2𝑒2𝑖(𝑘𝑥−𝜔

+
0 𝑡) + c.c.

⎤⎥⎥⎥⎥⎦
, (B.9)

where 𝑄(𝑋, 𝑇1, 𝑇2) and 𝑅(𝑋, 𝑇1, 𝑇2) are two unknown fields that remain to be determined. 𝑄 and

𝑅 are necessary for the consistency of the asymptotic expansion, as we will see at the next order

(cf. Equations (B.11)).

The solution (B.9) is not unique and the general solution of (B.7) reads as: Ξ2 +
[𝐾(𝑋, 𝑇1, 𝑇2)𝑒

𝑖(𝑘𝑥−𝜔+
0 𝑡) + c.c.], where 𝐾(𝑋, 𝑇1, 𝑇2) belongs to the kernel of 𝑀(𝑖𝑘,−𝑖𝜔+

0 ). This addi-

tional term does not modify the NLS equation (13) in the end, but it plays an important role in higher

order descriptions (cf. Appendix C). In practice, we choose 𝐾(𝑋, 𝑇1, 𝑇2) such that one of the two

components of Ξ2 proportional to 𝑒𝑖(𝑘𝑥−𝜔
+
0 𝑡) is equal to 0 (which is already the case here).

Finally, if we substitute Ξ2 by the solution (B.9), the 𝑂(𝜀3) of the expansion reads

𝑀(𝜕𝑥, 𝜕𝑡)Ξ3 = 𝐷0 + [𝐷1𝑒
𝑖(𝑘𝑥−𝜔+

0 𝑡) +𝐷2𝑒
2𝑖(𝑘𝑥−𝜔+

0 𝑡) +𝐷3𝑒
3𝑖(𝑘𝑥−𝜔+

0 𝑡) + c.c.], (B.10)
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with

𝐷0 = −

⎛⎜⎜⎜⎜⎝
𝑄𝑇1

+ 𝑢0𝑄𝑋 + 𝜂0𝑅𝑋 +
(|𝐴|2)𝑋√

𝜂0(1 + 𝜅2∕3)

𝑅𝑇1
+𝑄𝑋 + 𝑢0𝑅𝑋 + 9 + 6𝜅2 − 𝜅4

𝜂0(3 + 𝜅2)2
(|𝐴|2)𝑋

⎞⎟⎟⎟⎟⎠
,

and

𝐷1 = −

⎛⎜⎜⎜⎜⎜⎝
𝐴𝑇2

+
𝑖
√
3𝜂3∕20 𝜅

(3 + 𝜅2)3∕2
𝐴𝑋𝑋 + 3𝑖

𝜂
5∕2
0 𝜅

√
1 + 𝜅2∕3

|𝐴|2𝐴√
1 + 𝜅2∕3

𝜂0
𝐴𝑇2

+
𝑖𝜂0𝜅(6 − 𝜅2)
(3 + 𝜅2)2

𝐴𝑋𝑋 + 𝑖(9 + 7𝜅4)
2𝜂30𝜅(3 + 𝜅2)

|𝐴|2𝐴
⎞⎟⎟⎟⎟⎟⎠

−

⎛⎜⎜⎜⎜⎝
𝑖𝜅

𝜂
3∕2
0

√
1 + 𝜅2∕3

𝑄𝐴 + 𝑖𝜅

𝜂0
𝑅𝐴

−2𝑖𝜅3

𝜂20(3 + 𝜅2)
𝑄𝐴 +

𝑖𝜅
√
1 + 𝜅2∕3

𝜂
3∕2
0

𝑅𝐴

⎞⎟⎟⎟⎟⎠
.

We do not present the coefficients 𝐷2 and 𝐷3 for the second and third harmonic terms at this stage

because they are not needed for the derivation of the NLS equation. However, these terms are needed

to solve (B.10), and ultimately derive the HNLS equation at the next order.

