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Summary
Background Most children with medulloblastoma fall within the standard-risk clinical disease group defined by 
absence of high-risk features (metastatic disease, large-cell/anaplastic histology, and MYC amplification), which 
includes 50–60% of patients and has a 5-year event-free survival of 75–85%. Within standard-risk medulloblastoma, 
patients in the WNT subgroup are established as having a favourable prognosis; however, outcome prediction for the 
remaining majority of patients is imprecise. We sought to identify novel prognostic biomarkers to enable improved 
risk-adapted therapies.

Methods The HIT-SIOP PNET 4 trial recruited 338 patients aged 4–21 years with medulloblastoma between Jan 1, 2001, 
and Dec 31, 2006, in 120 treatment institutions in seven European countries to investigate hyperfractionated 
radiotherapy versus standard radiotherapy. In this retrospective analysis, we assessed the remaining tumour samples 
from patients in the HIT-SIOP PNET 4 trial (n=136). We assessed the clinical behaviour of the molecularly defined 
WNT and SHH subgroups, and identified novel independent prognostic markers and models for standard-risk 
patients with non-WNT/non-SHH disease. Because of the scarcity and low quality of available genomic material, we 
used a mass spectrometry-minimal methylation classifier assay (MS-MIMIC) to assess methylation subgroup and a 
molecular inversion probe array to detect genome-wide copy number aberrations. Prognostic biomarkers and models 
identified were validated in an independent, demographically matched cohort (n=70) of medulloblastoma patients 
with non-WNT/non-SHH standard-risk disease treated with conventional therapies (maximal surgical resection 
followed by adjuvant craniospinal irradiation [all patients] and chemotherapy [65 of 70 patients], at UK Children’s 
Cancer and Leukaemia Group and European Society for Paediatric Oncology (SIOPE) associated treatment centres 
between 1990 and 2014. These samples were analysed by Illumina 450k DNA methylation microarray. HIT-SIOP 
PNET 4 is registered with ClinicalTrials.gov, number NCT01351870.

Findings We analysed methylation subgroup, genome-wide copy number aberrations, and mutational features in 
136 assessable tumour samples from the HIT-SIOP PNET 4 cohort, representing 40% of the 338 patients in the trial 
cohort. This cohort of 136 samples consisted of 28 (21%) classified as WNT, 17 (13%) as SHH, and 91 (67%) as 
non-WNT/non-SHH (we considered Group3 and Group4 medulloblastoma together in our analysis because of their 
similar molecular and clinical features). Favourable outcomes for WNT tumours were confirmed in patients younger 
than 16 years, and all relapse events in SHH (four [24%] of 17) occurred in patients with TP53 mutation (TP53mut) or 
chromosome 17p loss. A novel whole chromosomal aberration signature associated with increased ploidy and 
multiple non-random whole chromosomal aberrations was identified in 38 (42%) of the 91 samples from patients 
with non-WNT/non-SHH medulloblastoma in the HIT-SIOP PNET 4 cohort. Biomarkers associated with this whole 
chromosomal aberration signature (at least two of chromosome 7 gain, chromosome 8 loss, and chromosome 11 loss) 
predicted favourable prognosis. Patients with non-WNT/non-SHH medulloblastoma could be reclassified by these 
markers as having favourable-risk or high-risk disease. In patients in the HIT-SIOP PNET4 cohort with non-WNT/
non-SHH medulloblastoma, with a median follow-up of 6·7 years (IQR 5·8–8·2), 5-year event-free survival was 
100% in the favourable-risk group and 68% (95% CI 57·5–82·7; p=0·00014) in the high-risk group. In the validation 
cohort, with a median follow-up of 5·6 years (IQR 3·1–8·1), 5-year event-free survival was 94·7% (95% CI 85·2–100) 
in the favourable-risk group and 58·6% (95% CI 45·1–76·1) in the high-risk group (hazard ratio 9·41, 95% CI 
1·25–70·57; p=0·029). Our comprehensive molecular investigation identified subgroup-specific risk models which 
allowed 69 (51%) of 134 accessible patients from the standard-risk medulloblastoma HIT-SIOP PNET 4 cohort to be 
assigned to a favourable-risk group.

Interpretation We define a whole chromosomal signature that allows the assignment of non-WNT/non-SHH 
medulloblastoma patients normally classified as standard-risk into favourable-risk and high-risk categories. In 
addition to patients younger than 16 years with WNT tumours, patients with non-WNT/non-SHH tumours with our 
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defined whole chromosomal aberration signature and patients with SHH-TP53wild-type tumours should be considered 
for therapy de-escalation in future biomarker-driven, risk-adapted clinical trials. The remaining subgroups of patients 
with high-risk medulloblastoma might benefit from more intensive therapies.
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Introduction
Medulloblastoma, the most common malignant child hood 
brain tumour, is now recognised as an umbrella term for 
different molecular pathological disease entities. These 
entities differ in their progenitor cells, charac teristic 
mutations, biological profiles, and clinical behaviour. 
Currently, WHO classification of CNS tumours recog
nises four distinct genetically defined entities (WNT, 
SHHTP53wildtype, SHHTP53mut, and nonWNT/nonSHH).1 
NonWNT/nonSHH medullo blastoma encompasses 
Group3 and Group4, which were defined by epigenetic 

and mRNA expression signatures2 and are considered 
provisional variants by the 2016 WHO classification.1 
Understanding the molecular pathology and clinical 
relevance of medulloblastoma subtypes provides sub
stantial opportunities for personalised riskadapted 
therapies.

