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Real-Time and Robust Compressive Background
Subtraction for Embedded Camera Networks

Yiran Shen, Member, IEEE, Wen Hu, Senior Member, IEEE, Mingrui Yang, Member, IEEE,
Junbin Liu, Member, IEEE, Bo Wei, Member, IEEE, Simon Lucey, Senior Member, IEEE, and
Chun Tung Chou, Member, IEEE

Abstract—Real-time target tracking is an important service provided by embedded camera networks. The first step in target tracking is
to extract the moving targets from the video frames, which can be realised by using background subtraction. For a background
subtraction method to be useful in embedded camera networks, it must be both accurate and computationally efficient because of the
resource constraints on embedded platforms. This makes many traditional background subtraction algorithms unsuitable for
embedded platforms because they use complex statistical models to handle subtle illumination changes. These models make them
accurate but the computational requirement of these complex models is often too high for embedded platforms. In this paper, we
propose a new background subtraction method which is both accurate and computationally efficient. We propose a baseline version
which uses luminance only and then extend it to use colour information. The key idea is to use random projection matrics to reduce the
dimensionality of the data while retaining most of the information. By using multiple datasets, we show that the accuracy of our
proposed background subtraction method is comparable to that of the traditional background subtraction methods. Moreover, to show
the computational efficiency of our methods is not platform specific, we implement it on various platforms. The real implementation
shows that our proposed method is consistently better and is up to six times faster, and consume significantly less resources than the
conventional approaches. Finally, we demonstrated the feasibility of the proposed method by the implementation and evaluation of an
end-to-end real-time embedded camera network target tracking application.

Index Terms—Object tracking, real-time performance, embedded camera networks, background subtraction, compressive sensing,

Gaussian mixture models

1 INTRODUCTION

MBEDDED camera networks, which consist of video sen-

sors distributed in a spatial environment, can be used
for security surveillance, environmental monitoring and
many other applications. An important service that can be
provided by embedded camera networks is real-time target
tracking. The first step in target tracking is to extract the
moving targets from the video frames, which can be realised
by using background subtraction. Robust background
subtraction is typically the dominant consumer in resources.
The aim of background subtraction is to detect whether the
foreground is present in a newly acquired video frame. This
is usually realised by using the knowledge of earlier video
frames to learn a background model, and then applying
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statistical tests to decide whether the newly acquired frame
is different from the background. A challenge for back-
ground subtraction is to differentiate between the fore-
ground and subtle changes in the background, caused by
events like illumination changes or moving tree branches.
Moreover, a new challenge arises when background subtrac-
tion is to be used in embedded camera networks. The
background subtraction algorithm must be computationally
efficient due to resource constraints of embedded platforms.
In this paper, we present a new background subtraction
method which is both accurate and computationally efficient.

As mentioned earlier, one challenge for background sub-
traction is to differentiate the foreground from subtle changes
in the background. This problem can be solved by modelling
the background by some complex statistical models, such as,
kernel density [14], [20] or Gaussian density [15], [16], [31],
[36] models. Background can also be approximated by non-
statistical models, such as codebook based method [18], [19]
and sample based methods such as Vibe [2]. Background
subtraction can be also formulated as a sparse error recovery
problem [11] or low rank matrix estimation problem [8].
Although these recent background subtraction methods are
highly accurate, the use of complex models means they
require high computation resources. Fig. 1 depicts the design
space for background subtraction algorithms where an opti-
mal algorithm should be accurate and have low computation
cost. According to [5], the mixture of Gaussians (MoG) [31]
model achieves the best trade-off between the accuracy and
computation among the state of the arts and Fig. 1 depicts the
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Fig. 1. Design space and related work.

“position” of MoG in the design space. Although MoG is
accurate, our evaluation in [27] shows that MoG can only
processes three frames per second on the embedded plat-
form with low image resolution. In this paper, we propose
to resolve the tension between accuracy and computation
cost by using random projection matrix to reduce the
dimensionality of the problem. The result is a background
subtraction method (called CS-MoG) which has compara-
ble accuracy compared to MoG but with significantly low-
ered computation time, see Fig. 1.

The use of random projection matrix to produce
“compressed” projections is inspired by the recent applica-
tions of information theory of compressive sensing [7], [12].
Random projection matrices are used to improve the effi-
ciency of the sampling and reconstruction in compressive
sensing. In this paper, we use random projection matrices to
reduce the dimensionality of the problem of background
subtraction while perserving the accuracy. The contribu-
tions of this paper are four folds:

e We propose a novel background subtraction method
that uses random projection matrices (for dimen-
sionality reduction) and MoG (for accuracy). Since
our proposed method uses “compressed” samples,
we will refer to it as C5-MoG where CS stands
for Compressed Samples. We introduce two versions of
CS-MoG. The baseline version of CS-MoG uses
only luminance information and will be simply called
CS-MoG. We also propose an extension that uses col-
our space and call it Colour Space Compressed Sampling
(CoSCS) -MoG (which uses all three colour channels).

e We show, by using multiple real world datasets, that
the accuracy of CS-MoG is comparable to MoG and
is significantly more accurate than a number of other
background subtraction methods. Further evalua-
tions show that CoSCS-MoG improves the accuracy
of CS-MoG significantly and is equally or more accu-
rate compared to the traditional MoG.

e In order to show that the computational efficiency of
our proposed methods is not platform specific, we
implement our methods and MoG on two embedded
platforms: Blackfin (which is used in previous paper
[27]) and PandaBoard. The results show that our app-
roaches are up to 6 times faster than the original MoG.

e We implement and evaluate an end-to-end multiple
camera object tracking application based on our pro-
posed algorithm, which demonstrates the feasibility
of our approach to operate in real-time scenario on
embedded platforms.

The organisation of this paper is as follows. We first pro-
vide the related work in Section 2. In Section 3, we provide
technical background on the MoG for background subtrac-
tion. We then present and evaluate our proposed method
CS-MoG and its extension, CoSCS-MoG in Section 4.
In Section 5, we present results on running our compressive
background subtraction approaches on pandaboard. At last,
Section 6 concludes the whole paper.

2 RELATED WORK

In this section, we review and discuss the recent related
works. Because most of the recent applications of random
projection matrix come with compressive sensing, we
review the papers related to the compressive sensing and
background subtraction.