Because 𝑀(0, 0) = 0, the constant term 𝐷0 should be equal to 0. This condition is respected for

𝑄(𝑋, 𝑇1, 𝑇2) and 𝑅(𝑋, 𝑇1, 𝑇2) given by:

𝑄 = − (9 − 𝜅2)(3 + 𝜅2)3

𝜂0𝜅
2(27 + 9𝜅2 + 𝜅4)

|𝐴|2, 𝑅 = − (3 + 2𝜅2)(27 + 6𝜅2 + 𝜅4)
𝜂
3∕2
0 𝜅2

√
1 + 𝜅2∕3(27 + 9𝜅2 + 𝜅4)

|𝐴|2. (B.11)

Providing that𝑄 and𝑅 are substituted by the solutions (B.11), the compatibility condition𝐿+
0 ⋅𝐷1 =

0 gives

𝑖𝐴𝑇2
+ 𝛽(𝑘)𝐴𝑋𝑋 + 𝛾(𝑘)|𝐴|2𝐴 = 0, (B.12)

with

𝛽 = −
𝜂
3∕2
0 𝜅

2(1 + 𝜅2∕3)5∕2
, 𝛾 = 243 + 297𝜅2 + 42𝜅4 + 𝜅6 + 𝜅8

4𝜂5∕20 𝜅(27 + 9𝜅2 + 𝜅4)(1 + 𝜅2∕3)3∕2
.

APPENDIX C: DERIVATION OF THE HNLS EQUATION FOR THE SERRE
SYSTEM

The definition of the unscaled envelope (A.4) is not always adequate for systems. Unlike scalar

equations where the only term of the solution 𝑢(𝑥, 𝑡) proportional to the first harmonic 𝑒𝑖(𝑘𝑥−𝜔𝑡) is

𝜀𝐴(𝑋, 𝑇1, 𝑇2), solutions of “multi-component” systems (Equation (46) for instance) can contain higher

order corrections of the envelope.
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For the Serre system (46), we define (cf. Appendix. B):(
𝜂(𝑥, 𝑡)
𝑢(𝑥, 𝑡)

)
=

(
𝜂0
𝑢0

)
+

[(
𝐴̃(𝑥, 𝑡)
𝐵̃(𝑥, 𝑡)

)
𝑒𝑖(𝑘𝑥−𝜔

+
0 𝑡) + c.c.

]
. (C.1)

We have shown in the previous section, cf. Equations (B.5) and (B.9), that(
𝐴̃(𝑥, 𝑡)
𝐵̃(𝑥, 𝑡)

)
=

(
𝜀𝐴(𝑋, 𝑇1, 𝑇2, 𝑇3)

𝜀𝛼𝐴(𝑋, 𝑇1, 𝑇2, 𝑇3) + 𝑖𝜀2𝜎𝐴𝑋(𝑋, 𝑇1, 𝑇2, 𝑇3)

)
, (C.2)

with 𝛼 = 1∕
√

𝜂0(1 + 𝜂20𝑘
2∕3) and 𝜎 =

√
3𝜂0𝜂0𝑘∕(3 + 𝜂20𝑘

2)3∕2. Definition (A.4) and the substitution

rule (A.5) still hold for the component 𝐴̃ for which we obtain Equation (25). However, a new substitu-

tion rule is necessary to derive the modulation equation for the “total amplitude” 𝐵̃:

𝐵̃𝑡 = 𝜀2𝛼𝐴𝑇1
+ 𝜀3𝛼𝐴𝑇2

+ 𝜀4𝛼𝐴𝑇3
+ 𝑖𝜀3𝛼𝐴𝑋𝑇1

+ 𝑖𝜀4𝛼𝐴𝑋𝑇2
. (C.3)

A careful derivation gives (cf. Ref. 45):

𝑖𝐵̃𝑡 + 𝑖𝜔′
0(𝑘)𝐵𝑥 + 𝛽𝐵̃𝑥𝑥 +

𝛾

𝛼2
|𝐵̃|2𝐵̃ + 𝑖𝛿𝐵̃𝑥𝑥𝑥 + 𝑖

𝜆

𝛼2
|𝐵|2𝐵̃𝑥

+𝑖
(

𝜇

𝛼2
+ 2𝛾𝜎

𝛼3

)
𝐵̃2𝐵̃∗

𝑥 = 0. (C.4)

We note that the coefficient in front of 𝐵̃2𝐵̃∗
𝑥 in (C.4) is not proportional to 𝜇 as one might expect

if one considered the inadequate definition 𝐵̃ = 𝜀𝛼𝐴. Nonetheless, to the first order, both 𝐵̃ = 𝜀𝛼𝐴

and definition (C.2) yield the same NLS equation for 𝐵̃ which can be simply obtained by substituting

in (16) 𝐴̃ by 𝐵̃∕𝛼.