Discovery and validation of clinically meaningful 
medullo blastoma features in previous clinical trial 
cohorts have driven advances in the clinical management 
of the disease. Children younger than 16 years of age at 
diagnosis with WNTactivated medulloblastomas have 

Research in context

Evidence before this study
International consensus and the 2016 WHO classification 
recognise the following distinct clinico-molecular disease 
entities in medulloblastoma: WNT, SHH-TP53wild-type, 
SHH-TP53mut, and non-WNT/non-SHH (encompassing Group3 
and Group4). Standard-risk, non-infant disease (with 75–85% 
5-year progression-free survival and affecting 50–60% of 
patients) represents the largest clinical treatment group of 
patients. The ongoing pan-European SIOP PNET 5 MB clinical 
trial defines standard-risk, non-infant disease as the absence of 
high-risk clinical features such as metastatic disease or subtotal 
resection, molecular features (MYC or MYCN amplification or 
TP53 mutation in SHH medulloblastoma), and histological 
characteristics (large-cell/anaplastic disease). These definitions 
were established based on previous disease-wide studies. The 
SIOP PNET 5 MB trial is investigating reduced-intensity 
therapies for patients classified as standard-risk with expected 
good prognosis (ie, WNT medulloblastoma), aimed at 
maintaining overall survival while minimising late toxicities. 
However, biomarkers that stratify risk within remaining 
standard-risk patients with non-WNT medulloblastoma have 
not been identified. Moreover, novel non-WNT/non-SHH 
medulloblastoma epigenetic subtypes have been recognised; 
however, these subtypes remain to be validated and 
implemented clinically. Our own reviews of the literature 
formed the foundation for the present study; we did not carry 
out any formal literature searches before the study start date 
(December, 2015).

Added value of this study
To our knowledge, HIT-SIOP PNET 4 is the only completed 
pan-European clinical trial in patients with standard-risk 
medulloblastoma. However, to date, systematically collected 
biological material remaining from this trial was not amenable 

to contemporary molecular analysis. Application of novel 
methods to enable assessment of this cohort, and investigation 
of an independent demographically matched standard-risk 
medulloblastoma validation cohort, allowed derivation and 
validation of biomarker-driven, risk-stratification models on the 
basis of the molecular pathology of standard-risk 
medulloblastoma, including a novel whole chromosomal 
cytogenetic aberration signature within standard-risk 
non-WNT/non-SHH medulloblastoma. These newly described 
whole chromosomal cytogenetic aberration signatures allowed 
reallocation of more than 50% of HIT-SIOP PNET 4 patients 
with standard-risk medulloblastoma into a favourable-risk 
group, while the remaining patients were classified as high risk. 
Therefore, findings from this study resolve current patients 
with standard-risk medulloblastoma into biomarker-defined 
distinct favourable-risk and high-risk groups, and represent a 
substantial step in our ability to risk stratify and clinically 
manage medulloblastoma.

Implications of all the available evidence
The results of this study redefine the concepts of risk 
stratification in standard-risk medulloblastoma, providing 
insight into its molecular subtypes, their underpinning biology, 
and clinical application. Stratification of standard-risk 
medulloblastoma by use of the biomarkers and validated 
schemes we describe could allow assignment of 
150–200 patients per year in Europe into a favourable-risk 
group, and such patients could benefit from reduction of 
treatment intensity. Patients not classified as favourable-risk 
should be considered high-risk and might benefit from 
treatment intensification. The molecular risk groups and 
biomarker schemes presented in this study are amenable to 
routine diagnostic assessment and provide a foundation for 
future clinical trials and research investigations.
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consistently achieved favourable outcomes (5year event
free survival >95%),3,4 whereas other disease features, 
including MYC or MYCN amplification, largecell/
anaplastic histology, metastatic disease, or subtotal 
resection, define highrisk disease (5year eventfree 
survival <60%).5 These disease features now under pin 
riskadapted therapies in ongoing biomarkerdriven 
international prospective clinical studies, such as the 
SIOP PNET 5 MB (NCT02066220) and SJMB12 
(NCT01878617) trials, which aim to improve outcomes 
through reducedintensity therapies for favourablerisk 
patients and randomised assessment of adapted 
therapies in the remaining patients.

Standardrisk medulloblastoma represents the pre
dominant clinical treatment group (around 60% of 
patients) and is defined by the absence of clinical, 
molecular, and histopathological highrisk features. This 
group encompasses tumours of all variants except high
risk SHHTP53mut.6,7 Diagnosis of favourablerisk, WNT 
disease (around 20% of patients with standardrisk 
medulloblastoma) provides a clear precedent for therapy 
deescalation within clinical trials. By contrast, patients 
with nonWNT, standardrisk medullo blastoma have 
heterogeneous outcomes (5year eventfree survival 
around 75%), and further actionable risk groups are yet to 
be identified or validated to the point of clinical application. 
The favourable risk of patients with standardrisk, SHH
TP53wildtype medulloblastoma6,7 identified in retrospective 
series requires validation in clinical trials, and reproducible 
and clinically significant molecular pathological features 
with in nonWNT/nonSHH tumours remain to be 
defined. Research has found that Group3 and Group4 
medulloblastomas represent heterogeneous, bio logically 
overlapping entities—few recurrent mutations have been 
observed, whole chromosomal cytogenetic aberrations are 
common,8–11 and evidence of novel molecular subtypes is 
emerging.6,12,13

To our knowledge, HITSIOP PNET 414 is the first 
completed, international, prospective clinical trial of 
nonmetastatic childhood medulloblastoma (patients 
aged 4–21 years at diagnosis) and this cohort of patients 
represents a unique opportunity to explore the molecular 
pathology of standardrisk medulloblastoma, its potential 
for risk stratification, and the development of new thera
peutic concepts. Trial participants were post operatively 
staged and randomly assigned to treat ment with standard 
or hyperfractionated radio therapy, followed by chemo
therapy with eight cycles of cisplatin, lomustine, and 
vincristine. No difference in eventfree survival was 
observed between the two treatment groups.14

Formalinfixed, paraffinembedded (FFPE) tumour 
material for biological studies was prospectively collected, 
which enabled confirmation of favourable outcomes 
in patients with WNT medulloblastoma (defined by 
immuno histochemistry [IHC]) and identification of 
chromosome 17 imbalances on a diploid background 
(17p loss and/or 17q gain, by fluorescence insitu hybrid

isation [FISH]) as a marker of poor prognosis.15 However, 
until now, contemporary molecular characterisation of 
the HITSIOP PNET 4 cohort, and assessment of its 
clinical relevance, has been restricted by the low quality 
and quantity of remaining tumour material.