2.1 Background Subtraction

MoG [31] has been one of the most popular background sub-
traction techniques in computer vision because of its robust-
ness to subtle illumination changes. Its bottleneck is its
computational intensity because of the need to compute and
update the Gaussian mixtures. Instead of using a fixed num-
ber of Gaussian mixtures as in [31], the work in [40] adap-
tively determines the number of Gaussians for each pixel.
This results in a more computationally efficient procedure.
The comparison in [40] shows that the adaptive procedure is
2—30 percent faster compared with original MoG. However,
our experiments in Section 5.1 show that our proposed
approaches are up to six times faster than the original MoG
on different embedded platforms. Another example of
improving the efficiency of MoG is in [32]. In this work, it
simplifies the learning update of the Gaussian mixtures and
instead of using ¢ (where w and o are respectively the weight
and standard deviation of a Gaussian distribution within a
Gaussian mixture) to order the Gaussians, it simply uses w.
These simplifications can decrease the computation time of
MoG by 1.6 times. However, these simplifications may not
be suitable for some situations because the reorder condition
is only based on w, which may increase or decrease so
quickly that a slowly moving target may be mistakenly
incorporated into background or removed from the current
background model. Our proposed approaches perform fore-
ground detection in two stages. The first stage includes a
block-based foreground detection step and subsequently
pixel-based foreground refinement step. Block-based meth-
ods are classical and known for their efficiency in back-
ground subtraction [26]. This block-based background
subtraction method divides a frame into 8 x 8 blocks and
then computes a feature vector with eight elements. For fore-
ground detection, it uses a block-scale background training
set for comparison using normalised vector distance as the
criterion. The method can be used as an assistant to tradi-
tional pixel based background models like MoG to increase
the accuracy. However, its accuracy is related to the size of
the training set. Also, the algorithm has to traverse the whole
dataset to find the closest fit. When the dataset is large, the
algorithm will be computationally intensive. However, our
proposed method does not require any training set. Some
more advanced background subtraction models have been
proposed recently [2], [8], [11], [18], [19]. Vibe [2] is a recently



proposed background subtraction method which is highly
accurate. Its key idea is to use past samples of a pixel to repre-
sent the background instead of using a probability density
model. However, it is too computationally expensive to be
implemented on embedded systems.

2.2 Applications of Compressive Sensing
Compressive sensing has been an active research area
recently. There is a lot of existing work in the area and we
will limit this review to the work related only to computer
vision and sensor networks. One of the most important
breakthroughs in computer vision with compressive sens-
ing is the invention of compressive sensing based imaging
hardwares. Two examples are the single pixel camera [13]
and the random convolution camera [17], [25]. These cam-
eras exploit the theory of compressive sensing. Instead of
sensing pixel-wise, they use projections as the measure-
ments. As a result, the sensing requirements of these
cameras are significantly lower. Other research work in
using compressive sensing in computer vision includes the
CSBS background subtraction algorithm [9], object tracking
and localisation [38] and 3-D reconstruction [10], [24].

Sensor networks are resource constraint while compres-
sive sensing is capable of significantly reducing the sensing
rate and data dimension. Research is done on applying com-
pressive sensing and a closely related idea, sparse represen-
tation in sensor networks. Compressive sensing can be used
as an efficient sensing strategy [28], [29], [37]. In [37], the
authors considered the problem of monitoring soil moisture
with wireless sensor networks. With compressive sensing,
they achieve high accuracy at no more than 10 percent of
the traditional sensing rate. Also the sparse representation
is attracting increasingly attentions with compressive sens-
ing. One of the examples is [22]. In this paper, the authors
deal with cross-correlation problem (which is widely used
in sensor networks) efficiently via sparse representation.
Another example is [34] which applies sparse representa-
tion for the activities recognition using radio frequency
interference. The use of random projections to reduce the
amount of computation in embedded systems has also been
investigated in [30], [35], [39].

3 TECHNICAL BACKGROUND

In order to make this paper self-contained, this section pro-
vides technical background on background subtraction
using MoG.

In [31], the authors proposed to use a MoG to model the
background in background subtraction. In this method, the
history of each pixel is modelled by a MoG consisting of K
(typically chosen to be 3-5) Gaussian distributions. When a
new video frame is presented, each pixel is compared with
the MoG model for the corresponding pixel. If the new pixel
value is within 2.5 standard deviation of any one of the K
Gaussian distributions making up the MoG, then the pixel
is considered a background candidate. A background candi-
date, afterwards, should be checked if it belongs to a back-
ground distribution. The MoG for each pixel is updated for
each frame. This update allows MoG to adaptively deal
with noise and illumination changes which fixed threshold
cannot handle.

The updating of the MoG model for a pixel is as follows.
At time t, the MoG of each pixel consists of K Gaussian
distributions. The kth (1 <¢ < K) Gaussian is assigned a
weight of wy;. If the new pixel value does not match any of
the K Gaussians, the least probable distribution will be
replaced by a new distribution with high variance and low
weight; otherwise, the weight for the kth Gaussian is
updated as:

wri1 = (1 =)oy + a(Grei), 1

where « is the learning rate and G, is a binary variable
whose value is 1 if the kth Gaussian matches the new pixel
and is zero otherwise. If the new pixel value z;y; at time
t + 1 is accounted by, say the kth, Gaussian distribution, its
mean /1, and variance o7, , will be updated as:

Mpp1 = YT+ (L= ¥) gy 2
2
Ot = V(@i = igr)” + (L= y)oi,, (3)
where
2
y = 1 exp — (@141 — Mk,t+1) @)
V270 41 20'%-17_‘4_1

The probability that one of these K Gaussian distribu-
tions is the current background model is determined by the
ratio of wy,;/or,; at the current time ¢. When a new pixel
value is available at time (¢4 1), it will be checked if it
belongs to any of the K distributions. If a new pixel does
not match any of the K distributions, the least probable
distribution will be replaced by a new distribution with
mean equals to the new pixel value, and initial variance and
weight. If the new pixel value matches any one of the K
Gaussian distributions that models the pixel, the parameters
of these distributions should be updated. After updating,
the current K Gaussian distributions are sorted using the
updated wy,;+1/0441. According to this ratio and the prior
information about the portion of the pixels accounted for
the background, the number of background distributions in
these K distributions is decided as,

N, = arg min Zwk > Thb), (5)
n k:l

where T, is the portion of pixels accounted for by the back-
ground. This equation means that the first N;, distributions
are chosen as the current background model. Therefore, the
current pixel values that are located within 2.5¢ of these N,
distributions will be marked as background. With the
multi-modal distributions, MoG can accommodate multiple
background scenario well.

4 COMPRESSIVE BACKGROUND SUBTRACTION

In this section, we will present a novel method for back-
ground subtraction and its colour space extension. Both
approaches use random projection matrix for dimensional-
ity reduction and then apply MoG to the reduced dimension
data for foreground detection. The difference between the
two approaches is that CS-MoG uses only the luminance (or
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Fig. 2. Flow chart of the Algorithm. Different components are grouped by dashed frames in different color.

grey scale) while CoSCS-MoG uses full colour information.
We evaluate both approaches on multiple datasets and
show both of them are robust while CoSCS-MoG achieves
substantially better performance than CS-MoG.