We now present, without derivation, the coefficients for the HNLS equation (25) describing the

envelope 𝐴̃ for the component 𝜂(𝑥, 𝑡) of the Serre system. The envelope 𝐵̃ of the component 𝑢(𝑥, 𝑡) can

be put in the form (C.2) allowing for the determination the corresponding coefficient 𝜎. The coefficients

computed using Mathematica are:

𝛿 =
3
√
3𝜂5∕20 (3 − 4𝜅2)
2(3 + 𝜅2)7∕2

,

𝜆 = (9 − 𝜅2)(−2187 − 3159𝜅2 − 567𝜅4 + 243𝜅6 + 90𝜅8

+8𝜅10)∕(6𝜂3∕20 𝜅2(1 + 𝜅2∕3)5∕2(27 + 9𝜅2 + 𝜅4)2),

𝜇 = (−19683 − 24786𝜅2 − 11502𝜅4 − 2754𝜅6 − 276𝜅8 + 14𝜅10 (C.5)

+3𝜅12)∕(4𝜂3∕20 𝜅2(1 + 𝜅2∕3)5∕2(27 + 9𝜅2 + 𝜅4)2),

𝜎 =
√
3𝜂0𝜅

(3 + 𝜅2)3∕2
,

𝑏2,𝜂 = 6(3 + 𝜅2)(243 + 81𝜅2 + 36𝜅4 + 4𝜅6)
𝜅3(27 + 9𝜅2 + 𝜅4)2

,



268 CONGY ET AL.

𝑏2,𝑢 =
√
3(13122 + 15309𝜅2 + 8505𝜅4 + 2322𝜅6 + 315𝜅8 + 27𝜅10 (C.6)

+2𝜅12)∕(
√
𝜂0𝜅

3(3 + 𝜅2)3∕2(27 + 9𝜅2 + 𝜅4)2),

where 𝜅 = 𝜂0𝑘.

APPENDIX D: NUMERICAL METHODS
The initial step (3) of the Riemann problem is implemented numerically by the function:

𝑢(𝑥, 𝑡 = 0) =
𝑢+ − 𝑢−

2
tanh

(
𝑥

𝜉

)
+

𝑢+ + 𝑢−
2

, (D.1)

for the KdV (33) and the conduit (42) equations. We implement a similar step for the field 𝜂(𝑥, 𝑡) in

the Serre system (46). We will use 𝜉 = 2 in our examples. We choose periodic boundary conditions:

𝑢(𝑥 + 𝐿) = 𝑢(𝑥) (and 𝜂(𝑥 + 𝐿) = 𝜂(𝑥)); in practice, we consider a domain [0;𝐿] sufficiently large to

avoid interactions with the boundaries.

We used a spectral method to solve the Riemann problem for the KdV equation (cf. for instance,

Ref. 66 ): we rewrite Equation (33) in the form

(𝑒−𝑖𝑘3𝑡𝑢̂)𝑡 +
𝑖𝑘

2
𝑢2 = 0, (D.2)

where 𝑢̂ and 𝑢2 are spatial Fourier transforms of 𝑢 and 𝑢2, respectively. The time integration of (D.2) is

performed through the fourth-order explicit Runge–Kutta method and in order to diminish the aliasing

error, we consider the “Orszag 2/3 rule.”67

To solve the Riemann problem for the conduit equation, we rewrite (42) in the following form

(cf. for instance, Ref. 41):

𝑢𝑤 + 2𝑢𝑢𝑥 − (𝑢2𝑤𝑥)𝑥 = 0, (D.3)

𝑢𝑡 = 𝑤𝑢. (D.4)

Derivatives in (D.3) are approximated using centered finite differences; then, 𝑤(𝑥, 𝑡) is obtained by

inverting the corresponding banded linear system. (D.4) is integrated through the fourth-order explicit

Runge–Kutta method.

Similarly, we rewrite the Serre system (42) in the form:

𝑤 + 𝑢𝑢𝑥 + 𝜂𝑥 = 1
𝜂

(
𝜂3

3
[
𝑤𝑥 + 𝑢𝑢𝑥𝑥 − (𝑢𝑥)2

])
𝑥

, (D.5)

𝜂𝑡 + (𝜂𝑢)𝑥 = 0, 𝑢𝑡 = 𝑤, (D.6)

and apply the same algorithm.