In this Article, we report comprehensive molecular 
and pathological characterisation of the HITSIOP 
PNET 4 cohort using novel technologies16,17 developed 
and adapted for assessment of the remnant tumour 
material. This analysis, alongside an independent, demo
graphically matched, standardrisk medullo bla stoma 
validation cohort, enabled the discovery and validation of 
concerted whole chromosomal aberration signatures 
with prognostic value for patients with nonWNT/non
SHH medulloblastoma. We describe the development of 
risk stratifi cation models for standardrisk, nonWNT/
nonSHH disease, which might allow reassignment of 
all patients with standardrisk medulloblastoma into 
biomarkerdefined favourablerisk or highrisk groups.

Methods
Study design and participants
In this retrospective analysis, we assessed remaining 
tumour samples from patients from the HITSIOP 
PNET 4 trial (NCT01351870).14 Between Jan 1, 2001, 
and Dec 31, 2006, 338 patients were recruited from 
120 different treatment centres in seven European 
countries (France, Germany, Italy, the Netherlands, 
Spain, Sweden, and the UK; appendix p 3). The study 
investigated treatment outcomes in patients aged 
4–21 years using either hyperfractionated radiotherapy or 
standard delivery radiotherapy followed by chemo
therapy.1 Standard delivery radiotherapy comprised 
23·4 Gy to the craniospinal axis and 54 Gy to the whole 
posterior fossa, and was given over 42 days in 30 fractions 
of 1·8 Gy each day for 5 days per week. Hyperfractionated 
radiotherapy was given in 68 fractions at 1·0 Gy twice per 
day with an 8 h interval between fractions, given over 
48 days. The total craniospinal dose was 36 Gy, and the 
whole posterior fossa dose was 60 Gy, with a further 
boost to 68 Gy to the tumour bed. Adjuvant chemotherapy 
was started 6 weeks after the end of radiotherapy. 
Eight cycles of cisplatin (70 mg/m² intravenously) 
and lomustine (75 mg/m²) on day 1, and vincristine 
(1·5 mg/m² intravenously) on days 1, 8, and 15, were 
given with a 6 week interval between each cycle.14

Minute remnant material (cytospinconcentrated 
cellular nuclei preparations) or tumour sections, origi
nally intended for FISH and IHC,15 were available 
for analysis (samples from 147 patients). We retained 
tumours from patients with subtotally resected disease18 
or categorised as MYCNamplified to assess their 
prognostic value in a clinically controlled cohort.6,11,15 
We excluded MYC-amplified tumours because of their 
established poor prognosis.5 136 tumour samples met 
these criteria and underwent molecular investigation. 
The demographics of the patients who provided these 

See Online for appendix
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Clinical cohort Clinical and molecular standard-risk cohort

All patients in HIT-SIOP 
PNET 4 (n=338)

All subgroups in HIT-SIOP 
PNET 4 (n=136)

Non-WNT/non-SHH in 
HIT-SIOP PNET 4 (n=91)

Non-WNT/non-SHH in validation 
cohort (Newcastle; n=70)

Sex

Male 211 (62%) 81 (60%) 61 (67%) 50 (71%)

Female 127 (38%) 55 (40%) 30 (33%) 20 (29%)

Male:female ratio 1·66:1 1·5:1 2:1 2·5:1

Age at diagnosis (years)* 9·0 (3–20) 
[7·0–12·0]

9·0 (3–20)  
[7·0–12·0]

8·0 (4–20)  
[6·0–10·0]

8·5 (4–18)  
[8·8–11·4]

Treatment

Standard radiotherapy 169 (50%) 67 (49%) 43 (47%) 66 (94%)

Hyperfractionated radiotherapy 169 (50%) 69 (51%) 48 (53%) 4 (6%)

Histology

Classic 273 (81%) 111 (82%) 81 (89%) 64 (91%)

Desmoplastic/nodular 47 (14%) 25 (18%) 10 (11%) 6 (9%)

Large-cell/anaplastic 16 (5%)† 0 0 0

No review 2 (1%) 0 0 0

Resection

Gross total resection 286 (90%) 121 (92%) 81 (92%) 54 (80%)

Subtotal resection 31 (10%) 10 (8%) 7 (8%) 14 (20%)

Follow-up (years) 6·6 (5·6–8·5) 6·7 (5·6–8·4) 6·7 (5·8–8·2) 5·6 (3·1–8·1)

Collection era (years) 2001–06 2001–06 2001–06 1990–2014‡

Molecular subgroup

WNT ·· 28 (21%) 0 0

SHH ·· 17 (13%) 0 0

Group3 ·· 15 (11%) 15 (16%) 6 (9%)

Group4 ·· 76 (56%) 76 (84%) 64 (91%)

β-catenin immunohistochemistry 

Total assessed ·· 121 56 28

Nuclear accumulation ·· 30 (25%) 0 1 (4%)

Normal ·· 91 (75%) 56 (100%) 27 (96%)

CTNNB1 mutation

Total assessed ·· 114 51 56

Mutant ·· 26 (23%) 0 0

Wild-type ·· 88 (77%) 51 (100%) 56 (100%)

TP53 mutation in SHH

Total assessed ·· 15 0 0

SHH-TP53wild-type ·· 11 (73%) 0 0

SHH-TP53mut ·· 4 (27%) 0 0

MYC amplification

Amplified ·· 0 0 0

Not amplified ·· 136 (100%) 91 (100%) 70 (100%)

MYCN amplification

Amplified ·· 10 (7%) 10 (11%) 6 (9%)

Not amplified ·· 126 (93%) 81 (89%) 64 (91%)

Chromosome 17 (interphase 
fluorescence in-situ hybridisation)

Total assessed ·· 101 69

17p loss or 17q gain (diploid(cen)) ·· 17 (17%) 15 (22%) NA

Others ·· 84 (83%) 54 (78%) NA

Data are n (%), median (IQR) or n, unless otherwise indicated. Some percentages do not total 100 because of non-assessable tumours. NA=not analysed. *Data are median 
(range) [IQR]. †The trial was amended in 2003 to exclude cases with large-cell/anaplastic histology. ‡Median year of diagnosis 2006.