41 CS-MoG

The aim of this part is to describe C5-MoG, which is an accu-
rate but yet computationally efficient background subtrac-
tion method. The MoG background subtraction method is
able to deal with subtle changes and non-static/moving
backgrounds (e.g., rain, moving tree branches or fluttering
leaves) because it models each pixel by a mixture of 3-5
Gaussian distributions. However, this also makes MoG com-
putationally intensive to be used on embedded platforms. In
order to simultaneously realise accuracy and computational
efficiency, we propose CS-MoG. CS-MoG uses random pro-
jection matrix to reduce the dimensionality of the data while
retaining much of the information. We then apply MoG to
the reduced dimension data for background subtraction.
This section is divided into three parts. We describe the steps
of CS-MoG in Section 4.1.1, justify the use of Gaussian mix-
ture models for reduced dimension data in Sections 4.1.2
and 4.1.3 and evaluate its performance in Section 4.1.4.

Fig. 2 shows the flow chart of the CS-MoG algorithm.
Each dashed line box in the flow chart corresponds to a step
of the algorithm. We will now describe each step in details.

4.1.1 Steps of CS-MoG

Our method is divided into three steps. In the first step, the
image is segmented into blocks of 8 x 8 pixels. (Note: We
have experimented with different block sizes and found 8 x
8 blocks gave the best results. We therefore assume a block
size of 8 x 8 throughout this paper. The default block size in
JPEG is also 8 x 8.) Projections are then computed for each
block. In the second step, each projection value is modelled
as a MoG to determine if the block contains some part of the
foreground. We then fuse the results from all the projection
values from a block to determine if it is a background or
foreground block. The pixels in a background block are all
background but the pixels in a foreground block can include
both background and foreground. We call the second step
foreground detection. The third step, which will be referred
to as foreground refinement, is to identify which pixels in a
foreground block is foreground. Thus, at the end of these

three steps, each pixel in the image is labelled either as a
foreground or background.

Block projections. Prior to performing background
subtraction, we carry out a pre-processing step where we
convert the video frames from RGB format to grey scale or
intensity. This pre-processing step applies to all the back-
ground subtraction methods in Section 4.1.

After pre-processing, we start the background subtrac-
tion process. The first step of CS-MoG is to divide the image
into blocks of 8 x 8 pixels. After that, for each block, we
form a 64 x 1 vector of the pixel values in a block and com-
pute random projections of the vector. The projection matrix
we utilise is randomly generated at the beginning of a video
sequence. Once it has been generated, the same projection
matrix is used for each block for the entire video.

We consider two types of projection matrices, which we
will call unbalanced matrices and balanced matrices. Each
element of an unbalanced projection matrix is generated by
a symmetric Bernoulli distribution of £1. A balanced projec-
tion matrix also consists of &1 at equal probability but in
addition we require that each row must contain equal num-
ber of 1’s and -1’s. Therefore, the sum of the elements in
each row of a balanced matrix is always zero. We choose
Bernoulli distribution instead of Gaussian distribution
because the embedded platforms we use in the experiment
part are slow for floating point computation. We will refer
to C5-MoG that uses a balanced matrix (resp. unbalanced
matrix) as CS-MoG-Balance (CS-MoG-Unbalance). In partic-
ular, we will show experimentally and analytically that CS-
MoG-Balance gives better performance.

Since the operations to be carried out on each block of
8 x 8 pixels are identical, we will describe the operations
on one block. We first stack the pixel values of the n = 64
pixels in a block into a n x 1 vector that we call . We
assume that a m x n projection matrix ® (which can be
balanced or unbalanced) has also been generated. Note
that m, which is the number of projection vectors, is a
design parameter which we will study later on in Section
“Impact of Number of Projections on the ROC for CS-
MoG Balance”. We compute the projection:

(6)

The m x 1 vector y contains the m projections values for this
block. Given that the vector « (which contains the pixel val-
ues in a block) is compressible (Note: We know from image

y = dx.



compression that the pixels in a block is compressible in
DCT or wavelet basis [21].), we expect from compressive
sensing that, for properly chosen value of m and projection
matrix ®, the m projection values in y contain almost all the
information in x. This means that one can use the vector y,
instead of z, to decide whether the block is foreground or
not. Furthermore, we expect m < n which means that we
will be working with data of lower dimension. In fact,
the results in Section “Impact of Number of Projections on
the ROC for CS-MoG Balance” show that m = 8 projections
per block give good accuracy for background subtraction.

Foreground detection. After computing the projections for
each block, we need a method to determine whether this
block contains some part of foreground according to projec-
tion values. To build a robust decision, we use MoG for the
foreground detection step.

Our experimental evaluation of MoG (see Section 5)
shows that, MoG can only process three frames per second
on two different embedded platforms. In fact, the experi-
ments in Section 5.1 shows that the Gaussian mixture com-
putations take up almost all the processor resources.
Therefore, computation efficiency can be improved if we
can reduce the total number of Gaussian distributions that
we use per frame.

Our main idea is to model each projection value by a
mixture of K Gaussian distributions, which is similar to
what MoG does for each pixel. (The choice of the parame-
ter K will be discussed in Section 4.1.2.). Furthermore, we
model each projection value independently and do not
consider possible correlation between them. We note that
the projection values arenot independent of each other
and we make the independence assumption because of
the limited computation resources on the embedded plat-
form. This is exactly the same consideration in the origi-
nal MoG paper [31] where the different colour channels
are treated as independent to avoid the costly matrix
inversion. Since we aim to propose a real-time back-
ground subtraction method which is to be implemented
on the embedded systems. The computation complexity
is an important consideration to achieve the realtime
processing. Modelling the projections as multivariate
MoG by considering the dependence between the projec-
tions is not applicable on embedded systems. We show in
Section 4.1.4 that the independence assumption does not
have severe impact on background subtraction accuracy.
Following MoG, we consider a projection value to be a
background projection value candidate if it is within 2.5 stan-
dard deviations of one of the K Gaussian distributions
that models the projection value; otherwise it is a fore-
ground projection value.

It is likely that the result of applying MoG to the m pro-
jection values will result in a mixture of background and
foreground projection values. We therefore need a method
to fuse the results. A number of fusion strategies are possi-
ble. Let us assume that the MoG test results in f fore-
ground projection values out of all m projection values in
block. We evaluated three fusion strategies: (1) Majority
voting: the block is foreground if f>%; (2) Max voting:
the block is foreground if f =m; and (3) Min voting: the
block is foreground if f# 0, i.e. f> 1. Our evaluations

(not shown here due to lack of space) show that min vot-
ing gives the best result. In the following, we will assume
min voting is used.

Foreground refinement. The foreground detection step so
far works on the resolution of a block. This resolution may
be sufficient for some applications but sometimes it is desir-
able to work with resolution at pixel level. We show how
we can do that in this foreground refinement step.

We will assume that if a block is classified as the back-
ground, then all pixels in the block are background pixels.
However, we cannot do the same for a foreground block. It
is possible for a foreground block to contain both fore-
ground and background pixels. This is especially true for
those foreground blocks lying at the edge of the foreground.
This means that we only need to work further on the fore-
ground blocks. Since a video frame is expected to consist
mainly of background blocks, the number of foreground
blocks that we need to work with is likely to be small.

In order to determine which pixels in a foreground block
is in fact foreground without introducing significant com-
putation burden, we build a simple background learning
strategy for each block. Our pixel-scale background learning
method can be described as follows. If a block X7, is
marked as the background, then its pixel values are incorpo-
rated into the current background model B, (at time ¢t) of the
block where B; is a n-by-1 vector whose elements are
learned from the corresponding historical pixel values by
using a learning rate a:

By =aX)  +(1—a)B, @)

where B, is the updated background ‘image’ block. The
first image of the video frames is treated as the initial back-
ground model B;.

If the block X/ 11 is marked as a foreground, then the
background model B; of this block will be updated with a
background mask M,

By = (“XZH +(1- “)Bt) My ®)

The background mask consists of indices of pixels which
satisfy the following condition:

My, = Index[| X/, — Bi| <], )

where § is the threshold that accommodates a certain extent
of noise and illumination change. The background “image”
B; is used as the reference to obtained the indices of the
background pixels. This threshold is specified by the appli-
cations. For the datasets used in this paper and the experi-
ments, a threshold around 10 (the pixel value is between 0
to 255) is suitable. A larger threshold should be applied if
the illumination change is more severe. The function of the
background mask is to prevent the foreground mistakenly
being incorporated into the background model so that the
background model for the foreground pixels at time (¢ + 1)
will remain the same as that at time ¢. With these back-
ground model update processes, we are able to realise
pixel-level background subtraction.

The foreground refinement in Eq. (9) models each of the
pixels as a single Gaussian model to accommodate the
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Fig. 8. This figure shows distributions of three sequences of projection
values. The z-axis is the projection value. The figure on the left shows

the histogram, i.e., y-axis is the relative frequency of each bin. Figures
on the right show the fitted probability density.

lighting change. Although it is simple, our experiment
results demonstrate that this simple method has good accu-
racy, especially because of good accuracy of our proposed
foreground block detection method. We do not apply MoG
for the foreground refinement as we will lose the computa-
tion efficiency obtained from the foreground block detection
stage if we use MoG to maintain the background models for
every pixel in both foreground and background blocks.
However, the performance of foreground refinement relies
on the accurate foreground block detection. Therefore, we
demonstrate accuracy of both block-wise and pixel-wise
results in Section 4.1.4.

4.1.2 Parameter Choice for CS-MoG

The CS-MoG method that we have described comes with a
number of different parameters. Two key parameters are
the number of projections per block and the number of
Gaussians K to model a projection value. We will study the
number of projections later on in Section 4.1.4. In this sec-
tion, we look at the choice of the parameter K which is the
number of Gaussian distributions being used to model a
projection value. In particular, we will show that a small
value of K = 3 is needed. This is very encouraging because
a small K means less computation burden.

Given that the same set of operations are applied to all
blocks, it is sufficient to consider a block and the projec-
tion value obtained by one projection. Therefore, for this

TABLE 1
Number of Gaussians Required for Approximating
Distribution of Projection

One Two Three More
Datasets 1 99.94 % 0.06% 0% 0%
Datasets 2 89.58% 10.06% 0.35% 0.01%
Datasets 3 76.28% 19.12% 3.65% 0.095%

discussion, we consider a generic 8 x 8 block and we
assume the value of ith pixel z; (1 <i < 64) is modelled by
a random variable X;. The projection value v is therefore a
random variable V = Z?il B:X; where B; = £1 are the ele-
ments of a generic projection vector that we use in CS-MoG.

Let us assume that each random variable X; is a mixture
of ) Gaussians. Since the probability distribution of a sum
of random variables is equal to the convolution of the prob-
ability distributions of the random variables, it can be
shown that the random variable V' is still a mixture of
Gaussians. However, the number of Gaussians needed can
be as large as Q5. The use of such a large number of Gaus-
sians is certainly not practical. We therefore investigate
whether it is possible to use a small number of Gaussians to
model a projection value.

For our investigation, we use three datasets, or video
sequences. (The details of these datasets are described in
Section “Goals, Metrics and Methodology”.) The same
method of investigation is applied to all three datasets. Con-
sider a video sequence consisting of F' frames, indexed by
f=1,...,F. Each frame consists of B 8 x 8-block, indexed
by b=1,...,B; it is assumed that the bth block is always
located in the same location within a block. We then generate
P projection vectors, which are indexed by p =1,..., P. By
computing the projection values of the pth projection vector
with the bth block in frames f=1,...,F, we obtain a
sequence of ' projection values. We do this for each combi-
nation of p and b, giving altogether BP sequences of projec-
tion values per dataset. Fig. 3 shows the histograms and
fitted probability densities of three different sequences of
projection values. Visual inspection suggests that these three
sequences can be modelled by a probability distribution
with one to three Gaussians.

In order to systematically determine the number of
Gaussian distributions needed to approximate a sequence
of projection values, where we use the kernel density esti-
mation method in [6] to calculate the number of Gaussians
required. We do this for all three video sequences and
the results are shown in the Table 1. The results show that,
for each dataset, over 99.9 percent of the projection
value sequences can be modelled by no more than three
Gaussians. We therefore choose the value of K to be 3 in
our CS5-MoG method. Note that this is a very encouraging
result, especially if we want to implement our CS-MoG
method on embedded platforms. Consider the original
MoG where each pixel is modelled by three Gaussians,
which means we need 64 x 3 Gaussians per block. For our
CS-MoG, we show later that eight projections per block is
sufficient; since each projection value needs three Gaus-
sians, the number of Gaussians needed per block is 8 x 3,
which is a reduction by a factor of 8.



TABLE 2
This Table Shows the Number of Gaussians Required
to Approximate the Subspace Components

One Two Three More
CS 94.75 % 517 % 0.079% 0%
PCA 89.62% 3.92% 5.88% 0.59%
DCT 89.15% 4.36% 5.91% 0.57%

It is calculated by the kernel density estimation tool. This shows that DCT and
PCA transformation produces more complex distributions than random
projections.

4.1.3 Comparision with other Subspace Analysis
Methods

In order to justify the use of random projections in back-
ground subtraction, we compare random projections against
other subspace analysis methods.