Table: Clinical and molecular characteristics of all cohorts
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tumour samples (clinical and molecular cohort) and their 
prognostic features were consistent with the whole trial 
cohort (table).

We validated and extended our findings in a second 
independent, demographically matched, retrospective 
cohort of patients with nonWNT/nonSHH standard
risk medulloblastoma (n=70) collected at UK Children’s 
Cancer and Leukaemia Group and European Society for 
Paediatric Oncology (SIOPE) associated treatment 
centres between 1990 and 2014. Patients in this cohort 
received equivalent therapies (maximal surgical resection 
[all patients], adjuvant craniospinal radiotherapy [all 
patients; standard radiotherapy in variable doses—low 

dose: 24–27 Gy, 39 patients; high dose: 35–39 Gy, 
27 patients; hyperfractionated radiotherapy variable 
doses: 32·4 Gy craniospinal radiotherapy plus 23·4 Gy 
boost, one patient; 60 Gy hyperfractionated accelerated 
radiotherapy, one patient; 31/59 Gy, one patient; and 
39/54, one patient], and chemotherapy [65 (93%) of 
70 patients]).

Written informed consent for tumour collection for 
biological studies was obtained from patients or their 
parents. Tumour investi gations were done with approval 
from Newcastle and North Tyneside Research Ethics 
Committee (study reference 07/Q0905/71)—all tumour 
material was collected in accordance with this approval.

Figure 1: Clinical and disease-associated molecular features of the HIT-SIOP PNET 4 cohort
All 147 patient samples available from the HIT-SIOP PNET 4 cohort with subgroup information are shown, including 11 samples without data on chromosomal aberrations. Black indicates positivity 
for an assessed feature (for sex, black indicates male and white indicates female). Grey indicates missing data. Red indicates chromosomal losses and blue indicates chromosomal gains. 
NA=not assessed. Residual scores from χ² tests of association are shown (darker shades of grey indicate stronger enrichment) alongside p values from Fisher’s exact tests.
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Procedures
Because only material of mostly low quantity and quality 
was available, the HITSIOP PNET 4 samples were 
unsuitable for sub group assessment using conventional 
approaches (DNA methylation array19 or mRNA expres
sion analysis by Nanostring20); therefore, we analysed 
all samples using a mass spectrometryminimal 
methylation classifier (MSMIMIC) assay to assess their 
molecular subgroup.16 For the validation cohort, samples 
were of sufficient quality and quantity to do Illumina 
450k DNA methylation microarray (62 DNA samples 
were from frozen material and eight were from FFPE 
tissue) and consensus methylation subgroup was 
assigned as described previously.6

We assessed amplification of MYC and MYCN 
oncogenes by interphase FISH15 and estimated gene 
copy numbers from molecular inversion probe and 

DNA methylation arrays,19 as previously described. We 
analysed mutations in exons 4–9 of TP53 and exon 3 of 
CTNNB1 with Sanger sequencing as previously 
described.21 We assessed mutations in APC using a 
customised nextgeneration DNA sequencing panel 
(Illumina; San Diego, CA, USA) in samples 
with CTNNB1wildtype WNT medulloblastoma. We used a 
molecular inversion probe array (335 000 inversion 
probes; version 2.0; Affymetrix; Santa Clara, CA, USA) 
to identify aberrant changes in genomic copy number 
in samples from the HITSIOP PNET 4 trial.17 
Raw molecular inversion probe data were analysed 
using Nexus Copy Number 7.0 Discovery Edition 
(BioDiscovery; El Segundo, CA, USA). We used 
SNPFASST2 segmen tation algorithm to make copy 
number and loss of heterozygosity estimations. We 
used GISTIC (Genomic Identification of Significant 

(Figure 2 continues on next page)
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Targets in Cancer, v 1.0) to identify focal chromosomal 
aberrations (appendix pp 10–12).22 We analysed the 
validation cohort samples on the Illumina 450k DNA 
methylation microarray (Illumina; San Diego, CA, 
USA), and estimated chromosomal and focal 
copy number changes by use of the R package 
conumee v 1.13.0, as previously described.6 We defined 
a whole chromosomal aberration group of patients 
by hier archical clustering of recurrent (ie, >15%) 
aberrations.

Eventfree survival was defined as the time from 
surgery to first event (progression or relapse), or date of 
last followup. Patients whose followup time exceeded 
10 years were rightcensored at 10 years. Clinical follow

up data were collected according to the HITSIOP 
PNET 4 trial protocol.14 For the validation cohort, clinical 
data were collected in the same format from individual 
treatment centres.

Statistical analysis
Using hierarchical clustering, we clustered samples 
classified as nonWNT/nonSHH medulloblastoma sub
type by their recurrent whole chromosomal aberration 
(ie, incidence >15%; appendix p 2). After molecular sub
grouping, we observed similar cytogenetic changes and 
eventfree survival between the nonWNT/nonSHH 
medullo blastomas subclassified as Group3 and Group4 
(appendix p 9). Because of these results and the 
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Figure 2: Event-free survival in the HIT-SIOP PNET 4 cohort by clinical and disease-associated molecular features
Patients (n=136) were grouped as (A) treated with standard radiotherapy vs hyperfractionated radiotherapy, (B) those who had a gross total resection vs subtotal 
resection, (C) classified as per the four consensus medulloblastoma molecular subgroups, and (D) those with or without whole chromosomal aberrations. Event-free 
survival for patients with non-WNT/non-SHH disease (n=91) grouped as (E) patients with MYCN amplified vs non-amplified tumours, (F) patients with 
medulloblastomas presenting an i17q or not, and (G) patients with medulloblastomas with or without whole chromosomal aberration. HR=hazard ratio.
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emerging evidence of their shared biology,6,12 
we considered these groups together in subsequent 
eventfree survival analyses.

To test the null hypothesis that eventfree survival was 
not associated with clinical, molecular, or pathological 
variables in patients with Group3 or Group4 
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medulloblastoma, we constructed KaplanMeier curves 
and compared patient groups with logrank tests.