A key idea behind CS-MoG is that, instead of testing
whether a pixel is the background, it performs the statistical
test on the projection values of a block of pixels. The projec-
tion in CS-MoG is carried out by a random Bernoulli matrix
and given that projection is a mapping from one subspace
to another, a question is whether other linear mappings
may perform better. Here we choose two well known linear
mappings for comparison: PCA and 2-D DCT.

Following the parameter choice discussions above, we
divide each frame of the test video into 8 x 8 blocks and
compute the grayscale intensity. CS-MoG then generates
foreground detection test statistics (i.e., the projection val-
ues) by using a Bernoulli projection matrix. We now describe
two alternative background subtraction algorithms, PCA-
MoG and DCT-MoG, which are based on MoG, but with
foreground detection test statistics generated by PCA and
DCT. For PCA-MoG, we use a number of video frames which
contain only the background as the training set to calculate
PCA transform basis. This transform basis is then used to
compute the principal values (the test statistics) for the cur-
rent video frame for foreground detection. For DCT-MoG,
the test statistics are the dominant 2-D DCT coefficients.

In Section 4.1.2, it is shown that, for CS-MoG, the statisti-
cal distribution of the projection values can be well approxi-
mated by Gaussian mixtures with at most three Gaussians.
This significantly reduces the number of Gaussians that CS-
MoG has to track and results in a much faster background
subtraction algorithm. A similar evaluation is shown in
Table 2. The results shown in Table 2 is the average over the
three datasets in Section 4.1.2. The table shows that, DCT
and PCA transformation lead to more complex distributions
than that of random projections. Therefore, CS-MoG may
obtain better performance because of its lower complexity.
To validate our hypothesis, we test the background subtrac-
tion performance of these three algorithms. We carry out six
tests. In test ¢ (i =1,...,6), we use i Gaussians to model
each test statistic of the three algorithms. Therefore, i = 3
corresponds to CS-MoG. Fig. 4 shows how the number of
false detections varies with i for the three algorithms. For all
three algorithms, the figure shows that there is no signifi-
cant performance improvement when 7 > 3. It also shows
that CS-MoG outperforms both PCA-MoG and DCT-MoG
by a good margin.

——CS-MoG
-©-PCA-MoG|
450 : —~<—-DCT-MoG

Number of false detection

3 4
Number of Gaussians

Fig. 4. This figure shows the performance of CS-MoG, PCA-MoG and
DCT-MoG. The z-axis shows the number of Gaussians used to model
each test value for background detection. The y-axis gives the total
number of false classifications.

Why random projections works? As stated in many papers
related to compressive sensing, the random projections
preserve the information of the high-dimensional signals
with significantly lower dimension [1]. Another theoretical
insight is derived from the dimensionality reduction of
random projections. It is well known that generative classi-
fiers like MoG suffer from the curse of dimensionality [4]
especially when it is extended into colour space. This phe-
nomenon arises when analysing data in high-dimensional
space. It is problematic for methods requiring statistical
significance. Since random projection matrix reduces the
dimensionality, the curse is diminished.

At last, as our obseravation, eight projections are not suf-
ficient to accurately recover an image block that contains
64 pixels (or 192 values in color space). However, CS-MoG
uses significantly smaller number of projections than that
required by accurately recovering the original signal with ¢;
reconstruction. This is due to the fact that C5-MoG does not
require the recovery phase. Therefore it does not need to
satisfy the special requirement of ¢; reconstruction on the
number of projections. Instead, it only needs to satisfy the
requirement of ¢, reconstruction (i.e., the number of of
projections My, > 2H, where H is the sparsity of the image
block) which is a much relaxed condition [3]. This feature
significantly reduces the dimensionality of data so as to
boost the processing time of the algorithm and diminish the
curse of dimensinality .

4.1.4 Performance Evaluation

Goals, metrics and methodology. The goals of our evaluation is
to demonstrate whether C5-MoG 1) achieves the best
subtraction accuracy among MoG-based efficient back-
ground subtraction algorithms and 2) obtains a better capa-
bility to deal with illumination change especially with
balanced matrix.

We use four datasets to evaluate the performance of vari-
ous background subtraction algorithms. The first dataset
(dataset 1) is a private dataset from our laboratory for moni-
toring a footpath. Datasets 2 and 3 are, respectively, VS-
PETS'2003 and PETS'2001, from http://www.cvg.rdg.ac.
uk/. Dataset 2 is on a football match while dataset 3 is from
monitoring people and vehicles outdoor. Dataset 4 is Percep-
tion Sequence from monitoring shopping mall (http://
perception.i2r.a-star.edu.sg/). We use 400 consecutive video
frames from each dataset and the foreground is annotated
by a mask. Dataset 1 monitors the outdoor footpath in our
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institute. There are illuminition changes and moving back-
grounds (waving of trees by the wind). Dataset 2 monitors
a football match. There are no pure background frames
and foregrounds are moving quickly in the video. In data-
set 3, people and vehicles are recorded in an outdoor
environment. There are no pure background frames. The
change of the illumination is significant and moving back-
grounds exist in the video. The dataset 4 provides the eval-
uation for indoor environment. (We do not demonstrate
the results from datasets 2 and 3 due to the space limit.
But you can refer [27] for the details.)

Given that the spirit of C5-MoG is to use projections to
reduce the dimensionality of input to MoG, we consider
PCA-MoG, DCT-MoG as well as two other methods to real-
ise reduction in dimension but not using projections. The
first method is called Random sensing MoG (RS-MoG). RS-
MoG is identical to CS-MoG except that RS-MoG does not
compute m projections. Instead, RS-MoG uses m random
pixels in a block to decide whether that block is foreground
or not. The second method is called Mean-MoG. For Mean-
MoG, we divide each block into m sub-blocks and compute
the mean pixel values of each sub-blocks. These mean val-
ues are input to MoG for foreground detection. Note that
CS-MoG, PCA-MoG, DCT-MoG, RS-MoG and Mean-MoG
use, respectively, m projections, m dominant coefficeints, m
pixel values and m mean values per block for foreground
detection. The dimensionality reduction for these methods
are therefore identical.

In this paper, we regard a block/pixel in the foreground
(resp. background) as a positive (negative) event. A false
positive means a genuine background block/pixel is incor-
rectly detected as a foreground. We express the perfor-
mance of various methods by using the receiver operating
characteristic (ROC) curve. The vertical axis of the ROC
curve is the probability of detection (Pp) which is the total
number of true positives divided by the number of fore-
ground blocks/pixels (positive events) in ground truth. The
horizontal axis of the ROC curve is the rate of false alarm
(F4) which is the number of false alarms (or false positives)
divided by the number of background blocks/pixels (or
negative events) in ground truth. The results involving ran-
dom projections are obtained from 30 independent trials
with different projection matrices.