Using Cox modelling, we tested the prognostic value 
of clinical markers (gender, radiotherapy type [hyper
fractionated vs standard], resection outcome [subtotal vs 
fullyresected disease], MYCN amplifi cation [yes vs no], 
histology type [desmoplastic/nodular vs classic histo
logy]), cytogenetic markers (recurrent whole chromo
somal aberration [presence vs absence]), and cumulative 
numbers of total whole chromosomal aber rations (gains 
vs losses). We verified the pro portionality assumption 
for Cox modelling using scaled Schoenfeld residuals. 
We derived pragmatic assignments of patient risk by 
combining whole chromosomal aberrations that were 
significantly different in univariate testing to define risk 
groups and assessed their predictive value by calcu
lating total area under the curve (AUC), sensitivity, and 
specificity at 5 years since diagnosis (appendix p 2). 
We clustered the tumour samples from the validation 
cohort by the recurrent whole chromosomal aberrations 
previously identified in the HITSIOP PNET 4 trial 
standardrisk, nonWNT/nonSHH medulloblastoma 
co hort and validated the derived risk stratification 
schemes.

Finally, to better understand the nature of the 
identified risk groups, we classified the validation cohort 
according to the recently published refinements 
of epigenetically defined substructures within non
WNT/nonSHH medullo blastoma.6,12 Validation cohort 
samples were assigned to subgroup variants according 
to these published studies and visualised using 
tdistributed stochastic neighbour embedding (appendix 
pp 2–3).

We set the significance threshold at p<0·05 for all 
statistical tests in this study, and twotailed p values are 
reported. We assessed significance of association using 
Fisher’s exact test, and visualised the strength of 
associations using χ² test residuals.

Further detailed methods are provided in the appendix 
pp 1–3. Statistical and bio informatic analyses were done 
with R (version 3.4.2).

Role of the funding source
The funders of the study had no role in study design, 
data collection, data analysis, data interpretation, or 
writing of the report. The corresponding author had full 
access to all the data in the study and had final 
responsibility for the decision to submit for publication.

Results
We successfully assessed methylation subgroup 
(appendix p 4), genomewide copy number aberrations 
(appendix p 4), and mutational features in 136 tumour 
samples from the HITSIOP PNET 4 cohort, recruited 
from 2001 to 2006 and representing 136 (40%) of 
338 patients in the trial.14 Cohort clinical and molecular 
characteristics are summarised in figure 1 and the table.

Our integrative analysis found the expected distri
butions of clinical, pathological, and molecular features 
within WHOdefined medulloblastoma entities and their 
pro visional subvariants1 in the HITSIOP PNET 4 cohort 
(CTNNB1 mutation and chromosome 6 monosomy in 
WNT medulloblastoma; desmoplastic/nodular pathology 
and TP53 mutation in SHH medulloblastoma; i17q 
in nonWNT/nonSHHmedulloblastoma; and SNCAIP 
dupli cation and MYCN amplification in Group4; figure 1). 
Patients with WNT medulloblastoma (28 [21%] of 136) 
and patients with Group4 disease (76 [56%] of 136) 
were enriched in HITSIOP PNET 4 standardrisk 
medullo blastoma compared with retrospective disease
wide series,8–11 as anticipated following exclusion of 
children younger than 4 years, adults older than 21 years, 
and patients with highrisk or metastatic disease from 
this cohort.

The prognostic relevance and demographic distribution 
of key clinical features across the study cohorts were 
compatible with our previous reports of the entire 
HITSIOP PNET 4 trial (table).14,15

With a median followup of  6·7 years (IQR 5·6–8·4) in 
the HITSIOP PNET 4 cohort, 5year eventfree survival 
was equivalent between patients who received standard 
radiotherapy and those who received hyperfractionated 
radiotherapy (hazard ratio [HR] 0·81, 95% CI 0·36–1·82; 
p=0·61; figure 2), while patients who had a subtotal 
resection had a poorer eventfree survival at 5 years than 
those who underwent gross total resection (HR 3·18, 
1·08–9·37; p=0·036; figure 2). We found no differences 
in terms of 5year eventfree survival between the 
four methylation subgroups (figure 2; WNT 5year 
eventfree survival 88·5%, 95% CI 77·0–100; Group4 
5year eventfree survival 81·6%, 73·3–90·8; Group3 
5year eventfree survival 80·0, 62·1–100; SHH 5year 
eventfree survival 75·3%, 56·9–99·6; WNT vs Group4 
HR 0·61, 95% CI 0·18–2·12, p=0·44; SHH vs Group4 
1·27, 0·42–3·86, p=0·68; Group3 vs Group4 1·13, 
0·32–3·94, p=0·85). Group3 and Group4 had very 
similar eventfree survival curves (figure 2). By contrast, 
we found a significant association between the presence 
of whole chromosomal aberrations and favourable 

Figure 3: Identification of two cytogenetically distinct subgroups within 
non-WNT/non-SHH standard-risk medulloblastoma
All 91 patient samples with non-WNT/non-SHH standard-risk medulloblastoma 
available from HIT-SIOP PNET 4 cohort are shown. (A) The frequency of p, q, 
and whole chromosome gains and losses for all autosomal chromosomes. 
(B) Unsupervised hierarchical clustering of chromosomal features. Grey indicates 
missing data. Residuals from χ² indicate where whole chromosomal aberration 
cytogenetic group enrichment has occurred (darker shades of grey indicate 
stronger relationships), alongside p values from Fisher’s exact tests. Total 
numbers of whole chromosomal losses (red), gains (blue), and changes (black) 
are shown. Increasing colour intensity indicates a larger number of changes. 
Chromosomal changes with incidence >15% are shown. We defined whole 
chromosomal aberration cytogenetic groups by hierarchical clustering. Green 
represents Group4 medulloblastoma and yellow represents Group3 
medulloblastoma. (C) Correlation plot for recurrent (>15% incidence) 
cytogenetic changes. Circle area is proportional to the strength of correlation, 
with positive correlations shown in red and negative correlations shown in blue.
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eventfree survival outcomes compared with the absence 
of whole chromosomal aberrations (HR 4·05, 95% CI 
1·79–9·13; p=0·00077; figure 2).

We investigated the clinical, molecular, and eventfree 
survival characteristics of WHOdefined medullo blastoma 
molecular entities in the HITSIOP PNET 4 cohort.1 
25 (89%) of 28 WNT tumours showed the characteristic 
chromosome 6 monosomy and few other aberrations 
(appendix pp 5–6). We identified CTNNB1 mutations in 
26 (93%) of 28 WNT tumours (appendix pp 5–6). Both 
CTNNB1 wildtype tumours showed a copy neutral loss of 
heterozygosity within chromosome 5q (APC) and we 
identified APC frameshift deletions (E1309fs ΔAAAAG 
and Q1062fs ΔACAAA). Outcomes within the WNT 
subgroup were agedependent. We observed a 5year 
eventfree survival of 100% in patients younger than 
16 years at diagnosis, and all WNT relapses (three [11%] of 
28 WNT tumours) occurred in patients aged 16–20 years 
(p=0·00050; appendix pp 5–6).

Tumours classified as SHH in the HITSIOP PNET 4 
cohort (17 [13%] of 136 patients) also had few whole 
chromosomal aberrations (appendix pp 7–8). Chromo
some 17p loss (TP53) and TP53 mutations were 
associated with each other (p=0·0090; appendix pp 7–8) 
and with worse eventfree survival. All four (100%) of 
four events (relapses) were in patients with TP53 
mutation or chromosome 17p loss (p=0·0036). We did 
not observe MYCN amplifications in tumours classified 
as SHH medulloblastoma, including TP53mut tumours. 
A previously reported SHH disease risk model (of 
chromosome 14 loss and GLI2 amplification)11 showed 
significantly worse eventfree survival for patients in this 
cohort (p=0·00067; appendix pp 7–8). 

The 91 (67%) nonWNT/nonSHH tumours in the HIT
SIOP PNET 4 cohort of 136 were characterised by a 
higher incidence of whole chromo somal aberrations 
(eg, chromosome 7 gain, and chromosome 8 and 11 loss; 
mean 5·3 [SD 4·81] whole chromosomal aberrations per 
case for nonWNT/nonSHH vs 1·82 [SD 2·56] for WNT 
and 1·76 [SD 2·00] for SHH; figures 1, 3, appendix p 9), 
but isolated chromosome arm alterations were rare, with 
the exception of i17q (56 [62%] of 91 nonWNT/nonSHH 
medulloblastomas). However, 16 (18%) of 91 cases had 
no whole chromosomal aberrations (figures 1, 2). As 
expected, we observed structural cytogenetic (eg, i17q) 
and focal aberrations (including MYCN amplifications, 
OTX2, CCND2, and 18q12 [TPTE2] gains or ampli
fications, SNCAIP dupli cations, and 13q11–12 [SETBP1] 
loss; figure 1; appendix pp 11–12). Moreover, previously 
reported prognostic factors (MYCN amplification, 
i17q alterations, and sub total resection)11,18 were not asso
ciated with worse eventfree survival (figure 2; 
appendix p 15), while the observed cohortwide prognostic 
significance of whole chromosomal aber rations was 
maintained in this subgroup (figure 2).

We next investigated whether the observed mole
cular heterogeneity within the 91 nonWNT/nonSHH 

medullo blastoma tumours could inform its biological 
basis and clinical behaviour. Through unsupervised 
hierarchical cluster analysis of recurrent whole chromo
somal aberrations, we identified two clinically and 
biologically distinct subgroups of tumours (figure 3). The 
first cytogenetic group was strongly associated with a 
pattern of i17q in isolation, diploid karyotypes, few 
recurrent whole chromosomal aberrations, and more 
relapses (p=0·00084). The second cytogenetic group was 
char acterised by a spectrum of multiple recurrent and co
incident whole chromosomal aberrations (figure 3) and 
aneuploidy (p<0·0001; appendix p 13), and was associated 
with fewer relapses.

Whole chromosomal aberrations within nonWNT/
nonSHH medulloblastoma samples were associated 
with improved 5year eventfree survival (figure 4). 
55 (60%) of 91 nonWNT/nonSHH tumours had 
multiple recurrent and coincident whole chromo somal 
aberrations and showed favourable outcomes compared 
with those without whole chromosomal aberrations 
(HR 0·16, 95% CI 0·05–0·50; p=0·0015; figure 4). The 
total number of whole chromosomal aberrations in a 
given tumour was prognostic for eventfree survival. 
When different whole chromosomal aberration numbers 
were assessed, timedependent AUC analysis identified 
0 versus 1 or more recurrent whole chromosomal 
losses as the best discri minator of outcome (figure 4; 
appendix p 14). However, eventfree survival was not only 
dependent on the total numbers of whole chromosomal 
aberrations. Analysis of the prognostic effect of specific 
whole chromosomal aberrations in individual chromo
somes showed that chromosome 7 gain (HR 0·15, 
95% CI 0·04–0·51, p=0·0025), chromosome 8 loss 
(HR calculation not possible because of group with no 
events; p=0·0014 for logrank test), and chromosome 
11 loss (HR 0·10, 95% CI 0·01–0·79, p=0·029) 
represented the most significant specific whole 
chromosomal aber rations (appendix pp 15–16).