Impact of number of projections on the ROC for CS-MoG
balance. As the major contribution of CS-MoG is the fore-
ground block detection based on random projections.
We evaluate the impact of the number of projections on the
ROC for CS-MoG-Balance on foreground block detection.
We apply CS-MoG-Balance to 400 consecutive video frames
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in each dataset. For each dataset, we use the following num-
ber of projections: 2, 4, 8, 12 and 16. The results for the data-
set 1 are shown in Fig. 5a. We can make two observations
from this figure. Firstly, the performance of foreground
blocks detections improves with an increasing number of
projections. Secondly, the performance improvement
diminishes when eight or more projections are used. (The
results of the other two datasets demonstrate the same
behaviour as shown in [27].) These observations can be
explained by the fact the amount of information increases
with the number of projections. However, most of the infor-
mation in a block can be captured by eight projections.
Given these observations, we will use m = 8 projections for
CS-MoG for the rest of this performance evaluation.

Performance of CS-MoG, MoG and other MoG based algo-
rithms. In this part, we compare the performance of eight
background subtraction methods. They include pixel based
MoG [31], CS-MoG-Balance and CS-MoG-Unbalance, Multi-
variate-CS-MoG (each vector of projections is modelled as a
mixture of multivariate Gaussian distributions, see on-line
supplementary materials for detailed description), PCA-
MoG, DCT-MoG as well as RS-MoG and Mean-MoG intro-
duced in Section “Goals, Metrics and Methodology”.

We apply these eight methods to 400 consecutive video
frames from each dataset. The value of m is chosen to be 8
for CS-MoG-Balance, CS-MoG-Unbalance, PCA-MoG, DCT-
MoG, RS-MoG and Mean-MoG. We first evaluate the accu-
racy of the foreground block detections. The RoC curves of
the block wise results for these methods are plotted in
Fig. 5b for the dataset 1.

We can see from the figure that out of all the methods
that use dimensionality reduction, CS-MoG-Balance gives
the best performance. It may not be surprising that the sim-
ple methods such as RS-MoG and Mean-MoG do not per-
form that well. (Again, the results of datasets 2 and 3 also
indicate the same conclusion as in [27].) The observation
that CS-MoG-Balance performs better than CS-MoG-Unbal-
ance deserves further investigation. This is the topic of Sec-
tion “Balanced versus Unbalanced Projection Matrices”.
Another observation is that the accuracy of Multivariate-
CS-MoG is slightly worse than CS-MoG-Balance although
it consumes significantly more computation resources
because of the need to matrix inverse. The reason may be
due to the fact Multivariate C5-MoG needs to learn a larger
number of paramerters for the covariance matrices.

We see from the figure that the performance of MoG and
CS-MoG-Balance are comparable. It is probably not surpris-
ing that MoG has a better performance most of the time
because it maintains complete information on each pixel.



However, the better performance of MoG comes at the
expense of a high computation cost. We will show in
Section 5.1, by implementing both MoG and CS-MoG on an
embedded platform, the computation time for MoG is 5-6
times slower than that of CS-MoG and real-time back-
ground subtraction with MoG is not feasible. Therefore,
when we take into account both performance and resource
constraints on embedded platforms, CS-MoG-Balance is a
better choice compared with MoG. You can find more eval-
uation results by referring [27].

We then evaluate the pixel-wise accuracy of these meth-
ods. All the MoG-based methods, except the original MoG,
use the same foreground refinement method introduced in
Section “Foreground Refinement”. The results are shown in
Fig. 5c. The CS-MoG-Balance again achieves the second best
place among the methods and is close to original MoG.
Comparing the block-wise and pixel-wise results shown in
Figs. 5b and 5¢, the performance gap of pixel-wise accuracy
between CS-MoG-balance and original MoG is almost the
same to that of block-wise accuracy. Therefore, although
foreground refinement model used is simple, it is sufficient
for achieving high overall accuracy.

We have also compared CS-MoG against a recent pro-
posed compressive sensing based background subtraction
method [9]. The results show that C5-MoG has a much better
accuracy, see on-line supplementary materials, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TMC.2015.2418775
available online, for details.

Balanced versus unbalanced projection matrices. The eva-
luation in Section“Performance of CS-MoG, MoG and other
MoG based algorithms” show that CS-MoG-Balance has a
better performance compared with CS-MoG-Unbalanced.
Closer investigation shows that the performance difference
between these two methods is due to the way they handle
illumination change. We claim that balance projection
matrices have a better capability to address illumination
change effects than unbalanced projection matrices. The rea-
son simply comes from its “balance” feature. In order to
explain this, we investigate the effect of projection matrices
using two different illumination change models.

The first and simpler illumination change model is taken
from [23]. The ith pixel value measured by the camera
depends on the illumination reaching the surface (/;) and its
albedo feature @;. Under the Lambertian assumption, the
pixel value is: x; = [; a;. The albedo feature a; is determined
by the feature of the surface. Thus, a change in the source of
illumination will affect the pixel value z; through ;. If the
source of illumination is large and far away, the illumina-
tion reaching a small surface area can be assumed to be con-
stant over the limited size of the surface. Given that our
proposed CS-MoG considers a small block of pixels at a
time, we can therefore assume that /; is constant over a
block. Consequently, the illumination change measured by
the camera within a block is only determined by the albedo
feature a;.

Let us consider the case that the block experiences a con-
stant shift in illumination level A, i.e., [; = A for all pixels in
a block. Similar to Section 4.1.2, we use $; (which equals to
+1) to denote the elements of the projection vector. The
change in projection value év is given by: dv = (>, B;a;)A.

Consider the case that the surface feature is the same
within the block, then a; takes the same value for all pixels
in a block. If the matrix is balanced, the change in projection
value 8v is zero because ), B; is always zero for a balanced
projection matrix. Therefore a constant change in illumina-
tion will not change the projection value. However, if the
surface feature is not even, which happens when the block
is at the edge of the foreground, the illumination change
will not be cancelled out. Although the illumination change
is not always exactly constant on the whole block, especially
near the edge of the foreground, a balanced projection
matrix still has a better ability to deal with the illumination
change compared with a unbalanced one.

More precise results can be obtained by assuming a sta-
tistical model for illumination change. By assuming that the
illumination change is Gaussian distributed, we show ana-
lytically in the supplementary materials, available online,
that a balanced projection matrix maximises the probability
of correct detection of background.