Through assessment of eventfree survival models for 
nonWNT/nonSHH medulloblastoma sam ples within 
the HITSIOP PNET 4 cohort, we identified at least two 
of the following—chromosome 7 gain, chromosome 8 
loss, and chromosome 11 loss—as the optimally 
performing risk stratification scheme (appendix pp 14–15), 
outperforming other cytogenetic schemes and trialbased 
models, such as the SIOP PNET 5 MB trial model, in this 
patient group (figure 4; appendix p 14). This model, based 
on combinations of chromosome 7 gain, chromosome 8 
loss, and chromosome 11 loss, stratified 38 (42%) of 91 
nonWNT/nonSHH medullo blastomas as being favour
able risk, with a 5year eventfree survival of 100%, 
(vs 68%, 95% CI 56·5–81·7 for highrisk tumours; 
p=0·00014 for logrank test; figure 4). Further analysis of 
the highrisk patient group (53 [58%] of 91 patients), 
showed that 5year eventfree survival  was equivalent 
between patients treated with hyperfractionated therapy 
or standard radiotherapy (HR 0·52, 95% CI 0·2–1·4, 
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Figure 4: Whole chromosomal aberration-derived risk stratification schemes for non-WNT/non-SHH medulloblastomas
All 91 available samples from patients in the HIT-SIOP PNET 4 cohort with non-WNT/non-SHH standard-risk medulloblastoma are shown. Event-free survival per (A) 
whole chromosomal aberration cytogenetic subgroup and (B) recurrent whole chromosomal losses (0 vs 1 or more changes). (C) Proposed optimally performing risk 
stratification model, with the two identified risk groups. (D) Incidence and distribution of prognostically relevant chromosomal changes. For molecular subgroup, 
green indicates Group4 and yellow indicates Group3. For risk group, blue indicates high-risk and red indicates low-risk. Black and white indicate presence or absence 
of a feature, respectively. (E) Event-free survival by the scheme shown in part C. HR=hazard ratio. *HR estimates for favourable-risk vs high-risk were not possible due 
to the group with no events. p value reported from log-rank test.
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Figure 5: Validation of the 
whole chromosomal 

aberration-derived 
subgroups and risk 

stratification schemes
All samples from the 

independent cohort of 
non-WNT/non-SHH-

medulloblastoma (n=70) are 
shown in A and B. (A) 

Unsupervised clustering of 
chromosomal features by 

relevant chromosomal 
aberration cytogenetic 

subgroups. Residuals from 
χ² tests indicate where whole 

chromosomal cytogenetic 
group enrichment has 

occurred. Darker shades of grey 
indicate stronger relationships. 
p values are from Fisher’s exact 

tests. Total numbers of whole 
chromosomal losses (red), 
gains (blue), and changes 

(black) are shown. Increasing 
colour intensity indicates a 
higher number of changes. 

(B) Relationship of whole 
chromosomal 

aberration-defined risk groups 
to novel Group3 and Group4 

disease subtypes. The 
standard-risk medulloblastoma 

validation cohort is indicated 
by filled and open circles 

according to risk, with 
relationship to the Schwalbe 

and colleagues6 and Northcott 
and colleagues12 cohorts shown 

by t-distributed stochastic 
neighbour embedding plots. 

(C) Event-free survival by 
whole chromosomal 

aberration-defined risk 
scheme. (D) Pooled analysis of 
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p=0·20 for Wald test; p=0·19 for logrank test), consistent 
with findings from the overall HITSIOP PNET 4 trial 
cohort (data not shown).14

We tested the reproducibility of our findings in an 
independent cohort of 70 nonWNT/nonSHH medullo
blastomas, which matched the clinical and demographic 
characteristics of our HITSIOP PNET 4 standardrisk 
medulloblastoma cohort, collected from 1990 to 2014 
(table, figure 5). The median eventfree survival for these 
patients was 5·6 years (IQR 3·1–8·1).

The characteristics, incidence, and associated event
free survival outcomes of the identified whole chromo
somal aberrationdefined subgroups were recapitulated 
(figure 5; appendix p 17). Our proposed whole chromo
somal aberration signaturebased model represented the 
best performing risk stratification scheme (figure 5; 
appendix p 18). The favourablerisk whole chromosomal 
aberration signature, defined by chromo some 7 gain, 
chromosome 8 loss, and chromo some 11 loss, was 
observed within multiple novel methylation subgroups, 
and was significantly associated with MBGroup4LowRisk

6 and 
Group3 and Group4 subtypes VI and VII12 (p<0·0001, 
appendix p 18). By contrast, the highrisk group was 
significantly associated with MBGroup4HighRisk

6 and subtype 
VIII12 (p<0·0001, figure 5; appendix p 18). When we 
considered our eventfree survival models in Group4 
patients alone, we found equivalent prognostic 
relationships in both the HITSIOP PNET 4 and 
validation cohorts (appendix pp 14, 19–20).

A pooled analysis applied the validated whole chromo
somal aberration signaturebased riskstratification 
model to the merged nonWNT/nonSHH medullo
blastomas from the HITSIOP PNET 4, and validation 
cohorts (n=161) and classified 58 (36%) nonWNT/
nonSHH medulloblastomas as favourablerisk and 
103 (64%) as highrisk; 5year eventfree survival was 
98·3% (95% CI 94·9–100) in the favourablerisk group vs 
64% (52·9–73·2) in the highrisk group (HR 25·09, 
95% CI 3·44–183·20; p=0·0015; figure 5). Together with 
established favourablerisk WNT medullo blastomas in 
patients younger than 16 years (20 [15%] of 136 patients; 
appendix pp 5–6) and TP53wildtype SHH medulloblastomas 
(11 [8%] of 136 tumours; appendix pp 7–8), these newly 
identified chromosomal signatures identified 69 (51%) of 
134 (two SHH tumours had unknown TP53 status and 
were therefore excluded from the calculation) molecularly 
characterised patients with medulloblastoma from the 
HITSIOP PNET 4 cohort with a favourable prognosis 
(5year eventfree survival of 100%).

Discussion
Implementation of enabling technologies (MSMIMIC 
and molecular inversion probe assay) allowed us to 
systematically assess the molecular pathology of the 
standardrisk medulloblastoma clinical group within the 
HITSIOP PNET 4 patient cohort. To our knowledge, no 
equivalent multicentre, prospective investigations of 

standardrisk medulloblastoma have been reported. 
Although wider, retrospective medulloblastoma datasets 
are available, these typically lack the full clinical and 
molecular annotation necessary to define the standard
risk medulloblastoma group. The standardrisk medullo
blastoma group displayed distinct demographics versus 
diseasewide cohorts.8–11 WNT and Group4 sub groups 
were enriched within the standardrisk medulloblastoma 
cohorts because of the absence of clinicomolecular 
highrisk features in standardrisk disease.