4.2 CS-MoG in Colour Space

Although CS-MoG has achieved comparably good accuracy
against the original MoG, there is still a margin between the
ROC curves of C5-MoG and original MoG shown in Fig. 5c.
To further improve the performance of compressive sensing
based background subtraction method, we propose another
novel background subtraction method to make use of colour
information. We call this new approach as Colour Space Com-
pressed Samples and will refer to it as CoSCS-MoG. Then, we
compare the performance of CoSCS-MoG, against the original
MoG with illuminance information and colour information
respectively and CS-MoG. Our evaluation shows that the
CoSCS-MoG performs significantly better than CS-MoG, and
equally well or better than the original MoG.

4.2.1 CoSCS-MoG

The CS5-MoG algorithm in Section 4.1 uses only the luminance
channel for background subtraction. A straightforward gen-
eralisation is to treat each colour channel independently
and then fuse the results. Unfortunately, while requiring
three times more computation cost, this method does not
improve the accuracy at all. Another choice is to model the
multiple colour channels with three-dimensional Gaussian
distribution. However, the high dimensional Gaussian model
is computationally more prohibitive and will incur the phe-
nomena of curse of dimensionality [4]. Therefore, we develop
CoSCS-MoG to treat the three colour channels in an inte-
grated manner and do not introduce high dimensional
Gaussian models.

Choice of colour space. CoSCS-MoG works on Y C;,C, which
is widely used in digital image processing. Y is the lumi-
nance component which is the same as grayscale intensity.
Cy, and C, are, respectively, the blue-difference and red-dif-
ference chrominance components. Note that the trivial
choice of the RGB colour space results in a worse accuracy.

CoSCS on blocks of pixels. After acquiring a new colour
video frame in YC,C, space, the first step of CoSCS is to
divide the frame into blocks of 8 x 8 pixels. For each of the
colour channel of each block, we form a 64 x 1 vector of the
pixel values of the channel. We then stack the three vectors
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Fig. 6. ROC curves of different number of projections.

from the three colour channels to form a 192 x 1 vector z.
Therefore, each block is now associated with a 192 x 1
vector. (In order to simplify the description of CoSCS later
on, we will assume from now on that the luminance values
are placed in the first 64 elements of x.) We then follow CS-
MoG and compute the projection of x for each block. The
same projection matrix is used for all the blocks for the
whole video, so that it only has to be generated once.

Mathematically, the computation of the projection values
at each block can be represented as follows. Let n = 192. We
denote the projection matrix by ® which is an m x n matrix.
The projection values are in the vector y = ®x. Our evalua-
tion in Section 4.2.2 shows that there is negligible improve-
ment in accuracy in using m > 8, so we will assume m =8
from now on. We would like to remark on the fact that only
m = 8§ projections are required for CoSCS-MoG is signifi-
cant. Since CS-MoG uses only eight projections, we will see
in Section 5 that the computational requirements for
CoSCS-MoG and CS-MoG are similar. Taking into account
that CoSCS-MoG has better background subtraction perfor-
mance compared to CS-MoG (Section 4.2.2), this means the
use of colours can significantly improve the performance
but with little overhead in computation time.

We show in Section 4.1.4 that balanced projection matrix
performs better in CS-MoG, which is based on luminance
channel alone. For CoSCS-MoG, we impose that, for each
row of the projection matrix ®, the vector formed by the first
64 elements—which projects the luminance channel—is bal-
anced. The other elements in the matrix ®, in columns 65 to
128, are drawn from symmetric Bernoulli distribution.

MoG in random projections subspace. After computing the
projections for each block we need a method to determine
whether the block contains some part of the foreground
according to the projection values in y. The main idea of this
part is the same as CS-MoG. We model each projection
value independently as a MoG with three Gaussians and do
not consider possible correlation between the projection val-
ues. Again, if a projection value lies within 2.5 standard
deviation of one of the background distributions, then it is
considered to be a background and otherwise it is a fore-
ground. Because each vector y contains eight different pro-
jections values, it is likely that we get a mixture of
background and foreground decisions from a vector y. We
therefore need a method to fuse the results and we use the
same voting method as CS-MoG. At this point, we have the
background subtraction results at the resolution of a block.
We then follow CS-MoG to obtain the pixel level back-
ground subtraction results. The pixel-level method is identi-
cal to CS-MoG and uses only the luminance component for
pixel level foreground detection. Note that our experience
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Fig. 7. ROC curves of different methods.

shows that the resulting background subtraction method
has good accuracy.

4.2.2 Performance Evaluation

In this section, we again regard a pixel in background (resp.
foreground) as a negative (positive) event. The use of ROC
to measure the performance of background subtraction is
the same as before.

Impact of number of projections on the ROC curves. To deter-
mine the number of projections required for a good perfor-
mance, we also evaluate CoSCS-MoG on two different
datasets whose exact ground truth is available: one is our pri-
vate datasets (dataset 1) and one from Perception Sequence
(dataset 2). The results shown in Fig. 6 are similar to that of
CS-MoG: there is no substantial improvement on the accuracy
when the number of projections is above 8. Therefore, we also
choose 8 as the default number of projections for CoSCS-MoG.

Performance comparison. We compare four methods: the
conventional MoG with luminance information only (origi-
nal MoG), the conventional MoG with colour information
(Co-MoG), CS-MoG, and CoSCS-MoG. In particular, we
want to see: 1) whether CoSCS-MoG performs better than
CS-MoG; 2) whether the CoSCS-MoG can achieve almost
the same accuracy as MoG. We use datasets 1 and 4 for eval-
uation. All of the datasets contain multi-modal background,
lighting changes and are complex enough for the evaluation
of the background subtraction methods.

The ROC curves of different background subtraction
methods are shown in Fig. 7. We apply the four methods to
400 consecutive video frames from the two datasets. We see
from Fig. 7 that CoSCS-MoG outperforms CS-MoG signi-
ficantly and it achieves almost the same background sub-
traction accuracy as the original MoG. Another observation
is that Co-MoG cannot guarantee significantly better accu-
racy than other methods although it consumes almost three
times computation as the original MoG. From Fig. 7 we can
see that Co-MoG only provides sightly better subtraction
accuracy (about 0.5 percent in dataset 1) or almost the same
accuracy as CoSCS-MoG (in dataset 4).

5 EXPERIMENTS ON PLATFORMS

Two sets of experiments were conducted to evaluate the per-
formance of the proposed approaches. The first set aimed at
benchmarking the performance of the proposed algorithm
against the original MoG in terms of computation time on var-
ious platforms (Blackfin DSP-camera node and PandaBoard).
The second set of experiments demonstrate the feasibility of
new algorithms on embedded platforms with an end-to-end
distributed multi-camera object tracking application.