The favourable prognosis of patients with WNT 
medulloblastoma was confirmed in patients from the 
HITSIOP PNET 4 cohort who were younger than 
16 years at diagnosis. However, patients older than 
16 years did not share this good prognosis, consistent 
with previous reports.15,23 Together, these data do not 
support therapy deescalation in patients with WNT 
medulloblastoma older than 16 years of age. Patients 
with SHH medulloblastoma without TP53 muta tions 
(SHHTP53wildtype) or chromo some 17p loss similarly had 
a favourable prognosis. These data validate independent 
previous findings6,7 and support the eligibility of these 
patients for deescalated or targeted therapies (eg, SMO 
inhibitors).24

Development of biomarkerdriven treatment strategies 
for the large remaining group of patients with nonWNT/
nonSHH disease represents the largest ongoing chal
lenge for standardrisk medulloblastoma. In the absence 
of highrisk features,5 these patients had a 5year event
free survival of 81% (95% CI 74–90) in the HITSIOP 
PNET 4 trial. As described in this Article, nonWNT/non
SHH medulloblastoma tumours have few recurrent 
mutations, and structural chromosomal abnor malities 
are the most common genomic features.8–10 When 
comparing Group4 and Group3 tumours, we found 
around 90% overlap of chromosomal alterations between 
the two subgroups and equivalent eventfree survival. 
Coupled with evidence supporting their shared under
lying biological mechanisms,6,12 we considered Group3 
and Group4 tumours together in our analysis. We 
identified two biologically and clinically distinct non
WNT/nonSHH medulloblastoma groups. The first 
group was a cytogenetically quiet, highrisk group 
associated with diploid genomes, many with i17q as the 
sole defining genomic feature. These tumours provide a 
wider biological context for the poorrisk group of 
patients with nonWNT disease with chromosome 17p or 
q defects in a diploid background (chr17(im)/diploid(cen)), 
previously identified by interphase FISH in this cohort.15 
The second group was large and defined by multiple, co
occurring whole chromosomal aber rations, common 
polyploidy, and improved relative outcomes.

In this whole chromosomal aberration group, using 
multivariable eventfree survival analysis and risk 
modelling, we deduced a whole chromosomal aberration 
signature (two or more of chromosome 7 gain, chromo
some 8 loss, and chromosome 11 loss), which best defined 
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patients with nonWNT/nonSHH medulloblastoma with 
favourable prognosis. We validated these findings in an 
independent demographically matched standardrisk 
medulloblastoma cohort, and they were reproducible 
when Group4 patients were considered in isolation. This 
whole chromosomal aberration signature was detected 
within a number of novel methylation subgroups within 
nonWNT/nonSHH medulloblastoma, and associated 
with the lowrisk MBGroup4LowRisk,6 and Group3 and Group4 
subtypes VI and VII.12 By contrast, the highrisk isolated 
i17q diploid group was associated with highrisk MBGroup4

HighRisk
6 and subtype VIII.12 These associations suggest 

common biological phenotypes and evaluation of their 
relative contributions to risk stratifi cation could be 
investigated in future clinically controlled studies.

Biologically and clinically significant whole chromo
somal phenotypes are a notable feature of childhood 
malignancies other than medulloblastoma. Characteristic 
patterns of nonrandom whole chromosomal aberrations 
in neuroblastoma (socalled wholechromosomal changes 
phenotype; more than two whole chromosomal aber
rations)25,26 and high hyperdiploid acute lymphoblastic 
leukaemia (socalled highhyperdiploidy phenotype 
[HeH]; 51–65 chromosomes)27 define tumour subgroups 
with favourable prognoses. Additionally, choroid plexus 
papil lomas and adult infratentorial ependymomas 
(posterior fossa ependymoma type B) are characterised by 
multiple whole chromosomal abberations.1 Overall, whole 
chromosomal aberration signatures are associated with a 
low number of single nucleotide mutations.

This common involvement of whole chromosomal 
aberration signatures provides strong impetus to under
stand the underlying molecular pathomechanisms, 
including errors in mitotic control, chromosome segre
gation, and function of the spindle apparatus. Although 
beyond the scope of this study, investigation of associated 
biology (eg, geneexpression profiles, pathway involve
ments, and driver events) and the involvement of specific 
chromosomes (ie, chromosomes 7, 8, and 11), is essential 
to improve understanding and therapeutic targeting. 
Potential opportunities include agents that target the 
spindle apparatus or mitotic control. For instance, 
vincristine (a component of medulloblastoma treatment 
regimens) directly targets the spindle apparatus, and the 
excellent whole chromosomal aberration signature
associated outcomes might be explained by high 
sensitivity to such treatments. Indeed, the association 
between HeH acute leukaemia and chemosensitivity 
associated with increased DNA content has been long 
established.28

This study has some limitations. The developed 
risk stratification scheme applies only to noninfant, 
standardrisk medulloblastoma treated with standard 
multimodal therapies. Children younger than 4 years, 
patients treated with chemotherapy only, and highrisk 
patients require independent assessment and develop
ment of appropriate risk stratification schemes. However, 

our biomarkerdriven risk stratification schemes for 
standardrisk medulloblastoma are readily testable in 
routine molecular diagnostic practice and, following 
their validation in independent clinically controlled and 
biomarkerdefined cohorts, could form the basis of 
international clinical trials aimed at improving outcomes.

In summary, our molecular pathological character
isation of the HITSIOP PNET 4 cohort identified and 
inde pendently validated a whole chromosomal aberration 
signaturedefined subgroup of nonWNT/nonSHH 
medulloblastomas associated with good prognosis. 
Combination of these newly defined subtypes with the 
favourablerisk WNT and SHH medulloblastomas 
validated in our study redistributed around 50% of patients 
with standardrisk medulloblastoma into a favourablerisk 
group, who could benefit from reducedintensity therapies 
aimed at maintaining overall survival while reducing 
treatmentassociated toxicities and late effects. Patients not 
classified into this favourablerisk group had a 5year 
eventfree survival of around 60% and should be 
considered high risk. In the HITSIOP PNET 4 cohort, this 
model compared favourably with published and currently 
accepted risk stratification schemes (eg, Shih and 
colleagues11 and SIOP PNET 5 MB;5 appendix p 14) and 
redefines our understanding of biomarkers and disease 
risk within the previously clinically defined standardrisk 
medulloblastoma patient group.
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