TABLE 3
Computation Time of Different Methods

MoG  CS5-MoG  CoSCS-MoG

Initialisation (ms) 1.80 1.80 1.80
CS (ms) - 2.8 8.9
BS (ms) 337.2 52.2 54.6
Total (ms) 339 56.8 65.3
Energy Consumption (m])  649.95 116.44 125.96

5.1 Computation Evaluation on PandaBoard

We have demonstrated in our earlier work [27] that, on the
Blackfin DSP camera nodes, MoG could only process less
than three video frames a second and CS-MoG could pro-
cess 15 frames a second assuming a frame size of 320 x 240.
The long computation time of MoG is due to the need to
update the MoG probability distribution parameters. Since
CS-MoG uses eight times fewer MoG probability distribu-
tions compared to MoG, the computation time for CS-MoG
is much faster. To demonstrate our algorithm is not plat-
form specific, the other implementation was based on one
of the most widely used embedded platform: PandaBoard
(PandaBoard ES Rev B1) connected with a USB video cam-
era (Logitech HD Pro Webcam C920). PandaBoard can
accommodate various embedded operating systems such as
Linux Minimal, Android and Ubuntu. In this implementa-
tion, the operating system is Ubuntu 12.04. The program-
ming language can be C or C++. PandaBoard has its built-in
wifi component. Therefore, it is convenient to exchange
information between PandaBoards and base station. The
computation time of each method is measured by the CPU
time of the platform and the energy consumption is
obtained by measuring the current, voltage and the process-
ing time. Table 3 shows the computation and energy
consumptions of original MoG and CS-MoG. We do not
include the memory usage because PandaBoard has 2 Giga-
byte RAM which is not a problem in our application. These
run-time and energy consumption results were computed
as the mean of 100 consecutive images with the image reso-
lution at 320 x 240. The results show that, MoG can only
process about three frames per second which is far from of
real-time. However, CS-MoG accelerates the MoG based
background subtraction up to six times. Therefore, our pro-
posed approach demonstrates consistently good perfor-
mance for accelerating background subtraction.

Note that in Table 3, CS refers to the time for computing
projections, which is negligible; BS refers to the time to per-
form background subtraction and is dominated by the time
required to update the MoG parameters. Since CS-MoG has
eight times fewer parameters compared with MoG, the
computation time for BS is significantly reduced.

5.2 Computation Evaluation of CoSCS-MoG
According to the computation evaluation on Pandaboard
(Blackfin), CS-MoG require 57 ms (56.8 ms) to process a
frame. Out of the 57 ms (56.8 ms), CS-MoG spends 52.75 ms
(52.2 ms) and 3 ms (2.8 ms), respectively, on background
subtraction processing and computing the projections (i.e.,
the compressed sampling component). Since C5-MoG and
CoSCS-MoG use exactly the same number of projections per
block and the same number of Gaussians per projection
value, CoSCS-MoG is expected to use the same amount of
time for MoG processing as CS-MoG. Since the projection
computation in CoSCS-MoG is based on three colour chan-
nels, compared to one channel for CS-MoG, we expect
CoSCS-MoG may take up to 9 ms (8.4 ms) to compute the
projections. Therefore, CoSCS-MoG is expected to need
63 ms to process a frame.

To validate our conjecture, we also implemented CoSCS-
MoG on PandaBoard. The results in the third column of
Table 3 show that the total run time of CoSCS-MoG is
65.3ms (it is 5.2 times faster than original MoG) to process a
frame. Computing the projections consumes about 8.9 ms
which is about 3.17 times compared with that in CS-MoG.

5.3 Compressive Background Subtraction for
Real-Time Distributed Object Tracking

To demonstrate the feasibility of our proposed approach for

embedded computer vision applications, we further imple-

mented an end-to-end distributed multi-camera tracking

application.

In the experiments, three wireless cameras were set-up in
an approximately 4 m x 4 m area with overlapping cover-
age of the ground. The cameras communicated with a
server using the BLIP and IPv6 network. We used a toy train
as the target in the experiments in order to collect high-pre-
cision (in cm) ground truth information.

We further deployed a number of tags on the ground
which were needed to compute the ground plane homogra-
phies [33] of each camera. A homography is a projective
transformation that maps the coordinates from one plane to
another, which in this case is the camera’s image plane and
the ground. With the computed homographies, we were
able to obtain the calculated locations of the target and the
ground truth in the ground coordinates with high-precision.

The target (train) moved along a track within the area
of interest. All cameras continuously processed incoming
frames to firstly segmented out the moving foreground,
which was then passed into a connected component analysis
that outputed the centroid of the moving object. The cent-
roids are taken as the objects” locations in the image coordi-
nates. To conserve resources (in terms of radio bandwidth
and energy consumption), packets that contained these
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Fig. 8. Target tracking experiment set-up and results. The black cross are the ground truth and the other different colour cross represent the results

from different camera nodes.



object’s locations (in the image coordinates) were only trans-
mitted to the server from a camera when the object was in
the camera’s field of view. When the server obtained a loca-
tion message along with a camera ID (e.g., IPv6 address), it
would calculate the locations in the ground coordinates
using the corresponding homography of the camera.

We ran the tracking experiment on the track of the train
and the target (train) made three laps on the track (see
Fig. 8a). The right columns of Fig. 8 shows the tracking
results of each lap. The black crosses in Fig. 8 are the
ground truth in the ground coordinates and the results
from three camera nodes are shown as crosses of different
colours (red, green, blue). Furthermore, we calculated the
mean and standard deviation of the distances from the esti-
mated target locations to the ground truth and the results
are shown in the caption of the figures. Overall, we
achieved high precision with less than 1 percent (less than
4 cm) target localisation errors relative to the size of the
area of interest (4 m x 4 m).

5.4 Tracking Performance with Multiple Objects
Moving at Different Speeds

The experiment above considered only one single object
moving at a slow speed of 0.1 m/s. In order to investigate
the tracking performance of our background subtraction
algorithm when there are multiple objects moving at differ-
ent speeds, we have conducted another experiment with
two people walking at different speeds through an area of
surveillance. Our tracking algorithm can track the two peo-
ple within 27 c¢cm accuracy. Due to space limitation, the
results are described in Section 3 of the on-line supplemen-
tal materials, available online.

6 CONCLUSION

In this paper, we address the challenge of performing back-
ground subtraction, both accurately and efficiently, on
embedded camera networks. Traditional background sub-
traction algorithms, though accurate, are not computationally
efficient because complex statistical models are needed to cap-
ture subtle illumination changes. To address this computation
bottleneck, we use random projections to reduce the
dimensionality of the data while retaining the information
content. This results in a computationally efficient and yet
accurate background subtraction algorithm. Our experiments
show that the accuracy of this algorithms is comparable to
that of traditional algorithms. Moreover they are up to six
times more efficient on embedded platforms. Furthermore,
we show that our proposed approach can accurately track a
moving object in real-time on an embedded camera network.
Y. Shen is the corresponding author.
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